JP2019207084A - Incineration plant - Google Patents

Incineration plant Download PDF

Info

Publication number
JP2019207084A
JP2019207084A JP2018103386A JP2018103386A JP2019207084A JP 2019207084 A JP2019207084 A JP 2019207084A JP 2018103386 A JP2018103386 A JP 2018103386A JP 2018103386 A JP2018103386 A JP 2018103386A JP 2019207084 A JP2019207084 A JP 2019207084A
Authority
JP
Japan
Prior art keywords
shock wave
biogas
fuel gas
exhaust gas
soot blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018103386A
Other languages
Japanese (ja)
Inventor
充 吉川
Mitsuru Yoshikawa
充 吉川
介斗 森田
Kaito Morita
介斗 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2018103386A priority Critical patent/JP2019207084A/en
Priority to PCT/JP2019/020156 priority patent/WO2019230505A1/en
Priority to RU2020142798A priority patent/RU2749777C1/en
Priority to CN201980036354.2A priority patent/CN112204308A/en
Publication of JP2019207084A publication Critical patent/JP2019207084A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/02Cleaning furnace tubes; Cleaning flues or chimneys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • F28G1/16Non-rotary, e.g. reciprocated, appliances using jets of fluid for removing debris
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G7/00Cleaning by vibration or pressure waves
    • F28G7/005Cleaning by vibration or pressure waves by explosions or detonations; by pressure waves generated by combustion processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Incineration Of Waste (AREA)

Abstract

To provide an incineration plant that can supply fuel gas to a shock wave type soot blower without using a cylinder.SOLUTION: An incineration plant comprises an incinerator for incinerating waste, a boiler including an exhaust gas path through which exhaust gas from the incinerator flows, a shock wave type soot blower for burning mixture gas including fuel gas and oxygen to generate shock waves and releasing the shock waves into the exhaust gas path, a fermentation tank for fermenting the waste to generate biogas, and a supply line for supplying the biogas as the fuel gas from the fermentation tank to the shock wave type soot blower.SELECTED DRAWING: Figure 1

Description

本発明は、焼却炉およびボイラを含む焼却プラントに関する。   The present invention relates to an incineration plant including an incinerator and a boiler.

従来から、ごみや汚泥などの廃棄物を焼却する焼却炉と、この焼却炉から排出される排ガスから熱を回収するためのボイラを含む焼却プラントが知られている。ボイラは、焼却炉からの排ガスが流れる排ガス経路を含み、この排ガス経路の壁面に多数の水管が設けられるとともに、水管の下流側では排ガス経路中に過熱器が配置される。   Conventionally, an incinerator that incinerates wastes such as garbage and sludge and an incineration plant that includes a boiler for recovering heat from exhaust gas discharged from the incinerator are known. The boiler includes an exhaust gas path through which exhaust gas from the incinerator flows. A number of water pipes are provided on the wall surface of the exhaust gas path, and a superheater is disposed in the exhaust gas path on the downstream side of the water pipe.

排ガス経路内の受熱面(例えば、水管や過熱器の表面)には排ガスに含まれるダストが付着するため、受熱面に付着したダストを定期的に除去する必要がある。受熱面に付着したダストを除去するための装置としては、従来では、受熱面に向けて蒸気を噴射する蒸気式スートブロワが用いられていた。近年では、蒸気式スートブロワに代えて、衝撃波式スートブロワを用いることが提案されている(例えば、特許文献1参照)。   Since dust contained in the exhaust gas adheres to the heat receiving surface (for example, the surface of a water pipe or a superheater) in the exhaust gas path, it is necessary to periodically remove the dust attached to the heat receiving surface. As a device for removing dust adhering to the heat receiving surface, conventionally, a steam soot blower that injects steam toward the heat receiving surface has been used. In recent years, it has been proposed to use a shock wave type soot blower instead of a steam type soot blower (see, for example, Patent Document 1).

衝撃波式スートブロワは、燃料ガスおよび酸素を含む混合気を燃焼させて衝撃波を発生させ、この衝撃波を排ガス経路中に放出するものである。この衝撃波の放出により、受熱面からダストが除去される。例えば、燃料ガスはメタンガスである。   The shock wave soot blower burns an air-fuel mixture containing fuel gas and oxygen to generate a shock wave, and releases the shock wave into an exhaust gas path. Dust is removed from the heat receiving surface by the release of the shock wave. For example, the fuel gas is methane gas.

