JP2010055887A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2010055887A
JP2010055887A JP2008218477A JP2008218477A JP2010055887A JP 2010055887 A JP2010055887 A JP 2010055887A JP 2008218477 A JP2008218477 A JP 2008218477A JP 2008218477 A JP2008218477 A JP 2008218477A JP 2010055887 A JP2010055887 A JP 2010055887A
Authority
JP
Japan
Prior art keywords
electrode body
heat
battery
wound
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008218477A
Other languages
Japanese (ja)
Inventor
Misa Nishida
美佐 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008218477A priority Critical patent/JP2010055887A/en
Publication of JP2010055887A publication Critical patent/JP2010055887A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery (a lithium ion battery or the like) having high durability even in high rate use. <P>SOLUTION: The secondary battery 20 includes: a wound electrode body 80; and a heat radiation member 70 arranged on the inside of the winding inner periphery. The heat radiation member 70 is configured such that heat is efficiently radiated in the central part in the winding axial direction of the electrode body 80 than both ends. Preferably, the heat radiation member 70 is made of a material having relative high heat conductivity, and includes a high heat conductive part 72 continuing from the central part in the axial direction of the electrode body 80 to at least one end of the heat radiation member 70 in the axial direction; and low heat conductive parts 74, 76 made of a material having lower heat conductivity than the high heat conductive part. The low heat conductive parts 74, 76 cover the high heat conductive part 72 in a portion of the outer surface facing the inner periphery of the electrode body 80 out of the heat radiation part 70, and expose the high heat conductive part 72 in a portion of other part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、正負の電極シートが捲回された構成の電極体(捲回型電極体)を備えた二次電池に関する。   The present invention relates to a secondary battery including an electrode body (winding electrode body) having a configuration in which positive and negative electrode sheets are wound.

リチウムイオン電池、ニッケル水素電池その他の二次電池(蓄電池)は、車両搭載用電源あるいはパソコンおよび携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。このような二次電池の代表的な構造の一つとして、正極シートと負極シートとが典型的にはセパレータを介して積層捲回された構成の電極体(捲回型電極体)を備えるものがある。この種の二次電池に関する従来技術文献として例えば特許文献1〜3が挙げられる。   Lithium ion batteries, nickel metal hydride batteries and other secondary batteries (storage batteries) are becoming increasingly important as on-vehicle power supplies or personal computers and portable terminals. In particular, a lithium ion battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle. As one of typical structures of such a secondary battery, a positive electrode sheet and a negative electrode sheet are typically provided with an electrode body (winding electrode body) having a configuration in which the positive electrode sheet and the negative electrode sheet are laminated and wound via a separator. There is. For example, Patent Documents 1 to 3 are cited as prior art documents relating to this type of secondary battery.

特開2007−311274号公報JP 2007-311274 A 特開2000−260474号公報JP 2000-260474 A 特開2001−313078号公報Japanese Patent Laid-Open No. 2001-313078

ところで、リチウムイオン電池の用途のなかには、ハイレート放電(急速放電)を行う態様で使用されることが想定されるものがある。車両の動力源に用いられるリチウムイオン電池(例えば、動力源として電池と内燃機関等のように作動原理の異なる他の動力源とを併用するハイブリッド車両に搭載される電池であって、典型的には複数の電池を直列に接続した組電池の形態で使用される。)は、このような使用態様が想定されるリチウムイオン電池の代表例である。しかし、従来の一般的なリチウムイオン電池は、ローレートでの使用(充放電)に対しては比較的高い耐久性を示すものであっても、ハイレートで使用されると性能劣化(内部抵抗の上昇等)を起こしやすいことが知られていた。組電池を構成する複数の電池(単電池)のいずれかにおいてこのような性能劣化が起こると、組電池全体としての性能が大幅に低下することとなり得る。   By the way, some uses of the lithium ion battery are assumed to be used in a mode in which high rate discharge (rapid discharge) is performed. A lithium ion battery used as a power source for a vehicle (for example, a battery mounted on a hybrid vehicle using a battery and another power source having a different operating principle such as an internal combustion engine as a power source, Is used in the form of an assembled battery in which a plurality of batteries are connected in series.) Is a representative example of a lithium ion battery in which such a usage mode is assumed. However, even though conventional lithium ion batteries show relatively high durability for use at low rates (charging / discharging), performance degradation (increase in internal resistance) when used at high rates Etc.). When such performance deterioration occurs in any of a plurality of batteries (single cells) constituting the assembled battery, the performance of the assembled battery as a whole may be significantly reduced.

そこで本発明は、ハイレートでの使用に対しても良好な耐久性を示す二次電池(例えばリチウムイオン電池)を提供することを目的とする。本発明の他の目的は、かかる二次電池の複数個を用いて構築された組電池であって、ハイレートで使用されても良好な耐久性を示す組電池を提供することである。   Accordingly, an object of the present invention is to provide a secondary battery (for example, a lithium ion battery) that exhibits good durability even when used at a high rate. Another object of the present invention is to provide an assembled battery constructed by using a plurality of such secondary batteries and exhibiting good durability even when used at a high rate.

本発明者は、捲回型電極体を備える二次電池(例えばリチウムイオン電池)に対してハイレート充放電を行うと、該電極体の捲回軸方向の両端部に比べてそれらの中央部の温度上昇が大きいことから、中央部と両端部との間に温度差(温度の偏り)が生じることを見出した。このような温度分布が存在すると、相対的に高温の箇所に電池反応(電流)が集中して当該箇所の劣化が進行しやすくなる結果、電池全体の性能が通常よりも早く劣化することとなり得る。しかも、電池反応が集中する箇所は発熱量も多くなるため、いったん生じた温度差がますます拡大するという悪循環に陥りがちである。そこで本発明者は、かかる温度差を効果的に解消または緩和し得る構成を見出して本発明を完成した。   When the present inventor performs high-rate charge / discharge on a secondary battery (for example, a lithium ion battery) including a wound electrode body, the center part of the electrode body compared to both ends in the winding axis direction. It has been found that since the temperature rise is large, a temperature difference (temperature deviation) occurs between the center and both ends. When such a temperature distribution exists, the battery reaction (current) is concentrated at a relatively high temperature location, and the deterioration of the location easily proceeds. As a result, the performance of the entire battery can be deteriorated faster than usual. . In addition, since the amount of heat generation increases at locations where battery reactions concentrate, the temperature difference once generated tends to fall into a vicious circle. Therefore, the present inventor has found a configuration that can effectively eliminate or alleviate such a temperature difference, and has completed the present invention.

本発明により提供される二次電池(典型的にはリチウムイオン電池)は、正負の電極シートが捲回された電極体と、前記電極体の捲回内周の内側(捲回中心部)に配置された放熱部材とを備える。前記放熱部材は、前記電極体の捲回軸方向の中央部を両端部よりも効率よく放熱させるように構成されている。
かかる構成の二次電池によると、ハイレート使用により電極体の軸方向両端部に比べて中央部の温度が大きく上昇しがちであるところ、上記中央部を両端部よりも高効率に放熱させる(すなわち冷却する)放熱部材を電極体の捲回中心部に配置することによって、該電極体の軸方向中央部と両端部との間に温度差が生じる事象を解消または緩和することができる。これにより、電池内における電池反応の偏りおよびこれに起因する部分的な劣化(例えば内部抵抗の上昇)促進を防止して、該電池のハイレート使用に対する耐久性を向上させることができる。
A secondary battery (typically a lithium ion battery) provided by the present invention includes an electrode body on which positive and negative electrode sheets are wound, and an inner side (winding center portion) of the wound inner periphery of the electrode body. And a heat radiating member disposed. The heat dissipating member is configured to dissipate heat at the central portion of the electrode body in the winding axis direction more efficiently than both end portions.
According to the secondary battery having such a configuration, when the high rate is used, the temperature of the central part tends to be greatly increased compared to the both axial ends of the electrode body. By disposing the cooling member at the center of winding of the electrode body, it is possible to eliminate or alleviate an event in which a temperature difference occurs between the axial center and both ends of the electrode body. Thereby, the bias of the battery reaction in the battery and the promotion of partial deterioration (for example, increase in internal resistance) due to this can be prevented, and the durability of the battery against high rate use can be improved.

なお、本明細書において「二次電池」とは、繰り返し充電可能な蓄電デバイス一般をいう用語であって、リチウムイオン電池、ニッケル水素電池、ニッケルカドミウム電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する。   In the present specification, the term “secondary battery” is a term that generally refers to an electricity storage device that can be repeatedly charged, such as a so-called storage battery such as a lithium ion battery, a nickel hydride battery, a nickel cadmium battery, and an electric double layer capacitor. Includes power storage elements.

ここに開示される二次電池の好ましい一態様では、前記放熱部材が、相対的に熱伝導率の高い材料(すなわち、後述する低熱伝導部よりも熱伝導率の高い材料、例えば金属材料)からなる高熱伝導部と、該高熱伝導部よりも熱伝導率の低い材料(例えば樹脂材料)からなる低熱伝導部とを備える。前記高熱伝導部は、前記放熱部材のうち前記電極体の軸方向中央部に配置される部分から該軸方向における前記放熱部材の少なくともいずれか一方の端まで連続している。また、前記低熱伝導部は、前記放熱部材のうち前記電極体の捲回内周に対向する外表面(すなわち、放熱部材のうち電極体の内側に配置される部分の表面、典型的には電極シートが巻き付けられる部分の表面)の一部では前記高熱伝導部を覆い、他の一部では前記高熱伝導部を露出させるように設けられている。例えば、前記放熱部材のうち前記電極体の軸方向中央部に配置される部分では両端部に配置される部分よりも前記高熱伝導部が露出する面積の割合が高くなるように構成されていることが好ましい。かかる構成の二次電池では、高熱伝導部を通じて電極体の軸方向中央部の熱を効率よく放熱させる一方、電極体の軸方向両端部では高熱伝導部を覆う低熱伝導部によって放熱が抑えられている。このことによって、電極体の軸方向中央部と両端部との温度差を効果的に解消または緩和することができる。   In a preferable aspect of the secondary battery disclosed herein, the heat dissipation member is made of a material having a relatively high thermal conductivity (that is, a material having a higher thermal conductivity than a low thermal conductivity portion described later, for example, a metal material). And a low thermal conductivity portion made of a material (for example, a resin material) having a lower thermal conductivity than the high thermal conductivity portion. The high heat conducting portion is continuous from a portion of the heat radiating member disposed at a central portion in the axial direction of the electrode body to at least one end of the heat radiating member in the axial direction. In addition, the low thermal conductivity portion is an outer surface of the heat dissipating member that faces the inner circumference of the electrode body (that is, a surface of a portion of the heat dissipating member that is disposed inside the electrode body, typically an electrode. A part of the surface of the portion around which the sheet is wound is provided so as to cover the high heat conduction part, and the other part is provided to expose the high heat conduction part. For example, the portion of the heat dissipating member that is disposed at the central portion in the axial direction of the electrode body is configured such that the ratio of the area where the high heat conductive portion is exposed is higher than the portion that is disposed at both ends. Is preferred. In the secondary battery having such a configuration, the heat at the central portion in the axial direction of the electrode body is efficiently radiated through the high heat conduction portion, while the heat radiation is suppressed by the low heat conduction portion covering the high heat conduction portion at both ends in the axial direction of the electrode body. Yes. Thereby, the temperature difference between the axially central portion and both end portions of the electrode body can be effectively eliminated or alleviated.

