JP2019207954A - Rare earth permanent magnet - Google Patents

Rare earth permanent magnet Download PDF

Info

Publication number
JP2019207954A
JP2019207954A JP2018102692A JP2018102692A JP2019207954A JP 2019207954 A JP2019207954 A JP 2019207954A JP 2018102692 A JP2018102692 A JP 2018102692A JP 2018102692 A JP2018102692 A JP 2018102692A JP 2019207954 A JP2019207954 A JP 2019207954A
Authority
JP
Japan
Prior art keywords
rare earth
permanent magnet
earth permanent
type crystal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018102692A
Other languages
Japanese (ja)
Other versions
JP7017757B2 (en
Inventor
英一郎 福地
Eiichiro Fukuchi
英一郎 福地
将志 伊藤
Masashi Ito
将志 伊藤
齋藤 哲治
Tetsuji Saito
哲治 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Institute of Technology
TDK Corp
Original Assignee
Chiba Institute of Technology
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Institute of Technology, TDK Corp filed Critical Chiba Institute of Technology
Priority to JP2018102692A priority Critical patent/JP7017757B2/en
Publication of JP2019207954A publication Critical patent/JP2019207954A/en
Application granted granted Critical
Publication of JP7017757B2 publication Critical patent/JP7017757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To obtain a rare earth permanent magnet having a high residual magnetic flux density and a high magnetic coercive force.SOLUTION: A rare earth permanent magnet contains R and T. The R is a rare earth element essentially comprising Sm, and the T is a single Fe or Fe and Co. The rare earth permanent magnet contains a crystal particle having NdFe-type crystal structure as a main phase. At least one part of the crystal particle is a flat particle having a flat shape. In the case of measuring a frequency distribution of a long diameter in the crystal particle, a means long diameter in the crystal particle of which a cumulative frequency is 10% or more and 90% or less exceeds 300 nm.SELECTED DRAWING: None

Description

本発明は、希土類永久磁石に関する。   The present invention relates to a rare earth permanent magnet.

希土類磁石はその高磁気特性から年々生産量を伸ばしており、各種モータ用、各種アクチュエータ用、MRI装置用など様々な用途に使用されている。   Rare earth magnets are increasing in production year by year due to their high magnetic properties, and are used in various applications such as for various motors, various actuators, and MRI apparatuses.

例えば、特許文献1に記載のSmFe17金属間化合物を主相とする磁石材料は、室温で非常に高い保磁力を得ている。また、非特許文献1には、放電プラズマ焼結法(SPS法)により得られる密度90%超であるSmFe17金属間化合物を主相とする磁石が記載されており、非常に高い保磁力を得ている。 For example, a magnet material having a main phase of Sm 5 Fe 17 intermetallic compound described in Patent Document 1 has a very high coercive force at room temperature. Non-Patent Document 1 describes a magnet having a main phase of Sm 5 Fe 17 intermetallic compound having a density of more than 90% obtained by a discharge plasma sintering method (SPS method). I have a magnetic force.

しかしながら、SmFe17金属間化合物を主相とする永久磁石は、NdFe14B金属間化合物を主相とする永久磁石と比較して磁化が小さいという欠点がある。 However, the permanent magnet having the main phase of Sm 5 Fe 17 intermetallic compound has a drawback that the magnetization is smaller than that of the permanent magnet having the main phase of Nd 2 Fe 14 B intermetallic compound.

特許文献2に記載の永久磁石材料の結晶粒は主成分の組成がSmFe17系であり、前記結晶粒は異方性の薄片状結晶粒である。しかし、現在ではさらに高い磁気特性を有する永久磁石が求められている。 The crystal grains of the permanent magnet material described in Patent Document 2 have a Sm 5 Fe 17 system as a main component, and the crystal grains are anisotropic flaky crystal grains. However, at present, there is a demand for permanent magnets having even higher magnetic properties.

特開2008−133496号公報JP 2008-13396 A 中国特許出願公開第105679579号明細書Chinese Patent Application No. 1056757979

Materials Science and Engineering 1(2009)012032Materials Science and Engineering 1 (2009) 012032

本発明はこうした状況を認識してなされたものであり、残留磁束密度および保磁力が高い希土類永久磁石を得ることを目的とする。   The present invention has been made in view of such a situation, and an object thereof is to obtain a rare earth permanent magnet having a high residual magnetic flux density and a high coercive force.

本発明は、RおよびTを含む希土類永久磁石であって、
RはSmを必須とする希土類元素、TはFe単独またはFeおよびCoであり、
前記希土類永久磁石は、NdFe17型結晶構造を有する結晶粒子を主相として含み、前記結晶粒子の少なくとも一部が扁平な形状を有する扁平粒子であり、
前記結晶粒子の長径の頻度分布を測定した場合に累積頻度10%以上90%以下である結晶粒子における平均長径が300nm超であることを特徴とする。
The present invention is a rare earth permanent magnet containing R and T,
R is a rare earth element essential for Sm, T is Fe alone or Fe and Co,
The rare earth permanent magnet is a flat particle that includes crystal particles having an Nd 5 Fe 17 type crystal structure as a main phase, and at least a part of the crystal particles has a flat shape,
When measuring the frequency distribution of the major axis of the crystal grains, the average major axis of the crystal grains having a cumulative frequency of 10% to 90% is more than 300 nm.

本発明に係る希土類永久磁石は、上記の特徴を有することにより、磁気特性、すなわち残留磁束密度Brおよび保磁力HcJが優れた希土類永久磁石となる。   The rare earth permanent magnet according to the present invention is a rare earth permanent magnet having excellent magnetic characteristics, that is, residual magnetic flux density Br and coercive force HcJ due to the above characteristics.

本発明に係る希土類永久磁石は、全ての前記結晶粒子の平均アスペクト比が1.6以上であってもよい。   In the rare earth permanent magnet according to the present invention, an average aspect ratio of all the crystal grains may be 1.6 or more.

本発明に係る希土類永久磁石は、RとしてさらにPrおよび/またはNdを含有してもよく、R全体に対するSmの含有割合が50at%以上99at%以下であってもよく、PrおよびNdの合計含有割合が1at%以上50at%以下であってもよい。   The rare earth permanent magnet according to the present invention may further contain Pr and / or Nd as R, and the content ratio of Sm with respect to the entire R may be 50 at% or more and 99 at% or less, and the total content of Pr and Nd The ratio may be 1 at% or more and 50 at% or less.

本発明に係る希土類永久磁石は、前記結晶粒子間の粒界においてR濃縮部が存在してもよく、任意の断面における前記R濃縮部の面積比率が3%以上20%以下であってもよい。   In the rare earth permanent magnet according to the present invention, an R enriched portion may exist at a grain boundary between the crystal grains, and an area ratio of the R enriched portion in an arbitrary cross section may be 3% or more and 20% or less. .

本発明に係る希土類永久磁石は、さらにCを含有し、Cの含有割合が0at%超15at%以下であってもよい。   The rare earth permanent magnet according to the present invention may further contain C, and the C content may be greater than 0 at% and not greater than 15 at%.

本発明を実施するための実施形態につき、詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。   Embodiments for carrying out the present invention will be described in detail. The present invention is not limited by the contents described in the following embodiments. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

本実施形態に係る希土類永久磁石は、NdFe17型結晶構造(空間群P6/mcm)を有する結晶粒子を主相とする。なお、本実施形態では主相とは希土類永久磁石全体に対して70vol%以上を占める部分のことを指す。 The rare earth permanent magnet according to the present embodiment has crystal grains having an Nd 5 Fe 17 type crystal structure (space group P6 3 / mcm) as a main phase. In the present embodiment, the main phase refers to a portion occupying 70 vol% or more with respect to the entire rare earth permanent magnet.

