JP6221856B2 - Power storage device and method for manufacturing power storage device - Google Patents

Power storage device and method for manufacturing power storage device Download PDF

Info

Publication number
JP6221856B2
JP6221856B2 JP2014049259A JP2014049259A JP6221856B2 JP 6221856 B2 JP6221856 B2 JP 6221856B2 JP 2014049259 A JP2014049259 A JP 2014049259A JP 2014049259 A JP2014049259 A JP 2014049259A JP 6221856 B2 JP6221856 B2 JP 6221856B2
Authority
JP
Japan
Prior art keywords
electrode assembly
electrode
positive
assembly
thickness adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014049259A
Other languages
Japanese (ja)
Other versions
JP2015173080A (en
Inventor
厚志 南形
厚志 南形
元章 奥田
元章 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2014049259A priority Critical patent/JP6221856B2/en
Publication of JP2015173080A publication Critical patent/JP2015173080A/en
Application granted granted Critical
Publication of JP6221856B2 publication Critical patent/JP6221856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

この発明は、電極組立体と厚み調整部材とがケースに収容された蓄電装置、及び蓄電装置の製造方法に関する。   The present invention relates to a power storage device in which an electrode assembly and a thickness adjusting member are accommodated in a case, and a method for manufacturing the power storage device.

EV(Electric Vehicle)やPHV(Plug in Hybrid Vehicle)などの車両には、原動機となる電動機への供給電力を蓄える蓄電装置としてリチウムイオン電池などの二次電池が搭載されている。二次電池は、例えば活物質層を備える正極電極と負極電極とがセパレータを間に挟んだ状態で積層された電極組立体と、電極組立体を収容するケースと、を備えている。   A vehicle such as an EV (Electric Vehicle) or a PHV (Plug in Hybrid Vehicle) is equipped with a secondary battery such as a lithium ion battery as a power storage device that stores power supplied to an electric motor serving as a prime mover. The secondary battery includes, for example, an electrode assembly in which a positive electrode and a negative electrode each including an active material layer are stacked with a separator interposed therebetween, and a case that houses the electrode assembly.

二次電池の製造時において、各電極やセパレータの製造公差によって、電極組立体の積層方向の長さが所定範囲より短くなる場合では、電極組立体をケースに収容した状態で、電極組立体の積層方向における電極組立体とケースの内面との間の隙間が大きすぎることとなる。こうして隙間が大きくなると、電極組立体がケース内で積層方向に移動してしまい好ましくない。   When manufacturing the secondary battery, if the length in the stacking direction of the electrode assembly is shorter than a predetermined range due to the manufacturing tolerance of each electrode or separator, the electrode assembly is stored in the case in the case of the electrode assembly. The gap between the electrode assembly and the inner surface of the case in the stacking direction will be too large. If the gap becomes large in this way, the electrode assembly moves in the stacking direction within the case, which is not preferable.

そこで、特許文献1に記載の二次電池では、電極組立体の積層方向における電極組立体とケースの内面との間の隙間に厚み調整部材を挿入することにより、こうした隙間を小さくするようにしている。   Therefore, in the secondary battery described in Patent Document 1, such a gap is reduced by inserting a thickness adjusting member into the gap between the electrode assembly and the inner surface of the case in the stacking direction of the electrode assembly. Yes.

特開2008−108457号公報JP 2008-108457 A

ところで、特許文献1に記載の二次電池では、厚み調整部材が電極組立体の積層方向における電極組立体とケースの内面との間の隙間に位置しているため、電極組立体からケースへの伝熱が厚み調整部材によって阻害されることにより、電極組立体の熱を適切にケースに伝えることができないおそれがある。   By the way, in the secondary battery described in Patent Document 1, the thickness adjusting member is located in the gap between the electrode assembly and the inner surface of the case in the stacking direction of the electrode assembly. If the heat transfer is inhibited by the thickness adjusting member, the heat of the electrode assembly may not be properly transmitted to the case.

この発明は、上記実情に鑑みてなされたものであり、その目的は、電極組立体と併せて厚み調整部材がケースに収容される場合に、電極組立体の熱を適切にケースに伝えることのできる蓄電装置、及び蓄電装置の製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to appropriately transmit heat of the electrode assembly to the case when the thickness adjusting member is housed in the case together with the electrode assembly. An object of the present invention is to provide a power storage device and a method for manufacturing the power storage device.

以下、上記目的を達成するための手段及びその作用効果について記載する。
上記課題を解決する蓄電装置は、活物質層を備える正極電極と負極電極とがセパレータを間に挟んだ状態で積層された電極組立体と、当該電極組立体を収容するケースと、を備えている。電極組立体は、正極電極と負極電極とがセパレータを間に挟んだ状態で積層された第1電極組立体と第2電極組立体とを含み、電極組立体の積層方向において、第1電極組立体と第2電極組立体との間に、且つ電極組立体の中央に、電極組立体とケースとの間の隙間を調整するための厚み調整部材が位置している。
In the following, means for achieving the above object and its effects are described.
A power storage device that solves the above problems includes an electrode assembly in which a positive electrode and a negative electrode including an active material layer are stacked with a separator interposed therebetween, and a case that houses the electrode assembly. Yes. The electrode assembly includes a first electrode assembly and a second electrode assembly in which a positive electrode and a negative electrode are stacked with a separator interposed therebetween, and in the stacking direction of the electrode assembly, the first electrode assembly A thickness adjusting member for adjusting a gap between the electrode assembly and the case is located between the solid body and the second electrode assembly and in the center of the electrode assembly.

上記構成によれば、電極組立体の積層方向の中央に厚み調整部材が位置しているため、第1電極組立体と第2電極組立体とからそれぞれケースへと伝熱が促進される。したがって、電極組立体の熱を適切にケースに伝えることができる。   According to the said structure, since the thickness adjustment member is located in the center of the lamination direction of an electrode assembly, heat transfer is accelerated | stimulated from a 1st electrode assembly and a 2nd electrode assembly to a case, respectively. Therefore, the heat of the electrode assembly can be appropriately transferred to the case.

厚み調整部材は、例えば複数枚の厚み調整フィルムから構成されていることが好ましい。
上記構成によれば、複数枚の厚み調整フィルムを全て電極組立体の中央に位置させるため、複数枚の厚み調整フィルムを電極組立体の積層方向における異なる位置に配置させる場合と比較して、厚み調整部材による伝熱の阻害を抑制することができる。したがって、電極組立体の熱をより適切にケースに伝えることができる。
The thickness adjusting member is preferably composed of, for example, a plurality of thickness adjusting films.
According to the above configuration, since the plurality of thickness adjusting films are all located at the center of the electrode assembly, the thickness is compared with the case where the plurality of thickness adjusting films are arranged at different positions in the stacking direction of the electrode assembly. The inhibition of heat transfer by the adjustment member can be suppressed. Therefore, the heat of the electrode assembly can be more appropriately transmitted to the case.

上記第1電極組立体と上記第2電極組立体との好適な例としては、それぞれを構成する正極電極の枚数差が1枚以下であり、且つそれぞれを構成する正極電極と負極電極とを合わせた枚数差が2枚以下であるものが挙げられる。   As a preferred example of the first electrode assembly and the second electrode assembly, the difference in the number of positive electrodes constituting each of them is one or less, and the positive electrode and the negative electrode constituting each are combined. The difference in the number of sheets is 2 or less.

上記蓄電装置において、前記蓄電装置の好適な例としては、二次電池を挙げることができる。
上記課題を解決する蓄電装置の製造方法は、活物質層を備える正極電極と負極電極とをセパレータを間に挟んだ状態で積層させた電極組立体を備えた蓄電装置の製造方法である。この蓄電装置の製造方法では、電極組立体が、正極電極と負極電極とがセパレータを間に挟んだ状態で積層された第1電極組立体と第2電極組立体とを含み、第1電極組立体及び第2電極組立体を複数製造し、製造した複数の第1電極組立体及び第2電極組立体の積層方向の長さをそれぞれ測定し、複数の第1電極組立体及び第2電極組立体のうち、積層方向の長さの合計が所定範囲内となる第1電極組立体と第2電極組立体とを選択する。そして、第1電極組立体と第2電極組立体との積層方向における間に厚み調整部材を位置させて第1電極組立体と第2電極組立体とを積層することにより、積層方向における中央に厚み調整部材を有する1つの電極組立体を製造し、当該電極組立体をケースに収容する。
In the above power storage device, a preferable example of the power storage device is a secondary battery.
A method for manufacturing a power storage device that solves the above problem is a method for manufacturing a power storage device including an electrode assembly in which a positive electrode and a negative electrode including an active material layer are stacked with a separator interposed therebetween. In this method of manufacturing a power storage device, the electrode assembly includes a first electrode assembly and a second electrode assembly that are stacked with a positive electrode and a negative electrode sandwiched between separators. A plurality of three-dimensional and second electrode assemblies are manufactured, and the lengths of the manufactured first electrode assemblies and second electrode assemblies in the stacking direction are respectively measured, and a plurality of first electrode assemblies and second electrode assemblies are measured. A first electrode assembly and a second electrode assembly that have a total length in the stacking direction within a predetermined range are selected from the three-dimensional objects. Then, by positioning the thickness adjusting member between the first electrode assembly and the second electrode assembly in the stacking direction and stacking the first electrode assembly and the second electrode assembly, the center in the stacking direction is obtained. One electrode assembly having a thickness adjusting member is manufactured, and the electrode assembly is accommodated in a case.