特開2017−20773号公報JP 2017-20773 A

ところで、衝撃波式スートブロワを用いた場合には、衝撃波式スートブロワへ燃料ガスを供給する必要がある。燃料ガスがメタンガスである場合、メタンガスを充填した複数のボンベを焼却プラント内に設置し、これらのボンベからメタンガスを衝撃波式スートブロワへ供給することが考えられる。   By the way, when a shock wave soot blower is used, it is necessary to supply fuel gas to the shock wave soot blower. When the fuel gas is methane gas, it is conceivable to install a plurality of cylinders filled with methane gas in the incineration plant and supply the methane gas from these cylinders to the shock wave soot blower.

しかしながら、メタンガスを充填したボンベを用いた場合には、ボンベ1本当たりの価格が高いばかりでなく、ボンベの交換作業が煩雑である。   However, when a cylinder filled with methane gas is used, not only is the price per cylinder high, but the replacement of the cylinder is complicated.

そこで、本発明は、ボンベを用いずに衝撃波式スートブロワへ燃料ガスを供給することができる焼却プラントを提供することを目的とする。   Therefore, an object of the present invention is to provide an incineration plant capable of supplying fuel gas to a shock wave type soot blower without using a cylinder.

前記課題を解決するために、本発明の焼却プラントは、廃棄物を焼却する焼却炉と、前記焼却炉からの排ガスが流れる排ガス経路を含むボイラと、燃料ガスおよび酸素を含む混合気を燃焼させて衝撃波を発生させ、この衝撃波を前記排ガス経路中に放出する衝撃波式スートブロワと、前記廃棄物を発酵させてバイオガスを生成する発酵槽と、前記発酵槽から前記衝撃波式スートブロワへ前記バイオガスを前記燃料ガスとして供給する供給ラインと、を備える、ことを特徴とする。   In order to solve the above-mentioned problems, an incineration plant of the present invention burns an incinerator for incinerating waste, a boiler including an exhaust gas path through which exhaust gas from the incinerator flows, and a mixture containing fuel gas and oxygen. A shock wave sootblower that generates a shock wave and releases the shock wave into the exhaust gas path, a fermenter that ferments the waste to produce biogas, and the biogas from the fermenter to the shock wave soot blower. And a supply line that supplies the fuel gas.

上記の構成によれば、焼却炉に併設される発酵槽で生成されるバイオガスを衝撃波式スートブロワの燃料ガスとして利用することができる。このため、ボンベを用いずに衝撃波式スートブロワへ燃料ガスを供給することができる。   According to said structure, the biogas produced | generated with the fermenter attached to an incinerator can be utilized as a fuel gas of a shock wave type soot blower. For this reason, fuel gas can be supplied to a shock wave type soot blower without using a cylinder.

上記の焼却プラントは、前記供給ラインに設けられた、前記バイオガスを貯留するタンクと、前記タンクの上流側または下流側で前記供給ラインに設けられた、前記バイオガスからメタン以外の少なくとも1つの成分を除去して前記バイオガスを精製する精製装置と、をさらに備えてもよい。この構成によれば、メタン濃度の高いバイオガスを衝撃波式スートブロワへ供給することができる。特に、精製装置がタンクの上流側に設けられていれば、タンクに貯留されたメタン濃度の高いバイオガスを、電力会社などへ売却することもできる。   The incineration plant includes a tank for storing the biogas provided in the supply line, and at least one of the biogas other than methane provided in the supply line on the upstream side or the downstream side of the tank. And a purification device that purifies the biogas by removing components. According to this configuration, biogas having a high methane concentration can be supplied to the shock wave soot blower. In particular, if the purification apparatus is provided on the upstream side of the tank, the biogas having a high methane concentration stored in the tank can be sold to an electric power company or the like.

本発明によれば、ボンベを用いずに衝撃波式スートブロワへ燃料ガスを供給することができる。   According to the present invention, fuel gas can be supplied to a shock wave soot blower without using a cylinder.

本発明の一実施形態に係る焼却プラントの概略構成図である。It is a schematic structure figure of an incineration plant concerning one embodiment of the present invention. 衝撃波式スートブロワへの燃料ガスおよび酸素を供給するシステムの概略構成図である。It is a schematic block diagram of the system which supplies the fuel gas and oxygen to a shock wave type soot blower.

