JP2019212482A - Regeneration processing method for lithium ion secondary battery - Google Patents

Regeneration processing method for lithium ion secondary battery Download PDF

Info

Publication number
JP2019212482A
JP2019212482A JP2018107676A JP2018107676A JP2019212482A JP 2019212482 A JP2019212482 A JP 2019212482A JP 2018107676 A JP2018107676 A JP 2018107676A JP 2018107676 A JP2018107676 A JP 2018107676A JP 2019212482 A JP2019212482 A JP 2019212482A
Authority
JP
Japan
Prior art keywords
reaction resistance
secondary battery
lithium ion
ion secondary
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018107676A
Other languages
Japanese (ja)
Other versions
JP6944650B2 (en
Inventor
慎太郎 長野
Shintaro Nagano
慎太郎 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018107676A priority Critical patent/JP6944650B2/en
Publication of JP2019212482A publication Critical patent/JP2019212482A/en
Application granted granted Critical
Publication of JP6944650B2 publication Critical patent/JP6944650B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide an appropriate regeneration processing method for a lithium ion secondary battery.SOLUTION: A regeneration processing method for a lithium ion secondary battery includes a step S1 of obtaining a capacity deviation amount, a step S2 of obtaining reaction resistance by an AC impedance method, a step S3 of determining whether the reaction resistance obtained in the step S2 is greater than a threshold value, a step S4 of determining recovery operation to be unnecessary when it is determined that the reaction resistance is the threshold value or less, a step S5 of performing recovery work when it is determined that the reaction resistance is greater than the threshold value, a step S6 of obtaining reaction resistance by the AC impedance method after the recovery operation is performed in step S5, a step S7 of determining whether the reaction resistance obtained in Step S6 is greater than the threshold value, a step S8 of determining the recovery operation to be completed when it is determined that the reaction resistance is the threshold value or less.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用の再生処理方法に関する。   The present invention relates to a regeneration processing method for a lithium ion secondary battery.

特開2000−299137号公報では、二次電池の状態判定方法が開示されている。同公報では、所定の方法により二次電池の内部抵抗に関連する内部抵抗関連値を、事前に把握しておいた内部抵抗関連値と電池状態との対応関係に照らし合わせて二次電池の電池状態を判定する。内部抵抗関連値は、電池状態と密接な関係にある内部抵抗に関連する値であるため、それらの関係から電池状態を詳細に判定できる。また、内部抵抗関連値は所定の方法により迅速に求められる。一方、負極の劣化の度合いが低い場合には電解液の補充のみを行い、その劣化の度合いが高い場合には電解液に還元剤を添加して二次電池を再生する。この再生方法により、正極を劣化させることなく負極の性能を回復させることができる、とされている。   Japanese Patent Application Laid-Open No. 2000-299137 discloses a method for determining the state of a secondary battery. In this publication, the internal resistance related value related to the internal resistance of the secondary battery by a predetermined method is compared with the relation between the internal resistance related value and the battery state that has been grasped in advance. Determine the state. Since the internal resistance-related value is a value related to the internal resistance that is closely related to the battery state, the battery state can be determined in detail from the relationship. Further, the internal resistance related value can be quickly obtained by a predetermined method. On the other hand, when the degree of deterioration of the negative electrode is low, only replenishment of the electrolytic solution is performed, and when the degree of deterioration is high, a reducing agent is added to the electrolytic solution to regenerate the secondary battery. According to this regeneration method, the performance of the negative electrode can be recovered without deteriorating the positive electrode.

特開2000−299137号公報JP 2000-299137 A

ところで、特開2000−299137号公報は、主としてニッケル−水素電池を対象に考えられた再生処理方法である。リチウムイオン二次電池は、ニッケル−水素電池と劣化要因が異なる。ここでは、リチウムイオン二次電池に適した再生処理方法を提案する。   By the way, Japanese Patent Laid-Open No. 2000-299137 is a regeneration processing method conceived mainly for nickel-hydrogen batteries. Lithium ion secondary batteries differ from nickel-hydrogen batteries in deterioration factors. Here, a regeneration processing method suitable for a lithium ion secondary battery is proposed.