本実施形態に係る希土類永久磁石は、上記のNdFe17型結晶構造も含まれるR17型結晶構造を有する結晶粒子(以下、R17型結晶粒子ともいう)以外の結晶粒子を副相として含んでもよい。例えば、RT型結晶構造、RT型結晶構造、R型結晶構造、RT型結晶構造、RT型結晶構造、R17型結晶構造、RT12型結晶構造などの結晶構造を有する結晶粒子が挙げられる。本実施形態に係る希土類永久磁石がどのような結晶構造を含むかについては、例えばX線回折法(XRD)を用いて確認することができる。 The rare earth permanent magnet according to the present embodiment is a crystal particle other than the crystal particles having the R 5 T 17 type crystal structure (hereinafter also referred to as R 5 T 17 type crystal particles) including the Nd 5 Fe 17 type crystal structure. May be included as a subphase. For example, crystals such as RT 2 type crystal structure, RT 3 type crystal structure, R 2 T 7 type crystal structure, RT 5 type crystal structure, RT 7 type crystal structure, R 2 T 17 type crystal structure, RT 12 type crystal structure, etc. Examples thereof include crystal particles having a structure. The crystal structure of the rare earth permanent magnet according to the present embodiment can be confirmed using, for example, an X-ray diffraction method (XRD).

本実施形態に係る希土類永久磁石では、R17型結晶粒子の少なくとも一部が扁平な形状を有する扁平粒子である。R17型結晶構造を有し、扁平な形状を有する結晶粒子は、長径方向が磁化容易軸の方向と実質的に一致する。 In the rare earth permanent magnet according to the present embodiment, at least a part of the R 5 T 17 type crystal particles are flat particles having a flat shape. In the crystal particles having an R 5 T 17 type crystal structure and having a flat shape, the major axis direction substantially coincides with the direction of the easy axis of magnetization.

さらに、本実施形態に係る希土類永久磁石におけるR17型結晶粒子は従来のR17型結晶粒子よりも粗大である。具体的には、R17型結晶粒子の長径の頻度分布を測定した場合に累積頻度10%以上90%以下であるR17型結晶粒子における平均長径が300nm超である。 Furthermore, the R 5 T 17 type crystal particles in the rare earth permanent magnet according to the present embodiment are coarser than the conventional R 5 T 17 type crystal particles. Specifically, when the frequency distribution of the major axis of the R 5 T 17 type crystal particles is measured, the average major axis of the R 5 T 17 type crystal particles having a cumulative frequency of 10% or more and 90% or less is more than 300 nm.

少数の非常に小さいR17型結晶粒子および非常に大きいR17型結晶粒子が本実施形態の希土類永久磁石の磁気特性に与える影響は相対的に小さい。しかし、少数の非常に小さいR17型結晶粒子および非常に大きいR17型結晶粒子がR17型結晶粒子の平均長径に与える影響は相対的に大きい。すなわち、長径の頻度分布において累積頻度10%以上90%以下であるR17型結晶粒子のみで平均長径を算出するのは、少数の非常に小さい結晶粒子および非常に大きい結晶粒子を考慮しないことで、平均長径と磁気特性との関係がより明確になるためである。 A small number of very small R 5 T 17 type crystal particles and very large R 5 T 17 type crystal particles have a relatively small influence on the magnetic properties of the rare earth permanent magnet of this embodiment. However, the effect of a small number of very small R 5 T 17 type crystal particles and very large R 5 T 17 type crystal grains gives the average major axis of the R 5 T 17 type crystal grains relatively large. That is, calculating the average major axis only with R 5 T 17 type crystal particles having a cumulative frequency of 10% or more and 90% or less in the frequency distribution of the major axis does not consider a small number of very small crystal particles and very large crystal particles. This is because the relationship between the average major axis and the magnetic characteristics becomes clearer.

17型結晶粒子の長径の頻度分布を測定した場合に累積頻度10%以上90%以下であるR17型結晶粒子における平均長径は305nm以上であることが好ましく、500nm超であることがさらに好ましく、502nm以上であることがさらに好ましい。また、上記の平均長径に上限はないが、例えば2000nm以下としてもよく、1500nm以下とすることが好ましく、1053nm以下とすることがさらに好ましい。平均長径が大きいことにより、得られる希土類永久磁石の保磁力が向上する。なお、R17型結晶粒子が扁平粒子ではない場合には長径と短径とが等しいとする。 Preferably has an average major axis in the R 5 T 17 type when measuring the frequency distribution of the major axis of the crystal grains cumulative frequency of 10% or more to 90% or less R 5 T 17 type crystal grains is not less than 305 nm, is 500nm exceeds More preferably, it is more preferably 502 nm or more. The average major axis has no upper limit, but may be, for example, 2000 nm or less, preferably 1500 nm or less, and more preferably 1053 nm or less. Since the average major axis is large, the coercive force of the obtained rare earth permanent magnet is improved. When the R 5 T 17 type crystal particles are not flat particles, the major axis and the minor axis are assumed to be equal.

17型結晶粒子の短径の頻度分布を測定した場合に累積頻度10%以上90%以下であるR17型結晶粒子における平均短径は任意であるが、例えば190nm以上としてもよい。 When the frequency distribution of the minor axis of the R 5 T 17 type crystal particles is measured, the average minor axis in the R 5 T 17 type crystal particles having a cumulative frequency of 10% or more and 90% or less is arbitrary. Good.

さらに、R17型結晶粒子全体に対する長径が300nm超であるR17型結晶粒子の個数割合が60%以上であることが好ましい。長径が長い結晶粒子の個数割合が大きいことで、さらに磁気特性が向上しやすくなる。 Further, it is preferred that the number ratio of R 5 T 17 type crystal grains major axis to the entire R 5 T 17 type crystal particles is 300nm greater is 60% or more. When the number ratio of crystal grains having a long major axis is large, the magnetic characteristics are further improved.

さらに、本実施形態に係る希土類永久磁石では、上記の扁平粒子における長径の向きが概ね揃っている。この結果、本実施形態に係る希土類永久磁石は、異方性希土類永久磁石となり、磁化容易軸方向における残留磁束密度Brおよび保磁力HcJが優れた磁石となる。   Furthermore, in the rare earth permanent magnet according to the present embodiment, the major axis directions of the flat particles are substantially uniform. As a result, the rare earth permanent magnet according to the present embodiment is an anisotropic rare earth permanent magnet, and is a magnet having excellent residual magnetic flux density Br and coercive force HcJ in the easy axis direction.

本実施形態に係る希土類永久磁石はRおよびTを含む。RはSmを必須とする希土類元素である。本実施形態に係る希土類永久磁石におけるRの含有割合は任意であるが、20.0at%以上37.1at%であってもよい。本実施形態に係る希土類永久磁石について、Rに占めるSmの割合は多い方が好ましく、希土類永久磁石全体におけるR全体に対するSmの含有割合は好ましくは50at%以上である。   The rare earth permanent magnet according to the present embodiment includes R and T. R is a rare earth element in which Sm is essential. The content ratio of R in the rare earth permanent magnet according to the present embodiment is arbitrary, but may be 20.0 at% or more and 37.1 at%. About the rare earth permanent magnet which concerns on this embodiment, the one where the ratio of Sm which occupies for R is large is preferable, and the content rate of Sm with respect to the whole R in the whole rare earth permanent magnet becomes like this.