ここに開示される技術の好ましい適用対象として、前記電極シートが扁平に捲回された電極体(すなわち扁平型電極体)を備える二次電池(例えばリチウムイオン電池)が挙げられる。このような形態の二次電池は、電極体の扁平面(特に該扁平面の中央部)において電極体から放熱部材への良好な伝熱を実現しやすいので好ましい。例えば、上記扁平型電極体が扁平な角型形状の容器に収容された構成の二次電池に適用され得る。   As a preferable application target of the technology disclosed herein, a secondary battery (for example, a lithium ion battery) including an electrode body (that is, a flat electrode body) in which the electrode sheet is flatly wound can be given. The secondary battery having such a form is preferable because it is easy to realize good heat transfer from the electrode body to the heat radiating member on the flat surface of the electrode body (particularly the central portion of the flat surface). For example, the present invention can be applied to a secondary battery having a configuration in which the flat electrode body is accommodated in a flat rectangular container.

このように扁平型電極体を備える二次電池の好ましい一態様では、前記放熱部材が、前記高熱伝導部とその両側に配置された前記低熱伝導部とが前記扁平型電極体の厚み方向に積層された構成を有する。かかる態様によると、簡単な構成の放熱部材によって電極体の軸方向中央部と両端部との温度差を効果的に解消または緩和することができる。例えば、前記電極体の扁平面の中央部に配置される部分に前記高熱伝導部を露出させる開口を有する薄板状の低熱伝導部が薄板状の高熱伝導部の両側に積層された構成の放熱部材を好ましく採用し得る。かかる放熱部材を備える二次電池によると、電極体の軸方向中央部と両端部との温度差を効果的に解消または緩和することができる。   Thus, in a preferable aspect of the secondary battery including the flat electrode body, the heat dissipation member is formed by laminating the high heat conduction portion and the low heat conduction portions disposed on both sides thereof in the thickness direction of the flat electrode body. It has the structure made. According to this aspect, the temperature difference between the axially central portion and both end portions of the electrode body can be effectively eliminated or alleviated by a heat dissipation member having a simple configuration. For example, a heat radiating member having a configuration in which a thin plate-like low heat conduction portion having an opening exposing the high heat conduction portion in a portion disposed in a central portion of the flat surface of the electrode body is laminated on both sides of the thin plate-like high heat conduction portion Can be preferably employed. According to the secondary battery including such a heat dissipating member, the temperature difference between the axially central portion and both end portions of the electrode body can be effectively eliminated or alleviated.

ここに開示されるいずれかの二次電池(例えばリチウムイオン電池)は、上述のようにハイレートでの使用に対して良好な耐久性を発揮し得ることから、車両に搭載される電池(例えば、自動車等の車両のモータ(電動機)用の電源)として好適である。したがって本発明によると、ここに開示されるいずれかの電池(該電池の複数個を接続した組電池の形態であり得る。)を備えた車両が提供される。   Any of the secondary batteries (for example, lithium ion batteries) disclosed herein can exhibit good durability for use at a high rate as described above. It is suitable as a power source for a motor (electric motor) of a vehicle such as an automobile. Therefore, according to the present invention, there is provided a vehicle including any of the batteries disclosed herein (which may be in the form of an assembled battery in which a plurality of the batteries are connected).

ここに開示される技術の好ましい適用対象として、50A以上(例えば50A〜250A)、さらには100A以上(例えば100A〜200A)のハイレート放電を含む充放電サイクルで使用され得ることが想定されるリチウムイオン電池;理論容量が1Ah以上(さらには3Ah以上)の大容量タイプであって10C以上(例えば10C〜50C)さらには20C以上(例えば20C〜40C)のハイレート放電を含む充放電サイクルで使用されることが想定されるリチウムイオン電池;等のリチウムイオン電池、該リチウムイオン電池を用いて(該リチウムイオン電池を単電池として)構築された組電池、および該組電池を備える電源システムが例示される。   As a preferable application object of the technology disclosed herein, lithium ions that can be used in a charge / discharge cycle including a high-rate discharge of 50 A or more (for example, 50 A to 250 A), or even 100 A or more (for example, 100 A to 200 A). Batteries: Large capacity type with a theoretical capacity of 1 Ah or more (and 3 Ah or more), and used in a charge / discharge cycle including high-rate discharge of 10 C or more (for example, 10 C to 50 C) or 20 C or more (for example, 20 C to 40 C). Examples of lithium ion batteries such as lithium ion batteries, assembled batteries constructed using the lithium ion batteries (using the lithium ion batteries as single cells), and power supply systems including the assembled batteries .

また、ここに開示される技術の好ましい適用対象として、電極体を捲回軸の側方からみたときのサイズが捲回軸方向(図2の横方向、図9の縦方向)について5cm以上(典型的には5cm〜25cm、例えば7cm〜20cm)であるリチウムイオン電池、該電池を単電池として構築された組電池、および該組電池を備える電源システムが例示される。このように電極体の軸長が比較的長い(大型の)リチウムイオン電池では、軸方向の両端部と中央部との温度差が大きくなりがちであるため、本発明の適用意義が特に大きい。   Moreover, as a preferable application object of the technology disclosed herein, the size when the electrode body is viewed from the side of the winding axis is 5 cm or more in the winding axis direction (the horizontal direction in FIG. 2 and the vertical direction in FIG. 9) ( A lithium ion battery that is typically 5 cm to 25 cm (for example, 7 cm to 20 cm), an assembled battery constructed using the battery as a single battery, and a power supply system including the assembled battery are exemplified. Thus, in a lithium ion battery having a relatively long (large) axial length of the electrode body, the temperature difference between the axial end portions and the central portion tends to be large, and thus the present invention is particularly significant.

また、ここに開示される技術は、正負の電極シートとセパレータとが扁平に捲回された電極体を備え、該電極体を扁平面の法線方向(捲回軸の横方向)からみたサイズが捲回軸方向について5cm以上(典型的には5cm〜25cm、例えば7cm〜20cm)であり、且つ幅方向(図2の縦方向、典型的には高さ方向)について5cm以上(典型的には5cm〜25cm、例えば7cm〜20cm)であるリチウムイオン電池、該電池を単電池として構築された組電池、および該組電池を備える電源システムに好ましく適用され得る。このように電極体の軸長が比較的長く且つ幅の広い(高さの大きな、大型の)リチウムイオン電池では、軸方向の両端部と中央部とで温度差が大きくなりがちであるため、本発明の適用意義が特に大きい。   Further, the technology disclosed herein includes an electrode body in which a positive and negative electrode sheet and a separator are wound in a flat shape, and the electrode body is a size as viewed from the normal direction of the flat surface (the lateral direction of the winding axis). Is 5 cm or more in the winding axis direction (typically 5 cm to 25 cm, for example, 7 cm to 20 cm), and 5 cm or more in the width direction (vertical direction in FIG. 2, typically the height direction) (typically Can be preferably applied to a lithium ion battery that is 5 cm to 25 cm (for example, 7 cm to 20 cm), an assembled battery constructed using the battery as a single battery, and a power supply system including the assembled battery. In this way, the axial length of the electrode body is relatively long and wide (large, large size) lithium ion battery, because the temperature difference tends to be large between the axial end portions and the central portion, The significance of application of the present invention is particularly great.

以下、図面を参照しながら本発明の好適な実施形態を説明する。以下の図面において、同じ作用を奏する部材・部位には同じ符号を付して説明し、重複する説明は省略または簡略化することがある。
なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、正極、負極およびセパレータの構成および製造方法、電極体の製造方法、組電池の構築方法や車両への電池搭載方法等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In the following drawings, members / parts having the same action are described with the same reference numerals, and overlapping descriptions may be omitted or simplified.
Note that matters other than the matters specifically mentioned in the present specification and necessary for the implementation of the present invention (for example, the configuration and manufacturing method of the positive electrode, the negative electrode, and the separator, the manufacturing method of the electrode body, and the construction of the assembled battery) The method and the method of mounting the battery on the vehicle, etc.) can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

<実施形態1>
図1〜6を参照しつつ、扁平形状の捲回型電極体を備えるリチウムイオン電池に本発明を適用した好適な一形態を説明する。
本実施形態に係るリチウムイオン電池20は、正負の電極シート(典型的には、正負極それぞれの集電体に正負極それぞれの活物質が保持されたシート状の電極)とシート状のセパレータとが積層され捲回された扁平形状の捲回型電極体80が、適当な液状電解質(電解液)とともに、該電極体80を収容し得る形状(ここでは扁平な直方体形状すなわち角型)の容器50に収容された構成を有する。ここで、図2,5,6に示されるように、電極体80の捲回内周の内側(すなわち捲回中心部)には放熱プレート70が配置されている。容器50を構成する材質は、例えば典型的なリチウムイオン電池で使用されるものと同様とすることができ、特に制限はない。放熱性等の観点から、金属製(例えばアルミニウム製)の容器50を好ましく使用し得る。容器50の上面からは、電極体80の正極および負極とそれぞれ電気的に接続する正極端子60および負極端子62が突出している。
<Embodiment 1>
A preferred embodiment in which the present invention is applied to a lithium ion battery including a flat wound electrode body will be described with reference to FIGS.
The lithium ion battery 20 according to the present embodiment includes a positive and negative electrode sheet (typically, a sheet-like electrode in which each positive and negative electrode current collector holds a positive and negative electrode active material), a sheet-like separator, A container having a shape (here, a flat rectangular parallelepiped shape, that is, a square shape) in which a flat wound electrode body 80 in which the electrode bodies 80 are stacked and wound together with an appropriate liquid electrolyte (electrolytic solution) is accommodated. 50. Here, as shown in FIGS. 2, 5, and 6, a heat radiating plate 70 is disposed on the inner side of the wound inner periphery of the electrode body 80 (that is, the wound center). The material which comprises the container 50 can be made into the same thing as what is used with a typical lithium ion battery, for example, and there is no restriction | limiting in particular. From the viewpoint of heat dissipation and the like, a metal (for example, aluminum) container 50 can be preferably used. From the upper surface of the container 50, a positive electrode terminal 60 and a negative electrode terminal 62 that are electrically connected to the positive electrode and the negative electrode of the electrode body 80, respectively, protrude.