上記構成によれば、電極組立体の積層方向の中央に厚み調整部材が位置しているため、第1電極組立体と第2電極組立体とからそれぞれケースへと伝熱が促進される。したがって、電極組立体の熱を適切にケースに伝えることができる。   According to the said structure, since the thickness adjustment member is located in the center of the lamination direction of an electrode assembly, heat transfer is accelerated | stimulated from a 1st electrode assembly and a 2nd electrode assembly to a case, respectively. Therefore, the heat of the electrode assembly can be appropriately transferred to the case.

また、通常、各電極やセパレータの製造公差によって、製造された電極組立体毎で積層方向における長さが異なる場合がある。この場合、各電極及びセパレータの枚数を設定された枚数通りとしても、電極組立体の積層方向の長さに電極組立体毎でばらつきが生じる。そして、そうしたばらつきに応じた厚み調整部材を選択し、選択された厚み調整部材を電極組立体と併せてケースに収容させることにより、電極組立体とケースとの間の隙間が厚み調整部材によって調整される。   In addition, the length in the stacking direction may be different for each manufactured electrode assembly due to manufacturing tolerance of each electrode or separator. In this case, even if the number of electrodes and separators is the same as the set number, the length in the stacking direction of the electrode assemblies varies among the electrode assemblies. Then, a thickness adjusting member corresponding to such variation is selected, and the selected thickness adjusting member is accommodated in the case together with the electrode assembly, so that the gap between the electrode assembly and the case is adjusted by the thickness adjusting member. Is done.

上記構成によれば、電極組立体を第1電極組立体と第2電極組立体とを積層したものとし、これら第1電極組立体及び第2電極組立体として、積層方向の長さの合計が所定範囲内となるものを選択している。このため、第1電極組立体と第2電極組立体とを積層して製造された電極組立体では、上記の電極組立体毎のばらつきを小さくすることができる。   According to the above configuration, the electrode assembly is formed by laminating the first electrode assembly and the second electrode assembly, and the total length in the stacking direction is determined as the first electrode assembly and the second electrode assembly. Those within the predetermined range are selected. For this reason, in the electrode assembly manufactured by laminating the first electrode assembly and the second electrode assembly, the variation among the electrode assemblies can be reduced.

ここで、厚み調整部材を電極組立体に位置させる場合では、そうした電極組立体の積層方向の長さのばらつきに応じて適切な厚みの厚み調整部材を選択できるように、異なる厚みの厚み調整部材を用意する必要がある。しかしながら、こうした場合においても、上記の通り電極組立体毎のばらつきが小さくなることにより、用意する厚み調整部材の厚みの範囲を小さくすることができる。したがって、厚み調整部材に係る作業性の向上やコストの低減を図ることができる。   Here, when the thickness adjusting member is positioned on the electrode assembly, the thickness adjusting member having a different thickness is selected so that the thickness adjusting member having an appropriate thickness can be selected in accordance with the variation in the length of the electrode assembly in the stacking direction. It is necessary to prepare. However, even in such a case, the range of the thickness adjusting member to be prepared can be reduced by reducing the variation among the electrode assemblies as described above. Therefore, it is possible to improve workability and reduce costs related to the thickness adjusting member.

本発明によれば、電極組立体と併せて厚み調整部材がケースに収容される場合に、電極組立体の熱を適切にケースに伝えることができる。   According to the present invention, when the thickness adjusting member is housed in the case together with the electrode assembly, the heat of the electrode assembly can be appropriately transmitted to the case.

本実施形態における二次電池の分解斜視図。The disassembled perspective view of the secondary battery in this embodiment. 第1電極組立体及び第2電極組立体の構成要素を示す分解斜視図。The disassembled perspective view which shows the component of a 1st electrode assembly and a 2nd electrode assembly. 電極組立体の構成要素を示す分解斜視図。The disassembled perspective view which shows the component of an electrode assembly. 二次電池の断面図。Sectional drawing of a secondary battery. 別の実施形態における電極組立体の構成要素を示す分解斜視図。The disassembled perspective view which shows the component of the electrode assembly in another embodiment. 別の実施形態における二次電池の断面図。Sectional drawing of the secondary battery in another embodiment.

以下、本発明を具体化した一実施形態を図1〜図4にしたがって説明する。
図1に示すように、蓄電装置としての二次電池10は、ケース11に電極組立体12が収容されている。電極組立体12は、第1電極組立体12aと第2電極組立体12bとから構成されている。また、ケース11には、電極組立体12とともに電解液も収容されている。ケース11は、有底筒状のケース本体13と、ケース本体13に電極組立体12を挿入する開口部を閉塞する平板状の蓋体14とからなる。ケース本体13と蓋体14は、何れも金属製(例えば、ステンレス製やアルミニウム製)である。また、この実施形態の二次電池10は、ケース本体13が有底四角筒状であり、蓋体14が矩形平板状であることから、その外観が角型をなす角型電池である。また、この実施形態の二次電池10は、リチウムイオン電池である。
Hereinafter, an embodiment embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, in a secondary battery 10 as a power storage device, an electrode assembly 12 is accommodated in a case 11. The electrode assembly 12 includes a first electrode assembly 12a and a second electrode assembly 12b. The case 11 also contains an electrolyte solution together with the electrode assembly 12. The case 11 includes a bottomed cylindrical case body 13 and a flat lid 14 that closes an opening for inserting the electrode assembly 12 into the case body 13. Both the case main body 13 and the lid body 14 are made of metal (for example, made of stainless steel or aluminum). In addition, the secondary battery 10 of this embodiment is a rectangular battery whose appearance is a rectangular shape because the case body 13 has a bottomed rectangular tube shape and the lid body 14 has a rectangular flat plate shape. Moreover, the secondary battery 10 of this embodiment is a lithium ion battery.

図2に示すように、電極組立体12を構成する第1電極組立体12a及び第2電極組立体12bは、複数の正極電極21と負極電極25とがセパレータ29を間に挟んだ状態で交互に積層されて構成されている。各電極21,25及びセパレータ29はそれぞれ矩形状である。また、正極電極21は負極電極25よりも一回り小さい形状である。具体的には、正極電極21の各辺の長さが、負極電極25の各辺の長さよりも短く設定されている。セパレータ29は、負極電極25よりも一回り大きい形状である。具体的には、セパレータ29の各辺の長さが、負極電極25の各辺の長さよりも長く設定されている。   As shown in FIG. 2, the first electrode assembly 12a and the second electrode assembly 12b constituting the electrode assembly 12 are alternately arranged with a plurality of positive electrodes 21 and negative electrodes 25 sandwiching a separator 29 therebetween. It is laminated and configured. Each of the electrodes 21 and 25 and the separator 29 has a rectangular shape. The positive electrode 21 has a shape that is slightly smaller than the negative electrode 25. Specifically, the length of each side of the positive electrode 21 is set shorter than the length of each side of the negative electrode 25. The separator 29 has a shape that is slightly larger than the negative electrode 25. Specifically, the length of each side of the separator 29 is set longer than the length of each side of the negative electrode 25.

正極電極21は、矩形状の正極金属箔(例えばアルミニウム箔)22と、正極金属箔22の両面に正極活物質を有する正極活物質層23とから構成されている。正極活物質層23は、正極電極21のうち正極電極21の一辺21cに沿った一部の領域以外の領域全体に位置している。また、正極電極21は、正極電極21の一辺21cの一部から突出する正極タブ24を有する。   The positive electrode 21 includes a rectangular positive metal foil (for example, aluminum foil) 22 and a positive electrode active material layer 23 having a positive electrode active material on both surfaces of the positive electrode metal foil 22. The positive electrode active material layer 23 is located in the entire region other than a part of the positive electrode 21 along the one side 21 c of the positive electrode 21. Further, the positive electrode 21 has a positive electrode tab 24 protruding from a part of one side 21 c of the positive electrode 21.