図1に、本発明の一実施形態に係る焼却プラント1を示す。この焼却プラント1は、ごみや汚泥などの廃棄物を焼却する焼却炉2と、焼却炉2から排出される排ガスから熱を回収するためのボイラ3を含む。   FIG. 1 shows an incineration plant 1 according to an embodiment of the present invention. The incineration plant 1 includes an incinerator 2 that incinerates waste such as garbage and sludge, and a boiler 3 for recovering heat from exhaust gas discharged from the incinerator 2.

本実施形態では、焼却炉2がストーカ式であり、乾燥ストーカ24、燃焼ストーカ25および後燃焼ストーカ26を含む。ただし、焼却炉2は、流動床式であってもよい。   In the present embodiment, the incinerator 2 is a stoker type, and includes a dry stoker 24, a combustion stoker 25, and a post-combustion stoker 26. However, the incinerator 2 may be a fluidized bed type.

具体的に、焼却炉2は、ホッパー21、給じん機22、主燃焼室23および再燃焼室27を含む。上述したストーカ24〜26は主燃焼室23の底面を構成している。ホッパー21には、図略のクレーンにより廃棄物が投入される。給じん機22は、所定のインターバルで間欠的に作動することにより、ホッパー21内の廃棄物を主燃焼室23内に送り込む。   Specifically, the incinerator 2 includes a hopper 21, a dust feeder 22, a main combustion chamber 23, and a recombustion chamber 27. The above-described stokers 24 to 26 constitute the bottom surface of the main combustion chamber 23. Waste is put into the hopper 21 by a crane (not shown). The dust feeder 22 is intermittently operated at a predetermined interval, thereby sending the waste in the hopper 21 into the main combustion chamber 23.

本実施形態では、主燃焼室23が、廃棄物の移動方向と同方向に燃焼ガスが流れる並行流型である。再燃焼室27は、主燃焼室23から流出する燃焼ガスの向きを反転させる。より詳しくは、再燃焼室27は、燃焼ガスの流れ方向において主燃焼室23の下流側端部から主燃焼室23と重なるように斜め上向きに延びている。ただし、主燃焼室23は必ずしも並行流型である必要はなく、主燃焼室23内で燃焼ガスが上向きに流れるように、再燃焼室27が主燃焼室23の中央から上向きに延びてもよい。   In the present embodiment, the main combustion chamber 23 is a parallel flow type in which the combustion gas flows in the same direction as the movement direction of the waste. The recombustion chamber 27 reverses the direction of the combustion gas flowing out from the main combustion chamber 23. More specifically, the recombustion chamber 27 extends obliquely upward so as to overlap the main combustion chamber 23 from the downstream end of the main combustion chamber 23 in the flow direction of the combustion gas. However, the main combustion chamber 23 is not necessarily a parallel flow type, and the recombustion chamber 27 may extend upward from the center of the main combustion chamber 23 so that the combustion gas flows upward in the main combustion chamber 23. .

ボイラ3は、焼却炉2からの排ガスが流れる排ガス経路31を含む。排ガス経路31は、再燃焼室27の上方に配置された放射室(第1煙道)32と、放射室32と上部同士が連通する第2煙道33と、第2煙道33と下部同士が連通する第3煙道34を含む。放射室32および第2煙道33の壁面には多数の水管が設けられており、これらの水管内で発生した水蒸気がボイラドラム35に収集される。ボイラドラム35に収集された水蒸気は、第3煙道34中に配置された過熱器36,37に送られて過熱され、その後に発電機52と連結されたタービン51に送られて発電に利用される。   The boiler 3 includes an exhaust gas path 31 through which exhaust gas from the incinerator 2 flows. The exhaust gas path 31 includes a radiation chamber (first flue) 32 disposed above the recombustion chamber 27, a second flue 33 in which the upper portion communicates with the radiation chamber 32, and a second flue 33 and the lower portion. Includes a third flue 34 in communication. A large number of water pipes are provided on the wall surfaces of the radiation chamber 32 and the second flue 33, and water vapor generated in these water pipes is collected in the boiler drum 35. The steam collected in the boiler drum 35 is sent to superheaters 36 and 37 disposed in the third flue 34 and superheated, and then sent to a turbine 51 connected to a generator 52 for use in power generation. Is done.