以下、放熱プレート70および捲回型電極体80の構成をより詳しく説明する。
図3および図4によく示されるように、放熱プレート70は、概ね長方形状の金属板(高熱伝導部材)72と、その金属板72の両面にそれぞれ重ね合わされた樹脂シート74,76とから構成されている。樹脂シート74,76には、電極体80の軸方向に対応する方向(以下、説明の便宜上、放熱プレート70およびその構成部材についても「電極体80の軸方向に対応する方向」を「軸方向」というものとする。)の中央部であって且つ幅方向の中央部に、それぞれ開口74A,76Aが設けられている。金属板72の両表面の中央部は、これらの開口74A,76Aから放熱プレート70の外表面に露出する露出部72Aとなっている。一方、金属板72の両表面の周縁部は、該表面が樹脂シート74,76によって覆われた(すなわち、外部に露出していない)被覆部72Bとなっている。このことによって、放熱プレート70は、軸方向の中央部5では両端部6,7よりも金属板72の露出する面積の割合が高くなるように構成されている。すなわち、図5に示す負極側端部7における断面(正極側端部6における断面も同様である。)では、金属板72の両表面の全体が被覆部72Bとなっているのに対して、図6に示す中央部5における断面では、金属板72の幅方向の中央部に、該幅方向長さの例えば10〜90%(典型的には30〜70%)を占める露出部72Aが形成されている。なお、変形例として、樹脂シート74,76が端部6,7のみを覆い、放熱プレート70の中央部5では金属板72の両表面が幅方向の全長に亘って露出するように構成してもよい。
また、図4によく示されるように、金属板72は、中央部5から放熱プレート70の軸方向の両端70A,70Bおよび幅方向の両端70C,70Dまで連続しており、これらの端(外周端)70A,B,C,Dにおいて放熱プレート70の外表面に露出している。
Hereinafter, the structure of the heat radiating plate 70 and the wound electrode body 80 will be described in more detail.
3 and 4, the heat radiating plate 70 includes a generally rectangular metal plate (high heat conductive member) 72 and resin sheets 74 and 76 superimposed on both surfaces of the metal plate 72. Has been. In the resin sheets 74 and 76, the direction corresponding to the axial direction of the electrode body 80 (hereinafter, for convenience of explanation, the “direction corresponding to the axial direction of the electrode body 80” is also referred to as “axial direction for the heat dissipation plate 70 and its constituent members. The openings 74A and 76A are respectively provided in the center portion in the width direction and the center portion in the width direction. Central portions of both surfaces of the metal plate 72 are exposed portions 72A that are exposed to the outer surface of the heat radiating plate 70 through the openings 74A and 76A. On the other hand, the peripheral portions of both surfaces of the metal plate 72 are covered portions 72B whose surfaces are covered with the resin sheets 74 and 76 (that is, not exposed to the outside). Thus, the heat radiating plate 70 is configured such that the ratio of the exposed area of the metal plate 72 is higher in the central portion 5 in the axial direction than in the end portions 6 and 7. That is, in the cross section at the negative electrode side end portion 7 shown in FIG. 5 (the cross section at the positive electrode side end portion 6 is the same), both surfaces of the metal plate 72 are entirely covered portions 72B. 6, an exposed portion 72A occupying, for example, 10 to 90% (typically 30 to 70%) of the length in the width direction is formed in the center portion of the metal plate 72 in the width direction. Has been. As a modification, the resin sheets 74 and 76 cover only the end portions 6 and 7, and the both surfaces of the metal plate 72 are exposed over the entire length in the width direction at the central portion 5 of the heat radiating plate 70. Also good.
4, the metal plate 72 is continuous from the central portion 5 to both ends 70A and 70B in the axial direction and both ends 70C and 70D in the width direction of the heat radiating plate 70. Ends) 70A, B, C, and D are exposed on the outer surface of the heat dissipation plate 70.

放熱プレート70の構成材料としては、使用する電解液や電池反応に対して所望の安定性を示すものであればよく、特に限定されない。例えば、金属板72の構成材料としては、軽量で熱伝導性の高いアルミニウムその他の金属材料を好ましく採用し得る。また、樹脂シート74,76の構成材料としては、軽量で硬質なポリプロピレンその他の合成樹脂材料を好ましく採用し得る。合成樹脂製の多孔質部材を使用してもよい。例えば、セパレータシートとしても使用可能な多孔質ポリオレフィンシートを、単独で、あるいは必要な厚みとなるように重ね合わせて使用することができる。
金属板72の厚みは、例えば凡そ0.02mm〜10mm程度とすることができ、通常は厚みが凡そ0.05mm〜5mm(例えば0.5mm〜2mm)程度の金属板を好ましく採用し得る。高熱伝導部を構成する金属板の厚みが大きすぎると電池20の体格(厚み)および重量が大きくなりがちであり、該金属板の厚みが小さすぎると温度差を緩和する効果が少なくなることがある。
樹脂シート74,76の厚みは、例えば凡そ0.005mm〜2mmとすることができ、通常は厚みが凡そ0.02mm〜1mm(例えば0.05mm〜0.5mm)程度の樹脂シートを好ましく採用し得る。低熱伝導部を構成する樹脂シートの厚みが大きすぎると電池20の体格(厚み)および重量が大きくなりがちであり、該樹脂シートの厚みが小さすぎると温度差を緩和する効果が少なくなることがある。
なお、両樹脂シート74,76の構成材料や形状(厚み、開口部の形状等)は同一であっても異なってもよい。通常は、同一の材料からなる同一形状の樹脂シート74,76が好ましく用いられる。
The constituent material of the heat radiating plate 70 is not particularly limited as long as it shows a desired stability with respect to the electrolytic solution to be used and the battery reaction. For example, as the constituent material of the metal plate 72, aluminum and other metal materials that are lightweight and have high thermal conductivity can be preferably used. Moreover, as a constituent material of the resin sheets 74 and 76, lightweight and hard polypropylene and other synthetic resin materials can be preferably employed. A synthetic resin porous member may be used. For example, a porous polyolefin sheet that can also be used as a separator sheet can be used alone or in an overlapping manner so as to have a required thickness.
The thickness of the metal plate 72 can be, for example, about 0.02 mm to 10 mm, and a metal plate having a thickness of about 0.05 mm to 5 mm (for example, 0.5 mm to 2 mm) can be preferably used. If the thickness of the metal plate constituting the high heat conduction part is too large, the physique (thickness) and weight of the battery 20 tend to increase, and if the thickness of the metal plate is too small, the effect of reducing the temperature difference may be reduced. is there.
The thickness of the resin sheets 74 and 76 can be set to, for example, approximately 0.005 mm to 2 mm, and usually a resin sheet having a thickness of approximately 0.02 mm to 1 mm (for example, 0.05 mm to 0.5 mm) is preferably employed. obtain. If the thickness of the resin sheet constituting the low heat conduction part is too large, the physique (thickness) and weight of the battery 20 tend to increase, and if the thickness of the resin sheet is too small, the effect of reducing the temperature difference may be reduced. is there.
In addition, the constituent material and shape (thickness, shape of an opening part, etc.) of both the resin sheets 74 and 76 may be the same, or may differ. Usually, resin sheets 74 and 76 having the same shape and made of the same material are preferably used.

