JP2019207048A - Waste incinerator - Google Patents

Waste incinerator Download PDF

Info

Publication number
JP2019207048A
JP2019207048A JP2018101737A JP2018101737A JP2019207048A JP 2019207048 A JP2019207048 A JP 2019207048A JP 2018101737 A JP2018101737 A JP 2018101737A JP 2018101737 A JP2018101737 A JP 2018101737A JP 2019207048 A JP2019207048 A JP 2019207048A
Authority
JP
Japan
Prior art keywords
sludge
waste
combustion
stoker
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018101737A
Other languages
Japanese (ja)
Other versions
JP6779255B2 (en
Inventor
宗親 井藤
Munechika Ito
宗親 井藤
増田 孝弘
Takahiro Masuda
孝弘 増田
典生 前田
Norio Maeda
典生 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2018101737A priority Critical patent/JP6779255B2/en
Publication of JP2019207048A publication Critical patent/JP2019207048A/en
Application granted granted Critical
Publication of JP6779255B2 publication Critical patent/JP6779255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a waste incinerator enabling efficient and stable incineration when sewage sludge including large amount of moisture and difficult to burn and waste are mixed and burned.SOLUTION: A waste incinerator includes: a stoker type incinerator 20 having a dust feed device 4, a waste heat boiler 5, a moisture concentration detector 11 for detecting a moisture concentration in flue gas and an oxygen concentration detector 12 for detecting an oxygen concentration in flue gas; a sludge feed device 4 for supplying sludge to the stoker type incinerator 20; and a calculation control section 9 for controlling combustion. The calculation control section 9 calculates evaporation amount in the waste heat boiler 5 from the moisture concentration detected by the moisture concentration detector 11 and the oxygen concentration detected by the oxygen concentration detector 12, and controls dust feed speed of the dust feed device 4 and sludge supply speed of the sludge feed device 4 on the basis of the calculated value of the evaporation amount separately.SELECTED DRAWING: Figure 1

Description

本発明は、廃棄物焼却炉に係り、特に、下水汚泥をごみに混ぜて燃焼させるのに適した廃棄物焼却炉に関する。   The present invention relates to a waste incinerator, and more particularly to a waste incinerator suitable for mixing sewage sludge with garbage and burning it.

近年、ごみ処理施設のニーズの多様化により、廃棄物焼却炉で下水汚泥をごみと混燃して焼却処理するニーズが増えつつあり、焼却炉のごみシュート部或いは燃焼室に下水汚泥を供給し、ごみに汚泥を混ぜて焼却炉内で焼却処理するごみ焼却炉が知られている(例えば、特許文献1〜3等)。   In recent years, with the diversification of needs of waste treatment facilities, there is an increasing need to incinerate sewage sludge with waste in a waste incinerator and supply sewage sludge to the waste chute or combustion chamber of the incinerator. There are known waste incinerators in which sludge is mixed with waste and incinerated in an incinerator (for example, Patent Documents 1 to 3).

一般に下水汚泥は、含水率98〜99%から、重力濃縮や機械濃縮(加圧浮上・遠心濃縮)等の方法を用いて含水率95〜97%に減量化され、さらに遠心脱水機やベルトブレス脱水機などにより含水率76〜80%に脱水されて、いわゆる脱水汚泥とされてから、焼却処理されているが、含水率が高く、発熱量が1000〜2000kJ/kgと低く自燃しないため、下水処理場に設置されている焼却炉にそのまま投入して焼却する場合は、天然ガスや油等の補助燃料を使用して焼却処理する必要がある。   In general, sewage sludge is reduced from a moisture content of 98-99% to a moisture content of 95-97% using methods such as gravity concentration and mechanical concentration (pressure flotation and centrifugal concentration). It is dewatered to a moisture content of 76-80% by a dehydrator or the like, so-called dehydrated sludge, and then incinerated. However, the moisture content is high, the calorific value is 1000-2000 kJ / kg, and it does not self-combust. When incineration is carried out as it is in an incinerator installed in a treatment plant, it is necessary to incinerate using auxiliary fuel such as natural gas or oil.

また、ごみと混燃する場合、脱水汚泥は、粘土質のため塊になりやすく、ごみホッパー内に押し込むとごみホッパー内で詰まってしまう恐れがあり、また、大きな塊のまま焼却炉に投入されると、その塊が完全に燃焼せず、未燃焼部分を残したまま、灰とともに炉外へ排出されてしまうなどの問題があった。このため、脱水汚泥をごみに混ぜて混焼する場合は、通常、ごみの重量の10%以下とする必要があった。   In addition, when mixed with waste, dewatered sludge tends to be agglomerated due to its clay, and if it is pushed into the waste hopper, it may become clogged in the waste hopper. Then, there was a problem that the lump was not completely burned and was discharged out of the furnace together with the ash while leaving an unburned portion. For this reason, when dehydrated sludge is mixed and burned together with the waste, it is usually required to be 10% or less of the weight of the waste.