また、RとしてPrおよび/またはNdを含んでもよい。Pr3+およびNd3+の有効磁気モーメントがSm3+の有効磁気モーメントよりも大きいため、PrまたはNdを含有すると残留磁束密度が向上する傾向がある。さらに、PrまたはNdは低保磁力成分である副相の生成を抑制する効果が得られる。ただし、Rに占めるPrおよびNdの合計含有割合が大きすぎると結晶磁気異方性が減少するとともに、低保磁力成分である副相が生成しやすくなり、保磁力HcJが低下しやすくなる。 R may include Pr and / or Nd. Since the effective magnetic moment of Pr 3+ and Nd 3+ is larger than the effective magnetic moment of Sm 3+ , the residual magnetic flux density tends to be improved when Pr or Nd is contained. Furthermore, Pr or Nd has an effect of suppressing the generation of a subphase which is a low coercive force component. However, if the total content ratio of Pr and Nd in R is too large, the magnetocrystalline anisotropy is reduced, and a secondary phase that is a low coercive force component is likely to be generated, and the coercive force HcJ is likely to be lowered.

したがって、R全体に対するSmの含有割合が50at%以上99at%以下であることが好ましく50at%以上97at%以下であることがさらに好ましい。PrおよびNdの合計含有割合が1at%以上50at%以下であることが好ましく、3at%以上50at%以下であることがさらに好ましい。また、本実施形態に係る希土類永久磁石の磁気特性に大きな影響を与えない範囲でSm,PrおよびNd以外の希土類元素をRとして含んでもよい。Sm,PrおよびNd以外の希土類元素の含有量は、例えば5at%以下である。   Therefore, the content ratio of Sm with respect to the entire R is preferably 50 at% or more and 99 at% or less, and more preferably 50 at% or more and 97 at% or less. The total content ratio of Pr and Nd is preferably 1 at% or more and 50 at% or less, and more preferably 3 at% or more and 50 at% or less. In addition, a rare earth element other than Sm, Pr, and Nd may be included as R within a range that does not significantly affect the magnetic characteristics of the rare earth permanent magnet according to the present embodiment. The content of rare earth elements other than Sm, Pr and Nd is, for example, 5 at% or less.

本実施形態に係る希土類永久磁石におけるTの含有割合は任意であるが、47.9at%80.0at%以下であってもよい。TはFe単独またはFeおよびCoである。また、T全体に対するCoの含有割合は任意であるが、0at%以上20at%以下としてもよい。Coの含有割合が小さいほど高保磁力となる傾向にある。また、Coの含有割合が大きいほど高磁化となり、高残留磁束密度となる傾向にある。   The content ratio of T in the rare earth permanent magnet according to the present embodiment is arbitrary, but may be 47.9 at% or less and 80.0 at% or less. T is Fe alone or Fe and Co. Further, the content ratio of Co with respect to the entire T is arbitrary, but may be 0 at% or more and 20 at% or less. The smaller the Co content, the higher the coercive force. Further, the larger the Co content ratio, the higher the magnetization and the higher the residual magnetic flux density.

本実施形態に係る希土類永久磁石はCを含んでもよく、Cを含むことで保磁力HcJが向上する傾向にある。保磁力HcJが向上する理由は不明であるが、希土類永久磁石がCを含むことで、結晶粒子間の粒界においてRの濃度がR17型結晶構造を有する結晶粒子よりも高いR濃縮部が形成されやすくなるためであると本発明者らは考えている。そして、R濃縮部が非磁性相であり磁気分離効果が高いため、希土類永久磁石の保磁力HcJが向上すると本発明者らは考えている。本実施形態に係る希土類永久磁石がCを含む場合には0at%超15at%以下とすることが好ましい。 The rare earth permanent magnet according to the present embodiment may contain C, and the coercive force HcJ tends to be improved by containing C. The reason why the coercive force HcJ is improved is unknown, but the rare earth permanent magnet contains C, so that the concentration of R is higher in the grain boundary between the crystal grains than in the crystal grains having the R 5 T 17 type crystal structure. The present inventors consider that this is because the portion is easily formed. The present inventors consider that the coercive force HcJ of the rare earth permanent magnet is improved because the R enriched portion is a nonmagnetic phase and has a high magnetic separation effect. When the rare earth permanent magnet according to the present embodiment contains C, it is preferably more than 0 at% and at most 15 at%.

本実施形態に係る希土類永久磁石は、上記のR,TおよびC以外の元素を実質的に含まないことが好ましい。R,TおよびC以外の元素を実質的に含まないとは、希土類永久磁石全体に対するR,TおよびC以外の元素の含有割合が3at%以下である場合を指す。その他の元素の種類としては、例えば、Zr、Ti、Bi、Sn、Ga、Nb、Ta、Si、V、Ag、Ge、Cu、Znなどが挙げられる。また、侵入元素もその他の元素として含んでもよく、N、H、Be、Pの1種以上からなる元素とする。   It is preferable that the rare earth permanent magnet according to the present embodiment does not substantially contain elements other than the above R, T, and C. The phrase “substantially free of elements other than R, T, and C” refers to the case where the content ratio of elements other than R, T, and C with respect to the entire rare earth permanent magnet is 3 at% or less. Examples of other element types include Zr, Ti, Bi, Sn, Ga, Nb, Ta, Si, V, Ag, Ge, Cu, and Zn. Intrusive elements may also be included as other elements, and are elements composed of one or more of N, H, Be, and P.

なお、本実施形態に係る希土類永久磁石全体の組成比の分析にはICP質量分析法が用いられる。また、必要に応じて酸素気流中燃焼−赤外線吸収法を併用してもよい。   In addition, ICP mass spectrometry is used for the analysis of the composition ratio of the whole rare earth permanent magnet according to the present embodiment. Moreover, you may use together the combustion in oxygen stream-infrared absorption method as needed.

以下、本実施形態に係る希土類永久磁石の製造方法の好適な例について説明する。     Hereinafter, a preferred example of the method for producing a rare earth permanent magnet according to the present embodiment will be described.

本実施形態に係る希土類永久磁石のうち、特に異方性の希土類永久磁石は、例えば、等方性の希土類永久磁石を熱間加工することにより得ることができる。     Among the rare earth permanent magnets according to the present embodiment, an anisotropic rare earth permanent magnet can be obtained, for example, by hot working an isotropic rare earth permanent magnet.

等方性の希土類永久磁石の製造方法は任意であり、ブックモールド法、ストリップキャスト法、超急冷凝固法、蒸着法、HDDR法などを適宜組み合わせて製造することができる。以下、超急冷凝固法による製造方法の一例について説明する。   The manufacturing method of the isotropic rare earth permanent magnet is arbitrary, and can be manufactured by appropriately combining a book mold method, a strip cast method, a rapid quench solidification method, a vapor deposition method, an HDDR method, and the like. Hereinafter, an example of the manufacturing method by the rapid quench solidification method will be described.

