CN110229001A - 一种可用于密封的负热膨胀材料的制备方法 - Google Patents

一种可用于密封的负热膨胀材料的制备方法 Download PDF

Info

Publication number
CN110229001A
CN110229001A CN201910510688.0A CN201910510688A CN110229001A CN 110229001 A CN110229001 A CN 110229001A CN 201910510688 A CN201910510688 A CN 201910510688A CN 110229001 A CN110229001 A CN 110229001A
Authority
CN
China
Prior art keywords
thermal expansion
expansion
ground
hours
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910510688.0A
Other languages
English (en)
Inventor
陈骏
施耐克
庞雪鹭
张娅
邓金侠
于然波
邢献然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201910510688.0A priority Critical patent/CN110229001A/zh
Publication of CN110229001A publication Critical patent/CN110229001A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1037Intumescent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种可用于密封的负热膨胀材料及制备方法,属于功能材料领域。负热膨胀材料为焦磷酸铜及其掺杂体系Cu2‑xAxP2‑yByO7;称取化学计量比的CuO、(NH4)2HPO4及A或B的氧化物,加入酒精研磨混匀,进行低温预烧,再在800℃烧结9‑11小时,冷却后研磨,即得到目标产物。焦磷酸铜在‑150℃到100℃具有很强的负热膨胀性质,体积热膨胀系数(CTE)为‑21.33×10‑6。100℃之后会突变为正膨胀,100℃到500℃体积热膨胀系数为+17.13×10‑6。通过掺杂不同元素及含量(Cu2‑ xAxP2‑yByO7),其热膨胀转变点在25℃‑325℃可调。通过调节不同掺杂元素、掺杂量和研磨工艺,可得到不同热膨胀转变温度点的材料。并对其进行精确调控。相关化合物在‑150℃‑800℃范围内不分解,可长期稳定存在。成本低廉,制备工艺简单,制备规模可控,有望大规模应用于密封材料。