電極体80は、図2に示すように、通常のリチウムイオン電池の捲回型電極体と同様、長尺シート状の正極82(以下「正極シート82」ともいう。)と長尺シート状の負極84(以下「負極シート84」ともいう。)とを計二枚の長尺シート状のセパレータ86(以下「セパレータシート86」ともいう。)とともに積層し、その重ね合わせたシート82,84,86を長手方向に捲回することにより作製され得る。ここで、上記重ね合わせたシート82,84,86(以下「積層シート」ともいう。)を捲回する際、放熱プレート70を巻芯にしてその周囲に上記積層シートを緊密に巻きつけることにより、捲回内周の内側に放熱プレート70が配置された扁平型電極体80を好適に作製することができる。この方法によると、放熱プレート70の外表面(両表面および外周端70C,70D)と積層シートの内周とをよりよく(より広い面積で)接触させ得る。このことによって、放熱プレート70の設置効果(電極体80の中央部と両端部との温度差を緩和する効果)がよりよく発揮され得る。図5,6に示すように、放熱プレート70の外周端70C,70Dを丸みを帯びた形状(典型的にはR形状)とすることにより、放熱プレート70の外周と積層シートの内周とをさらによく接触させることができる。このように外周端70C,70Dに丸みをもたせることにより、放熱プレート70と積層シートとの接触応力を緩和して(分散させて)積層シートの損傷を防止することができる。   As shown in FIG. 2, the electrode body 80 has a long sheet-like positive electrode 82 (hereinafter also referred to as “positive electrode sheet 82”) and a long sheet-like electrode, similarly to a wound electrode body of a normal lithium ion battery. A negative electrode 84 (hereinafter also referred to as “negative electrode sheet 84”) is laminated together with a total of two long sheet-like separators 86 (hereinafter also referred to as “separator sheets 86”), and the stacked sheets 82, 84, It can be made by winding 86 in the longitudinal direction. Here, when winding the stacked sheets 82, 84, 86 (hereinafter also referred to as “laminated sheet”), the heat radiating plate 70 is used as a core, and the laminated sheet is tightly wound around the periphery. The flat electrode body 80 in which the heat radiating plate 70 is disposed inside the wound inner periphery can be suitably manufactured. According to this method, the outer surface (both surfaces and outer peripheral ends 70C and 70D) of the heat radiating plate 70 and the inner periphery of the laminated sheet can be brought into better contact (with a wider area). By this, the installation effect of the heat radiating plate 70 (the effect of relaxing the temperature difference between the central portion and both end portions of the electrode body 80) can be exhibited better. As shown in FIGS. 5 and 6, the outer peripheral ends 70 </ b> C and 70 </ b> D of the heat dissipating plate 70 are rounded (typically R-shaped), so that the outer periphery of the heat dissipating plate 70 and the inner periphery of the laminated sheet are reduced. It can be brought into better contact. Thus, by providing the outer peripheral ends 70C and 70D with roundness, the contact stress between the heat radiation plate 70 and the laminated sheet can be relaxed (distributed) to prevent the laminated sheet from being damaged.

あるいは、まず積層シートを単独で捲回した後、その捲回内周の内側に放熱プレート70を挿入してもよい。積層シートは扁平状に捲回してもよく、いったん円形状に捲回した後に側面方向(捲回軸に対して横方向)から押しつぶして拉げさせることで扁平状としてもよい。かかる方法によると、放熱プレート70の周囲に積層シートを巻きつける方法に比べて幅方向端70C,70Dと放熱プレート70との密着性が低くなりがちではあるものの、より高い生産性が実現され得るという効果が得られる。また、放熱プレート70の両表面と電極体80の扁平面とを密着させることにより、電極体80の中央部と両端部との温度差を効果的に緩和することができる。   Or after laminating | stacking a lamination sheet independently, you may insert the thermal radiation plate 70 inside the winding inner periphery. The laminated sheet may be wound in a flat shape, or may be formed in a flat shape by winding it once in a circular shape and then crushing it from the side direction (lateral direction with respect to the winding axis). According to such a method, although the adhesion between the width direction ends 70C and 70D and the heat radiating plate 70 tends to be lower than the method of winding a laminated sheet around the heat radiating plate 70, higher productivity can be realized. The effect is obtained. Further, by bringing both surfaces of the heat radiating plate 70 into close contact with the flat surface of the electrode body 80, the temperature difference between the center portion and both end portions of the electrode body 80 can be effectively reduced.

なお、正極シート82と負極シート84とは、これら長尺状シートの幅方向に位置をややずらして重ね合わされた状態で捲回される。その結果として、捲回型電極体80の捲回軸方向の一方および他方の端部には、図2に示すように、正極シート82の幅方向の一端が捲回コア部分81(すなわち正極シート82の正極活物質層形成部分と負極シート84の負極活物質層形成部分とセパレータシート86とが密に捲回された部分)から外方にはみ出した部分と、負極シート84の幅方向の一端が捲回コア部分81から外方にはみ出した部分とがそれぞれ形成されている。これら正極はみ出し部(すなわち正極活物質層の非形成部分)および負極はみ出し部(すなわち負極活物質層の非形成部分)には、正極端子60および負極端子62の一端がそれぞれ接続されている。   In addition, the positive electrode sheet 82 and the negative electrode sheet 84 are wound in a state where they are overlapped with a slightly shifted position in the width direction of these long sheets. As a result, as shown in FIG. 2, one end in the width direction of the positive electrode sheet 82 is provided on one end and the other end in the winding axis direction of the wound electrode body 80. 82, a portion where the negative electrode active material layer forming portion 82, the negative electrode active material layer forming portion of the negative electrode sheet 84, and the separator sheet 86 are closely wound) and one end in the width direction of the negative electrode sheet 84 However, a portion protruding outward from the wound core portion 81 is formed. One end of each of the positive electrode terminal 60 and the negative electrode terminal 62 is connected to the protruding portion of the positive electrode (that is, the portion where the positive electrode active material layer is not formed) and the negative electrode protruding portion (that is, the portion where the negative electrode active material layer is not formed).

捲回型電極体80を構成する材料および部材自体は、従来のリチウムイオン電池の電極体と同様でよく、特に制限はない。例えば、正極シート82は長尺状の正極集電体の上にリチウムイオン電池用正極活物質層が付与されて形成され得る。正極集電体にはアルミニウム箔(本実施形態)その他の正極に適する金属箔が好適に使用され得る。正極活物質としては従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、リチウムニッケル系複合酸化物(リチウムとニッケルとを構成金属元素として含む酸化物をいい、ニッケルサイトの一部(典型的には半分以下)がコバルトやアルミニウム等の他の金属元素で置換されたものを包含する意味である。典型的にはLiNiO)、リチウムコバルト系複合酸化物(典型的にはLiCoO)、リチウムマンガン系複合酸化物(典型的にはLiMn)等のリチウム遷移金属複合酸化物が挙げられる。例えば、厚さ5μm〜20μm(例えば15μm)程度の長尺状アルミニウム箔を集電体として使用し、その表面の所定領域に常法によりリチウムニッケル系複合酸化物を主体とする正極活物質層を形成することによって好適な正極シート82が得られる。 The material and member itself constituting the wound electrode body 80 may be the same as the electrode body of the conventional lithium ion battery, and are not particularly limited. For example, the positive electrode sheet 82 can be formed by applying a positive electrode active material layer for a lithium ion battery on a long positive electrode current collector. For the positive electrode current collector, an aluminum foil (this embodiment) or other metal foil suitable for the positive electrode can be suitably used. As the positive electrode active material, one type or two or more types of materials conventionally used in lithium ion batteries can be used without any particular limitation. As a preferred example, a lithium-nickel composite oxide (an oxide containing lithium and nickel as constituent metal elements, a part of nickel site (typically less than half) is other metal elements such as cobalt and aluminum. It is meant to include substituted ones, typically LiNiO 2 ), lithium cobalt based composite oxide (typically LiCoO 2 ), lithium manganese based composite oxide (typically LiMn 2 O 4 ). And lithium transition metal composite oxides. For example, a long aluminum foil having a thickness of about 5 μm to 20 μm (for example, 15 μm) is used as a current collector, and a positive electrode active material layer mainly composed of a lithium nickel-based composite oxide is formed on a predetermined region of the surface by a conventional method. A suitable positive electrode sheet 82 is obtained by forming.

一方、負極シート84は長尺状の負極集電体の上にリチウムイオン電池用負極活物質層が付与されて形成され得る。負極集電体には銅箔(本実施形態)その他の負極に適する金属箔が好適に使用され得る。負極活物質としては従来からリチウムイオン電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボンやアモルファスカーボン等の炭素系材料、リチウム遷移金属酸化物(リチウムチタン酸化物等)、リチウム遷移金属窒化物等が挙げられる。例えば、厚さ5μm〜20μm(例えば10μm)程度の長尺状銅箔を使用し、その表面の所定領域に常法によって炭素系材料(典型的には黒鉛)を主体とする負極活物質層を形成することによって好適な負極シート84が得られる。   On the other hand, the negative electrode sheet 84 can be formed by providing a negative electrode active material layer for a lithium ion battery on a long negative electrode current collector. For the negative electrode current collector, a copper foil (this embodiment) or other metal foil suitable for the negative electrode can be suitably used. As the negative electrode active material, one type or two or more types of materials conventionally used in lithium ion batteries can be used without any particular limitation. Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, lithium transition metal oxides (such as lithium titanium oxide), and lithium transition metal nitrides. For example, a long copper foil having a thickness of about 5 μm to 20 μm (for example, 10 μm) is used, and a negative electrode active material layer mainly composed of a carbon-based material (typically graphite) is formed on a predetermined region of the surface by a conventional method. By forming it, a suitable negative electrode sheet 84 is obtained.

また、正負極シート82,84間に使用される好適なセパレータシート86としては、合成樹脂(例えばポリエチレン、ポリプロピレン等のポリオレフィン)により構成されたものが例示される。例えば、ポリオレフィン系樹脂からなる厚さ5μm〜30μm(例えば25μm)程度の多孔質セパレータシートを好適に使用し得る。   Moreover, as a suitable separator sheet 86 used between the positive / negative electrode sheets 82 and 84, what was comprised by the synthetic resin (for example, polyolefin, such as polyethylene and a polypropylene) is illustrated. For example, a porous separator sheet made of polyolefin resin and having a thickness of about 5 μm to 30 μm (for example, 25 μm) can be suitably used.

捲回内周に放熱プレート70が配置された扁平形状の捲回型電極体80を容器50内に、図5,6に示すように捲回軸が横倒しになるようにして収容するとともに、適当な非水電解液(図示せず)を注入して封止することによって、本実施形態に係るリチウムイオン電池20が構築され得る。電解液としては、例えば、非水溶媒(ジエチルカーボネートとエチレンカーボネートとの混合溶媒等)中に適当な支持塩(例えばLiPF等のリチウム塩)を適当量(例えば濃度1M)含むものを好ましく用いることができる。 A flat wound electrode body 80 having a heat radiating plate 70 disposed on the inner periphery of the winding is accommodated in the container 50 so that the winding shaft lies sideways as shown in FIGS. A lithium ion battery 20 according to this embodiment can be constructed by injecting and sealing a non-aqueous electrolyte solution (not shown). As the electrolytic solution, for example, a nonaqueous solvent (such as a mixed solvent of diethyl carbonate and ethylene carbonate) containing an appropriate supporting salt (for example, a lithium salt such as LiPF 6 ) in an appropriate amount (for example, a concentration of 1 M) is preferably used. be able to.