超急冷凝固法には、具体的には、単ロール法、双ロール法、遠心急冷法、ガスアトマイズ法等の種類が存在するが、単ロール法を用いることが好ましい。単ロール法では、合金溶湯をノズルから吐出して冷却ロール周面に衝突させることにより、合金溶湯を急速に冷却し、薄帯状または薄片状の急冷合金を得る。単ロール法は、他の超急冷凝固法に比べ、量産性が高く、急冷条件の再現性が良好である。     Specific examples of the ultra rapid solidification method include a single roll method, a twin roll method, a centrifugal quench method, and a gas atomization method, and it is preferable to use a single roll method. In the single roll method, the molten alloy is discharged from a nozzle and collided with the peripheral surface of the cooling roll, whereby the molten alloy is rapidly cooled to obtain a ribbon-like or flaky quenched alloy. The single roll method has higher mass productivity and better reproducibility of the rapid cooling conditions than other ultra rapid solidification methods.

原料として、まず、所望の組成比を有する合金インゴットを準備する。原料合金は、RおよびTなどを含む原料金属を不活性ガス、好ましくはAr雰囲気中でアーク溶解等の溶解法により溶解させることで作製することができる。     First, an alloy ingot having a desired composition ratio is prepared as a raw material. The raw material alloy can be produced by dissolving a raw material metal containing R and T in an inert gas, preferably an Ar atmosphere, by a melting method such as arc melting.

上記方法で作製された合金インゴットから、超急冷凝固法により、急冷薄帯を作製する。超急冷凝固法としては、例えば上記の合金インゴットをスタンプミルなどにより小片化して小片を得て、得られた小片をAr雰囲気中で高周波溶解して溶湯を得て、得られた溶湯を高速で回転している冷却ロール上に吐出して急冷凝固させるメルトスピン法を用いることができる。冷却ロールで急冷された溶湯は、薄帯状に急冷凝固された急冷薄帯になる。     A quenched ribbon is produced from the alloy ingot produced by the above method by an ultra-quick solidification method. As the ultra-rapid solidification method, for example, the above-mentioned alloy ingot is cut into small pieces by a stamp mill or the like to obtain small pieces, and the obtained small pieces are melted at a high frequency in an Ar atmosphere to obtain a molten metal. It is possible to use a melt spin method that discharges onto a rotating cooling roll and rapidly solidifies. The melt rapidly cooled by the cooling roll becomes a rapidly cooled ribbon that is rapidly solidified into a thin strip.

なお、小片化する方法はスタンプミルに限定されない。高周波溶解時の雰囲気はAr雰囲気に限定されない。冷却ロールの回転速度は任意である。例えば10m/s以上100m/s以下としてもよい。冷却ロールの材質は任意であり、例えば冷却ロールとして銅ロールを用いてもよい。   In addition, the method of fragmenting is not limited to a stamp mill. The atmosphere during high frequency melting is not limited to the Ar atmosphere. The rotation speed of the cooling roll is arbitrary. For example, it is good also as 10 m / s or more and 100 m / s or less. The material of the cooling roll is arbitrary. For example, a copper roll may be used as the cooling roll.

次に、得られた急冷薄帯を熱処理することでR17型結晶構造を有する結晶粒子を生成させる。熱処理時の加熱速度および冷却速度は任意である。例えば0.01℃/s以上30℃/s以下としてもよい。熱処理は1段階で行ってもよく、多段階で行ってもよい。熱処理時の保持温度は任意であるが、R17型結晶構造を有する結晶粒子が熱分解しない範囲で高いほど結晶粒子の粒径が大きくなり、最終的に得られる異方性希土類永久磁石における上記の平均長径が大きくなる。熱処理時の保持温度は例えば575℃以上800℃以下としてもよい。保持時間は任意であるが、R17型結晶構造を有する結晶粒子の粒径を十分に大きくする必要があるため、例えば48時間以上120時間以下としてもよい。 Next, the obtained quenched ribbon is heat-treated to generate crystal particles having an R 5 T 17 type crystal structure. The heating rate and cooling rate during the heat treatment are arbitrary. For example, it may be 0.01 ° C./s or more and 30 ° C./s or less. The heat treatment may be performed in one stage or in multiple stages. The holding temperature at the time of heat treatment is arbitrary, but as the crystal particles having the R 5 T 17 type crystal structure are higher in the range not thermally decomposed, the grain size of the crystal particles becomes larger, and the anisotropic rare earth permanent magnet finally obtained The above-mentioned average major axis becomes larger. The holding temperature during the heat treatment may be, for example, 575 ° C. or higher and 800 ° C. or lower. Although the holding time is arbitrary, since it is necessary to sufficiently increase the particle size of the crystal particles having the R 5 T 17 type crystal structure, the holding time may be, for example, 48 hours to 120 hours.

次に、熱処理後の急冷薄帯を粗粉砕し、粒径が数十〜数百μm程度の粗粉末にする。粗粉砕の方法は任意である。例えば乳鉢を用いてもよい。なお、粗粉末に含まれる個々の粒子は、それぞれ多数のR17型結晶構造を有する結晶粒子が凝集している構造となっている。 Next, the quenched ribbon after the heat treatment is coarsely pulverized to obtain a coarse powder having a particle size of about several tens to several hundreds of μm. The method of coarse pulverization is arbitrary. For example, a mortar may be used. In addition, each particle contained in the coarse powder has a structure in which a large number of crystal particles each having an R 5 T 17 type crystal structure are aggregated.

そして、粗粉末を金型に充填して加圧しながら低温焼結する工程を経ることで緻密化したバルク体を得ることができる。このバルク体が等方性希土類永久磁石である。加圧時の圧力は任意であるが、例えば1MPa以上1GPa以下としてもよい。また、低温焼結の方法は任意である。通電焼結、放電プラズマ焼結、高周波加熱焼結、HIP(熱間静水圧加圧焼結)などが挙げられる。低温焼結の温度および時間は任意である。例えば500℃以上700℃以下で0.01時間以上1時間以下とすることができる。   And the bulk body densified can be obtained by passing through the process of low-temperature sintering, filling coarse metal powder in a metal mold | die and pressurizing. This bulk body is an isotropic rare earth permanent magnet. Although the pressure at the time of pressurization is arbitrary, it is good also as 1 MPa or more and 1 GPa or less, for example. Moreover, the method of low temperature sintering is arbitrary. Examples thereof include electric current sintering, discharge plasma sintering, high-frequency heating sintering, HIP (hot isostatic pressing). The temperature and time of the low-temperature sintering are arbitrary. For example, it can be 0.01 hour or more and 1 hour or less at 500 degreeC or more and 700 degrees C or less.

なお、主に主相となる結晶粒子を形成する合金インゴットおよび主に粒界を形成する合金インゴットの二種類の合金インゴットを準備し、二種類の急冷薄帯を得てもよい。二種類の急冷薄帯を用いる2合金法とする場合には、粗粉砕時、または、粗粉砕後加圧前に混合することが好ましい。2合金法を用いることで、粒界を増やすことができ、R濃縮部を増やすことができる。さらに、2合金法を用いる場合には、各粗粉末を加圧する前に被覆してもよい。   Two types of rapid cooling ribbons may be obtained by preparing two types of alloy ingots, an alloy ingot that mainly forms crystal grains as a main phase and an alloy ingot that mainly forms grain boundaries. In the case of a two-alloy method using two types of quenched ribbons, it is preferable to mix during coarse pulverization or after coarse pulverization and before pressurization. By using the 2-alloy method, the grain boundaries can be increased, and the R enrichment part can be increased. Furthermore, when using the two-alloy method, each coarse powder may be coated before being pressed.