Description

一种可用于密封的负热膨胀材料的制备方法
所属技术领域
本发明属于功能材料领域,涉及一种可用于密封的负热膨胀材料的制备方法。
背景技术
负热膨胀材料具有很高的研究价值与广泛的应用领域,多用于解决由于热胀冷缩或膨胀系数不匹配引起的器件失效及损坏等问题。在精密仪器制造、低温功能器件等诸多领域有重要应用。然而,目前还没有将负膨胀材料用于密封材料的案例。当今市面上的密封材料面临的一大难题就是在温度降低时,由于密封材料的收缩导致密封性下降,引起泄漏。负热膨胀材料可以解决这一问题。但是,由于现有的在室温附近呈现负热膨胀性能的材料有限,而这部分材料在室温附近又会持续呈现负膨胀(如ZrW2O8 [1],FeFe(CN)6 [2],ScF3[3]等),若将其应用于密封材料中,又可能在温度升高时降低其密封性。因此,若开发一种在使用温度附近,无论环境温度升高或降低,都能呈现正膨胀、加强其密封性的材料,那将会攻克密封领域的一个重要难题。
发明内容
本发明目的在于研发一种热膨胀转变点可控,从而可针对不同使用温度需求的密封材料,使其密封性不会因环境温度变化而降低。
一种可用于密封的负热膨胀材料的制备方法,其特征在于负热膨胀材料为焦磷酸铜及其掺杂体系Cu2-xAxP2-yByO7;包括Cu2P2O7,Cu2-xZnxP2O7(0<x<1),Cu2P2-yVyO7(0.5<y<1.5)。称取化学计量比的CuO、(NH4)2HPO4及A或B的氧化物,加入酒精研磨混匀,250℃进行低温预烧,再在800℃烧结9-11小时,冷却后研磨,即可得到目标产物。
进一步地,合成Cu2P2O7.称取化学计量比的CuO和(NH4)2HPO4,加入酒精手动研磨2-3次,之后250℃低温预烧6小时,再放入马弗炉800℃高温烧结12小时,冷却后研磨,得到Cu2P2O7
进一步地,合成Cu2-xZnxP2O7(0<x<1).称取化学计量比的CuO、(NH4)2HPO4和ZnO,加入酒精手动研磨2-3次,之后低温预烧6小时,再放入马弗炉800℃烧结12小时,冷却后研磨,得到Cu2-xZnxP2O7
进一步地,合成Cu2P2-yVyO7(0.5<y<1.5).称取化学计量比的CuO、(NH4)2HPO4和V2O5,加入酒精手动研磨2-3次,之后低温预烧4-8小时,再放入马弗炉800℃烧结12小时,冷却后研磨,得到Cu2P2-yVyO7
焦磷酸铜在-150℃到100℃具有很强的负热膨胀性质,体积热膨胀系数(CTE)为-21.33×10-6。100℃之后会突变为正膨胀,100℃到500℃体积热膨胀系数为+17.13×10-6。通过掺杂不同元素及含量(Cu2-xAxP2-yByO7),其热膨胀转变点在25℃-325℃可调,可根据不同密封需求设计材料。
通过调节不同掺杂元素、掺杂量和研磨工艺,可得到不同热膨胀转变温度点的材料。并对其进行精确调控。相关化合物在-150℃-800℃范围内不分解,可长期稳定存在。成本低廉,制备工艺简单,即可大规模制备,亦可少量制备。有望大规模应用于密封材料。
附图说明
图1为Cu2P2O7化合物XRD图谱。
图2为Cu2P2O7化合物单胞体积与温度的关系。
图3为Cu2P2O7化合物TG-DSC图谱。
图4为Cu2-xZnxP2O7化合物单XRD图谱。
图5为Cu2-xZnxP2O7化合物单胞体积与温度的关系。
图6为Cu2P2-yVyO7化合物XRD图谱。
图7为Cu2P2-yVyO7化合物单胞体积与温度的关系。
具体实施方式
实施例1
利用此方法合成Cu2P2O7.称取化学计量比的CuO和(NH4)2HPO4,加入酒精手动研磨2-3次,之后低温预烧6小时,再放入马弗炉800℃高温烧结12小时,冷却后研磨,得到Cu2P2O7
图1说明Cu2P2O7为单一相,图2为化合物单胞体积与温度的变化关系。从此图中可看出,在-150℃到100℃之间,呈强烈的负热膨胀性,CTE=-21.33×10-6。100℃到500℃,呈现正膨胀性,CTE=+17.13×10-6。热膨胀转变温度点为100℃。可用于工作温度在100℃附近的密封材料。图3为Cu2P2O7的热重-示差扫描热(TG-DSC)图,说明Cu2P2O7至800℃都可稳定存在。
实施例2
利用此方法合成Cu2-xZnxP2O7(0<x<1).称取化学计量比的CuO、(NH4)2HPO4和ZnO,加入酒精手动研磨2-3次,之后低温预烧6小时,再放入马弗炉800℃烧结12小时,冷却后研磨,得到Cu2-xZnxP2O7
图4说明Cu2-xZnxP2O7(0<x<1)为单一相,属于beta相的Cu2P2O7。图5为化合物单胞体积与温度的变化关系。从此图中可看出,在-150℃到25℃之间,呈强烈的负热膨胀性,CTE=-8.82×10-6。25℃到500℃,呈现正膨胀性,CTE=+17.03×10-6。热膨胀转变温度点为25℃。可用于工作温度在25℃附近的密封材料。
实施例3
利用此方法合成Cu2P2-yVyO7(0.5<y<1.5).称取化学计量比的CuO、(NH4)2HPO4和V2O5,加入酒精手动研磨2-3次,之后低温预烧4-8小时,再放入马弗炉800℃烧结12小时,冷却后研磨,得到Cu2P2-yVyO7
图6说明Cu2P2-yVyO7为单一相,属于beta相的Cu2P2O7。图7为化合物单胞体积与温度的变化关系。从此图中可看出,在-150℃到350℃之间,呈强烈的负热膨胀性,CTE=-34.97×10-6。350℃到700℃,呈现正膨胀性,CTE=+23.85×10-6。热膨胀转变温度点为350℃。可用于工作温度在350℃附近的密封材料。
参考文献
[1]Mary T A,Evans J S O,Vogt T,et al.Negative thermal expansion from0.3 to 1050 Kelvin in ZrW2O8[J].Science,1996,272(5258):90-92.
[2]Shi N,Gao Q,Sanson A,et al.Negative thermal expansion in cubicFeFe(CN)6 Prussian blue analogues[J].Dalton Transactions,2019,48(11):3658-3663.
[3]Hu L,Chen J,Sanson A,et al.New insights into the negative thermalexpansion:direct experimental evidence for the“Guitar-String”effect in cubicScF3[J].Journal of the American Chemical Society,2016,138(27):8320-8323.