ここで提案されるリチウムイオン二次電池用の再生処理方法は、以下の工程を含んでいる。
第1工程:容量ずれ量を得る工程
第2工程:交流インピーダンス法によって反応抵抗を得る工程
第3工程:容量ずれ量と反応抵抗の閾値との関係が予め記録された制御マップに基づいて、第1工程で得られた容量ずれ量に対して反応抵抗の閾値を得て、第2工程で得られた反応抵抗が当該閾値よりも大きいか否かを判定する工程
第4工程:反応抵抗が閾値以下であると判定された場合には「回復作業不要」と処理される工程
第5工程:反応抵抗が閾値よりも大きいと判定された場合に、予め定められた回復作業を行う工程
第6工程:第5工程で回復作業が行われた後で、交流インピーダンス法によって反応抵抗を得る工程
第7工程:予め記録された制御マップに基づいて、第6工程で得られた反応抵抗が閾値よりも大きいか否かを判定する工程
第8工程:第7工程で反応抵抗が閾値以下であると判定された場合に「回復作業完了」とする工程
第9工程:第7工程で反応抵抗が閾値よりも大きいと判定された場合に、回復作業が行われた回数が予め定められた回数か否かを判定する工程
第10工程:第9工程で、回復作業が行われた回数が予め定められた回数未満である場合に、第5工程にフィードバックする工程
第11工程:第9工程で、回復作業が行われた回数が予め定められた回数である場合に、「回復不可」とする工程
The proposed recycling method for a lithium ion secondary battery includes the following steps.
First step: Step of obtaining capacity deviation amount Second step: Step of obtaining reaction resistance by AC impedance method Third step: Based on a control map in which the relationship between the capacity deviation amount and the threshold value of reaction resistance is recorded in advance. A step of obtaining a threshold value of the reaction resistance with respect to the amount of capacity deviation obtained in one step and determining whether or not the reaction resistance obtained in the second step is larger than the threshold value. Fourth step: Reaction resistance is a threshold value Step 5 in which “recovery work is not required” is processed when it is determined that the following is true: Step 6 in which a predetermined recovery work is performed when it is determined that the reaction resistance is greater than the threshold value : Step of obtaining reaction resistance by the AC impedance method after the recovery operation is performed in the fifth step. Step 7: Based on the control map recorded in advance, the reaction resistance obtained in the sixth step is lower than the threshold value. Work to judge whether it is large Eighth step: A step of “recovery work completion” when the reaction resistance is determined to be equal to or less than the threshold value in the seventh step Ninth step: A case where the reaction resistance is determined to be larger than the threshold value in the seventh step A step of determining whether or not the number of times the recovery operation has been performed is a predetermined number of times. Tenth step: In the ninth step, if the number of times the recovery operation has been performed is less than a predetermined number of times, Step 11 that feeds back to step 5 Step 11: Step 9 for “recovery impossible” when the number of times recovery work has been performed in step 9 is a predetermined number

かかるリチウムイオン二次電池の再生処理方法によれば、リチウムイオン二次電池の適切な再生が図られる。   According to the regeneration processing method for a lithium ion secondary battery, appropriate regeneration of the lithium ion secondary battery can be achieved.

図1は、本発明の一実施形態に係るリチウムイオン二次電池用の再生処理方法のフローチャートである。FIG. 1 is a flowchart of a regeneration processing method for a lithium ion secondary battery according to an embodiment of the present invention. 図2は、制御マップM1の例を示すデータテーブルである。FIG. 2 is a data table showing an example of the control map M1. 図3は、交流インピーダンス法で得られるグラフであり、容量ずれと反応抵抗との関係が示されている。FIG. 3 is a graph obtained by the AC impedance method, and shows the relationship between the capacity deviation and the reaction resistance. 図4は、交流インピーダンス法で得られるグラフである。FIG. 4 is a graph obtained by the AC impedance method.

以下、ここで提案されるリチウムイオン二次電池用の再生処理方法の一実施形態を説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。本発明は、特に言及されない限りにおいて、ここで説明される実施形態に限定されない。   Hereinafter, an embodiment of a regeneration processing method for a lithium ion secondary battery proposed here will be described. The embodiments described herein are, of course, not intended to limit the present invention in particular. The invention is not limited to the embodiments described herein unless specifically stated.

図1は、本発明の一実施形態に係るリチウムイオン二次電池用の再生処理方法のフローチャートである。
ここで提案されるリチウムイオン二次電池用の再生処理方法は、概ね以下の第1工程(S1)〜第11工程(S11)で構成されている。
FIG. 1 is a flowchart of a regeneration processing method for a lithium ion secondary battery according to an embodiment of the present invention.
The proposed regeneration method for a lithium ion secondary battery is generally composed of the following first step (S1) to eleventh step (S11).

第1工程(S1)は、容量ずれ量z1を得る工程である。
リチウムイオン二次電池が劣化すると、劣化前に比べて負極単極の電位が、正極単極の電位に対してずれたような挙動を示す。ここで、容量ずれ量z1は、リチウムイオン二次電池の負極単極の劣化の程度を示す値である。ここでリチウムイオン二次電池の負極単極の劣化は、例えば、負極に形成された被膜が、リチウムイオン二次電池が使用される中での何らかのストレスによって剥がれることに起因する。負極に形成された被膜が剥がれる事象は、例えば、充電時に生じる負極活物質粒子の膨張と放電時に生じる負極活物質粒子の収縮に起因する。負極に形成された被膜が剥がれると、負極活物質層内でのLiイオンの反応経路が物理的に遮断され、負極活物質層内でのLiイオンの拡散抵抗が上昇する。
The first step (S1) is a step of obtaining the capacity deviation amount z1.
When the lithium ion secondary battery deteriorates, the potential of the negative electrode single electrode deviates from that of the positive electrode single electrode compared to before the deterioration. Here, the capacity shift amount z1 is a value indicating the degree of deterioration of the negative electrode single electrode of the lithium ion secondary battery. Here, the deterioration of the negative electrode single electrode of the lithium ion secondary battery is caused by, for example, the film formed on the negative electrode being peeled off due to some stress during the use of the lithium ion secondary battery. The phenomenon that the film formed on the negative electrode is peeled off is caused by, for example, expansion of the negative electrode active material particles generated during charging and contraction of the negative electrode active material particles generated during discharging. When the film formed on the negative electrode is peeled off, the Li ion reaction path in the negative electrode active material layer is physically blocked, and the diffusion resistance of Li ions in the negative electrode active material layer increases.