また、上記の熱処理工程を行わず、非晶質の急冷薄帯を粗粉砕してもよい。その後、非晶質の粗粉末に対して熱処理および加圧を行うことで結晶化と緻密化とを同時に行ってもよい。   Alternatively, the amorphous quenching ribbon may be coarsely pulverized without performing the above heat treatment step. Thereafter, crystallization and densification may be simultaneously performed by performing heat treatment and pressurization on the amorphous coarse powder.

以下、熱間加工について説明する。   Hereinafter, hot working will be described.

本実施形態に係る異方性の希土類永久磁石は、上記の等方性の希土類永久磁石に対して熱間加工を行うことで、加圧および加熱により等方性の希土類永久磁石を塑性変形させて得ることができる。   The anisotropic rare earth permanent magnet according to the present embodiment plastically deforms the isotropic rare earth permanent magnet by pressurization and heating by performing hot working on the above isotropic rare earth permanent magnet. Can be obtained.

熱間加工の方法は任意である。例えば、熱間圧縮(ダイアップセット)、熱間押出し、熱間鍛造、熱間圧延などが挙げられる。   The method of hot working is arbitrary. For example, hot compression (die up set), hot extrusion, hot forging, hot rolling and the like can be mentioned.

熱間加工時の熱間加工温度は任意である。例えば600℃以上800℃以下とすることができる。しかし、熱間加工温度が高すぎるとR17型結晶粒子が熱分解してしまい、残留磁束密度Brおよび保磁力HcJが著しく低下する。 The hot working temperature at the time of hot working is arbitrary. For example, it can be set to 600 ° C. or higher and 800 ° C. or lower. However, if the hot working temperature is too high, the R 5 T 17 type crystal particles are thermally decomposed, and the residual magnetic flux density Br and the coercive force HcJ are significantly reduced.

Smの一部をNdおよび/またはPrに置換する場合には、熱間加工温度を比較的高温にしてもR17型結晶粒子が熱分解しにくい。その結果、平均アスペクト比を大きくしやすくなり、好適な残留磁束密度Brおよび保磁力HcJを得ることができる。 When a part of Sm is substituted with Nd and / or Pr, the R 5 T 17 type crystal particles are not easily thermally decomposed even if the hot working temperature is relatively high. As a result, it becomes easy to increase the average aspect ratio, and a suitable residual magnetic flux density Br and coercive force HcJ can be obtained.

熱間加工により、一つ一つの結晶粒子が加圧方向に潰れる。また、一部の結晶粒子は加圧方向に対して垂直に粒成長する。この結果、各結晶粒子が扁平形状となる。そして、加圧方向に平行な断面をTEMなどで観察する場合において、長径方向が加圧方向に垂直な方向に概ね揃った結晶粒子が観察される。なお、結晶粒子の長径および短径は、磁石断面における結晶粒子を長方形で囲んだときの最小長方形(外接長方形)の長辺の長さおよび短辺の長さである。また、結晶粒子の長径方向とは、前記結晶粒子の外接長方形の長辺の方向である。なお、加圧方向に平行な断面における観察領域の大きさは任意であるが、少なくとも200個の結晶粒子が観察できる大きさとする。   By hot working, every single crystal particle is crushed in the pressing direction. Some crystal grains grow perpendicularly to the pressing direction. As a result, each crystal particle has a flat shape. When a cross section parallel to the pressing direction is observed with a TEM or the like, crystal grains whose major axis direction is substantially aligned in a direction perpendicular to the pressing direction are observed. The major axis and minor axis of the crystal particle are the length of the long side and the length of the short side of the smallest rectangle (circumscribed rectangle) when the crystal particle in the magnet cross section is surrounded by a rectangle. The major axis direction of the crystal grain is the direction of the long side of the circumscribed rectangle of the crystal grain. Note that the size of the observation region in the cross section parallel to the pressing direction is arbitrary, but it is set to a size at which at least 200 crystal particles can be observed.

当該観察領域においてR濃縮部の面積比率が3%以上20%以下であることが好ましい。R濃縮部の面積が上記の範囲内であることにより、さらに磁気特性を高めることができる。なお、R濃縮部の面積比率は、熱間加工温度を高くするほど大きくなる傾向がある。   In the observation region, the area ratio of the R concentrating portion is preferably 3% or more and 20% or less. When the area of the R concentrating portion is within the above range, the magnetic properties can be further enhanced. The area ratio of the R concentrating part tends to increase as the hot working temperature is increased.

また、本実施形態におけるR17型結晶粒子のアスペクト比(長径の長さ/短径の長さ)は任意である。加圧方向に平行な断面における各R17型結晶粒子のアスペクト比を平均した平均アスペクト比が1.6以上であることが好ましく、1.9以上であることがさらに好ましい。なお、平均アスペクト比の計算は、観察領域内にある全てのR17型結晶粒子について長径の頻度分布を測定し、累積頻度10%以上90%以下であるR17型結晶粒子におけるアスペクト比を算出して平均する。 Further, the aspect ratio (major axis length / minor axis length) of the R 5 T 17 type crystal particles in the present embodiment is arbitrary. The average aspect ratio obtained by averaging the aspect ratios of the R 5 T 17 type crystal grains in the cross section parallel to the pressing direction is preferably 1.6 or more, and more preferably 1.9 or more. The average aspect ratio is calculated, in all R 5 for T 17 type crystal grains were measured frequency distribution of major diameter, the cumulative frequency of 10% or more and 90% or less R 5 T 17 type crystal particles in the observation region Calculate and average the aspect ratio.

以上、本実施形態に係る希土類永久磁石の製造方法の一例について説明したが、希土類永久磁石の製造方法は任意である。また、本実施形態に係る希土類永久磁石の用途も任意である。   As mentioned above, although the example of the manufacturing method of the rare earth permanent magnet which concerns on this embodiment was demonstrated, the manufacturing method of a rare earth permanent magnet is arbitrary. The use of the rare earth permanent magnet according to the present embodiment is also arbitrary.

以下、本発明の内容を実施例及び比較例を用いて詳細に説明するが、本発明は以下の実施例に限定されるものではない。     Hereinafter, although the content of the present invention is explained in detail using an example and a comparative example, the present invention is not limited to the following examples.

(実験例1)
まず、Sm,Pr,Nd,Feおよび/またはCの単体または合金からなる原料を準備した。得られる希土類永久磁石(急冷薄帯)の組成が下表1に示す組成となるように各原料を配合し、Ar雰囲気中、アーク溶解することで合金インゴットを作製した。次にスタンプミルを用いて当該合金インゴットを小片化して小片を得た。次に当該小片を50kPaのAr雰囲気で高周波溶解して溶湯を得た。
(Experimental example 1)
First, a raw material made of a simple substance or an alloy of Sm, Pr, Nd, Fe and / or C was prepared. Each raw material was blended so that the composition of the obtained rare earth permanent magnet (quenched ribbon) had the composition shown in Table 1 below, and an alloy ingot was produced by arc melting in an Ar atmosphere. Next, the alloy ingot was cut into small pieces using a stamp mill to obtain small pieces. Next, the small piece was melted at high frequency in an Ar atmosphere of 50 kPa to obtain a molten metal.

次に、当該溶湯から単ロール法にて急冷薄帯を得た。具体的には、当該溶湯を周速40m/sで回転させた冷却ロール(銅ロール)に吐出して急冷薄帯を得た。   Next, a quenched ribbon was obtained from the molten metal by a single roll method. Specifically, the molten metal was discharged onto a cooling roll (copper roll) rotated at a peripheral speed of 40 m / s to obtain a quenched ribbon.