負極電極25は、矩形状の負極金属箔(例えば銅箔)26と、負極金属箔26の両面に負極活物質を有する負極活物質層27とから構成されている。負極金属箔26は、正極金属箔22よりも一回り大きい形状である。負極活物質層27は、負極電極25のうち負極電極25の一辺25cに沿った一部の領域以外の領域全体に位置しており、正極活物質層23よりも大きい領域に位置している。また、負極電極25は、負極電極25の一辺25cの一部から突出する負極タブ28を有する。   The negative electrode 25 includes a rectangular negative metal foil (for example, copper foil) 26 and a negative electrode active material layer 27 having a negative electrode active material on both surfaces of the negative electrode metal foil 26. The negative electrode metal foil 26 has a shape that is slightly larger than the positive electrode metal foil 22. The negative electrode active material layer 27 is located in the entire region of the negative electrode 25 other than a part of the region along the one side 25 c of the negative electrode 25, and is located in a region larger than the positive electrode active material layer 23. Further, the negative electrode 25 has a negative electrode tab 28 protruding from a part of one side 25 c of the negative electrode 25.

各電極21,25は、各タブ24,28の同一極性同士が積層方向に列状に配置される一方、異なる極性同士が積層方向に重ならないように積層されている。
図3に示すように、第1電極組立体12aと第2電極組立体12bとでは、構成する正極電極21及び負極電極25の枚数が同一である。詳細には、本実施形態では、第1電極組立体12aの正極電極21と第2電極組立体12bの正極電極21とが同枚数である。すなわち、第1電極組立体12aの正極電極21の枚数と第2電極組立体12bの正極電極21の枚数との合計が偶数枚となる。また、第1電極組立体12aの負極電極25と第2電極組立体12bの負極電極25とが同枚数である。さらに、第1電極組立体12aと第2電極組立体12bでは、こうした正極電極21及び負極電極25の枚数に伴い、セパレータ29の枚数も同一である。
The electrodes 21 and 25 are stacked so that the same polarities of the tabs 24 and 28 are arranged in a row in the stacking direction, while different polarities do not overlap in the stacking direction.
As shown in FIG. 3, the first electrode assembly 12 a and the second electrode assembly 12 b have the same number of positive electrodes 21 and negative electrodes 25. In detail, in this embodiment, the positive electrode 21 of the 1st electrode assembly 12a and the positive electrode 21 of the 2nd electrode assembly 12b are the same number. That is, the sum of the number of positive electrodes 21 of the first electrode assembly 12a and the number of positive electrodes 21 of the second electrode assembly 12b is an even number. Further, the negative electrode 25 of the first electrode assembly 12a and the negative electrode 25 of the second electrode assembly 12b are the same number. Further, in the first electrode assembly 12a and the second electrode assembly 12b, the number of separators 29 is the same as the number of positive electrodes 21 and negative electrodes 25.

なお、第1電極組立体12a及び第2電極組立体12bを構成する各電極21,25及びセパレータ29の枚数は、第1電極組立体12aと第2電極組立体12bとが積層されて電極組立体12とされたときに、その電極組立体12の積層方向の長さS1’がケース11の内寸の長さS2よりも僅かに小さくなるように設定されている。これは、第1電極組立体12aと第2電極組立体12bとを積層する際に、各電極21,25やセパレータ29の実際の厚みが製造公差の最大値を取っても、電極組立体12がケース11内に収まるように、第1電極組立体12a及び第2電極組立体12bを構成する各電極21,25及びセパレータ29の枚数が設定されていることによる。   The number of electrodes 21 and 25 and separators 29 constituting the first electrode assembly 12a and the second electrode assembly 12b is such that the first electrode assembly 12a and the second electrode assembly 12b are stacked. When the solid body 12 is formed, the length S1 ′ of the electrode assembly 12 in the stacking direction is set to be slightly smaller than the length S2 of the inner dimension of the case 11. This is because when the first electrode assembly 12a and the second electrode assembly 12b are stacked, the electrode assemblies 12 and 25 and the separator 29 even if the actual thicknesses have the maximum manufacturing tolerances. This is because the number of the electrodes 21 and 25 and the separators 29 constituting the first electrode assembly 12a and the second electrode assembly 12b is set so as to fit in the case 11.

ここで、各電極21,25の金属箔22,26への活物質の塗工等によって、電極21,25毎に厚みのばらつきが生じることがある。こうして電極21,25の厚みにばらつきが生じると、第1電極組立体12aや第2電極組立体12bを構成する各電極21,25及びセパレータ29の枚数を設定された枚数通りとしても、第1電極組立体12a毎や第2電極組立体12b毎に積層方向の長さS3,S4にばらつきが生じる。仮にこれらの長さS3,S4が小さい場合には、第1電極組立体12aと第2電極組立体12bとを積層して電極組立体12としたときに、長さS3と長さS4との合計長さである電極組立体12の積層方向の長さS1’が想定していた長さよりも短くなる。このため、電極組立体12をケース11内に挿入したときに、電極組立体12の積層方向における電極組立体12とケース11の内面との間の隙間が大きくなる。   Here, a variation in thickness may occur between the electrodes 21 and 25 due to, for example, application of an active material to the metal foils 22 and 26 of the electrodes 21 and 25. If the thicknesses of the electrodes 21 and 25 vary in this way, the first electrode assembly 12a and the second electrode assembly 12b can be formed in the first electrode assembly 12a and the second electrode assembly 12b even if the number of the electrodes 21 and 25 and the separator 29 is set to the set number. Variations occur in the lengths S3 and S4 in the stacking direction for each electrode assembly 12a and each second electrode assembly 12b. If these lengths S3 and S4 are small, when the electrode assembly 12 is formed by stacking the first electrode assembly 12a and the second electrode assembly 12b, the length S3 and the length S4 The total length S1 ′ of the electrode assembly 12 in the stacking direction is shorter than the expected length. For this reason, when the electrode assembly 12 is inserted into the case 11, a gap between the electrode assembly 12 and the inner surface of the case 11 in the stacking direction of the electrode assembly 12 is increased.

そこで、本実施形態では、第1電極組立体12aと第2電極組立体12bとの間に厚み調整部材30を配置させている。厚み調整部材30はポリプロピレン等の樹脂製であり、矩形状の厚み調整フィルム30aで構成されている。厚み調整フィルム30aは、正極電極21よりも一回り大きく、負極電極25と同一の大きさである。なお、本実施形態では以下のように厚み調整部材30としての厚み調整フィルム30aの枚数が設定されている。すなわち、複数枚の厚み調整フィルム30aの積層方向の長さS5が、第1電極組立体12aの積層方向の長さS3と第2電極組立体12bの積層方向の長さS4とを合計した値と、ケース11の内寸の長さS2との差になるように、厚み調整フィルム30aの積層枚数が設定される。これにより、第1電極組立体12aと第2電極組立体12bとの間に厚み調整部材30を挟んで構成された電極組立体12では、長さS3、長さS4、及び長さS5の合計長さである電極組立体12の積層方向の長さS1がケース11の内寸の長さS2と同程度となる。   Therefore, in the present embodiment, the thickness adjusting member 30 is disposed between the first electrode assembly 12a and the second electrode assembly 12b. The thickness adjusting member 30 is made of a resin such as polypropylene, and is composed of a rectangular thickness adjusting film 30a. The thickness adjusting film 30 a is slightly larger than the positive electrode 21 and has the same size as the negative electrode 25. In the present embodiment, the number of thickness adjusting films 30a as the thickness adjusting member 30 is set as follows. That is, the length S5 in the stacking direction of the plurality of thickness adjusting films 30a is the sum of the length S3 in the stacking direction of the first electrode assembly 12a and the length S4 in the stacking direction of the second electrode assembly 12b. And the number of laminated layers of the thickness adjusting film 30a is set so as to be the difference between the inner dimension length S2 of the case 11. Thereby, in the electrode assembly 12 configured by sandwiching the thickness adjusting member 30 between the first electrode assembly 12a and the second electrode assembly 12b, the total of the length S3, the length S4, and the length S5. The length S1 of the electrode assembly 12 in the stacking direction, which is the length, is approximately the same as the length S2 of the inner dimension of the case 11.