ボイラ3には、少なくとも1つの衝撃波式スートブロワ(以下、SPSと略す)4が設けられている。SPS4は、燃料ガスおよび酸素を含む混合気を燃焼させて衝撃波を発生させ、この衝撃波を排ガス経路31中に放出するものである。SPS4は、所定のインターバルで間欠的に作動する。   The boiler 3 is provided with at least one shock wave soot blower (hereinafter abbreviated as SPS) 4. The SPS 4 burns an air-fuel mixture containing fuel gas and oxygen to generate a shock wave, and releases the shock wave into the exhaust gas path 31. The SPS 4 operates intermittently at a predetermined interval.

本実施形態では、2つのSPS4が第2煙道33および第3煙道34にそれぞれ設けられている。第3煙道34に設けられたSPS4は、2つの過熱器36,37の間に位置している。ただし、SPS4の数および位置は、適宜変更可能である。   In the present embodiment, two SPSs 4 are provided in the second flue 33 and the third flue 34, respectively. The SPS 4 provided in the third flue 34 is located between the two superheaters 36 and 37. However, the number and position of the SPS 4 can be changed as appropriate.

より詳しくは、各SPS4は、図2に示すように、図略のピストンを内蔵する本体41およびシリンダ42と、本体41からシリンダ42と反対向きに延び、先端が排ガス経路の壁面を貫通するノズル43と、本体41からノズル43と直交するように延びる一対の燃焼室44を含む。ピストンは、燃焼室44の内部をノズル43の内部から遮断したりノズル43の内部と連通させたりする。   More specifically, as shown in FIG. 2, each SPS 4 includes a main body 41 and a cylinder 42 containing a piston (not shown), a nozzle extending from the main body 41 in the direction opposite to the cylinder 42, and a tip penetrating the wall of the exhaust gas path 43 and a pair of combustion chambers 44 extending from the main body 41 so as to be orthogonal to the nozzle 43. The piston blocks the inside of the combustion chamber 44 from the inside of the nozzle 43 or communicates with the inside of the nozzle 43.

さらに、本体41には、バルブユニット47が取り付けられており、このバルブユニット47に燃料ガス貯留室45および酸素貯留室46が接続されている。バルブユニット47は、燃料ガス貯留室45および酸素貯留室46の内部を、一対の燃焼室44の内部から遮断したり一対の燃焼室44の内部と連通させたりする。燃料ガス貯留室45および酸素貯留室46の内部が一対の燃焼室44の内部と連通すると、燃料ガス貯留室45から燃焼室44へ燃料ガスが供給されるとともに酸素貯留室46から燃焼室44へ酸素が供給され、それらが燃焼室44内で混合される。その後、混合気に点火されて混合気が燃焼されるとともに図略のピストンが燃焼室44の内部をノズル43の内部と連通させ、これにより衝撃波が発生する。   Further, a valve unit 47 is attached to the main body 41, and a fuel gas storage chamber 45 and an oxygen storage chamber 46 are connected to the valve unit 47. The valve unit 47 blocks the inside of the fuel gas storage chamber 45 and the oxygen storage chamber 46 from the inside of the pair of combustion chambers 44 or allows the inside of the pair of combustion chambers 44 to communicate with each other. When the inside of the fuel gas storage chamber 45 and the oxygen storage chamber 46 communicates with the inside of the pair of combustion chambers 44, fuel gas is supplied from the fuel gas storage chamber 45 to the combustion chamber 44 and also from the oxygen storage chamber 46 to the combustion chamber 44. Oxygen is supplied and they are mixed in the combustion chamber 44. Thereafter, the air-fuel mixture is ignited and the air-fuel mixture is combusted, and a piston (not shown) communicates the inside of the combustion chamber 44 with the inside of the nozzle 43, thereby generating a shock wave.

酸素貯留室46は、酸素供給ライン7により複数の酸素ボンベ71と接続されている。なお、図2では、代表として1つのSPS4のみを描いている。酸素供給ライン7には、各酸素ボンベ71の近傍に、酸素ボンベ71の交換時に使用される開閉弁72が設けられている。ただし、酸素貯留室46に代えて空気貯留室が採用され、この空気貯留室に圧縮機から空気が供給されてもよい。図示は省略するが、酸素供給ライン7には酸素ボンベ71から流出した酸素の圧力を所定圧力まで低下させる減圧弁が設けられている。   The oxygen storage chamber 46 is connected to a plurality of oxygen cylinders 71 by the oxygen supply line 7. In FIG. 2, only one SPS 4 is drawn as a representative. In the oxygen supply line 7, an open / close valve 72 used when the oxygen cylinder 71 is replaced is provided in the vicinity of each oxygen cylinder 71. However, an air storage chamber may be employed instead of the oxygen storage chamber 46, and air may be supplied from the compressor to the air storage chamber. Although not shown, the oxygen supply line 7 is provided with a pressure reducing valve that reduces the pressure of oxygen flowing out from the oxygen cylinder 71 to a predetermined pressure.