次に、得られた急冷薄帯を熱処理した。具体的には、下表に示す保持温度まで加熱し、下表に示す保持時間で加熱した後、冷却した。2段階で熱処理を行っている実験例では、1段階目の短時間での熱処理が終了した後に2段階目の保持温度まで冷却してから2段階目の長時間の熱処理を行った。加熱速度は全て10℃/s、冷却速度は全て10℃/sとした。   Next, the obtained quenched ribbon was heat-treated. Specifically, it was heated to the holding temperature shown in the following table, heated for the holding time shown in the following table, and then cooled. In the experimental example in which the heat treatment was performed in two stages, after the heat treatment in the first stage in a short time was completed, the heat treatment was performed for a long time in the second stage after cooling to the holding temperature in the second stage. All heating rates were 10 ° C./s, and all cooling rates were 10 ° C./s.

次に、乳鉢を用いて得られた急冷薄帯を粗粉砕し、粒径が数十から100μm程度の粗粉末を得た。なお、この粒径は粗粉末の粒径であり、粗粉末に含まれる結晶粒子の粒径ではない。   Next, the quenched ribbon obtained using a mortar was coarsely pulverized to obtain a coarse powder having a particle size of about several tens to 100 μm. Note that this particle size is the particle size of the coarse powder, not the crystal particle size contained in the coarse powder.

次に、粗粉末を金型に充填し、加圧しながら通電焼結することでバルク体(等方性希土類永久磁石)を得た。加圧時の圧力50MPaとし、通電焼結は600℃で0.1時間行った。   Next, the bulk powder (isotropic rare earth permanent magnet) was obtained by filling the coarse powder into a mold and conducting current sintering while applying pressure. The pressure during pressurization was 50 MPa, and the electric current sintering was performed at 600 ° C. for 0.1 hour.

次に、比較例1および比較例3を除いて等方性のバルク体に対して熱間加工を行い、異方性の希土類永久磁石を得た。熱間加工は熱間圧縮(ダイアップセット)により等方性のバルク体を塑性変形させることで行った。また、熱間加工時の温度および熱間加工率を下表に示した。なお、熱間加工率とは熱間加工前の等方性のバルク体の高さを100%としたときに、熱間加工中に変形して減った高さの割合である。   Next, except for Comparative Example 1 and Comparative Example 3, hot processing was performed on the isotropic bulk body to obtain an anisotropic rare earth permanent magnet. Hot working was performed by plastically deforming an isotropic bulk body by hot compression (die up set). The temperature during hot working and the hot working rate are shown in the table below. The hot working rate is the ratio of the height that is deformed and reduced during hot working when the height of the isotropic bulk body before hot working is 100%.

その後、得られた希土類永久磁石を3.0mm×3.0mm×1.5mmに加工した各実験例の希土類永久磁石について、各種パラメータを測定した。なお、比較例1および比較例3以外では、熱間加工時の圧縮方向に平行な辺が長さ1.5mmの辺となるようにした。   Thereafter, various parameters were measured for the rare earth permanent magnets of each experimental example in which the obtained rare earth permanent magnets were processed to 3.0 mm × 3.0 mm × 1.5 mm. In addition to Comparative Example 1 and Comparative Example 3, the side parallel to the compression direction during hot working was set to be a side having a length of 1.5 mm.

<磁石組成>
磁石組成のうち希土類元素および遷移金属元素の含有割合はICP質量分析法により測定した。なお、1合金法で作製した実験例1での各磁石組成は合金インゴットの組成と実質的に同一であった。
<Magnet composition>
The content ratio of rare earth elements and transition metal elements in the magnet composition was measured by ICP mass spectrometry. In addition, the composition of each magnet in Experimental Example 1 produced by the one alloy method was substantially the same as the composition of the alloy ingot.

<結晶粒子および粒界の特定>
希土類永久磁石を熱間加工時の圧縮方向に垂直な任意の断面(比較例1および比較例3では任意の断面)で切断し、TEM−EDSにて組成マッピングを行うことで特定した。RおよびFeが原子数比でおよそ5:17の比率で観察される箇所をNdFe17型結晶粒子とし、二つ以上のNdFe17型結晶粒子間に存在する箇所を粒界とした。なお、観察領域の大きさは結晶粒子が少なくとも200個以上観察される大きさとした。
<Identification of crystal grains and grain boundaries>
The rare earth permanent magnet was cut by an arbitrary cross section perpendicular to the compression direction at the time of hot working (an arbitrary cross section in Comparative Example 1 and Comparative Example 3) and specified by performing composition mapping with TEM-EDS. Locations where R and Fe are observed at an atomic ratio of about 5:17 are Nd 5 Fe 17 type crystal particles, and locations where two or more Nd 5 Fe 17 type crystal particles are present are grain boundaries. . Note that the size of the observation region was such that at least 200 crystal grains were observed.

TEM−EDSを用いて断面の組成マッピングを行い、TEM画像中の結晶粒子および粒界等を区別した。   The composition mapping of the cross section was performed using TEM-EDS, and crystal grains and grain boundaries in the TEM image were distinguished.

<R濃縮部面積比率>
組成マッピングにおいて、Rの濃度が結晶粒子よりも高い粒界の部分をR濃縮部とし、断面積を測定した。結果を下表に示す。
<R enrichment area ratio>
In the composition mapping, the portion of the grain boundary where the concentration of R is higher than that of the crystal grains was defined as the R concentration portion, and the cross-sectional area was measured. The results are shown in the table below.

<平均長径、平均短径>
上記の観察領域における全てのNdFe17型結晶粒子の長径および短径の長さを測定した。具体的には、各結晶粒子を長方形で囲んだときの最小長方形(外接長方形)における長い方の辺の長さを長径、短い方の辺の長さを短径とした。そして、長径の頻度分布を確認し、累積頻度10%以上90%以下である結晶粒子における平均長径を算出した。さらに、短径の頻度分布を確認し、累積頻度10%以上90%以下である結晶粒子における平均短径を算出した。また、全ての実施例において、R17型結晶粒子全体に対する長径が300nm超であるR17型結晶粒子の個数割合が60%以上であることを確認した。
<Average major axis and average minor axis>
The major axis and minor axis length of all Nd 5 Fe 17 type crystal particles in the above observation region were measured. Specifically, the length of the longer side in the minimum rectangle (circumscribed rectangle) when each crystal particle is surrounded by a rectangle is defined as the major axis, and the length of the shorter side is defined as the minor axis. Then, the frequency distribution of the major axis was confirmed, and the average major axis of the crystal particles having a cumulative frequency of 10% or more and 90% or less was calculated. Furthermore, the frequency distribution of the minor axis was confirmed, and the average minor axis of the crystal particles having a cumulative frequency of 10% or more and 90% or less was calculated. Further, in all embodiments, it was confirmed that the number ratio of R 5 T 17 type crystal grains major axis to the entire R 5 T 17 type crystal particles is 300nm greater is 60% or more.

<結晶粒子の平均アスペクト比>
上記の観察領域における全てのNdFe17型結晶粒子の長径および短径の長さを測定した。そして、各結晶粒子についてアスペクト比、すなわち(長径の長さ/短径の長さ)を測定した。各結晶粒子のアスペクト比を平均することで、平均アスペクト比を算出した。結果を下表に示す。
<Average aspect ratio of crystal grains>
The major axis and minor axis length of all Nd 5 Fe 17 type crystal particles in the above observation region were measured. Then, the aspect ratio of each crystal particle, that is, (length of major axis / length of minor axis) was measured. The average aspect ratio was calculated by averaging the aspect ratio of each crystal grain. The results are shown in the table below.