図4に示すように、第1電極組立体12a及び第2電極組立体12bの最外層は、それぞれ負極電極25である。このため、厚み調整部材30は、第1電極組立体12a及び第2電極組立体12bの最外層として位置する負極電極25によって、電極組立体12の積層方向の両側から挟まれている。また、ケース11のケース本体13の内面には絶縁部材55が配置されている。このため、電極組立体12がケース11に挿入された状態では、電極組立体12の積層方向の両端面とケース本体13の内面との間に絶縁部材55が介在している。   As shown in FIG. 4, the outermost layers of the first electrode assembly 12a and the second electrode assembly 12b are the negative electrodes 25, respectively. For this reason, the thickness adjusting member 30 is sandwiched from both sides of the electrode assembly 12 in the stacking direction by the negative electrode 25 positioned as the outermost layer of the first electrode assembly 12a and the second electrode assembly 12b. An insulating member 55 is disposed on the inner surface of the case body 13 of the case 11. Therefore, in a state where the electrode assembly 12 is inserted into the case 11, the insulating member 55 is interposed between both end surfaces of the electrode assembly 12 in the stacking direction and the inner surface of the case body 13.

なお、上記の通り、本実施形態では、第1電極組立体12aと第2電極組立体12bとで、構成する正極電極21及び負極電極25の枚数が同一である。このため、電極組立体12では、積層方向における第1電極組立体12aと第2電極組立体12bとの間が、電極組立体12の積層方向における中央となる。すなわち、第1電極組立体12aと第2電極組立体12bとの間に厚み調整部材30を配置させた状態では、電極組立体12の積層方向における中央に厚み調整部材30が位置することとなる。   Note that, as described above, in the present embodiment, the first electrode assembly 12a and the second electrode assembly 12b have the same number of positive electrodes 21 and negative electrodes 25. For this reason, in the electrode assembly 12, the space between the first electrode assembly 12a and the second electrode assembly 12b in the stacking direction is the center of the electrode assembly 12 in the stacking direction. That is, in the state where the thickness adjusting member 30 is disposed between the first electrode assembly 12a and the second electrode assembly 12b, the thickness adjusting member 30 is located at the center in the stacking direction of the electrode assembly 12. .

図1に示すように、二次電池10では、電極組立体12の積層方向に直交する方向に位置する4つの端部のうちの1つの端部である上端12cから正極タブ24と負極タブ28とがそれぞれ突出するように、第1電極組立体12aと第2電極組立体12bとが積層されている。各正極タブ24は、電極組立体12における積層方向の一端から他端までの範囲内で集められた状態で折り曲げられている。すなわち、第1電極組立体12aの正極タブ24と第2電極組立体12bの正極タブ24とが1つに集められて折り曲げられている。そして、その各正極タブ24が重なっている箇所を溶接することによって、各正極タブ24が互いに電気的に接続されている。また、負極タブ28も同様に、集められた状態で折り曲げられている。すなわち、第1電極組立体12aの負極タブ28と第2電極組立体12bの負極タブ28とが1つに集められて折り曲げられている。そして、その各負極タブ28が重なっている箇所を溶接することによって、各負極タブ28が互いに電気的に接続されている。   As shown in FIG. 1, in the secondary battery 10, a positive electrode tab 24 and a negative electrode tab 28 are formed from an upper end 12 c that is one of four ends positioned in a direction orthogonal to the stacking direction of the electrode assembly 12. The first electrode assembly 12a and the second electrode assembly 12b are stacked so that each protrudes from each other. Each positive electrode tab 24 is bent in a state of being collected within a range from one end to the other end in the stacking direction of the electrode assembly 12. That is, the positive electrode tab 24 of the first electrode assembly 12a and the positive electrode tab 24 of the second electrode assembly 12b are gathered together and bent. And each positive electrode tab 24 is electrically connected mutually by welding the location where each positive electrode tab 24 has overlapped. Similarly, the negative electrode tab 28 is bent in a collected state. That is, the negative electrode tab 28 of the first electrode assembly 12a and the negative electrode tab 28 of the second electrode assembly 12b are gathered together and bent. The negative electrode tabs 28 are electrically connected to each other by welding the portions where the negative electrode tabs 28 overlap.

二次電池10は、各正極タブ24と電気的に接続された正極端子15と、各負極タブ28と電気的に接続された負極端子16とを備えている。各端子15,16は、蓋体14に形成された貫通孔を介してその一部がケース11外に露出している。   The secondary battery 10 includes a positive electrode terminal 15 electrically connected to each positive electrode tab 24 and a negative electrode terminal 16 electrically connected to each negative electrode tab 28. A part of each of the terminals 15 and 16 is exposed to the outside of the case 11 through a through hole formed in the lid body 14.

電極組立体12には複数の(本実施形態では6つの)固定テープ45が貼り付けられている。詳細には、電極組立体12の積層方向の両端面に亘って固定テープ45が貼り付けられることにより電極組立体12が固定される。こうして固定テープ45が電極組立体12に複数貼り付けられることにより、第1電極組立体12a、第2電極組立体12b、及び厚み調整部材30が固定される。   A plurality of (six in this embodiment) fixing tapes 45 are attached to the electrode assembly 12. Specifically, the electrode assembly 12 is fixed by affixing the fixing tape 45 across both end surfaces of the electrode assembly 12 in the stacking direction. In this way, a plurality of fixing tapes 45 are affixed to the electrode assembly 12, whereby the first electrode assembly 12a, the second electrode assembly 12b, and the thickness adjusting member 30 are fixed.

次に、二次電池10の製造方法を作用とともに記載する。
まず、第1電極組立体12aと第2電極組立体12bとを、それぞれ所定枚数の正極電極21、負極電極25、及びセパレータ29を積層させることにより複数製造する。製造された第1電極組立体12a及び第2電極組立体12bの積層方向の長さS3,S4を測定する。そして、測定された第1電極組立体12a及び第2電極組立体12bの積層方向の長さS3,S4に基づいて、厚み調整部材30としての厚み調整フィルム30aの枚数を決定する。
Next, the manufacturing method of the secondary battery 10 will be described together with the operation.
First, a plurality of first electrode assemblies 12a and second electrode assemblies 12b are manufactured by laminating a predetermined number of positive electrodes 21, negative electrodes 25, and separators 29, respectively. The lengths S3 and S4 of the manufactured first electrode assembly 12a and second electrode assembly 12b in the stacking direction are measured. Then, based on the measured lengths S3 and S4 of the first electrode assembly 12a and the second electrode assembly 12b in the stacking direction, the number of the thickness adjusting films 30a as the thickness adjusting members 30 is determined.

なお、上述したとおり、各電極21,25やセパレータ29の製造公差によって、製造された第1電極組立体12a及び第2電極組立体12b毎で積層方向における長さS3,S4が異なる場合がある。本実施形態では、製造された複数の第1電極組立体12a及び第2電極組立体12bのうちで、長さS3と長さS4との合計が、ケース11の内寸の長さS2に対して差の小さい所定範囲内となる組み合わせの第1電極組立体12aと第2電極組立体12bとを選択する。すなわち、第1電極組立体12aと第2電極組立体12bとで想定長さに対する互いの長さS3,S4の過不足分を補い合えるように、適当な長さS3,S4の第1電極組立体12aと第2電極組立体12bとを選択する。   As described above, the lengths S3 and S4 in the stacking direction may be different for each manufactured first electrode assembly 12a and second electrode assembly 12b due to manufacturing tolerances of the electrodes 21 and 25 and the separator 29. . In the present embodiment, among the plurality of first electrode assemblies 12a and second electrode assemblies 12b manufactured, the sum of the length S3 and the length S4 is equal to the length S2 of the inner dimension of the case 11. A combination of the first electrode assembly 12a and the second electrode assembly 12b that are within a predetermined range with a small difference is selected. That is, the first electrode assembly 12a and the second electrode assembly 12b can compensate for the excess and deficiency of the lengths S3 and S4 with respect to the assumed length, and the first electrode assembly having appropriate lengths S3 and S4. The solid 12a and the second electrode assembly 12b are selected.

こうして第1電極組立体12aと第2電極組立体12bとを選択することにより、第1電極組立体12aの長さS3と第2電極組立体12bの長さS4との合計長さ(長さS1’)が、電極組立体12毎でばらつきの小さいものとなる。   By selecting the first electrode assembly 12a and the second electrode assembly 12b in this manner, the total length (length) of the length S3 of the first electrode assembly 12a and the length S4 of the second electrode assembly 12b is selected. S1 ′) has a small variation for each electrode assembly 12.