燃料ガス貯留室45は、図1および図2に示すように、燃料ガス供給ライン6により複数の発酵槽61と接続されている。なお、図1では燃料ガス供給ライン6の上流側部分のみを図示し、燃料ガス供給ライン6の下流側部分は図2に示す。   As shown in FIGS. 1 and 2, the fuel gas storage chamber 45 is connected to a plurality of fermenters 61 by a fuel gas supply line 6. In FIG. 1, only the upstream portion of the fuel gas supply line 6 is shown, and the downstream portion of the fuel gas supply line 6 is shown in FIG.

各発酵槽61は、廃棄物を発酵させてバイオガスを生成する。つまり、燃料ガス供給ライン6は、発酵槽61からSPS4へバイオガスを燃料ガスとして供給する。   Each fermenter 61 ferments waste to produce biogas. That is, the fuel gas supply line 6 supplies biogas from the fermenter 61 to the SPS 4 as fuel gas.

図1および図2に示すように、燃料ガス供給ライン6には、上流側から順に、タンク62、精製装置63および圧縮機64が設けられている。タンク62は、バイオガスを貯留する。精製装置63は、バイオガスからメタン以外の少なくとも1つの成分を除去してバイオガスを精製する。ただし、精製装置63は、タンク62の上流側に配置されてもよい。圧縮機64は、燃料ガスであるバイオガスの圧力を酸素と同程度の圧力まで上昇させる。   As shown in FIGS. 1 and 2, the fuel gas supply line 6 is provided with a tank 62, a purification device 63, and a compressor 64 in order from the upstream side. The tank 62 stores biogas. The purifier 63 purifies the biogas by removing at least one component other than methane from the biogas. However, the purification device 63 may be disposed on the upstream side of the tank 62. The compressor 64 raises the pressure of the biogas that is the fuel gas to a pressure comparable to that of oxygen.

バイオガスは、主成分として、メタン、二酸化炭素および水蒸気を含み、微量成分として、硫化水素、アンモニアおよびシロキサンなどを含む。精製装置63により除去される成分は、微量成分の1つまたはいくつかであることが望ましい。また、精製装置63は、微量成分に加えて二酸化炭素および水蒸気をバイオガスから除去してもよい。   Biogas includes methane, carbon dioxide, and water vapor as main components, and includes hydrogen sulfide, ammonia, siloxane, and the like as trace components. The component removed by the purifier 63 is desirably one or several of the trace components. Moreover, the refiner | purifier 63 may remove a carbon dioxide and water vapor | steam from biogas in addition to a trace component.

以上説明したように、本実施形態の焼却プラント1では、焼却炉2に併設される発酵槽61で生成されるバイオガスをSPS4の燃料ガスとして利用することができる。このため、ボンベを用いずにSPS4へ燃料ガスを供給することができる。   As described above, in the incineration plant 1 of the present embodiment, the biogas generated in the fermenter 61 provided in the incinerator 2 can be used as the fuel gas for the SPS 4. For this reason, fuel gas can be supplied to SPS4, without using a cylinder.

なお、廃棄物がごみである場合には、発酵槽61ではごみ中の有機物が有効に利用される一方で、発酵槽61において大量の残渣が発生する。しかしながら、発酵槽61が焼却炉2に併設されていれば、その残渣を廃棄物として焼却炉2で焼却することができる。換言すれば、本実施形態の構成によれば、SPS4用の燃料ガスをごみから製造する場合の、大量に発生する残渣を何らかの方法で処理しなければならないというデメリットを克服することができる。   When the waste is waste, the fermenter 61 effectively uses organic matter in the waste, while a large amount of residue is generated in the fermenter 61. However, if the fermenter 61 is attached to the incinerator 2, the residue can be incinerated in the incinerator 2 as waste. In other words, according to the configuration of the present embodiment, it is possible to overcome the demerit that a large amount of residue must be processed by some method when the fuel gas for SPS 4 is produced from garbage.

