JP2019210198A5 - - Google Patents

Download PDF

Info

Publication number
JP2019210198A5
JP2019210198A5 JP2018110035A JP2018110035A JP2019210198A5 JP 2019210198 A5 JP2019210198 A5 JP 2019210198A5 JP 2018110035 A JP2018110035 A JP 2018110035A JP 2018110035 A JP2018110035 A JP 2018110035A JP 2019210198 A5 JP2019210198 A5 JP 2019210198A5
Authority
JP
Japan
Prior art keywords
thermal expansion
negative thermal
material according
expansion material
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018110035A
Other languages
English (en)
Other versions
JP7076134B2 (ja
JP2019210198A (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2018110035A priority Critical patent/JP7076134B2/ja
Priority claimed from JP2018110035A external-priority patent/JP7076134B2/ja
Priority to US16/433,269 priority patent/US20190375655A1/en
Publication of JP2019210198A publication Critical patent/JP2019210198A/ja
Publication of JP2019210198A5 publication Critical patent/JP2019210198A5/ja
Application granted granted Critical
Publication of JP7076134B2 publication Critical patent/JP7076134B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (7)

  1. 一般式(1)Cu2−x(RはGa、Feから選ばれる少なくとも1種の元素)で表され、線膨張係数が−10ppm/K以下である酸化物焼結体を含む負熱膨張材料。
  2. 前記一般式(1)におけるxは、0.1〜0.2であることを特徴とする請求項1に記載の負熱膨張材料。
  3. 一般式(2)Cu2−xMoで表され、線膨張係数が−10ppm/K以下である酸化物焼結体を含む負熱膨張材料。
  4. 前記一般式(2)におけるxは、0.1〜0.2であることを特徴とする請求項に記載の負熱膨張材料。
  5. 前記酸化物焼結体は、単斜晶のβ相であることを特徴とする請求項1乃至のいずれかに記載の負熱膨張材料。
  6. 100〜700Kの温度範囲において線膨張係数が−10ppm/K以下であることを特徴とする請求項1乃至のいずれか1項に記載の負熱膨張材料。
  7. 請求項1乃至のいずれか1項に記載の負熱膨張材料と、
    正の線膨張係数を有する正熱膨張材料と、
    を含む複合材料。
JP2018110035A 2018-06-08 2018-06-08 負熱膨張材料および複合材料 Active JP7076134B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018110035A JP7076134B2 (ja) 2018-06-08 2018-06-08 負熱膨張材料および複合材料
US16/433,269 US20190375655A1 (en) 2018-06-08 2019-06-06 Negative thermal expansion material and composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018110035A JP7076134B2 (ja) 2018-06-08 2018-06-08 負熱膨張材料および複合材料

Publications (3)

Publication Number Publication Date
JP2019210198A JP2019210198A (ja) 2019-12-12
JP2019210198A5 true JP2019210198A5 (ja) 2021-07-26
JP7076134B2 JP7076134B2 (ja) 2022-05-27

Family

ID=68765378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018110035A Active JP7076134B2 (ja) 2018-06-08 2018-06-08 負熱膨張材料および複合材料

Country Status (2)

Country Link
US (1) US20190375655A1 (ja)
JP (1) JP7076134B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383446B2 (ja) * 2019-10-16 2023-11-20 日本化学工業株式会社 バナジウム化合物の製造方法
US20230064423A1 (en) * 2020-02-13 2023-03-02 West Pharmaceutical Services, Inc. Containment and delivery systems for cryogenic storage
JP6883300B1 (ja) * 2020-03-04 2021-06-09 株式会社球体研究所 負熱膨張微粒子及びその製造方法
WO2022114004A1 (ja) 2020-11-30 2022-06-02 国立大学法人東海国立大学機構 負熱膨張材料、複合材料、負熱膨張材料の製造方法および部品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106145942B (zh) * 2016-07-11 2018-12-28 郑州大学 一种负热膨胀材料ZrMoV2O10及其制备方法
CN110229001A (zh) * 2019-06-13 2019-09-13 北京科技大学 一种可用于密封的负热膨胀材料的制备方法

Similar Documents

Publication Publication Date Title
JP2019210198A5 (ja)
JP6337689B2 (ja) 半導体磁器組成物およびptcサーミスタ
Kim et al. Piezoelectric and dielectric properties of Lead-Free (1-x)(Bi0. 5K0. 5) TiO3-x BiFeO3 ceramics
ATE526689T1 (de) Piezoelektrisches material
WO2006011590A1 (ja) 熱膨張抑制剤、ゼロ熱膨張材料、負の熱膨張材料、熱膨張抑制方法および熱膨張抑制剤の製造方法
Patel et al. Enhanced electrocaloric effect in Ba0. 85Ca0. 15Zr0. 1Ti0. 9–x Sn x O3 ferroelectric ceramics
EA200800644A1 (ru) Спечённое огнеупорное изделие, обладающее повышенной устойчивостью к температурному шоку
CN104310984B (zh) 一种热敏陶瓷材料及其制备方法
Chaisan et al. Two-stage sintering of barium titanate ceramic and resulting characteristics
JP2017122256A5 (ja)
Kambale et al. Effect of addition of V2O5 on the densification, dielectric and ferroelectric behavior of lead free potassium sodium niobate ceramics
Chandra et al. High temperature phase transition in (Ba0. 76Ca0. 24)(Zr0. 04Ti0. 96) O3 ceramic
Butnoi et al. Effects of processing parameter on phase transition and electrical properties of lead-free BNKT piezoelectric ceramics
Sung Roles of Li and Ta in Pb-free piezoelectric (Na, K) NbO3 ceramics
JP2009227477A5 (ja)
JP2006044970A5 (ja)
Chen et al. Piezoelectric properties of La and Nb co-modified Bi 4 Ti 3 O 12 high-temperature ceramics
Bao** et al. Effects of Mn and Pr Co-doped on microstructural and electrical properties of CaBi2Nb2O9 piezoceramics
Gou et al. Microstructure and electrical properties of (1-x)(K0. 46Na0. 54) NbO3-x (Bi0. 5Na0. 5)(Zr0. 85Ti0. 15) O3 lead-free piezoelectric ceramics
JP2008292402A (ja) 温感素子、温感素子の製造方法、一次相転移温度の調整方法
JP2004068073A5 (ja)
Tangsritrakul et al. Effect of thermal profile on a shift in phase transition temperature of Sb-doped KNN piezoceramic
Jeong et al. Enhanced PTCR Characteristics of 0.95 BaTiO3–0.05 (Bi0. 5Na0. 5) TiO3 ceramics fabricated by modified synthesis process
Gwangseop et al. The grain growth mechanisms for 0.8 (Bi, Na) TiO3-0.2 (Sr, Ti) O3 ceramics prepared using a two-step sintering process
KR960017890A (ko) 무입계형망간 산화물계 결정제, 그 제조방법 및 메모리스위칭형 자기저항소자