Claims (4)

1.一种可用于密封的负热膨胀材料及制备方法,其特征在于负热膨胀材料为焦磷酸铜及其掺杂体系Cu2-xAxP2-yByO7;包括Cu2P2O7,Cu2-xZnxP2O7(0<x<1),Cu2P2-yVyO7(0.5<y<1.5);称取化学计量比的CuO、(NH4)2HPO4及A或B的氧化物,加入酒精研磨混匀,250℃进行低温预烧,再在800℃烧结9-11小时,冷却后研磨,即可得到目标产物。
2.如权利要求1所述一种可用于密封的负热膨胀材料及制备方法,其特征在于合成Cu2P2O7方法为:称取化学计量比的CuO和(NH4)2HPO4,加入酒精手动研磨2-3次,之后低温预烧6小时,再放入马弗炉800℃高温烧结12小时,冷却后研磨,得到Cu2P2O7
3.如权利要求1所述一种可用于密封的负热膨胀材料及制备方法,其特征在于合成Cu2-xZnxP2O7(0<x<1)方法为:称取化学计量比的CuO、(NH4)2HPO4和ZnO,加入酒精手动研磨2-3次,之后低温预烧6小时,再放入马弗炉800℃烧结12小时,冷却后研磨,得到Cu2- xZnxP2O7
4.如权利要求1所述一种可用于密封的负热膨胀材料及制备方法,其特征在于合成Cu2P2-yVyO7(0.5<y<1.5)方法为:称取化学计量比的CuO、(NH4)2HPO4和V2O5,加入酒精手动研磨2-3次,之后低温预烧4-8小时,再放入马弗炉800℃烧结12小时,冷却后研磨,得到Cu2P2-yVyO7
CN201910510688.0A 2019-06-13 2019-06-13 一种可用于密封的负热膨胀材料的制备方法 Withdrawn CN110229001A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910510688.0A CN110229001A (zh) 2019-06-13 2019-06-13 一种可用于密封的负热膨胀材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910510688.0A CN110229001A (zh) 2019-06-13 2019-06-13 一种可用于密封的负热膨胀材料的制备方法

Publications (1)

Publication Number Publication Date
CN110229001A true CN110229001A (zh) 2019-09-13

Family

ID=67859865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910510688.0A Withdrawn CN110229001A (zh) 2019-06-13 2019-06-13 一种可用于密封的负热膨胀材料的制备方法

Country Status (1)

Country Link
CN (1) CN110229001A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210198A (ja) * 2018-06-08 2019-12-12 国立大学法人名古屋大学 負熱膨張材料および複合材料
CN114017500A (zh) * 2021-11-25 2022-02-08 珠海格力电器股份有限公司 一种密封件及制冷设备
WO2022114004A1 (ja) * 2020-11-30 2022-06-02 国立大学法人東海国立大学機構 負熱膨張材料、複合材料、負熱膨張材料の製造方法および部品
CN115124015A (zh) * 2022-07-11 2022-09-30 中国科学院合肥物质科学研究院 一种增强Cu2P2O7负热膨胀效应的方法
CN116003980A (zh) * 2022-10-27 2023-04-25 宁波家联科技股份有限公司 一种耐热高强尺寸稳定的聚乳酸3d打印材料及其制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210198A (ja) * 2018-06-08 2019-12-12 国立大学法人名古屋大学 負熱膨張材料および複合材料
JP7076134B2 (ja) 2018-06-08 2022-05-27 国立大学法人東海国立大学機構 負熱膨張材料および複合材料
WO2022114004A1 (ja) * 2020-11-30 2022-06-02 国立大学法人東海国立大学機構 負熱膨張材料、複合材料、負熱膨張材料の製造方法および部品
CN114017500A (zh) * 2021-11-25 2022-02-08 珠海格力电器股份有限公司 一种密封件及制冷设备
CN115124015A (zh) * 2022-07-11 2022-09-30 中国科学院合肥物质科学研究院 一种增强Cu2P2O7负热膨胀效应的方法
CN116003980A (zh) * 2022-10-27 2023-04-25 宁波家联科技股份有限公司 一种耐热高强尺寸稳定的聚乳酸3d打印材料及其制备方法
CN116003980B (zh) * 2022-10-27 2023-10-13 宁波家联科技股份有限公司 一种耐热高强尺寸稳定的聚乳酸3d打印材料及其制备方法