しかも、本実施形態では、燃料ガス供給ライン6に精製装置63が設けられているので、メタン濃度の高いバイオガスをSPS4へ供給することができる。特に、本実施形態とは逆に精製装置63がタンク62の上流側に設けられていれば、タンク62に貯留されたメタン濃度の高いバイオガスを、電力会社などへ売却することもできる。   In addition, in the present embodiment, since the purification device 63 is provided in the fuel gas supply line 6, it is possible to supply biogas having a high methane concentration to the SPS4. In particular, in contrast to the present embodiment, if the refining device 63 is provided on the upstream side of the tank 62, the biogas having a high methane concentration stored in the tank 62 can be sold to an electric power company or the like.

なお、本発明は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。   In addition, this invention is not limited to embodiment mentioned above, A various deformation | transformation is possible in the range which does not deviate from the summary of this invention.

例えば、燃料ガス供給ライン6には精製装置63が設けられていなくてもよい。ただし、この場合には、バイオガス中に含まれる硫化水素やシロキサンなどが配管や弁などを腐食させることがある。これに対し、燃料ガス供給ライン6に精製装置63が設けられていれば、そのような配管や弁などの腐食を抑制することができる。   For example, the refiner 63 may not be provided in the fuel gas supply line 6. In this case, however, hydrogen sulfide, siloxane, etc. contained in the biogas may corrode the piping and valves. On the other hand, if the refining device 63 is provided in the fuel gas supply line 6, corrosion of such pipes and valves can be suppressed.

1 焼却プラント
2 焼却炉
3 ボイラ
31 排ガス経路
4 衝撃波式スートブロワ
6 燃料ガス供給ライン
61 発酵槽
62 タンク
63 精製装置
DESCRIPTION OF SYMBOLS 1 Incineration plant 2 Incinerator 3 Boiler 31 Exhaust gas path 4 Shock wave type soot blower 6 Fuel gas supply line 61 Fermenter 62 Tank 63 Purifier

Claims (2)

廃棄物を焼却する焼却炉と、
前記焼却炉からの排ガスが流れる排ガス経路を含むボイラと、
燃料ガスおよび酸素を含む混合気を燃焼させて衝撃波を発生させ、この衝撃波を前記排ガス経路中に放出する衝撃波式スートブロワと、
前記廃棄物を発酵させてバイオガスを生成する発酵槽と、
前記発酵槽から前記衝撃波式スートブロワへ前記バイオガスを前記燃料ガスとして供給する供給ラインと、
を備える、焼却プラント。
An incinerator to incinerate waste,
A boiler including an exhaust gas path through which exhaust gas from the incinerator flows;
A shock wave soot blower that burns an air-fuel mixture containing fuel gas and oxygen to generate a shock wave, and releases the shock wave into the exhaust gas path;
A fermentor for fermenting the waste to produce biogas;
A supply line for supplying the biogas as the fuel gas from the fermenter to the shock wave soot blower;
An incineration plant.
前記供給ラインに設けられた、前記バイオガスを貯留するタンクと、
前記タンクの上流側または下流側で前記供給ラインに設けられた、前記バイオガスからメタン以外の少なくとも1つの成分を除去して前記バイオガスを精製する精製装置と、をさらに備える、請求項1に記載の焼却プラント。
A tank for storing the biogas provided in the supply line;
The apparatus further comprises a purifier for purifying the biogas by removing at least one component other than methane from the biogas provided in the supply line on the upstream side or the downstream side of the tank. The incineration plant described.
JP2018103386A 2018-05-30 2018-05-30 Incineration plant Pending JP2019207084A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018103386A JP2019207084A (en) 2018-05-30 2018-05-30 Incineration plant
PCT/JP2019/020156 WO2019230505A1 (en) 2018-05-30 2019-05-21 Incineration plant
RU2020142798A RU2749777C1 (en) 2018-05-30 2019-05-21 Incineration plant
CN201980036354.2A CN112204308A (en) 2018-05-30 2019-05-21 Incineration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018103386A JP2019207084A (en) 2018-05-30 2018-05-30 Incineration plant

Publications (1)

Publication Number Publication Date
JP2019207084A true JP2019207084A (en) 2019-12-05

Family

ID=68698590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018103386A Pending JP2019207084A (en) 2018-05-30 2018-05-30 Incineration plant