<磁気特性、異方性>
磁気特性(残留磁束密度Brおよび保磁力HcJ)は物理特性測定装置(PPMS)を用いて試料振動型磁力計測定(VSM測定)を行うことで測定した。なお、比較例1および比較例3以外の異方性の希土類永久磁石では、BrおよびHcJは熱間加工時の圧縮方向に垂直な方向で測定した。結果を下表に示す。なお、Brは4.5kG以上を良好とし、5.0kG以上をさらに良好とした。HcJは20kOe以上を良好とし、25kOe以上をさらに良好とした。
<Magnetic properties, anisotropy>
Magnetic properties (residual magnetic flux density Br and coercive force HcJ) were measured by performing sample vibration type magnetometer measurement (VSM measurement) using a physical property measuring device (PPMS). For anisotropic rare earth permanent magnets other than Comparative Example 1 and Comparative Example 3, Br and HcJ were measured in a direction perpendicular to the compression direction during hot working. The results are shown in the table below. In addition, Br made 4.5 kG or more favorable, and made 5.0 kG or more still more favorable. HcJ was 20 kOe or more, and 25 kOe or more was even better.

また、異方性の有無を確認し、熱間加工を行わなかった比較例1および比較例3以外の実施例および比較例は全て異方性を有することを確認した。異方性の有無は、熱間加工時の圧縮方向に垂直な方向での磁気特性と熱間加工時の圧縮方向に平行な方向での磁気特性とを比較することで判断した。   Moreover, the presence or absence of anisotropy was confirmed and it confirmed that all Examples and Comparative Examples other than the comparative example 1 and the comparative example 3 which did not perform hot processing have anisotropy. The presence or absence of anisotropy was judged by comparing the magnetic properties in the direction perpendicular to the compression direction during hot working and the magnetic properties in the direction parallel to the compression direction during hot working.

比較例1および比較例3以外の結晶粒子の形状が扁平形状であることは、異方性の希土類永久磁石を熱間加工時の圧縮方向に平行な任意の断面でも切断し、熱間加工時の圧縮方向に垂直な任意の断面および熱間加工時の圧縮方向に平行な任意の断面のそれぞれをTEMで観察した結果より確認した。   The shape of the crystal particles other than Comparative Example 1 and Comparative Example 3 is a flat shape, which means that an anisotropic rare earth permanent magnet can be cut even in any cross section parallel to the compression direction during hot working, Each of an arbitrary cross section perpendicular to the compression direction and an arbitrary cross section parallel to the compression direction during hot working was confirmed from the result of observation by TEM.

Figure 2019207954
Figure 2019207954

NdFe17型結晶粒子の平均長径が300nm超である各実施例は磁気特性が優れていた。特にNdFe17型結晶粒子の平均長径が500nm超である各実施例は残留磁束密度Brが特に優れていた。また、NdFe17型結晶粒子の平均長径が1500nm以下である場合には保磁力HcJが特に優れていた。 Each example in which the average major axis of the Nd 5 Fe 17 type crystal particles is more than 300 nm has excellent magnetic characteristics. In particular, the residual magnetic flux density Br was particularly excellent in each example in which the average major axis of the Nd 5 Fe 17 type crystal particles exceeded 500 nm. In addition, the coercive force HcJ was particularly excellent when the average major axis of the Nd 5 Fe 17 type crystal particles was 1500 nm or less.

これに対し、熱処理時間が合計1時間と短い比較例1および比較例2では、結晶粒子自体の粒成長が不足するため、結晶粒子自体が小さい。そして、熱間加工の有無に関わらずNdFe17型結晶粒子の平均長径が300nm以下である。その結果、比較例1および比較例2は残留磁束密度Brが十分ではなかった。 On the other hand, in Comparative Example 1 and Comparative Example 2 in which the heat treatment time is as short as 1 hour in total, the crystal grains themselves are small because the grain growth of the crystal grains themselves is insufficient. The average major axis of the Nd 5 Fe 17 type crystal grains or without hot working is 300nm or less. As a result, in Comparative Example 1 and Comparative Example 2, the residual magnetic flux density Br was not sufficient.

比較例3と実施例1は熱間加工の有無以外は同条件で実施している。熱間加工を行った結果、平均長径が大きくなり300nmを超えた実施例1は磁気特性が優れた結果となった。これに対し、熱間加工を行わず平均長径が300nm以下であった比較例3は残留磁束密度Brが十分ではなかった。   Comparative Example 3 and Example 1 are carried out under the same conditions except for the presence or absence of hot working. As a result of hot working, Example 1 in which the average major axis increased and exceeded 300 nm resulted in excellent magnetic properties. In contrast, in Comparative Example 3 in which the hot working was not performed and the average major axis was 300 nm or less, the residual magnetic flux density Br was not sufficient.

比較例4は熱間加工温度を上昇させた点以外は実施例1と同条件で実施している。比較例4では、熱間加工温度が高すぎるためにNdFe17型結晶構造を有する結晶粒子の多くが熱間加工中に分解して2−17相や1−3相が生成した。その結果、NdFe17型結晶構造を有する結晶粒子が主相ではなくなり、残留磁束密度Brおよび保磁力HcJが著しく低下した。また、比較例5についても、比較例4と同様、熱間加工温度が高すぎるためにNdFe17型結晶構造を有する結晶粒子の分解が進み、NdFe17型結晶構造を有する結晶粒子が主相ではなくなり、残留磁束密度Brおよび保磁力HcJが著しく低下した。 Comparative Example 4 is performed under the same conditions as in Example 1 except that the hot working temperature is increased. In Comparative Example 4, since the hot working temperature was too high, most of the crystal particles having the Nd 5 Fe 17 type crystal structure were decomposed during hot working to produce 2-17 phase and 1-3 phase. As a result, the crystal grains having the Nd 5 Fe 17 type crystal structure were not the main phase, and the residual magnetic flux density Br and the coercive force HcJ were significantly reduced. The crystal grains in Comparative Example 5, similarly as in Comparative Example 4, the degradation of crystal grains having a Nd 5 Fe 17 type crystal structure for hot working temperature is too high advances have Nd 5 Fe 17 type crystal structure Is no longer the main phase, and the residual magnetic flux density Br and the coercive force HcJ are significantly reduced.

(実験例2)
実験例2では、主相用の急冷薄帯として実施例2で用いた急冷薄帯を準備し、粒界相用の急冷薄帯として(Sm0.8Pr0.270.0Cu30.0合金(原子数比)からなる急冷薄帯を準備した。そして、主相用の急冷薄帯を粗粉砕して得た主相用粗粉末と粒界相用の急冷薄帯を粗粉砕して得た粒界相用粗粉末とを混合した。最終的に得られる磁石組成が下表2に記載の組成となるように主相用粗粉末と粒界相用粗粉末とを適宜混合した。なお、表2に記載の熱処理条件は主相用の急冷薄帯の熱処理条件であり、粒界相用の急冷薄帯は熱処理せずに粗粉砕し、主相用粗粉末と混合した。上記の2合金法で行う点以外は実験例1の実施例2と同条件で異方性の希土類永久磁石を作製した結果を下表2に示す。
(Experimental example 2)
In Experimental Example 2, the quenching ribbon used in Example 2 was prepared as the quenching ribbon for the main phase, and (Sm 0.8 Pr 0.2 ) 70.0 Cu 30 was used as the quenching ribbon for the grain boundary phase. A quenched ribbon made of 0.0 alloy (atomic ratio) was prepared. Then, the coarse powder for main phase obtained by roughly pulverizing the quenched ribbon for main phase and the coarse powder for grain boundary obtained by roughly pulverizing the quenched ribbon for grain boundary were mixed. The main phase coarse powder and the grain boundary phase coarse powder were appropriately mixed so that the finally obtained magnet composition had the composition shown in Table 2 below. The heat treatment conditions shown in Table 2 are the heat treatment conditions for the quenching ribbon for the main phase. The quenching ribbon for the grain boundary phase was coarsely pulverized without heat treatment and mixed with the coarse powder for the main phase. Table 2 below shows the results of manufacturing an anisotropic rare earth permanent magnet under the same conditions as in Example 2 of Experimental Example 1 except that the above two alloy method is used.