容量ずれ量z1を測定する方法は、リチウムイオン二次電池の負極単極の劣化の程度を評価しうる方法であればよい。なお、ここで提案される再生処理方法では、再生しようとするリチウムイオン二次電池の性能が、主として反応抵抗である。このため、容量ずれ量を測定する方法には、抵抗によらない評価方法を採用するとよい。   The method for measuring the capacity shift amount z1 may be any method that can evaluate the degree of deterioration of the negative electrode single electrode of the lithium ion secondary battery. In the regeneration processing method proposed here, the performance of the lithium ion secondary battery to be regenerated is mainly the reaction resistance. For this reason, as a method for measuring the capacitance deviation amount, an evaluation method that does not depend on resistance may be employed.

第2工程(S2)は、交流インピーダンス法によって反応抵抗y1を得る工程である。
交流インピーダンス法によって反応抵抗y1を得る方法には、公知の種々の方法が採用されうる。反応抵抗は、例えば、交流インピーダンスにおいて周波数範囲10Hz〜10−1Hzを測定し、得られた円弧の径から算出される。例えば、電動車両において電動駆動電源として車載されるリチウムイオン二次電池では、車両制御における通常使用範囲(温度、通電履歴に異常がない範囲)内では、容量ずれと電池(正・負極間)の反応抵抗には相関があるとされる。このため、正・負極間で、上記周波数範囲での交流インピーダンス測定によって測定された値が採用されうる。なお、通常使用範囲外で使用された場合には、負極の劣化に対応する抵抗を、劣化要因に応じて分ける必要がある。これには、例えば、参照極をセル内に設置して負極の反応抵抗を測定したり、等価回路モデルから負極の反応抵抗を算出したりする方法が提案されている(例えば、特開2009−97878号公報や特開2011−247841号公報など)。このように、反応抵抗y1は、適切な方法で取得されうる。
The second step (S2) is a step of obtaining reaction resistance y1 by the AC impedance method.
Various known methods can be adopted as a method of obtaining the reaction resistance y1 by the AC impedance method. For example, the reaction resistance is calculated from the diameter of an arc obtained by measuring a frequency range of 10 5 Hz to 10 −1 Hz in an alternating current impedance. For example, in a lithium ion secondary battery mounted as an electric drive power source in an electric vehicle, the capacity deviation and the battery (between the positive and negative electrodes) are within the normal use range (range in which there is no abnormality in temperature and energization history) in vehicle control There is a correlation between reaction resistance. For this reason, the value measured by the alternating current impedance measurement in the said frequency range between positive and negative electrodes can be employ | adopted. When used outside the normal use range, it is necessary to divide the resistance corresponding to the deterioration of the negative electrode according to the deterioration factor. For this, for example, a method of measuring the reaction resistance of the negative electrode by installing a reference electrode in the cell or calculating the reaction resistance of the negative electrode from an equivalent circuit model has been proposed (for example, Japanese Patent Application Laid-Open No. 2009-2009). No. 97878 and JP 2011-247841 A). Thus, the reaction resistance y1 can be obtained by an appropriate method.

第3工程(S3)は、第2工程(S2)で得られた反応抵抗が閾値f1よりも大きいか否かを判定する工程である。ここで、容量ずれ量z1と反応抵抗の閾値f1との関係が予め記録された制御マップM1が用意されているとよい。そして、制御マップに基づいて、第1工程で得られた容量ずれ量z1に対して反応抵抗の閾値f1が得られる。そして、第2工程(s2)で得られた反応抵抗y1が当該閾値f1よりも大きいか否か(y1>f1?)が判定される。   The third step (S3) is a step of determining whether or not the reaction resistance obtained in the second step (S2) is larger than the threshold value f1. Here, it is preferable to prepare a control map M1 in which the relationship between the capacity deviation amount z1 and the threshold value f1 of the reaction resistance is recorded in advance. Then, based on the control map, a reaction resistance threshold f1 is obtained for the capacity deviation amount z1 obtained in the first step. Then, it is determined whether or not the reaction resistance y1 obtained in the second step (s2) is larger than the threshold f1 (y1> f1?).