このような構成のリチウムイオン電池20によると、放熱プレート70を利用して、電極体80の中央部を両端部よりも高効率に放熱させことができる。すなわち、放熱プレート70のうち電極体80の軸方向中央部かつ幅方向の中央部に配置される部分では、図6に示すように、開口74A,76Aを通して金属板72が外部に露出しているので、電極体80の熱を金属板72へと効率よく伝えることができる。また、金属板72は上記中央部から放熱プレートの外周端70A,B,C,Dまで連続しているので、電極体80から受け取った熱を外部へと効果的に放散させることができる。一方、電極体80の軸方向両端部では、図5に示すように、金属板72の表面が樹脂シート72,74で覆われている(電極体80の内周と金属板72とが樹脂シート72,74により隔てられている)ので、中央部に比べて電極体80の熱が金属板72に伝わりにくい。すなわち、電極体80の軸方向両端部では中央部に比べて放熱が抑えられている。したがって、従来の構成では電極体の軸方向中央部の温度が両端部に比べて大きく上昇しがちな(中央部と両端部との温度差が大きくなりがちな)ハイレート使用時においても、本実施形態の電池20によると電極体80の軸方向中央部と両端部との温度差を効果的に緩和することができる。
なお、図6では樹脂シート72,74の厚みを誇張して表現しているため電極体80の内周と金属板72の表面とが離れているが、通常は樹脂シート72,74の厚みが小さいことから電極体80の内周は開口74A,76Aを通じて金属板72の表面に密着する。電極体80は、典型的には厚み方向にある程度の押圧力が加わるようにして容器50に収容されるので、上記密着がよりよく行われることとなる。
According to the lithium ion battery 20 having such a configuration, the central portion of the electrode body 80 can be radiated with higher efficiency than both ends by using the heat radiating plate 70. That is, in the portion of the heat radiating plate 70 disposed at the center in the axial direction and the center in the width direction of the electrode body 80, the metal plate 72 is exposed to the outside through the openings 74A and 76A as shown in FIG. Therefore, the heat of the electrode body 80 can be efficiently transmitted to the metal plate 72. In addition, since the metal plate 72 is continuous from the central portion to the outer peripheral ends 70A, B, C, and D of the heat radiating plate, the heat received from the electrode body 80 can be effectively dissipated to the outside. On the other hand, at both axial ends of the electrode body 80, as shown in FIG. 5, the surface of the metal plate 72 is covered with resin sheets 72 and 74 (the inner periphery of the electrode body 80 and the metal plate 72 are resin sheets). 72, 74), the heat of the electrode body 80 is less likely to be transmitted to the metal plate 72 compared to the central portion. That is, heat dissipation is suppressed at both axial ends of the electrode body 80 as compared to the central portion. Therefore, in the conventional configuration, the temperature at the central part in the axial direction of the electrode body tends to rise greatly compared to both ends (the temperature difference between the central part and both ends tends to become large). According to the battery 20 of the embodiment, the temperature difference between the axially central portion and both end portions of the electrode body 80 can be effectively reduced.
In FIG. 6, since the thickness of the resin sheets 72 and 74 is exaggerated, the inner periphery of the electrode body 80 and the surface of the metal plate 72 are separated from each other. Because of its small size, the inner periphery of the electrode body 80 is in close contact with the surface of the metal plate 72 through the openings 74A and 76A. Since the electrode body 80 is typically accommodated in the container 50 so that a certain amount of pressing force is applied in the thickness direction, the above-described close contact is better performed.

かかる構成を採用する意義(必要性)を確認するため、放熱プレート70を有しない点以外は本実施形態と同様の構成を有するリチウムイオン電池を作製し、ハイレート充放電によって両端部と中央部との間に生じる温度差を測定した。   In order to confirm the significance (necessity) of adopting such a configuration, a lithium ion battery having the same configuration as that of the present embodiment except that the heat radiating plate 70 is not provided is manufactured, and both ends and the central portion are formed by high-rate charge / discharge. The temperature difference that occurred during

すなわち、ニッケル酸リチウム粉末(正極活物質)とアセチレンブラック(導電材)とカルボキシメチルセルロース(CMC)とを、これら材料の質量比が87:10:3となるようにイオン交換水と混合して活物質組成物(正極活物質組成物)を調製した。正極集電体としては長尺状のアルミニウム箔を使用し、該集電体のうち幅方向の一端を残して(正極はみ出し部)それ以外の領域の両面に、上記正極活物質組成物を帯状に塗布して乾燥させた。乾燥後、正極集電体およびその両面に設けられた活物質層を含む全体をプレスして正極シートを得た。   That is, lithium nickelate powder (positive electrode active material), acetylene black (conductive material), and carboxymethyl cellulose (CMC) are mixed with ion-exchanged water so that the mass ratio of these materials is 87: 10: 3. A material composition (positive electrode active material composition) was prepared. A long aluminum foil is used as the positive electrode current collector, and the positive electrode active material composition is striped on both sides of the current collector, leaving one end in the width direction (positive electrode protruding portion). And dried. After drying, the whole including the positive electrode current collector and the active material layers provided on both sides thereof was pressed to obtain a positive electrode sheet.

また、天然黒鉛(粉末)とスチレンブタジエンゴム(SBR)とCMCとを、これら材料の質量比が98:1:1となるようにイオン交換水と混合して活物質組成物(負極活物質組成物)を調製した。負極集電体としては長尺状の銅箔を使用し、該集電体のうち幅方向の一端を残して(負極はみ出し部)それ以外の領域の両面に、上記負極活物質組成物を帯状に塗布して乾燥させた。乾燥後、負極集電体およびその両面に設けられた活物質層を含む全体をプレスして負極シートを得た。   Further, natural graphite (powder), styrene butadiene rubber (SBR), and CMC are mixed with ion-exchanged water so that the mass ratio of these materials becomes 98: 1: 1. Prepared). A long copper foil is used as the negative electrode current collector, and the negative electrode active material composition is striped on both sides of the current collector, leaving one end in the width direction (negative electrode protruding portion). And dried. After drying, the whole including the negative electrode current collector and the active material layers provided on both sides thereof was pressed to obtain a negative electrode sheet.

セパレータシートとしては二枚の多孔質ポリエチレンシートを使用した。これらのセパレータシートと上記で得られた正極シートおよび負極シートとを、両電極シートの活物質非形成部分(はみ出し部)がそれぞれの幅方向の両側からはみ出すように積層して長手方向に捲回し、その捲回体を側方から押しつぶして扁平形状の捲回型電極体を得た。
この電極体の正極はみ出し部を構成する正極シートを径方向(扁平面に対する法線方向)に寄せ集めてアルミニウム製の正極端子の一端を溶接し、負極はみ出し部を構成する負極シートを径方向に寄せ集めて銅製の負極端子の一端を溶接した。
Two porous polyethylene sheets were used as the separator sheet. These separator sheets and the positive electrode sheet and the negative electrode sheet obtained above are laminated and wound in the longitudinal direction so that the active material non-formation portions (protruding portions) of both electrode sheets protrude from both sides in the width direction. The wound body was crushed from the side to obtain a flat wound electrode body.
The positive electrode sheet constituting the positive electrode protruding portion of this electrode body is gathered in the radial direction (normal direction with respect to the flat surface) and one end of the aluminum positive electrode terminal is welded, and the negative electrode sheet constituting the negative electrode protruding portion is radially aligned. One end of a copper negative electrode terminal was welded together.

容器としては、縦方向(扁平形状の捲回型電極体の幅方向)の長さが9.2cmであり、横方向(捲回型電極体の軸方向)の長さが11cmであり、厚さが1.35cmの扁平な箱型の外形を有するアルミニウム容器を使用した。この容器の内部に上記捲回型電極体を収容した。また、各部の温度を外部から測定可能とするため、容器の一方の端部(正極端子側の端部)、他方の端部(負極端子側の端部)およびそれらの中央部にそれぞれ熱電対を配置した。この容器に、ECとDMCとEMCとの混合溶媒に支持塩としてのヘキサフルオロリン酸リチウム(LiPF)を約1mol/リットルの濃度で含有させた電解液を注入した後、該容器を封止した。その後、常法により初期充放電処理(コンディショニング)を行って、理論容量5Ahのリチウムイオン電池を得た。 As the container, the length in the vertical direction (width direction of the flat wound electrode body) is 9.2 cm, the length in the horizontal direction (axial direction of the wound electrode body) is 11 cm, and the thickness is An aluminum container having a flat box shape with a length of 1.35 cm was used. The wound electrode body was accommodated in the container. In addition, in order to be able to measure the temperature of each part from the outside, thermocouples are respectively provided at one end (the end on the positive terminal side), the other end (the end on the negative terminal side), and the center of the container. Arranged. Into this container, an electrolytic solution containing lithium hexafluorophosphate (LiPF 6 ) as a supporting salt in a mixed solvent of EC, DMC, and EMC at a concentration of about 1 mol / liter was injected, and then the container was sealed did. Thereafter, an initial charge / discharge treatment (conditioning) was performed by a conventional method to obtain a lithium ion battery having a theoretical capacity of 5 Ah.

上記で得られたリチウムイオン電池に対し、150A(放電時間率30Cに相当する。)で10秒間のハイレート放電を含む充放電パターンを付与し、これによる各部の温度変化を上記熱電対による検出値から把握した。より具体的には、室温(約25℃)環境下において以下の(1)〜(4)の充放電パターンを付与し、その前後で各部の温度を比較することにより、上記充放電パターンによる各部の温度上昇幅を求めた。   A charge / discharge pattern including a high rate discharge for 10 seconds at 150 A (corresponding to a discharge time rate of 30 C) is applied to the lithium ion battery obtained above, and the temperature change of each part due to this is detected by the thermocouple. Grasped from. More specifically, by applying the following charge / discharge patterns (1) to (4) in a room temperature (about 25 ° C.) environment, and comparing the temperature of each part before and after that, each part by the above charge / discharge pattern The temperature rise width of was determined.