そして、選択された第1電極組立体12aと第2電極組立体12bとの間に厚み調整部材30を配置させて電極組立体12を製造する。厚み調整部材30として電極組立体12に配置される厚み調整フィルム30aの枚数は、第1電極組立体12aの長さS3と第2電極組立体12bの長さS4との合計とケース11の内寸の長さS2との差に応じて選択される。こうして厚み調整部材30が配置された電極組立体12は、積層方向の長さS1が電極組立体12毎でばらつきの小さいものとなる。   Then, the electrode assembly 12 is manufactured by disposing the thickness adjusting member 30 between the selected first electrode assembly 12a and the second electrode assembly 12b. The number of the thickness adjusting films 30a arranged on the electrode assembly 12 as the thickness adjusting member 30 is the sum of the length S3 of the first electrode assembly 12a and the length S4 of the second electrode assembly 12b and the case 11. It is selected according to the difference with the length S2. Thus, the electrode assembly 12 in which the thickness adjusting member 30 is arranged has a small variation in the length S1 in the stacking direction for each electrode assembly 12.

次に、製造された電極組立体12に、電極組立体12の積層方向における端面から積層方向に荷重を加える。そして、電極組立体12に荷重を加えた状態で、電極組立体12の積層方向における両端面に複数の固定テープ45を貼り付け、これら固定テープ45によって電極組立体12を保持し、第1電極組立体12a、第2電極組立体12b、及び厚み調整部材30の積層ずれが抑制された状態とする。   Next, a load is applied to the manufactured electrode assembly 12 from the end surface in the stacking direction of the electrode assembly 12 in the stacking direction. Then, in a state where a load is applied to the electrode assembly 12, a plurality of fixing tapes 45 are attached to both end surfaces in the stacking direction of the electrode assembly 12, and the electrode assembly 12 is held by these fixing tapes 45. It is assumed that the stacking deviation of the assembly 12a, the second electrode assembly 12b, and the thickness adjusting member 30 is suppressed.

そして、固定テープ45によって固定された電極組立体12では、第1電極組立体12a及び第2電極組立体12bの正極タブ24が電極組立体12における積層方向で集められて溶接される。第1電極組立体12a及び第2電極組立体12bの負極タブ28が電極組立体12における積層方向で集められて溶接される。そして、各正極タブ24と正極端子15とが電気的に接続され、各負極タブ28と負極端子16とが電気的に接続される。   In the electrode assembly 12 fixed by the fixing tape 45, the positive electrode tabs 24 of the first electrode assembly 12a and the second electrode assembly 12b are collected in the stacking direction in the electrode assembly 12 and welded. The negative electrode tabs 28 of the first electrode assembly 12a and the second electrode assembly 12b are collected in the stacking direction in the electrode assembly 12 and welded. Each positive electrode tab 24 and the positive electrode terminal 15 are electrically connected, and each negative electrode tab 28 and the negative electrode terminal 16 are electrically connected.

その後、電極組立体12を、ケース11のケース本体13の開口部からケース本体13内に挿入し、ケース本体13の開口部を蓋体14で塞いで二次電池10が製造される。上記の通り、電極組立体12は、積層方向の長さS1がケース11の内寸の長さS2に対して差が小さくなるように製造されているため、電極組立体12がケース11に収容された状態では、電極組立体12の積層方向において、電極組立体12とケース11(ケース本体13)との間の隙間が小さい。   Thereafter, the electrode assembly 12 is inserted into the case body 13 from the opening of the case body 13 of the case 11, and the opening of the case body 13 is closed with the lid body 14, whereby the secondary battery 10 is manufactured. As described above, since the electrode assembly 12 is manufactured such that the difference in the length S1 in the stacking direction with respect to the length S2 of the inner dimension of the case 11 is small, the electrode assembly 12 is accommodated in the case 11. In this state, the gap between the electrode assembly 12 and the case 11 (case body 13) is small in the stacking direction of the electrode assembly 12.

また、上記の通り、第1電極組立体12aと第2電極組立体12bとは、それぞれを構成する正極電極21の枚数が同一であり、且つそれぞれを構成する正極電極21と負極電極25とを合わせた枚数が同一である。このため、製造された二次電池10は、電極組立体12の積層方向において、第1電極組立体12aと第2電極組立体12bとの間に、且つ電極組立体12の中央に、厚み調整部材30が位置したものとなる。すなわち、電極組立体12では、第1電極組立体12aの積層方向における端面と当該端面に面するケース本体13の内面との間や、第2電極組立体12bの積層方向における端面と当該端面に面するケース本体13の内面との間には、厚み調整部材30が位置しない。このため、電極組立体12の熱が、第1電極組立体12aの積層方向における端面から当該端面に面するケース本体13の内面に伝達され、第2電極組立体12bの積層方向における端面から当該端面に面するケース本体13の内面に伝達される。   In addition, as described above, the first electrode assembly 12a and the second electrode assembly 12b have the same number of positive electrodes 21 constituting each, and the positive electrode 21 and the negative electrode 25 constituting each of the first electrode assembly 12a and the second electrode assembly 12b. The combined number is the same. Therefore, the thickness of the manufactured secondary battery 10 is adjusted between the first electrode assembly 12a and the second electrode assembly 12b and in the center of the electrode assembly 12 in the stacking direction of the electrode assemblies 12. The member 30 is located. That is, in the electrode assembly 12, between the end surface in the stacking direction of the first electrode assembly 12a and the inner surface of the case body 13 facing the end surface, or in the stacking direction of the second electrode assembly 12b and the end surface. The thickness adjusting member 30 is not positioned between the facing inner surface of the case body 13. Therefore, the heat of the electrode assembly 12 is transmitted from the end surface in the stacking direction of the first electrode assembly 12a to the inner surface of the case body 13 facing the end surface, and from the end surface in the stacking direction of the second electrode assembly 12b. It is transmitted to the inner surface of the case body 13 facing the end surface.

以上説明したように、本実施形態によれば以下に示す効果を得ることができる。
(1)電極組立体12の積層方向の中央に厚み調整部材30が位置しているため、第1電極組立体12aと第2電極組立体12bとからそれぞれケース11へと伝熱が促進される。したがって、電極組立体12の熱を適切にケース11に伝えることができる。
As described above, according to the present embodiment, the following effects can be obtained.
(1) Since the thickness adjusting member 30 is located at the center of the electrode assembly 12 in the stacking direction, heat transfer is promoted from the first electrode assembly 12a and the second electrode assembly 12b to the case 11, respectively. . Therefore, the heat of the electrode assembly 12 can be appropriately transferred to the case 11.

(2)電極組立体12の熱をケース11に伝えることができるため、結果としてケース11外にも適切に放熱させることができる。
(3)複数枚の厚み調整フィルム30aを全て電極組立体12の中央に位置させるため、複数枚の厚み調整フィルム30aを電極組立体12の積層方向における異なる位置に配置させる場合と比較して、厚み調整部材30による伝熱の阻害を抑制することができる。したがって、電極組立体12の熱をより適切にケース11に伝えることができる。
(2) Since the heat of the electrode assembly 12 can be transmitted to the case 11, as a result, the heat can be appropriately dissipated outside the case 11.
(3) In order to position all the plurality of thickness adjusting films 30a in the center of the electrode assembly 12, compared to the case where the plurality of thickness adjusting films 30a are arranged at different positions in the stacking direction of the electrode assembly 12, Inhibition of heat transfer by the thickness adjusting member 30 can be suppressed. Therefore, the heat of the electrode assembly 12 can be more appropriately transmitted to the case 11.

(4)第1電極組立体12a及び第2電極組立体12bとして、積層方向の長さS3,S4の合計が所定範囲内となるものを選択している。このため、第1電極組立体12aと第2電極組立体12bとを積層して製造された電極組立体12では、電極組立体12毎の電極組立体12の長さS1’のばらつきを小さくすることができる。また、本実施形態のように厚み調整部材30として複数枚の厚み調整フィルム30aを電極組立体12に位置させる場合では、そうした電極組立体12の長さS1’のばらつきに応じて適切な枚数の厚み調整フィルム30aを選択できるように、ある程度の枚数の厚み調整フィルム30aを用意する必要がある。しかしながら、こうした場合においても、上記の通り電極組立体12毎の長さS1’のばらつきが小さくなることにより、用意する厚み調整フィルム30aの枚数を少なくすることができる。したがって、厚み調整部材30に係る作業性の向上やコストの低減を図ることができる。   (4) The first electrode assembly 12a and the second electrode assembly 12b are selected such that the sum of the lengths S3 and S4 in the stacking direction is within a predetermined range. For this reason, in the electrode assembly 12 manufactured by stacking the first electrode assembly 12a and the second electrode assembly 12b, variation in the length S1 ′ of the electrode assembly 12 for each electrode assembly 12 is reduced. be able to. Further, in the case where a plurality of thickness adjusting films 30a are positioned on the electrode assembly 12 as the thickness adjusting member 30 as in the present embodiment, an appropriate number of sheets is determined according to variations in the length S1 ′ of the electrode assembly 12. It is necessary to prepare a certain number of thickness adjusting films 30a so that the thickness adjusting film 30a can be selected. However, even in such a case, the number of the thickness adjusting films 30a to be prepared can be reduced by reducing the variation in the length S1 'for each electrode assembly 12 as described above. Therefore, it is possible to improve workability and reduce costs related to the thickness adjusting member 30.