図2は、制御マップM1の例を示すデータテーブルである。図3は、交流インピーダンス法で得られるグラフであり、容量ずれと反応抵抗との関係が示されている。
制御マップM1は、図2に示されているように、容量ずれ量z1と反応抵抗の閾値f1との関係が予め記録されているとよい。ここでは、図3に示されているように、試験用のリチウムイオン二次電池を用意し、予め試験により、交流インピーダンス法で容量ずれ量と反応抵抗との関係を得るとよい。図3に示されているように、容量ずれ量が大きくなるにつれて、交流インピーダンス法で得られる円弧状のグラフの直径で示される反応抵抗が大きくなる。そして、予め試験により得られる容量ずれ量と反応抵抗との関係を基に、図2に示されるような制御マップM1を得るとよい。制御マップM1は、SOC(State Of Charge)や温度などの条件毎に用意されるとよい。あるいは、SOC(State Of Charge)や温度などの条件毎に補正値が用意されていてもよい。
FIG. 2 is a data table showing an example of the control map M1. FIG. 3 is a graph obtained by the AC impedance method, and shows the relationship between the capacity deviation and the reaction resistance.
In the control map M1, as shown in FIG. 2, the relationship between the capacity deviation amount z1 and the reaction resistance threshold f1 may be recorded in advance. Here, as shown in FIG. 3, it is preferable to prepare a test lithium ion secondary battery and obtain the relationship between the capacity deviation and the reaction resistance by an AC impedance method in advance by a test. As shown in FIG. 3, the reaction resistance indicated by the diameter of the arc-shaped graph obtained by the AC impedance method increases as the amount of displacement increases. And it is good to obtain the control map M1 as shown in FIG. 2 based on the relationship between the capacity deviation amount and the reaction resistance obtained in advance by the test. The control map M1 may be prepared for each condition such as SOC (State Of Charge) and temperature. Alternatively, a correction value may be prepared for each condition such as SOC (State Of Charge) and temperature.

ここで、第3工程(S3)における容量ずれ量と反応抵抗と閾値との関係は、再生対象となるリチウムイオン二次電池の構成や、容量ずれ量の測定方法や、反応抵抗の測定方法に基づいて、予め試験を行うことなどによって定められるとよい。   Here, the relationship between the capacity deviation amount, the reaction resistance, and the threshold value in the third step (S3) depends on the configuration of the lithium ion secondary battery to be regenerated, the capacity deviation measurement method, and the reaction resistance measurement method. Based on this, it may be determined in advance by performing a test.

第4工程(S4)は、第3工程(S3)で(No)と判定された場合、つまり、反応抵抗y1が閾値f1以下(y1≦f1)であると判定された場合に「回復作業不要」とする工程である。つまり、このような場合には、リチウムイオン二次電池の抵抗がそれほど上昇しておらず、特段の回復作業は行われなくてよい。また、閾値f1は、リチウムイオン二次電池の抵抗がそれほど上昇しておらず、特段の回復作業は行われなくてよいと判断できる基準値として、予め試験を行うことなどによって検証して定められるとよい。ここで「回復作業不要」とされた場合には、リチウムイオン二次電池は、所定の回復作業を必要とせずに再利用されうる。なお、ここで再利用される用途は、電動車両の駆動用電源としての用途に限定されない。電動車両の駆動用電源としての用途に比べて、リチウムイオン二次電池の劣化が許容される用途に用いられてもよい。   When the fourth step (S4) is determined as (No) in the third step (S3), that is, when it is determined that the reaction resistance y1 is equal to or less than the threshold value f1 (y1 ≦ f1), “recovery work is not required. It is a process to make. That is, in such a case, the resistance of the lithium ion secondary battery has not increased so much, and no special recovery work has to be performed. Further, the threshold value f1 is determined by performing a test in advance as a reference value that can be determined that the resistance of the lithium ion secondary battery has not increased so much and that a special recovery operation need not be performed. Good. When it is determined that “recovery work is unnecessary”, the lithium ion secondary battery can be reused without requiring a predetermined recovery work. In addition, the use reused here is not limited to the use as a drive power source of an electric vehicle. It may be used for an application in which deterioration of the lithium ion secondary battery is allowed as compared with an application as a power source for driving an electric vehicle.

第5工程(S5)は、第3工程(S3)で(Yes)と判定された場合、つまり、反応抵抗y1が閾値f1よりも大きい(y1>f1)と判定された場合に、予め定められた回復作業を行う工程である。   The fifth step (S5) is determined in advance when it is determined (Yes) in the third step (S3), that is, when the reaction resistance y1 is determined to be larger than the threshold f1 (y1> f1). Recovery process.