Figure 2019207954
Figure 2019207954

表2より、粒界相合金として(Sm0.8Pr0.270.0Cu30.0合金を用いる2合金法にて行った実施例21〜23は1合金法にて行った実施例2と比較して粒界相の面積比率が大きくなり、R濃縮部の面積比率が大きくなった。そして、残留磁束密度Brおよび保磁力HcJが実施例2よりも優れた結果となった。

From Table 2, Examples 21 to 23 performed by the two-alloy method using (Sm 0.8 Pr 0.2 ) 70.0 Cu 30.0 alloy as the grain boundary phase alloy were performed by the one-alloy method. Compared to Example 2, the area ratio of the grain boundary phase was increased, and the area ratio of the R concentrated portion was increased. Further, the residual magnetic flux density Br and the coercive force HcJ were superior to those of Example 2.

Claims (5)

RおよびTを含む希土類永久磁石であって、
RはSmを必須とする希土類元素、TはFe単独またはFeおよびCoであり、
前記希土類永久磁石は、NdFe17型結晶構造を有する結晶粒子を主相として含み、前記結晶粒子の少なくとも一部が扁平な形状を有する扁平粒子であり、
前記結晶粒子の長径の頻度分布を測定した場合に累積頻度10%以上90%以下である結晶粒子における平均長径が300nm超である希土類永久磁石。
A rare earth permanent magnet comprising R and T,
R is a rare earth element essential for Sm, T is Fe alone or Fe and Co,
The rare earth permanent magnet is a flat particle that includes crystal particles having an Nd 5 Fe 17 type crystal structure as a main phase, and at least a part of the crystal particles has a flat shape,
A rare earth permanent magnet having an average major axis of more than 300 nm in crystal grains having a cumulative frequency of not less than 10% and not more than 90% when the major axis frequency distribution of the crystal grains is measured.
前記結晶粒子の平均アスペクト比が1.6以上である請求項1に記載の希土類永久磁石。   The rare earth permanent magnet according to claim 1, wherein an average aspect ratio of the crystal grains is 1.6 or more. RとしてさらにPrおよび/またはNdを含有し、
R全体に対するSmの含有割合が50at%以上99at%以下であり、PrおよびNdの合計含有割合が1at%以上50at%以下である請求項1または2に記載の希土類永久磁石。
R further contains Pr and / or Nd,
3. The rare earth permanent magnet according to claim 1, wherein a content ratio of Sm with respect to the entire R is 50 at% or more and 99 at% or less, and a total content ratio of Pr and Nd is 1 at% or more and 50 at% or less.
前記結晶粒子間の粒界においてR濃縮部が存在し、
任意の断面における前記R濃縮部の面積比率が3%以上20%以下である請求項1〜3のいずれかに記載の希土類永久磁石。
There is an R enriched part at the grain boundary between the crystal grains,
The rare earth permanent magnet according to any one of claims 1 to 3, wherein an area ratio of the R enriched portion in an arbitrary cross section is 3% or more and 20% or less.
さらにCを含有し、Cの含有割合が0at%超15at%以下である請求項1〜4のいずれかに記載の希土類永久磁石。   The rare earth permanent magnet according to any one of claims 1 to 4, further comprising C, wherein the content ratio of C is more than 0 at% and not more than 15 at%.
JP2018102692A 2018-05-29 2018-05-29 Rare earth permanent magnet Active JP7017757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018102692A JP7017757B2 (en) 2018-05-29 2018-05-29 Rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018102692A JP7017757B2 (en) 2018-05-29 2018-05-29 Rare earth permanent magnet

Publications (2)

Publication Number Publication Date
JP2019207954A true JP2019207954A (en) 2019-12-05
JP7017757B2 JP7017757B2 (en) 2022-02-09

Family

ID=68767954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018102692A Active JP7017757B2 (en) 2018-05-29 2018-05-29 Rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JP7017757B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133496A (en) * 2006-11-27 2008-06-12 Chiba Inst Of Technology Samarium-iron based permanent magnet material and method manufacturing the same
JP2016178213A (en) * 2015-03-20 2016-10-06 Tdk株式会社 Permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133496A (en) * 2006-11-27 2008-06-12 Chiba Inst Of Technology Samarium-iron based permanent magnet material and method manufacturing the same
JP2016178213A (en) * 2015-03-20 2016-10-06 Tdk株式会社 Permanent magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
堀田龍、渡辺文也、齋藤哲治: "「急冷凝固法および熱間加工法によるSm5Fe17系磁石の作成」", 希土類, JPN6021051398, 8 May 2018 (2018-05-08), pages 66 - 67, ISSN: 0004675846 *

Also Published As

Publication number Publication date
JP7017757B2 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
TWI673730B (en) R-Fe-B based sintered magnet and manufacturing method thereof
JP6471669B2 (en) Manufacturing method of RTB-based magnet
JP4389427B2 (en) Sintered magnet using alloy powder for rare earth-iron-boron magnet
JP2016178213A (en) Permanent magnet
JP6613730B2 (en) Rare earth magnet manufacturing method
JP2009260290A (en) Method of manufacturing r-fe-b system anisotropic bulk magnet
JP5906876B2 (en) Manufacturing method of RTB-based permanent magnet
CN110246645B (en) Rare earth permanent magnet
JP7358989B2 (en) permanent magnet
US11205532B2 (en) Permanent magnet and permanent magnet powder
CN110024057B (en) Rare earth permanent magnet
JP6691666B2 (en) Method for manufacturing RTB magnet
JP2024020341A (en) Anisotropic rare earth sintered magnet and its manufacturing method
JP2018174314A (en) R-T-B based sintered magnet
JP6919788B2 (en) Rare earth sintered magnet
JP4238999B2 (en) Manufacturing method of rare earth sintered magnet
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2022077979A (en) Manufacturing method of rare earth sintered magnet
JP2019062153A (en) Method for manufacturing r-t-b-based sintered magnet
JPWO2004094090A1 (en) Method for producing rare earth alloy powder and method for producing rare earth sintered magnet
JP4483630B2 (en) Manufacturing method of rare earth sintered magnet
JP2006265609A (en) Raw alloy for r-t-b-based sintered magnet, and method for manufacturing r-t-b-based sintered magnet
JP2018170483A (en) R-t-b based rare earth sintered magnet alloy, and method for manufacturing r-t-b based rare earth sintered magnet
JP7017757B2 (en) Rare earth permanent magnet
JP4650218B2 (en) Method for producing rare earth magnet powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220120

R150 Certificate of patent or registration of utility model

Ref document number: 7017757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150