(5)第1電極組立体12aと第2電極組立体12bとは、それぞれを構成する正極電極21の枚数が同一であり、且つそれぞれを構成する正極電極21と負極電極25とを合わせた枚数が同一である。すなわち、第1電極組立体12aと第2電極組立体12bとでは、それぞれを構成する正極電極21の枚数差が1枚以下であり、且つそれぞれを構成する正極電極21と負極電極25とを合わせた枚数差が2枚以下である範囲内に、構成する正極電極21及び負極電極25の枚数が設定されている。このため、第1電極組立体12aと第2電極組立体12bとの間に厚み調整部材30を配置させた電極組立体12では、その積層方向における中央に厚み調整部材30が位置することとなる。そして、電極組立体12の積層方向の両端面のうち、一方の端面(第1電極組立体12aの積層方向における端面)から厚み調整部材30までの積層方向の長さと、他方の端面(第2電極組立体12bの積層方向における端面)から厚み調整部材30までの積層方向の長さとで、大きさの偏りが小さくなる。したがって、電極組立体12の積層方向の両端面からケース11にそれぞれ伝わる電極組立体12の熱も、大きさの偏りが小さいものとすることができる。   (5) The number of positive electrodes 21 constituting each of the first electrode assembly 12a and the second electrode assembly 12b is the same, and the total number of the positive electrodes 21 and the negative electrodes 25 constituting each of them. Are the same. That is, in the first electrode assembly 12a and the second electrode assembly 12b, the difference in the number of positive electrodes 21 constituting each is one or less, and the positive electrode 21 and the negative electrode 25 constituting each are combined. The number of the positive electrode 21 and the negative electrode 25 to be configured is set within a range where the difference in the number of sheets is two or less. For this reason, in the electrode assembly 12 in which the thickness adjusting member 30 is disposed between the first electrode assembly 12a and the second electrode assembly 12b, the thickness adjusting member 30 is positioned at the center in the stacking direction. . Of the both end surfaces of the electrode assembly 12 in the stacking direction, the length in the stacking direction from one end surface (the end surface in the stacking direction of the first electrode assembly 12a) to the thickness adjusting member 30 and the other end surface (second The deviation in size is reduced by the length in the stacking direction from the end surface of the electrode assembly 12b in the stacking direction) to the thickness adjusting member 30. Therefore, the heat of the electrode assembly 12 transmitted from the both end surfaces of the electrode assembly 12 in the stacking direction to the case 11 can be small in size deviation.

(6)電極組立体12と厚み調整部材30とを固定テープ45で一体に保持している。このため、電極組立体12と厚み調整部材30とを一体化させた状態でケース11内に挿入でき、電極組立体12と厚み調整部材30とを別々にケース11内に挿入する場合と比較して、ケース11への挿入作業を簡単に行うことができる。   (6) The electrode assembly 12 and the thickness adjusting member 30 are integrally held by the fixing tape 45. For this reason, the electrode assembly 12 and the thickness adjusting member 30 can be inserted into the case 11 in an integrated state, compared with the case where the electrode assembly 12 and the thickness adjusting member 30 are separately inserted into the case 11. Thus, the insertion work into the case 11 can be easily performed.

なお、上記実施形態は以下のように変更してもよい。
○ 固定テープ45の貼り付け位置及び貼り付け数は、適宜変更可能である。
○ 製造された第1電極組立体12a及び第2電極組立体12bをそれぞれ個別に固定テープ45によって固定し、個別に固定された状態の第1電極組立体12aと第2電極組立体12bとの間に厚み調整部材30を配置させ、さらに固定テープ45によって第1電極組立体12a、第2電極組立体12b、及び厚み調整部材30を固定しても良い。
In addition, you may change the said embodiment as follows.
(Circle) the sticking position and the number of sticking of the fixed tape 45 can be changed suitably.
○ The manufactured first electrode assembly 12a and second electrode assembly 12b are individually fixed by the fixing tape 45, and the first electrode assembly 12a and the second electrode assembly 12b in a state of being fixed individually The thickness adjusting member 30 may be disposed therebetween, and the first electrode assembly 12a, the second electrode assembly 12b, and the thickness adjusting member 30 may be fixed by the fixing tape 45.

○ 電極組立体12への固定テープ45の貼り付けを省略しても良い。こうした形態によれば、上記実施形態で得ることのできる効果(1)〜(5)と同様の効果を得ることができる。   O Sticking of the fixing tape 45 to the electrode assembly 12 may be omitted. According to such a form, the effect similar to effect (1)-(5) which can be acquired by the said embodiment can be acquired.

○ ケース11の寸法によっては、奇数枚の正極電極21を有する電極組立体12を収容可能な場合がある。こうした形態では、第1電極組立体12aと第2電極組立体12bとで構成する正極電極21及び負極電極25の枚数が異なるようになる。例えば、図5及び図6に示す形態では、第1電極組立体12aの正極電極21の枚数が第2電極組立体12bの正極電極21の枚数よりも1枚少なく、第1電極組立体12aの負極電極25の枚数が第2電極組立体12bの負極電極25の枚数よりも1枚少ない。また、図5及び図6に示す形態では、第1電極組立体12aと第2電極組立体12bとの正極電極21及び負極電極25の枚数の差に伴い、セパレータ29の枚数も異なる。この形態では、第1電極組立体12aのセパレータ29が第2電極組立体12bのセパレータ29よりも2枚少ない。そして、この形態の電極組立体12では、積層方向における第1電極組立体12aと第2電極組立体12bとの間が、電極組立体12の積層方向における中央となる。すなわち、第1電極組立体12aと第2電極組立体12bとの間に厚み調整部材30を配置させた状態では、電極組立体12の積層方向における中央に厚み調整部材30が位置することとなる。こうした形態によっても、上記実施形態で得ることのできる効果(1)〜(6)と同様の効果を得ることができる。   Depending on the dimensions of the case 11, the electrode assembly 12 having the odd number of positive electrodes 21 may be accommodated. In such a form, the number of the positive electrode 21 and the negative electrode 25 which are comprised by the 1st electrode assembly 12a and the 2nd electrode assembly 12b comes to differ. For example, in the embodiment shown in FIGS. 5 and 6, the number of the positive electrodes 21 of the first electrode assembly 12a is one less than the number of the positive electrodes 21 of the second electrode assembly 12b, and the first electrode assembly 12a The number of the negative electrodes 25 is one less than the number of the negative electrodes 25 of the second electrode assembly 12b. 5 and FIG. 6, the number of separators 29 varies with the difference in the number of positive electrodes 21 and negative electrodes 25 between the first electrode assembly 12a and the second electrode assembly 12b. In this embodiment, the number of the separators 29 in the first electrode assembly 12a is two fewer than the separators 29 in the second electrode assembly 12b. And in the electrode assembly 12 of this form, between the 1st electrode assembly 12a and the 2nd electrode assembly 12b in a lamination direction becomes the center in the lamination direction of the electrode assembly 12. FIG. That is, in the state where the thickness adjusting member 30 is disposed between the first electrode assembly 12a and the second electrode assembly 12b, the thickness adjusting member 30 is located at the center in the stacking direction of the electrode assembly 12. . Even in such a form, the same effects as the effects (1) to (6) that can be obtained in the above embodiment can be obtained.

○ 厚み調整フィルム30aは、全て一定の厚みのフィルムであっても良いし、異なる厚みのフィルムであっても良い。
○ 厚み調整部材30を複数枚の厚み調整フィルム30aではなく、1つの厚み調整部材としても良い。この場合では、異なる厚みの厚み調整部材が複数用意される。そして、製造された第1電極組立体12a及び第2電極組立体12bの長さS3,S4に応じて、適当な厚みの厚み調整部材が選択され、選択された1つの厚み調整部材が第1電極組立体12aと第2電極組立体12bとの間に配置される。こうした形態によれば、上記実施形態で得ることのできる効果(1)〜(3)、(5)、(6)と同様の効果と以下の効果を得ることができる。
The thickness adjusting film 30a may be a film having a constant thickness or a film having a different thickness.
The thickness adjusting member 30 may be a single thickness adjusting member instead of the plurality of thickness adjusting films 30a. In this case, a plurality of thickness adjusting members having different thicknesses are prepared. Then, a thickness adjusting member having an appropriate thickness is selected according to the lengths S3 and S4 of the manufactured first electrode assembly 12a and second electrode assembly 12b, and the selected one thickness adjusting member is the first. It arrange | positions between the electrode assembly 12a and the 2nd electrode assembly 12b. According to such a form, the effects (1) to (3), (5), and (6) that can be obtained in the above embodiment and the following effects can be obtained.