図4は、交流インピーダンス法で得られるグラフであり、反応抵抗y1が閾値f1よりも大きい(y1>f1)と判定される場合が例示されている。図4において、A1で示されたグラフは、容量ずれ量が1%のときにおける、閾値f1で示された反応抵抗が得られる場合の交流インピーダンス法で得られるグラフである。グラフA1で反応抵抗は、グラフの円弧の直径A1aで示される。容量ずれ量が1%のときに得られる交流インピーダンス法で得られるグラフの円弧の直径が、グラフA1の円弧の直径より小さいときは、第3工程(S3)で(No)と判定され、第4工程(S4)で「回復作業不要」とされる。これに対して、図4のグラフA2で示されているように、容量ずれ量が1%のときに得られる交流インピーダンス法で得られるグラフの円弧の直径A2aが、グラフA1の円弧の直径A1aよりも大きいときは、第3工程(S3)で(Yes)と判定される。つまり、反応抵抗y1が閾値f1よりも大きい(y1>f1)と判定され、予め定められた回復作業を行われる。   FIG. 4 is a graph obtained by the AC impedance method, and illustrates a case where it is determined that the reaction resistance y1 is larger than the threshold f1 (y1> f1). In FIG. 4, the graph indicated by A <b> 1 is a graph obtained by the AC impedance method when the reaction resistance indicated by the threshold value f <b> 1 is obtained when the capacity deviation amount is 1%. In the graph A1, the reaction resistance is indicated by the diameter A1a of the arc of the graph. When the diameter of the arc of the graph obtained by the AC impedance method obtained when the capacity deviation is 1% is smaller than the diameter of the arc of the graph A1, it is determined as No in the third step (S3), In four steps (S4), “recovery work is not required”. On the other hand, as shown in the graph A2 of FIG. 4, the diameter A2a of the arc of the graph obtained by the AC impedance method obtained when the capacity deviation is 1% is the diameter A1a of the arc of the graph A1. If greater than (Yes), it is determined in the third step (S3). That is, it is determined that the reaction resistance y1 is larger than the threshold value f1 (y1> f1), and a predetermined recovery operation is performed.

つまり、このような場合には、リチウムイオン二次電池の抵抗が上昇していると判断して、予め定められた回復作業が行われるとよい。ここで行われる回復作業は、例えば、予め定められた低レートでの充放電でありうる。充放電の条件は、負極被膜が剥がれず、かつ、負極被膜が修復される程度に設定されるとよい。なお、負極被膜を均一に成長させるとの観点において、充放電レートは、なるべく低く設定されることが好ましい。例えば、充放電レートは、0.5C以下、より好ましくは0.3C以下、さらに好ましくは0.1C以下であるとよい。また、充電SOCの範囲に関しては、溶媒やLi塩や添加剤の分解電位などに基づいて被膜形成電位が存在する場合には、当該電位に電池電圧を調整して一定時間維持してもよい。   That is, in such a case, it is preferable to perform a predetermined recovery operation by determining that the resistance of the lithium ion secondary battery is increasing. The recovery work performed here can be, for example, charge / discharge at a predetermined low rate. The charging / discharging conditions may be set to such an extent that the negative electrode film is not peeled off and the negative electrode film is repaired. In view of uniformly growing the negative electrode film, the charge / discharge rate is preferably set as low as possible. For example, the charge / discharge rate may be 0.5 C or less, more preferably 0.3 C or less, and even more preferably 0.1 C or less. Moreover, regarding the range of charge SOC, when a film formation potential exists based on the decomposition potential of the solvent, Li salt, or additive, the battery voltage may be adjusted to the potential and maintained for a certain period of time.

このような充電や放電の条件や電池電圧の調整などの回復作業の条件は、予め試験を行うことによって見出されうる。充電や放電の条件が、適切に見出されることによって、負極被膜が剥がれた部位に新たな被膜が形成され、負極単極の反応抵抗が低くなる。これによりリチウムイオン二次電池の反応抵抗が低くなる。   Such conditions for charging and discharging and conditions for recovery work such as adjustment of battery voltage can be found by conducting a test in advance. When the conditions for charging and discharging are found appropriately, a new film is formed at the site where the negative electrode film is peeled off, and the reaction resistance of the negative electrode single electrode is lowered. This reduces the reaction resistance of the lithium ion secondary battery.

また、リチウムイオン二次電池の電解液には、例えば、電位分解などにより被膜を形成するLi塩や有機溶媒や添加剤が含まれていることが望ましい。例えば、ここで例示されるリチウムイオン二次電池には、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)の混合溶媒(EC:EMC=30:70(体積比))に、Li塩としてLiPFが1.0モル/Lを含む電解液が用いられている。電解液は、ここで例示されるものに限定されない。 Moreover, it is desirable that the electrolyte solution of the lithium ion secondary battery contains, for example, a Li salt, an organic solvent, or an additive that forms a film by potential decomposition or the like. For example, the lithium ion secondary battery exemplified here includes LiPF 6 as a Li salt in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (EC: EMC = 30: 70 (volume ratio)). Is an electrolyte containing 1.0 mol / L. The electrolytic solution is not limited to those exemplified here.

第6工程(S6)は、第5工程(S5)で回復作業が行われた後で、交流インピーダンス法によって反応抵抗y2を得る工程である。   The sixth step (S6) is a step of obtaining the reaction resistance y2 by the AC impedance method after the recovery operation is performed in the fifth step (S5).