[充放電パターン]
(1)150Aで10秒間放電。
(2)5秒間休止。
(3)40Aで120秒間CC−CV充電(40Aで3.72Vまで定電流充電後、合計充電時間が120秒となるまで定電圧充電)。
(4)5秒間休止。
[Charge / discharge pattern]
(1) Discharge at 150 A for 10 seconds.
(2) Pause for 5 seconds.
(3) CC-CV charge at 40 A for 120 seconds (constant voltage charge until constant charge is 120 seconds after constant current charge to 3.72 V at 40 A).
(4) Pause for 5 seconds.

その結果、上記充放電パターン(1サイクル)の前後で、電池の両端部における温度上昇幅は1.2℃であったのに対し、中央部の温度上昇幅は2.2℃であった。すなわち、上記のようなハイレート(急速)充放電パターンでは、わずか10秒間のハイレート放電を1回行っただけでも電池の両端部と中央部との間に明確な温度差が生じた。さらに充放電パターンを継続すると、相対的に高温の箇所に電池反応(電流)が集中し、これにより上記高温の箇所においてより多くの熱が発生することにより、いったん生じた温度差がますます拡大することとなる。例えば、上記充放電パターンを連続して繰り返した後における中央部と両端部との温度差は7℃に拡大していた。   As a result, before and after the charge / discharge pattern (one cycle), the temperature rise at both ends of the battery was 1.2 ° C., whereas the temperature rise at the center was 2.2 ° C. That is, in the high-rate (rapid) charge / discharge pattern as described above, a clear temperature difference was generated between the both ends and the center of the battery even after only one high-rate discharge for 10 seconds. If the charge / discharge pattern continues further, the battery reaction (current) concentrates on the relatively hot spot, and as a result, more heat is generated at the hot spot, increasing the temperature difference once generated. Will be. For example, the temperature difference between the central portion and both end portions after the charge / discharge pattern was continuously repeated was increased to 7 ° C.

ハイレート充放電によって上記のような温度分布を生じるリチウムイオン電池(電極体の捲回内周内側に放熱部材を有しない。)の軸方向の温度分布イメージを、図7中に二点鎖線で示す。図中の一点鎖線は、電極体80の捲回内周の内側に金属板を配置した場合(例えば、上記実施形態において放熱プレート70を構成する金属板72を単独で放熱部材として使用した場合)における温度分布イメージを模式的に示している。このように電極体の捲回内周内側に配置する放熱部材として単なる金属板(電極体から放熱部材への熱の伝わりやすさ(ひいては冷却効率)が軸方向の各部で均等である。)を配置すると、該放熱部材を有しない電池に比べて軸方向の各部における冷却効率はそれぞれ上昇するものの、依然として電池20の両端部と中央部との間に温度差が生じる。   A temperature distribution image in the axial direction of a lithium ion battery (having no heat radiating member inside the wound inner periphery of the electrode body) that generates the temperature distribution as described above by high-rate charge / discharge is shown by a two-dot chain line in FIG. . A one-dot chain line in the figure shows a case where a metal plate is arranged inside the wound inner periphery of the electrode body 80 (for example, when the metal plate 72 constituting the heat radiating plate 70 is used alone as a heat radiating member in the above embodiment). The temperature distribution image in is shown typically. As described above, a simple metal plate (the heat transferability from the electrode body to the heat radiating member (and hence the cooling efficiency) is equal in each part in the axial direction) as the heat radiating member disposed inside the wound inner periphery of the electrode body. When arranged, although the cooling efficiency in each part in the axial direction increases as compared with the battery not having the heat radiating member, a temperature difference still occurs between the both ends and the central part of the battery 20.

これに対して本実施形態の放熱プレート70によると、相対的に熱伝導率の高い金属材料からなる金属板72と、該金属材料よりも熱伝導率の低い樹脂材料からなる樹脂シート72,74との積層構造であって、且つ電極体80の軸方向中央部では両端部よりも金属板72の露出面積の割合が高くなるように構成されていることにより、図7中に実線で模式的に示すように、放熱部材を有しない構成(二点鎖線)に比べて中央部の温度を効率よく低下させつつ(図中の下向き矢印)、単なる金属板を用いた場合(一点鎖線)とは異なり中央部に比べて両端部が冷えすぎる事象が抑えられるので、中央部と両端部との間の温度差を効果的に緩和する(温度分布をなだらかにする)ことができる。   On the other hand, according to the heat dissipation plate 70 of the present embodiment, the metal plate 72 made of a metal material having a relatively high thermal conductivity, and the resin sheets 72 and 74 made of a resin material having a lower thermal conductivity than the metal material. 7, and the ratio of the exposed area of the metal plate 72 is higher at the axially central portion of the electrode body 80 than at both ends, and is schematically shown by a solid line in FIG. As shown in the figure, while using a simple metal plate (dashed line) while efficiently lowering the temperature of the central part (downward arrow in the figure) compared to a configuration without a heat dissipation member (dashed line) In contrast, since the phenomenon in which both ends are too cold compared to the central portion is suppressed, the temperature difference between the central portion and both end portions can be effectively relaxed (temperature distribution is made gentle).

このように電極体80の捲回内周の内側に放熱プレート70を配置することにより実現され得る他の一つの効果として、電極体80の形状維持性を高める効果が挙げられる。例えば、電極体80が内周側に潰れすぎることを防止することにより、電池性能をより安定化することができる。このように電極体80の形状維持性が向上することは、製造時における作業性の点からも有利である。また、上記構成の放熱プレート70により実現され得る他の一つの効果として、充放電に伴う電極体80の膨張・収縮を緩和するクッション材としての効果が挙げられる。すなわち、樹脂シート72,74は金属板72に比べてクッション性を有するため、電極体80の捲回内周の内側に単なる金属板72からなる放熱部材を配置する場合に比べて電極体80の膨張・収縮をよりよく緩和することができる。このことによって、電極体80内に保持されている電解液が上記膨張・収縮により電極体外に押し出される事象を緩和することができる。   As another effect that can be realized by arranging the heat radiation plate 70 inside the wound inner periphery of the electrode body 80 as described above, an effect of improving the shape maintaining property of the electrode body 80 can be cited. For example, the battery performance can be further stabilized by preventing the electrode body 80 from being crushed too much on the inner peripheral side. The improvement in the shape maintaining property of the electrode body 80 in this manner is advantageous from the viewpoint of workability during manufacturing. Another effect that can be realized by the heat radiating plate 70 having the above-described configuration is an effect as a cushion material that relaxes expansion / contraction of the electrode body 80 due to charge / discharge. That is, since the resin sheets 72 and 74 have cushioning properties as compared with the metal plate 72, the electrode sheet 80 has a more heat-dissipating member than the metal plate 72 disposed inside the wound inner periphery of the electrode body 80. Expansion and contraction can be alleviated better. As a result, it is possible to mitigate an event in which the electrolytic solution held in the electrode body 80 is pushed out of the electrode body due to the expansion and contraction.

なお、上記では高熱伝導部が金属材料(金属板72)からなり、低熱伝導部が樹脂材料(樹脂シート74,76)からなる放熱プレート70について説明したが、高熱伝導部および低熱伝導部の構成材料は金属材料と樹脂材料との組み合わせに限定されない。例えば、高熱伝導部と低熱伝導部との構成材料の組み合わせが、熱伝導率の異なる樹脂材料同士または金属材料同士であってもよい。あるいは、例えば低熱伝導部の構成材料としてポリプロピレン等の樹脂材料を用い、高熱伝導部の構成材料として該樹脂材料と金属との複合材料(例えば、金属粒子、金属繊維等が混入された樹脂材料)を用いてもよい。また、図3〜6では金属板72の表面形状を単純な平面状として示しているが、例えば、金属板72の表面のうち開口74A,76Aに対応する部分(開口74A,76Aを通して外部に露出する部分)に凸部が形成された構成としてもよい。このことによって電極体80の内周と金属板72とをよりよく接触させる(両者の密着性を向上させて電極体80の中央部の放熱性をより高める)ことができる。上記凸部の高さは、樹脂シート74,76の厚みと略同等の高さとすることが好ましい。かかる凸部を形成することは、金属板72と樹脂シート74,76との位置合わせを容易にするという観点からも有利である。   In the above description, the heat radiation plate 70 is described in which the high heat conduction portion is made of a metal material (metal plate 72) and the low heat conduction portion is made of a resin material (resin sheets 74 and 76). However, the configuration of the high heat conduction portion and the low heat conduction portion is described. The material is not limited to a combination of a metal material and a resin material. For example, the combination of the constituent materials of the high thermal conductivity portion and the low thermal conductivity portion may be resin materials or metal materials having different thermal conductivities. Alternatively, for example, a resin material such as polypropylene is used as a constituent material of the low heat conductive portion, and a composite material of the resin material and metal (for example, a resin material mixed with metal particles, metal fibers, etc.) as a constituent material of the high heat conductive portion. May be used. 3 to 6, the surface shape of the metal plate 72 is shown as a simple planar shape. For example, portions of the surface of the metal plate 72 corresponding to the openings 74A and 76A (exposed to the outside through the openings 74A and 76A). It is good also as a structure by which the convex part was formed in the part to carry out. As a result, the inner periphery of the electrode body 80 and the metal plate 72 can be brought into better contact with each other (the adhesiveness between the two is improved and the heat dissipation at the central portion of the electrode body 80 is further increased). It is preferable that the height of the convex portion is substantially equal to the thickness of the resin sheets 74 and 76. Forming such a convex portion is also advantageous from the viewpoint of facilitating alignment between the metal plate 72 and the resin sheets 74 and 76.