Similar Documents

Publication Publication Date Title
CN110229001A (zh) 一种可用于密封的负热膨胀材料的制备方法
Fukuda et al. Oxide-ion conductivity of highly c-axis-oriented apatite-type lanthanum silicate polycrystal formed by reactive diffusion between La2SiO5 and La2Si2O7
Imanaka et al. Trivalent rare earth ion conduction in the rare earth tungstates with the Sc2 (WO4) 3-type structure
Florian et al. A Multi-nuclear Multiple-Field Nuclear Magnetic Resonance Study of the Y2O3− Al2O3 Phase Diagram
CN102093054B (zh) 法拉第磁旋光透明陶瓷及其制备方法
Fukuda et al. Crystal structure and oxide-ion conductivity along c-axis of Si-deficient apatite-type lanthanum silicate
CN109437897A (zh) 一种耐高温、抗氧化、抗磨损和低热膨胀系数的钽酸铝陶瓷材料及其制备方法与应用
Imanaka et al. Thermal contraction behavior in Al2 (WO4) 3 single crystal
Abrahams et al. Correlation of defect structure and ionic conductivity in δ-phase solid solutions in the Bi3NbO7–Bi3YO6 system
CN110386595A (zh) 高熵稀土磷酸盐粉体及其制备方法
Thieme et al. High thermal expansion in the solid solution series BaM 2− x Ni x Si 2 O 7 (M= Zn, Mg, Co)-the effect of Ni-concentration on phase transition and expansion
CN104609849A (zh) Si/Ti掺杂的铽铝石榴石法拉第磁旋光透明陶瓷及其制备方法
An et al. Crystallographic correlations with anisotropic oxide ion conduction in aluminum-doped neodymium silicate apatite electrolytes
Gomez Torres et al. Pure and RE3+-doped La7O6 (VO4) 3 (RE= Eu, Sm): polymorphism stability and luminescence properties of a new oxyvanadate matrix
Cheng et al. Structures, thermal expansion properties and phase transitions of ErxFe2− x (MoO4) 3 (0.0≤ x≤ 2.0)
Liu et al. Transmittance, photoluminescence and electrical properties in Er-DOPED 0.98 K0. 5Na0. 5NbO3-0.02 Sr (Yb0. 5Ta0. 5) O3 ferroelectric ceramics
CN114455939A (zh) 一种高阻值高b值的ntc热敏电阻材料及其制备方法
CN101734730A (zh) 具有近零热膨胀特性的“反钙钛矿结构”金属间化合物材料
CN103449436B (zh) 一种类钙钛矿结构负膨胀锰碳化合物制备方法
Li et al. The effect of mixed La-Y doping on water resistance of phosphate glass
Baldin et al. Proton conductivity in rare-earth fluorine-containing molybdates NaLn4Mo3O15F
Li et al. Zero and controllable thermal expansion in☆
Zhang et al. Fine-grained Tb3Al5O12 transparent ceramics prepared by co-precipitation synthesis and two-step sintering
Jenkins et al. Molar volume and thermal expansion of glaucophane
Ball et al. Thermal expansion coefficients of zirconolite (CaZrTi2O7) and perovskite (CaTiO3) from X-ray powder diffraction analysis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20190913