第7工程(S7)は、第6工程(S6)で得られた反応抵抗y2が閾値f1よりも大きいか否か(y2>f1?)を判定する工程である。つまり、ここでは、第5工程(S5)で回復作業が行われた後で得られる反応抵抗y2が、第1工程(S1)で得られた容量ずれ量z1に対して得られる反応抵抗の閾値f1よりも大きいか否かが判定される。   The seventh step (S7) is a step of determining whether or not the reaction resistance y2 obtained in the sixth step (S6) is larger than the threshold value f1 (y2> f1?). That is, here, the reaction resistance y2 obtained after the recovery operation is performed in the fifth step (S5) is the threshold value of the reaction resistance obtained with respect to the capacity deviation amount z1 obtained in the first step (S1). It is determined whether or not it is larger than f1.

第8工程(S8)は、第7工程(S7)で(No)と判定された場合、つまり、第6工程(S6)で得られた反応抵抗y2が閾値f1以下(y2≦f1)であると判定された場合に「回復作業終了」とする工程である。「回復作業終了」とする処理では、例えば、リチウムイオン二次電池が、再利用されるとよい。なお、ここで再利用される用途は、電動車両の駆動用電源としての用途に限定されない。電動車両の駆動用電源としての用途に比べて、リチウムイオン二次電池の劣化が許容される用途に用いられてもよい。   In the eighth step (S8), when it is determined as No in the seventh step (S7), that is, the reaction resistance y2 obtained in the sixth step (S6) is equal to or less than the threshold value f1 (y2 ≦ f1). This is a step of “recovery work end” when it is determined. In the process of “end of recovery work”, for example, a lithium ion secondary battery may be reused. In addition, the use reused here is not limited to the use as a drive power source of an electric vehicle. It may be used for an application where deterioration of the lithium ion secondary battery is allowed as compared with an application as a power source for driving an electric vehicle.

第9工程(S9)は、第5工程(S5)の回復作業が行われた回数(n)が予め定められた回数(N1)か否か(n=N1)を判定する工程である。第9工程(S9)の判定は、第7工程(S7)で(Yes)と判定された場合、つまり、第6工程(S6)で得られた反応抵抗y2が閾値f1よりも大きい(y2>f1)と判定された場合に実施される。ここで、予め定められた回数(N1)は、回復作業が行われる回数である。つまり、回復作業が何度か行われることによって、リチウムイオン二次電池が回復される場合がある。しかし、何度か繰り返してもリチウムイオン二次電池の回復が見込まれない場合には、それ以上、回復作業を繰り返すことは無駄である。このため、回復作業が行われる回数を予め定めておくとよい。回復作業が行われる回数は、例えば、効率化や低コスト化の観点で5回、3回などと設定されているとよい。   The ninth step (S9) is a step of determining whether or not the number (n) of the recovery operations in the fifth step (S5) is a predetermined number (N1) (n = N1). In the determination of the ninth step (S9), when it is determined as (Yes) in the seventh step (S7), that is, the reaction resistance y2 obtained in the sixth step (S6) is larger than the threshold f1 (y2> This is performed when it is determined as f1). Here, the predetermined number of times (N1) is the number of times the recovery operation is performed. That is, the lithium ion secondary battery may be recovered by performing the recovery operation several times. However, if the recovery of the lithium ion secondary battery is not expected even after repeated several times, it is useless to repeat the recovery work. For this reason, the number of times the recovery operation is performed may be determined in advance. The number of times the recovery operation is performed may be set to 5 times, 3 times, etc. from the viewpoint of efficiency and cost reduction.

第9工程で設定される回数(N1)は、例えば、回復作業が繰り返されることで回復が見込める合理的な回数を、予め試験を行うことによって見出して設定するとよい。また、回復作業が行われた回数(n)は、回復作業を実施する第5工程(S5)の後で、当該リチウムイオン二次電池について回復作業が行われた回数(n)が更新されるように設定されているとよい。リチウムイオン二次電池について回復作業が行われた回数(n)は、この再生処理方法がソフトウェアによって管理される場合には、ソフトウェア上の処理において記録されるように構成されていてもよい。また、リチウムイオン二次電池について回復作業が行われた回数(n)は、人為的に記録されるように構成されていてもよい。   The number of times (N1) set in the ninth step may be set, for example, by finding in advance a reasonable number of times that recovery can be expected by repeating the recovery operation. In addition, the number (n) of the recovery work performed is updated after the fifth step (S5) for performing the recovery work (n). It is good that it is set as follows. The number (n) of times that the recovery operation has been performed on the lithium ion secondary battery may be configured to be recorded in the processing on the software when this reproduction processing method is managed by software. Further, the number (n) of times the recovery operation is performed on the lithium ion secondary battery may be configured to be recorded artificially.

第10工程(S10)は、第9工程(S9)で、回復作業が行われた回数(n)が予め定められた回数未満である場合(n<N1)に、第5工程(S5)にフィードバックする工程である。この場合、回復作業がさらに繰り返されることによって、リチウムイオン二次電池の再生が見込まれるため、回復作業を実施する第5工程(S5)にフィードバックするとよい。   The tenth step (S10) is the ninth step (S9), and when the number (n) of recovery operations performed is less than a predetermined number (n <N1), the fifth step (S5) is performed. This is a feedback process. In this case, since the recovery of the lithium ion secondary battery is expected by further repeating the recovery operation, it is preferable to feed back to the fifth step (S5) for performing the recovery operation.