Country Status (4)

Country Link
JP (1) JP2019207084A (en)
CN (1) CN112204308A (en)
RU (1) RU2749777C1 (en)
WO (1) WO2019230505A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212524A (en) * 2005-02-02 2006-08-17 Mitsubishi Heavy Ind Ltd Composite incineration system and method for waste
JP2008253963A (en) * 2007-04-09 2008-10-23 Kawasaki Plant Systems Ltd Treating method and treatment facility of waste and sewage
US20110168275A1 (en) * 2008-09-16 2011-07-14 H.Z. Management And Engineering Supervision Ltd. Gas impulse blower

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265858A (en) * 1999-03-11 2000-09-26 Ebara Corp Power generating facility by waste
CN2774661Y (en) * 2005-03-03 2006-04-26 李志强 Gas impact wave ash blower
CN101468789B (en) * 2008-08-03 2011-05-04 周开根 Domestic garbage transformation technique, system and apparatus without conventional fuel for supporting combustion
CN101900343B (en) * 2009-05-27 2011-10-26 周慧民 Boiler pulse soot-blowing method and device thereof
CA2924760A1 (en) * 2013-09-25 2015-05-21 Linde Aktiengesellschaft Methods for treating waste gas streams from incineration processes
CN103471116A (en) * 2013-10-09 2013-12-25 潍坊有利客电力机械科技有限公司 Gas supplying subsystem and gas supplying system for heat explosion shock wave soot blower

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212524A (en) * 2005-02-02 2006-08-17 Mitsubishi Heavy Ind Ltd Composite incineration system and method for waste
JP2008253963A (en) * 2007-04-09 2008-10-23 Kawasaki Plant Systems Ltd Treating method and treatment facility of waste and sewage
US20110168275A1 (en) * 2008-09-16 2011-07-14 H.Z. Management And Engineering Supervision Ltd. Gas impulse blower

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHRISTIAN STEINER, MANFRED NAPP AND HELEN GABLINGER: "Effizientere Heizflaechenabreinigung durch Explosionsgeneratoren", ENERGIE AUS ABFALL, vol. 9, JPN6022046757, 2012, DE, pages 357 - 370, ISSN: 0005069817 *

Also Published As

Publication number Publication date
CN112204308A (en) 2021-01-08
RU2749777C1 (en) 2021-06-16
WO2019230505A1 (en) 2019-12-05

Similar Documents

Publication Publication Date Title
Lombardi et al. A review of technologies and performances of thermal treatment systems for energy recovery from waste
JP2017089916A (en) Waste incineration and hydrogen production device and method
CN103958968A (en) Combustion improvement method for incinerator in complex facility, and complex facility
CN108613191A (en) A kind of energy utilization system that waste incinerator steam is coupled with coal unit
CN104197340B (en) A kind of incinerating and treating device processing BDO and IPA waste liquid waste gas and method
WO2019230505A1 (en) Incineration plant
CN102374538A (en) Garbage-incinerating circulated power-generating system
CN208418740U (en) A kind of energy utilization system that waste incinerator steam is coupled with coal unit high pressure water supply system
JP2006275328A (en) Waste treatment device and method
CN102454997A (en) High-thermal-cracking-rate burning processing and secondary pollutant eliminating method of medical wastes
CN211650251U (en) Hydrogen refuse incinerator
JP2007002825A (en) Waste power generation method
JP2019105429A (en) Boiler system
CN209909922U (en) Organic solid waste pyrolysis gas treatment device
JP2004089773A (en) Waste treatment facility
CN208418741U (en) A kind of energy utilization system that waste incinerator steam is coupled with coal unit reheating vapour system
CN102275912A (en) Steam self-sufficient device of saddle activation furnace
CN112696682A (en) Closed integrated medical waste gasification system and method
JPH04313604A (en) Method for raising temperature of steam from boiler in waste-incineration plant
JP2001107707A (en) Digestive gas combustion treatment system
CN219828847U (en) Heat recovery equipment of sludge incinerator
KR20200067700A (en) A torch system that generates thermal energy by generating plasma gas by thermally decomposing and thermally dissociating two or more types of mixed organic materials
CN110066690A (en) A kind of system and method for thermal power plant slightly burnt steam pyrolysis coal gas
JPH11200882A (en) Sludge power generation equipment
TWI642877B (en) Procede et installation de valorisation energetique de dechets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230530