(7)第1電極組立体12a及び第2電極組立体12bとして、積層方向の長さS3,S4の合計が所定範囲内となるものを選択している。このため、第1電極組立体12aと第2電極組立体12bとを積層して製造された電極組立体12では、電極組立体12毎の電極組立体12の長さS1’のばらつきを小さくすることができる。また、本形態のように厚み調整部材30として1つの部材を電極組立体12に位置させる場合では、そうした電極組立体12の長さS1’のばらつきに応じて適切な厚みの厚み調整部材を選択できるように、異なる厚みの厚み調整部材を用意する必要がある。しかしながら、こうした場合においても、上記の通り電極組立体12毎の長さS1’のばらつきが小さくなることにより、用意する厚み調整部材の厚みの範囲を小さくすることができる。したがって、厚み調整部材に係る作業性の向上やコストの低減を図ることができる。   (7) The first electrode assembly 12a and the second electrode assembly 12b are selected such that the sum of the lengths S3 and S4 in the stacking direction is within a predetermined range. For this reason, in the electrode assembly 12 manufactured by stacking the first electrode assembly 12a and the second electrode assembly 12b, variation in the length S1 ′ of the electrode assembly 12 for each electrode assembly 12 is reduced. be able to. Further, when one member is positioned on the electrode assembly 12 as the thickness adjusting member 30 as in the present embodiment, a thickness adjusting member having an appropriate thickness is selected according to variations in the length S1 ′ of the electrode assembly 12 In order to be able to do so, it is necessary to prepare thickness adjusting members having different thicknesses. However, even in such a case, the variation in the length S1 'for each electrode assembly 12 is reduced as described above, so that the thickness range of the prepared thickness adjusting member can be reduced. Therefore, it is possible to improve workability and reduce costs related to the thickness adjusting member.

○ 厚み調整部材30(厚み調整フィルム30a)を負極電極25よりも大きくしても良い。
○ 負極電極25とセパレータ29とを同一の大きさとしても良い。
The thickness adjusting member 30 (thickness adjusting film 30 a) may be larger than the negative electrode 25.
The negative electrode 25 and the separator 29 may be the same size.

○ 正極電極21と負極電極25とを同一の大きさとしても良い。
○ 正極金属箔22として、アルミニウム以外の金属からなる箔を採用してもよい。
○ 負極金属箔26として、銅以外の金属からなる箔を採用してもよい。
The positive electrode 21 and the negative electrode 25 may be the same size.
As the positive electrode metal foil 22, a foil made of a metal other than aluminum may be adopted.
As the negative electrode metal foil 26, a foil made of a metal other than copper may be adopted.

○ 正極活物質層23は、正極電極21のうち正極タブ24以外の領域全体に位置させても良い。
○ 正極電極21の片面のみが正極活物質層23を有していてもよい。
The positive electrode active material layer 23 may be located in the entire region other than the positive electrode tab 24 in the positive electrode 21.
○ Only one side of the positive electrode 21 may have the positive electrode active material layer 23.

○ 第1電極組立体12a及び第2電極組立体12bの最外層を片面のみに正極活物質層23を有する正極電極21としても良い。この形態では、第1電極組立体12a及び第2電極組立体12bの最外層の正極電極21の正極活物質層23が各電極組立体12a,12bにおける積層方向の内側に位置するように、最外層の正極電極21が配置される。すなわち、第1電極組立体12a及び第2電極組立体12bの最外層の正極電極21のうち、正極活物質層23を有さない片面が厚み調整部材30と面する。これにより、電極組立体12では、正極活物質層23を有さない正極電極21の表面によって、電極組立体12の積層方向の両側から厚み調整部材30が挟まれる。   The outermost layer of the first electrode assembly 12a and the second electrode assembly 12b may be the positive electrode 21 having the positive electrode active material layer 23 only on one side. In this embodiment, the positive electrode active material layer 23 of the positive electrode 21 of the outermost layer of the first electrode assembly 12a and the second electrode assembly 12b is positioned on the inner side in the stacking direction of the electrode assemblies 12a and 12b. An outer layer positive electrode 21 is disposed. That is, one surface of the outermost positive electrode 21 of the first electrode assembly 12 a and the second electrode assembly 12 b that does not have the positive electrode active material layer 23 faces the thickness adjusting member 30. Thus, in the electrode assembly 12, the thickness adjusting member 30 is sandwiched from both sides in the stacking direction of the electrode assembly 12 by the surface of the positive electrode 21 that does not have the positive electrode active material layer 23.

○ 負極活物質層27は、負極電極25のうち負極タブ28以外の領域全体に位置させても良い。
○ 負極電極25の片面のみが負極活物質層27を有していてもよい。
The negative electrode active material layer 27 may be located in the entire region of the negative electrode 25 other than the negative electrode tab 28.
○ Only one surface of the negative electrode 25 may have the negative electrode active material layer 27.

○ 二次電池10は、リチウムイオン二次電池であったが、これに限らず、他の二次電池であってもよい。要するに、正極活物質層と負極活物質層との間をイオンが移動するとともに電荷の授受を行うものであればよい。   The secondary battery 10 is a lithium ion secondary battery, but is not limited thereto, and may be another secondary battery. In short, any ion may be used as long as ions move between the positive electrode active material layer and the negative electrode active material layer and transfer charge.

○ 正極電極21、負極電極25、セパレータ29、及び厚み調整部材30(厚み調整フィルム30a)は、円形状等、矩形状以外の形状であっても良い。
○ ケース11の形状を変更してもよい。例えば、ケース11は円筒型でもよい。
The positive electrode 21, the negative electrode 25, the separator 29, and the thickness adjusting member 30 (thickness adjusting film 30a) may have a shape other than a rectangular shape such as a circular shape.
○ The shape of the case 11 may be changed. For example, the case 11 may be cylindrical.

○ 本発明を、電気二重層キャパシタ等の蓄電装置に具体化してもよい。   The present invention may be embodied in a power storage device such as an electric double layer capacitor.

10…二次電池、11…ケース、12…電極組立体、12a…第1電極組立体、12b…第2電極組立体、13…ケース本体、14…蓋体、21…正極電極、22…正極金属箔、23…正極活物質層、25…負極電極、26…負極金属箔、27…負極活物質層、29…セパレータ、30…厚み調整部材、30a…厚み調整フィルム。   DESCRIPTION OF SYMBOLS 10 ... Secondary battery, 11 ... Case, 12 ... Electrode assembly, 12a ... 1st electrode assembly, 12b ... 2nd electrode assembly, 13 ... Case main body, 14 ... Lid body, 21 ... Positive electrode, 22 ... Positive electrode Metal foil, 23 ... positive electrode active material layer, 25 ... negative electrode, 26 ... negative electrode metal foil, 27 ... negative electrode active material layer, 29 ... separator, 30 ... thickness adjusting member, 30a ... thickness adjusting film.

Claims (6)