<実施形態2>
図8〜10を参照しつつ、円筒型の捲回型電極体を備えるリチウムイオン電池に本発明を適用した好適な一形態を説明する。
本実施形態に係るリチウムイオン電池120は、正負の電極シート182,184の間にセパレータシートを挟んで重ね合わせた積層シートを捲回してなる円筒形状の電極体180が、適当な電解液(実施形態1と同様の電解液等)とともに、該電極体180を収容し得る形状(ここでは円筒形状)の容器150に収容された構成を有する。図9に示されるように、電極体180の捲回中心部には放熱部材170が配置されている。容器150の上端面および下端面からは、正極シート182および負極シート184とそれぞれ電気的に接続する正極端子160および負極端子162がそれぞれ突出している。
<Embodiment 2>
A preferred embodiment in which the present invention is applied to a lithium ion battery having a cylindrical wound electrode body will be described with reference to FIGS.
In the lithium ion battery 120 according to the present embodiment, a cylindrical electrode body 180 formed by winding a laminated sheet in which a separator sheet is sandwiched between positive and negative electrode sheets 182 and 184 is a suitable electrolyte (practical solution). In addition to the electrolytic solution similar to the first embodiment, the electrode body 180 is accommodated in a container 150 having a shape (here, a cylindrical shape) that can accommodate the electrode body 180. As shown in FIG. 9, a heat radiating member 170 is disposed at the center of winding of the electrode body 180. A positive electrode terminal 160 and a negative electrode terminal 162 that are electrically connected to the positive electrode sheet 182 and the negative electrode sheet 184 respectively protrude from the upper end surface and the lower end surface of the container 150.

本実施形態における放熱部材170は、図9,10に示すように、大径部172A,176Aと小径部172B,176Bとが同軸に形成された段付円筒状の高熱伝導部材172,176を、それらの大径部172A,176Aの間に絶縁層175を挟んで同軸に接合した構成を有する。高熱伝導部材172,176の構成材質としては金属材料を、絶縁層175の構成材料としては樹脂材料を好ましく採用し得る。高熱伝導部材172,176の小径部172B,176Bのうち大径部172A,176Aに続く部分の外周は、管状の低熱伝導部材173,177で覆われている。低熱伝導部材173,177の構成材料としては樹脂材料を好ましく採用し得る。この低熱伝導部材173,177の外径は、高熱伝導部材172,176の大径部172A,176Aの外径と略同一である。この高熱伝導部材172,176は電極端子160,162としても利用される。すなわち、小径部172B,176Bの端部は容器150を貫通して外方に突出している。   As shown in FIGS. 9 and 10, the heat dissipation member 170 in the present embodiment includes stepped cylindrical high heat conductive members 172 and 176 in which the large diameter portions 172A and 176A and the small diameter portions 172B and 176B are formed coaxially. The large-diameter portions 172A and 176A have a configuration in which an insulating layer 175 is sandwiched between them and are coaxially joined. A metal material can be preferably used as the constituent material of the high thermal conductive members 172 and 176, and a resin material can be preferably used as the constituent material of the insulating layer 175. Outer circumferences of portions of the small diameter portions 172B and 176B of the high heat conductive members 172 and 176 that follow the large diameter portions 172A and 176A are covered with tubular low heat conductive members 173 and 177, respectively. As a constituent material of the low heat conductive members 173 and 177, a resin material can be preferably adopted. The outer diameters of the low heat conducting members 173 and 177 are substantially the same as the outer diameters of the large diameter portions 172A and 176A of the high heat conducting members 172 and 176. The high heat conductive members 172 and 176 are also used as electrode terminals 160 and 162. That is, end portions of the small diameter portions 172B and 176B penetrate the container 150 and protrude outward.

低熱伝導部材173,177およびその間に露出する大径部172A,176Aの周囲に上記積層シートを緊密に巻きつけることにより電極体180が形成されている。ここで、実施形態1と同様に、正極シート182、負極シート184とは幅方向に位置をややずらして重ね合わされている。これにより、電極体180の軸方向の両端には、正極シート182の幅方向の一端が捲回コア部分181から外方にはみ出した部分と、負極シート184の幅方向の一端が捲回コア部分181から外方にはみ出した部分とがそれぞれ形成されている。正極シート182のはみ出し部は、内径側に寄せ集められて、例えばアルミニウム製の高熱伝導部材172(正極端子160)の小径部172Bの外周に接合されている。同様に、負極シート184のはみ出し部は、内径側に寄せ集められて、例えば銅製の高熱伝導部材174(負極端子162)の小径部174Bの外周に接合されている。電極シート182,184と高熱伝導部材172,176との接合は、例えば溶接により行うことができる。   The electrode body 180 is formed by tightly winding the laminated sheet around the low heat conductive members 173 and 177 and the large diameter portions 172A and 176A exposed therebetween. Here, as in the first embodiment, the positive electrode sheet 182 and the negative electrode sheet 184 are overlapped with a slight shift in the width direction. Thus, at both ends in the axial direction of the electrode body 180, one end in the width direction of the positive electrode sheet 182 protrudes outward from the wound core portion 181 and one end in the width direction of the negative electrode sheet 184 is at the wound core portion. A portion that protrudes outward from 181 is formed. The protruding portion of the positive electrode sheet 182 is gathered toward the inner diameter side and joined to the outer periphery of the small diameter portion 172B of the high heat conductive member 172 (positive electrode terminal 160) made of, for example, aluminum. Similarly, the protruding portion of the negative electrode sheet 184 is gathered to the inner diameter side and joined to the outer periphery of the small diameter portion 174B of the copper high thermal conductivity member 174 (negative electrode terminal 162), for example. The joining of the electrode sheets 182 and 184 and the high thermal conductive members 172 and 176 can be performed by, for example, welding.

このような構成のリチウムイオン電池120によると、放熱部材170を利用して、電極体180の軸方向の中央部を両端部よりも高効率に放熱させことができる。すなわち、放熱部材170のうち電極体180の軸方向中央部かつ幅方向の中央部に配置される部分では高熱伝導部材172,176(大径部172A,176A)が外部に露出しているので、電極体180の熱を高熱伝導部材172,176へと効率よく伝えることができる。また、高熱伝導部材172,176は上記中央部から放熱部材170の軸方向の一端および他端までそれぞれ連続しているので、電極体180から受け取った熱を外部へと効果的に放散させることができる。一方、電極体180の軸方向両端部では、高熱伝導部材172,176(小径部172B,176B)の外周が低熱伝導部材173,177で覆われている(電極体180の内周と高熱伝導部材172,176とが低熱伝導部材173,177により隔てられている)ので、中央部に比べて電極体180の熱が高熱伝導部材172,176に伝わりにくい。すなわち、電極体180の軸方向両端部では中央部に比べて放熱が抑えられている。したがって、本実施形態の電池120によると、実施形態1に係る電池20と同様に、ハイレート使用時においても電極体180の軸方向中央部と両端部との温度差を効果的に解消または緩和することができる。   According to the lithium ion battery 120 having such a configuration, the heat dissipation member 170 can be used to dissipate heat at the central portion of the electrode body 180 in the axial direction more efficiently than both end portions. That is, since the high heat conductive members 172 and 176 (large diameter portions 172A and 176A) are exposed to the outside in the portion of the heat dissipating member 170 arranged in the center portion in the axial direction and the center portion in the width direction of the electrode body 180, The heat of the electrode body 180 can be efficiently transferred to the high heat conductive members 172 and 176. Further, since the high heat conductive members 172 and 176 are continuous from the central portion to one end and the other end in the axial direction of the heat radiating member 170, the heat received from the electrode body 180 can be effectively dissipated to the outside. it can. On the other hand, at both ends in the axial direction of the electrode body 180, the outer circumferences of the high heat conductive members 172, 176 (small diameter portions 172B, 176B) are covered with the low heat conductive members 173, 177 (the inner circumference of the electrode body 180 and the high heat conduction member). 172 and 176 are separated from each other by the low thermal conductive members 173 and 177), the heat of the electrode body 180 is less likely to be transmitted to the high thermal conductive members 172 and 176 compared to the central portion. In other words, heat dissipation is suppressed at both ends in the axial direction of the electrode body 180 as compared with the central portion. Therefore, according to the battery 120 of the present embodiment, similarly to the battery 20 according to the first embodiment, the temperature difference between the central portion in the axial direction of the electrode body 180 and both end portions is effectively eliminated or alleviated even when the high rate is used. be able to.

以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。例えば、電池の種類は上述したリチウムイオン電池に限られず、本発明は、電極体構成材料や電解液の組成が異なる種々の二次電池に適用可能である。   As mentioned above, although this invention was demonstrated in detail, the said embodiment is only an illustration and what changed and modified the above-mentioned specific example is included in the invention disclosed here. For example, the type of the battery is not limited to the above-described lithium ion battery, and the present invention can be applied to various secondary batteries having different electrode body constituent materials and electrolyte compositions.

本発明に係る電池は、特に自動車等の車両に搭載されるモータ(電動機)用電源として好適に使用し得る。したがって本発明は、図11に模式的に示すように、かかる電池20(複数の電池20を電気的に直列に接続してなる組電池の形態であり得る。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。   The battery according to the present invention can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Accordingly, as schematically shown in FIG. 11, the present invention is a vehicle (typically including a battery 20 (which may be in the form of an assembled battery formed by electrically connecting a plurality of batteries 20 in series)) as a power source. Is provided with an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle.

実施形態1に係る電池を示す斜視図である。1 is a perspective view showing a battery according to Embodiment 1. FIG. 実施形態1に係る電池の容器内に収容される部材を示す側面図である。3 is a side view showing members housed in a battery container according to Embodiment 1. FIG. 実施形態1に係る電池の放熱プレートを示す分解斜視図である。2 is an exploded perspective view showing a heat dissipation plate of the battery according to Embodiment 1. FIG. 実施形態1に係る電池の放熱プレートを示す斜視図である。4 is a perspective view showing a heat dissipation plate of the battery according to Embodiment 1. FIG. 図1のV−V線断面図である。It is the VV sectional view taken on the line of FIG. 図1のVI−VI線断面図である。It is the VI-VI sectional view taken on the line of FIG. 扁平な捲回型電極体を備える電池の捲回軸方向に対する温度分布イメージを模式的に示す説明図である。It is explanatory drawing which shows typically the temperature distribution image with respect to the winding axis direction of a battery provided with a flat wound type electrode body. 実施形態2に係る電池を示す斜視図である。6 is a perspective view showing a battery according to Embodiment 2. FIG. 実施形態2に係る電池の容器内に収容される部材を示す断面図である。6 is a cross-sectional view showing members housed in a battery container according to Embodiment 2. FIG. 実施形態2に係る電池の放熱部材を示す斜視図である。6 is a perspective view showing a heat radiating member of a battery according to Embodiment 2. FIG. 本発明に係る電池を備えた車両(自動車)を模式的に示す側面図である。It is a side view which shows typically the vehicle (automobile) provided with the battery which concerns on this invention.