第11工程(S11)は、第9工程(S9)で、回復作業が行われた回数(n)が予め定められた回数である場合(n=N1)に、「回復不可」とする工程である。つまり、この場合、回復作業が所定の回数、既に繰り返されており、リチウムイオン二次電池の予め定められた性能以上に回復が見込めないと判断される。「回復不可」とする処理では、例えば、リチウムイオン二次電池は、リサイクルや他の用途に用いるために回収されるなど、所定の処理が施されるとよい。   The eleventh step (S11) is a step for setting “unrecoverable” when the number (n) of recovery operations performed in the ninth step (S9) is a predetermined number (n = N1). is there. That is, in this case, it is determined that the recovery operation has already been repeated a predetermined number of times and recovery cannot be expected beyond the predetermined performance of the lithium ion secondary battery. In the process of “unrecoverable”, for example, the lithium ion secondary battery may be subjected to a predetermined process such as being collected for recycling or other uses.

以上、ここで提案されるリチウムイオン二次電池用の再生処理方法について、種々説明した。特に言及されない限りにおいて、ここで挙げられたリチウムイオン二次電池用の再生処理方法の実施形態などは、本発明を限定しない。   Heretofore, various methods for regenerating the lithium ion secondary battery proposed here have been described. Unless otherwise stated, the embodiment of the regeneration processing method for the lithium ion secondary battery mentioned here does not limit the present invention.

Claims (1)

容量ずれ量を得る第1工程と、
交流インピーダンス法によって反応抵抗を得る第2工程と、
前記容量ずれ量と前記反応抵抗の閾値との関係が予め記録された制御マップに基づいて、前記第1工程で得られた容量ずれ量に対して反応抵抗の閾値を得て、第2工程で得られた反応抵抗が当該閾値よりも大きいか否かを判定する第3工程と、
前記反応抵抗が前記閾値以下であると判定された場合に「回復作業不要」と処理される第4工程と、
前記反応抵抗が前記閾値よりも大きいと判定された場合に、予め定められた回復作業を行う第5工程と、
前記第5工程で前記回復作業が行われた後で、交流インピーダンス法によって反応抵抗を得る第6工程と、
前記予め記録された制御マップに基づいて、前記第6工程で得られた反応抵抗が前記閾値よりも大きいか否かを判定する第7工程と、
前記第7工程で、前記第6工程で得られた反応抵抗が前記閾値以下であると判定された場合に「回復作業完了」とする第8工程と、
前記第7工程で、前記第6工程で得られた反応抵抗が前記閾値よりも大きいと判定された場合に、前記回復作業が行われた回数が予め定められた回数か否かを判定する第9工程と、
前記第9工程で、前記回復作業が行われた回数が予め定められた回数未満である場合に、前記第5工程にフィードバックする第10工程と、
前記第9工程で、前記回復作業が行われた回数が予め定められた回数である場合に、「回復不可」とする第11工程と
を含む、リチウムイオン二次電池の再生処理方法。
A first step of obtaining a capacity deviation amount;
A second step of obtaining reaction resistance by an AC impedance method;
Based on a control map in which the relationship between the capacitance deviation amount and the reaction resistance threshold value is recorded in advance, a reaction resistance threshold value is obtained for the capacitance deviation amount obtained in the first step, and in the second step. A third step of determining whether or not the obtained reaction resistance is greater than the threshold;
A fourth step in which “recovery work unnecessary” is processed when it is determined that the reaction resistance is equal to or less than the threshold;
A fifth step of performing a predetermined recovery operation when it is determined that the reaction resistance is greater than the threshold;
After the recovery operation is performed in the fifth step, a sixth step of obtaining reaction resistance by an AC impedance method;
A seventh step of determining whether or not the reaction resistance obtained in the sixth step is greater than the threshold based on the pre-recorded control map;
In the seventh step, when it is determined that the reaction resistance obtained in the sixth step is equal to or less than the threshold value, the eighth step is set to “recovery work completed”;
In the seventh step, when it is determined that the reaction resistance obtained in the sixth step is greater than the threshold, it is determined whether or not the number of times the recovery operation has been performed is a predetermined number. 9 steps,
A tenth step of feeding back to the fifth step when the number of times the recovery operation has been performed is less than a predetermined number in the ninth step;
A regeneration process method for a lithium ion secondary battery, comprising: an eleventh step of “unrecoverable” when the number of times the recovery operation is performed in the ninth step is a predetermined number of times.
JP2018107676A 2018-06-05 2018-06-05 Regeneration processing method for lithium-ion secondary batteries Active JP6944650B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018107676A JP6944650B2 (en) 2018-06-05 2018-06-05 Regeneration processing method for lithium-ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018107676A JP6944650B2 (en) 2018-06-05 2018-06-05 Regeneration processing method for lithium-ion secondary batteries

Publications (2)