正極活物質層及び正極タブを備える正極電極負極活物質層及び負極タブを備える負極電極とがセパレータを間に挟んだ状態で積層された電極組立体と、当該電極組立体を収容するケースと、を備えた蓄電装置であって、
前記電極組立体は、前記正極電極と前記負極電極とが前記セパレータを間に挟んだ状態で積層された第1電極組立体と第2電極組立体とを含み、
前記第1電極組立体の前記正極電極の前記正極タブと、前記第2電極組立体の前記正極電極の前記正極タブとは互いに電気的に接続されており、
前記第1電極組立体の前記負極電極の前記負極タブと、前記第2電極組立体の前記負極電極の前記負極タブとは互いに電気的に接続されており、
前記電極組立体の積層方向において、前記第1電極組立体と前記第2電極組立体との間に、且つ前記電極組立体の中央に、前記電極組立体と前記ケースとの間の隙間を調整するための厚み調整部材が位置していることを特徴とする蓄電装置。
Case housing the positive electrode, an electrode assembly is stacked in a sandwiched therebetween and a negative electrode is a separator having an anode active material layer and the negative electrode tab, the electrode assembly comprising a positive electrode active material layer and the positive electrode tab A power storage device comprising:
The electrode assembly includes a first electrode assembly and a second electrode assembly in which the positive electrode and the negative electrode are stacked with the separator interposed therebetween,
The positive electrode tab of the positive electrode of the first electrode assembly and the positive electrode tab of the positive electrode of the second electrode assembly are electrically connected to each other;
The negative electrode tab of the negative electrode of the first electrode assembly and the negative electrode tab of the negative electrode of the second electrode assembly are electrically connected to each other;
In the stacking direction of the electrode assembly, a gap between the electrode assembly and the case is adjusted between the first electrode assembly and the second electrode assembly and in the center of the electrode assembly. A power storage device, wherein a thickness adjusting member for positioning is located.
前記厚み調整部材は複数枚の厚み調整フィルムから構成されている請求項1に記載の蓄電装置。   The power storage device according to claim 1, wherein the thickness adjusting member includes a plurality of thickness adjusting films. 前記第1電極組立体と前記第2電極組立体とは、それぞれを構成する前記正極電極の枚数差が1枚以下であり、且つそれぞれを構成する前記正極電極と前記負極電極とを合わせた枚数差が2枚以下である請求項1又は請求項2に記載の蓄電装置。   In the first electrode assembly and the second electrode assembly, the difference in the number of the positive electrodes constituting each of the first electrode assembly and the second electrode assembly is one or less, and the total number of the positive electrodes and the negative electrodes constituting the respective ones. The power storage device according to claim 1 or 2, wherein the difference is two or less. 前記蓄電装置は、二次電池である請求項1〜請求項3のうち何れか一項に記載の蓄電装置。   The power storage device according to any one of claims 1 to 3, wherein the power storage device is a secondary battery. 正極活物質層及び正極タブを備える正極電極と負極活物質層及び負極タブを備える負極電極とをセパレータを間に挟んだ状態で積層させた電極組立体を備えた蓄電装置の製造方法であって、
前記電極組立体は、前記正極電極と前記負極電極とが前記セパレータを間に挟んだ状態で積層された第1電極組立体と第2電極組立体とを含み、
前記第1電極組立体及び前記第2電極組立体を複数製造し、
製造した複数の前記第1電極組立体及び前記第2電極組立体の積層方向の長さをそれぞれ測定し、
複数の前記第1電極組立体及び前記第2電極組立体のうち、前記積層方向の長さの合計が前記電極組立体を収容するケースの内寸の長さに対して所定範囲内となる組み合わせの前記第1電極組立体と前記第2電極組立体とを選択し、
前記第1電極組立体と前記第2電極組立体との積層方向における間に厚み調整部材を位置させて前記第1電極組立体と前記第2電極組立体とを積層し、前記第1電極組立体の前記正極電極の前記正極タブと、前記第2電極組立体の前記正極電極の前記正極タブとを互いに電気的に接続するとともに、前記第1電極組立体の前記負極電極の前記負極タブと、前記第2電極組立体の前記負極電極の前記負極タブとを互いに電気的に接続することにより、積層方向における中央に前記厚み調整部材を有する1つの電極組立体を製造し、当該電極組立体をケースに収容することを特徴とする蓄電装置の製造方法。
A method of manufacturing a power storage device including a positive electrode active material layer and electrode assembly and a negative electrode comprising a positive electrode and the negative electrode active material layer and the negative electrode tab having a positive electrode tab is stacked in a sandwiched therebetween a separator ,
The electrode assembly includes a first electrode assembly and a second electrode assembly in which the positive electrode and the negative electrode are stacked with the separator interposed therebetween,
Producing a plurality of the first electrode assemblies and the second electrode assemblies;
Measuring the lengths in the stacking direction of the plurality of first electrode assemblies and the second electrode assemblies manufactured;
More of the first electrode assembly and said second electrode assembly, the combination of the total length of the stacking direction is within a predetermined range with respect to the length of the inner dimension of the case housing the electrode assembly select the first electrode assembly and said second electrode assembly,
A thickness adjusting member is positioned between the first electrode assembly and the second electrode assembly in the stacking direction to stack the first electrode assembly and the second electrode assembly, and the first electrode assembly The positive electrode tab of the solid positive electrode and the positive electrode tab of the positive electrode of the second electrode assembly are electrically connected to each other, and the negative electrode tab of the negative electrode of the first electrode assembly and Electrically connecting the negative electrode tab of the second electrode assembly to the negative electrode tab of the second electrode assembly to produce one electrode assembly having the thickness adjusting member at the center in the stacking direction. Is stored in a case. A method for manufacturing a power storage device.
活物質層を備える正極電極と負極電極とがセパレータを間に挟んだ状態で積層された電極組立体と、当該電極組立体を収容するケースと、を備えた蓄電装置であって、  A power storage device comprising: an electrode assembly in which a positive electrode and a negative electrode including an active material layer are stacked with a separator interposed therebetween; and a case for housing the electrode assembly,
前記電極組立体は、前記正極電極と前記負極電極とが前記セパレータを間に挟んだ状態で積層された第1電極組立体と第2電極組立体とを含み、  The electrode assembly includes a first electrode assembly and a second electrode assembly in which the positive electrode and the negative electrode are stacked with the separator interposed therebetween,
前記電極組立体の積層方向において、前記第1電極組立体と前記第2電極組立体との間に、且つ前記電極組立体の中央に、前記電極組立体と前記ケースとの間の隙間を調整するための厚み調整部材が位置し、  In the stacking direction of the electrode assembly, a gap between the electrode assembly and the case is adjusted between the first electrode assembly and the second electrode assembly and in the center of the electrode assembly. A thickness adjusting member is located,
前記電極組立体の積層方向における両端面とこれに対向するケースの内面との間には前記厚み調整部材が位置しないことを特徴とする蓄電装置。  The power storage device, wherein the thickness adjusting member is not positioned between both end surfaces of the electrode assembly in the stacking direction and an inner surface of the case facing the electrode assembly.
JP2014049259A 2014-03-12 2014-03-12 Power storage device and method for manufacturing power storage device Active JP6221856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014049259A JP6221856B2 (en) 2014-03-12 2014-03-12 Power storage device and method for manufacturing power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014049259A JP6221856B2 (en) 2014-03-12 2014-03-12 Power storage device and method for manufacturing power storage device

Publications (2)

Publication Number Publication Date
JP2015173080A JP2015173080A (en) 2015-10-01
JP6221856B2 true JP6221856B2 (en) 2017-11-01

Family

ID=54260283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014049259A Active JP6221856B2 (en) 2014-03-12 2014-03-12 Power storage device and method for manufacturing power storage device

Country Status (1)

Country Link
JP (1) JP6221856B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7028748B2 (en) * 2018-10-18 2022-03-02 本田技研工業株式会社 Storage cell and manufacturing method of storage cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293325A (en) * 1995-04-24 1996-11-05 Sony Corp Lithium ion secondary battery
JP2002170596A (en) * 2000-12-04 2002-06-14 Shin Kobe Electric Mach Co Ltd Nonaqueous electrolyte solution battery
JP4501080B2 (en) * 2006-10-23 2010-07-14 トヨタ自動車株式会社 Battery pack and manufacturing method thereof
JP2010055887A (en) * 2008-08-27 2010-03-11 Toyota Motor Corp Secondary battery
JP5257697B2 (en) * 2009-06-12 2013-08-07 トヨタ自動車株式会社 battery
JP5656654B2 (en) * 2011-01-11 2015-01-21 古河電池株式会社 Vent type storage battery
JP2013251106A (en) * 2012-05-31 2013-12-12 Toyota Industries Corp Power storage device
JP2014038706A (en) * 2012-08-10 2014-02-27 Toyota Industries Corp Power storage device

Also Published As

Publication number Publication date
JP2015173080A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP5618010B2 (en) Lithium secondary battery having multidirectional lead-tab structure
JP5392368B2 (en) Power storage device
JP6225734B2 (en) Power storage device
JP6064879B2 (en) Power storage device
JP2017111966A (en) Method of manufacturing electricity storage device
JPWO2017038439A1 (en) Power storage device
JP6079592B2 (en) Power storage device
JP2014038801A (en) Power storage device
JP6107539B2 (en) Power storage device
JP2014112492A (en) Power storage device
JP2015106535A (en) Power storage device and manufacturing method of the same
JP2016091737A (en) Power storage device
JP6221856B2 (en) Power storage device and method for manufacturing power storage device
JP5804117B2 (en) Power storage device
JP2016178028A (en) Electrode body and power storage element having the same
JP6194707B2 (en) Power storage device and method for manufacturing power storage device
JP2021026897A (en) Electrode assembly
JP2016031851A (en) Power storage device
JP5962276B2 (en) Power storage device
JP6365045B2 (en) Power storage device
JP2016085844A (en) Power storage device
WO2018117201A1 (en) Power storage device
JP6287542B2 (en) Power storage device inspection method
JP2015049989A (en) Power storage device
JP6672607B2 (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R151 Written notification of patent or utility model registration

Ref document number: 6221856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151