符号の説明Explanation of symbols

1 自動車(車両)
20,120 リチウムイオン電池
60,160 正極端子
62,162 負極端子
70 放熱プレート(放熱部材)
72 金属板(高熱伝導部材、高熱伝導部)
74,76 樹脂シート(低熱伝導部材、低熱伝導部)
74A,76A 開口
80,180 捲回型電極体(電極体)
82,182 正極シート
84,184 負極シート
170 放熱部材
172 高熱伝導部材(高熱伝導部、正極端子)
173 低熱伝導部材(低熱伝導部)
175 絶縁層
176 高熱伝導部材(高熱伝導部、負極端子)
177 低熱伝導部材(低熱伝導部)
1 Automobile (vehicle)
20, 120 Lithium ion battery 60, 160 Positive terminal 62, 162 Negative terminal 70 Heat dissipation plate (heat dissipation member)
72 Metal plate (high heat conduction member, high heat conduction part)
74,76 Resin sheet (low heat conduction member, low heat conduction part)
74A, 76A Opening 80, 180 Winding type electrode body (electrode body)
82,182 Positive electrode sheet 84,184 Negative electrode sheet 170 Heat dissipation member 172 High thermal conductivity member (high thermal conductivity part, positive electrode terminal)
173 Low heat conduction member (low heat conduction part)
175 Insulating layer 176 High thermal conductivity member (high thermal conductivity part, negative electrode terminal)
177 Low heat conduction member (low heat conduction part)

Claims (7)

正負の電極シートが捲回された電極体と、
前記電極体の捲回内周の内側に配置された放熱部材とを備え、
前記放熱部材は、前記電極体の捲回軸方向の中央部を両端部よりも効率よく放熱させるように構成されている、二次電池。
An electrode body in which positive and negative electrode sheets are wound;
A heat dissipating member disposed inside the wound inner periphery of the electrode body,
The said heat radiating member is a secondary battery comprised so that the center part of the winding axis direction of the said electrode body may be thermally radiated more efficiently than both ends.
前記放熱部材は、相対的に熱伝導率の高い材料からなる高熱伝導部と、該高熱伝導部よりも熱伝導率の低い材料からなる低熱伝導部とを備え、
前記高熱伝導部は、前記放熱部材のうち前記電極体の軸方向中央部に配置される部分から該軸方向における前記放熱部材の少なくともいずれか一方の端まで連続しており、
前記低熱伝導部は、前記放熱部材のうち前記電極体の内周に対向する外表面の一部では前記高熱伝導部を覆い、他の一部では前記高熱伝導部を露出させるように設けられている、請求項1に記載の電池。
The heat dissipating member includes a high heat conduction portion made of a material having a relatively high thermal conductivity, and a low heat conduction portion made of a material having a lower heat conductivity than the high heat conduction portion,
The high thermal conductivity portion is continuous from a portion of the heat radiating member disposed at a central portion in the axial direction of the electrode body to at least one end of the heat radiating member in the axial direction,
The low heat conduction part is provided so as to cover the high heat conduction part at a part of the outer surface of the heat dissipation member facing the inner periphery of the electrode body and to expose the high heat conduction part at the other part. The battery according to claim 1.
前記放熱部材は、該放熱部材のうち前記電極体の軸方向の中央部に配置される部分では両端部に配置される部分よりも前記高熱伝導部が露出する面積の割合が高くなるように構成されている、請求項2に記載の電池。   The heat dissipating member is configured such that the portion of the heat dissipating member that is disposed in the central portion of the electrode body in the axial direction has a higher area ratio at which the high heat conducting portion is exposed than the portions that are disposed at both ends. The battery according to claim 2. 前記電極体として、前記電極シートが扁平に捲回された扁平型電極体を備える、請求項2または3に記載の電池。   The battery according to claim 2 or 3, comprising a flat electrode body in which the electrode sheet is wound flatly as the electrode body. 前記放熱部材は、前記高熱伝導部とその両側に配置された前記低熱伝導部とが前記扁平型電極体の厚み方向に積層された構成を有する、請求項4に記載の電池。   5. The battery according to claim 4, wherein the heat dissipation member has a configuration in which the high heat conductive portion and the low heat conductive portions disposed on both sides thereof are stacked in a thickness direction of the flat electrode body. 前記電池はリチウムイオン電池である、請求項1から5のいずれか一項に記載の電池。   The battery according to any one of claims 1 to 5, wherein the battery is a lithium ion battery. 請求項1から6のいずれか一項に記載の電池を備える車両。   A vehicle comprising the battery according to any one of claims 1 to 6.
JP2008218477A 2008-08-27 2008-08-27 Secondary battery Withdrawn JP2010055887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218477A JP2010055887A (en) 2008-08-27 2008-08-27 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218477A JP2010055887A (en) 2008-08-27 2008-08-27 Secondary battery

Publications (1)

Publication Number Publication Date
JP2010055887A true JP2010055887A (en) 2010-03-11

Family

ID=42071586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218477A Withdrawn JP2010055887A (en) 2008-08-27 2008-08-27 Secondary battery

Country Status (1)

Country Link
JP (1) JP2010055887A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111661A1 (en) * 2010-03-12 2011-09-15 株式会社Gsユアサ Battery
JP2011192476A (en) * 2010-03-12 2011-09-29 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
WO2011118032A1 (en) * 2010-03-26 2011-09-29 トヨタ自動車株式会社 Lithium ion secondary battery, vehicle, and device equipped with battery
WO2012153752A1 (en) * 2011-05-10 2012-11-15 新神戸電機株式会社 Wound secondary battery
JP2013041741A (en) * 2011-08-15 2013-02-28 Toyota Industries Corp Secondary battery
JP2014063762A (en) * 2011-01-21 2014-04-10 Mitsubishi Motors Corp Secondary battery, and battery pack
JP2015173080A (en) * 2014-03-12 2015-10-01 株式会社豊田自動織機 Power storage device and method for manufacturing power storage device
WO2016174992A1 (en) * 2015-04-28 2016-11-03 日立オートモティブシステムズ株式会社 Secondary battery
JP2018206628A (en) * 2017-06-06 2018-12-27 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5737631B2 (en) * 2010-03-12 2015-06-17 株式会社Gsユアサ battery
JP2011192476A (en) * 2010-03-12 2011-09-29 Hitachi Vehicle Energy Ltd Lithium ion secondary battery
KR101862232B1 (en) * 2010-03-12 2018-05-29 가부시키가이샤 지에스 유아사 battery
US20120328924A1 (en) * 2010-03-12 2012-12-27 Gs Yuasa International Ltd. Battery
CN102859776A (en) * 2010-03-12 2013-01-02 株式会社杰士汤浅国际 Battery
JPWO2011111661A1 (en) * 2010-03-12 2013-06-27 株式会社Gsユアサ battery
WO2011111661A1 (en) * 2010-03-12 2011-09-15 株式会社Gsユアサ Battery
TWI458159B (en) * 2010-03-12 2014-10-21 Gs Yuasa Int Ltd battery
WO2011118032A1 (en) * 2010-03-26 2011-09-29 トヨタ自動車株式会社 Lithium ion secondary battery, vehicle, and device equipped with battery
US9293785B2 (en) 2010-03-26 2016-03-22 Toyota Jidosha Kabushiki Kaisha Lithium ion secondary battery, vehicle, and battery mounting device
JP5246268B2 (en) * 2010-03-26 2013-07-24 トヨタ自動車株式会社 Lithium ion secondary battery, vehicle and battery-equipped equipment
KR101328354B1 (en) 2010-03-26 2013-11-11 도요타지도샤가부시키가이샤 Lithium ion secondary battery, vehicle, and device equipped with battery
JP2014063762A (en) * 2011-01-21 2014-04-10 Mitsubishi Motors Corp Secondary battery, and battery pack
JP5962653B2 (en) * 2011-05-10 2016-08-03 日立化成株式会社 Winding type secondary battery
WO2012153752A1 (en) * 2011-05-10 2012-11-15 新神戸電機株式会社 Wound secondary battery
JP2013041741A (en) * 2011-08-15 2013-02-28 Toyota Industries Corp Secondary battery
JP2015173080A (en) * 2014-03-12 2015-10-01 株式会社豊田自動織機 Power storage device and method for manufacturing power storage device
WO2016174992A1 (en) * 2015-04-28 2016-11-03 日立オートモティブシステムズ株式会社 Secondary battery
JPWO2016174992A1 (en) * 2015-04-28 2017-12-28 日立オートモティブシステムズ株式会社 Secondary battery
JP2018206628A (en) * 2017-06-06 2018-12-27 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP6250567B2 (en) Sealed battery
JP5120631B2 (en) Battery pack and power supply system
JP2010055887A (en) Secondary battery
JP6198844B2 (en) Assembled battery
JP5344235B2 (en) Non-aqueous secondary battery
JP3799463B2 (en) Battery module
JP6086240B2 (en) Non-aqueous electrolyte battery and manufacturing method thereof
JP7069612B2 (en) Manufacturing method of laminated electrode body, power storage element and laminated electrode body
JP2008078008A (en) Battery pack and its manufacturing method
JP2004103258A (en) Battery pack
US20120301777A1 (en) Secondary battery
JP2001143762A (en) Cylindrical lithium ion battery
JP2006324143A (en) Secondary battery
JP2008282648A (en) Battery pack
JP5989405B2 (en) Power supply
JP2010092662A (en) Secondary battery, battery pack of the secondary battery, and vehicle using them
JP5704414B2 (en) Non-aqueous secondary battery
JP3283805B2 (en) Lithium secondary battery
JP5232751B2 (en) Lithium ion secondary battery
JPH10340740A (en) Lithium battery
JP5909371B2 (en) Lithium ion secondary battery
WO2013065500A1 (en) Cylindrical rolled-type battery
JP2017142896A (en) Secondary battery
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
KR20140012096A (en) Lithium-ion battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101