Publication Number Publication Date
JP2019212482A true JP2019212482A (en) 2019-12-12
JP6944650B2 JP6944650B2 (en) 2021-10-06

Family

ID=68845480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018107676A Active JP6944650B2 (en) 2018-06-05 2018-06-05 Regeneration processing method for lithium-ion secondary batteries

Country Status (1)

Country Link
JP (1) JP6944650B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299137A (en) * 1998-08-10 2000-10-24 Toyota Motor Corp Secondary battery state judging method, state judging device and secondary battery regenerating method
JP2011247841A (en) * 2010-05-31 2011-12-08 Toyota Motor Corp Method and device for measuring internal resistance of lithium ion battery
JP2013004256A (en) * 2011-06-15 2013-01-07 Aisan Ind Co Ltd Battery control method, and battery control system
JP2013088148A (en) * 2011-10-13 2013-05-13 Waseda Univ Battery system and battery evaluation method
JP2015025751A (en) * 2013-07-26 2015-02-05 株式会社Gsユアサ Deterioration state detector and deterioration state detection method for electricity storage element, electricity storage system and electric vehicle
JP2015152318A (en) * 2014-02-10 2015-08-24 株式会社豊田自動織機 state determination method
JP2017044568A (en) * 2015-08-26 2017-03-02 プライムアースEvエナジー株式会社 Battery state measurement method and battery state measurement device
US20170170500A1 (en) * 2015-12-09 2017-06-15 Hyundai Motor Company Method and system for diagnosing state of fuel cell stack
JP2018022650A (en) * 2016-08-05 2018-02-08 トヨタ自動車株式会社 Method for controlling secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000299137A (en) * 1998-08-10 2000-10-24 Toyota Motor Corp Secondary battery state judging method, state judging device and secondary battery regenerating method
US20010028238A1 (en) * 1998-08-10 2001-10-11 Kenji Nakamura Method and device for judging the condition of secondary batteries and method for regenerating secondary batteries
JP2011247841A (en) * 2010-05-31 2011-12-08 Toyota Motor Corp Method and device for measuring internal resistance of lithium ion battery
JP2013004256A (en) * 2011-06-15 2013-01-07 Aisan Ind Co Ltd Battery control method, and battery control system
JP2013088148A (en) * 2011-10-13 2013-05-13 Waseda Univ Battery system and battery evaluation method
JP2015025751A (en) * 2013-07-26 2015-02-05 株式会社Gsユアサ Deterioration state detector and deterioration state detection method for electricity storage element, electricity storage system and electric vehicle
JP2015152318A (en) * 2014-02-10 2015-08-24 株式会社豊田自動織機 state determination method
JP2017044568A (en) * 2015-08-26 2017-03-02 プライムアースEvエナジー株式会社 Battery state measurement method and battery state measurement device
US20170170500A1 (en) * 2015-12-09 2017-06-15 Hyundai Motor Company Method and system for diagnosing state of fuel cell stack
JP2018022650A (en) * 2016-08-05 2018-02-08 トヨタ自動車株式会社 Method for controlling secondary battery

Also Published As

Publication number Publication date
JP6944650B2 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
JP6498792B2 (en) Battery charge limit prediction method, battery quick charge method and apparatus using the same
JP4488426B2 (en) Storage device control device
JP5687584B2 (en) Lithium-ion battery condition measurement device
JP5743634B2 (en) Deterioration measuring device, secondary battery pack, deterioration measuring method, and program
EP3605127B1 (en) Device and method for estimating battery resistance
JP5050999B2 (en) Test method for battery and electrode
KR101783918B1 (en) Apparatus and Method for Estimating Resistance of Secondary Battery
JP2009070813A (en) Method for charging nonaqueous electrolyte secondary battery
CN106129508A (en) A kind of charging method and device
JP2010086901A (en) Deterioration diagnosing device and degradation diagnosing method of lithium secondary battery
JP2021163632A (en) Secondary battery deterioration estimation method, life estimation method and control device
JP6607167B2 (en) Inspection method for lithium ion secondary battery
JP4954791B2 (en) Voltage prediction method for power storage devices
JP2021082531A (en) Secondary battery capacity recovery method and manufacturing method
JP2019526886A (en) High temperature aging process of lithium ion battery
KR20150049528A (en) System for early checking a low voltage of a secondary battery and method thereof
JP2019509610A (en) Generation process of lithium-ion battery
JP6221728B2 (en) Degradation state detection device
KR20220052703A (en) Method, battery management system, charging apparatus for charging secondary battery using silicon based negative electrode
Danilov et al. Adaptive battery management systems for the new generation of electrical vehicles
JP2019032274A (en) Battery state estimation device and power supply device
JP6944650B2 (en) Regeneration processing method for lithium-ion secondary batteries
EP4228119A1 (en) Battery, electronic device and battery charging method
JP6647986B2 (en) Secondary battery deterioration determination device, secondary battery deterioration determination method, and secondary battery control device
JP2005251538A (en) Inspection method and device of secondary cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210825

R151 Written notification of patent or utility model registration

Ref document number: 6944650

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151