補助燃料を使用せず下水汚泥をごみと混ぜて焼却するには、汚泥乾燥機を用いて脱水汚泥を更に乾燥させて含水率40%前後のいわゆる乾燥汚泥とする必要があった。   In order to mix and incinerate sewage sludge with waste without using auxiliary fuel, it was necessary to further dry the dewatered sludge using a sludge dryer to obtain a so-called dry sludge having a water content of about 40%.

特開昭57−95517号公報JP-A-57-95517 特開平1−305214号公報JP-A-1-305214 特開昭57−182009号公報JP 57-182009 A

ごみ焼却施設は、ダイオキシン類やCO、NOxの発生を抑制し、環境汚染を防止するとともに、近年では熱回収の高効率化などが求められており、ごみと下水汚泥を混合して焼却する場合でも、高い安定燃焼性能が求められている。   Waste incineration facilities suppress the generation of dioxins, CO, and NOx, prevent environmental pollution, and in recent years there has been a demand for higher efficiency in heat recovery. Incineration of waste and sewage sludge However, high stable combustion performance is required.

しかしながら、ごみは、水分が多く燃えにくい生ごみ等のごみとプラスチックが多く燃えやすいごみとが混在し、また経時的にそれらのごみが変動しながら焼却炉に供給されるため、安定燃焼が難しく、その上、焼却対象として下水汚泥も加えると、さらに安定燃焼が困難となる。   However, it is difficult to achieve stable combustion because garbage, such as raw garbage with a lot of moisture and difficult to burn, is mixed with garbage that has a lot of plastic and easily burns. In addition, when sewage sludge is added as an incinerator, stable combustion becomes more difficult.

また、補助燃料を使用して焼却処理する場合は補助燃料のコストが嵩み、汚泥乾燥機を使用する場合は、汚泥乾燥機自体のコストに加えて汚泥乾燥機のランニングコストが嵩み、非効率となる。   In addition, incineration using auxiliary fuel increases the cost of the auxiliary fuel, and when using a sludge dryer, the running cost of the sludge dryer increases in addition to the cost of the sludge dryer itself. It becomes efficiency.

そこで本発明は、水分が多く燃焼しにくい下水汚泥をごみと混燃する際に効率的に安定して焼却することができる廃棄物焼却炉を提供することを主たる目的とする。   Accordingly, the main object of the present invention is to provide a waste incinerator that can efficiently and stably incinerate sewage sludge, which has a high moisture content and is difficult to burn, with waste.

上記目的を達成するため、本発明に係る廃棄物焼却炉の第1の態様は、炉本体に接続されたホッパー内の焼却対象物を前記炉本体内に供給する給じん装置、前記炉本体内で発生する燃焼排ガスから熱回収する廃熱ボイラ、燃焼排ガス中の水分濃度を検出する水分濃度検出器、及び、燃焼排ガス中の酸素濃度を検出する酸素濃度検出器を有するストーカ式焼却炉と、前記ストーカ式焼却炉に汚泥を供給する汚泥供給装置と、燃焼を制御する演算制御部と、を備え、前記演算制御部は、前記水分濃度検出器により検出された水分濃度と、前記酸素濃度検出器により検出された酸素濃度とから、前記廃熱ボイラの蒸発量を演算し、蒸発量の演算値に基づいて、前記給じん装置の給じん速度と前記汚泥供給装置の汚泥供給速度とを別々に制御する。   In order to achieve the above object, a first aspect of a waste incinerator according to the present invention is a dust supply device for supplying an incineration object in a hopper connected to a furnace main body into the furnace main body, in the furnace main body. A waste heat boiler that recovers heat from the combustion exhaust gas generated in the above, a moisture concentration detector that detects the moisture concentration in the combustion exhaust gas, and a stoker-type incinerator having an oxygen concentration detector that detects the oxygen concentration in the combustion exhaust gas, A sludge supply device for supplying sludge to the stoker-type incinerator, and a calculation control unit for controlling combustion, wherein the calculation control unit detects the water concentration detected by the water concentration detector and the oxygen concentration detection The amount of evaporation of the waste heat boiler is calculated from the oxygen concentration detected by the vessel, and based on the calculated value of the amount of evaporation, the feed rate of the feed device and the sludge feed rate of the sludge feed device are separated. To control.

また、本発明に係る廃棄物焼却炉の第2の態様は、上記第1の態様において、前記炉本体内に、乾燥ストーカ、燃焼ストーカ、及び後燃焼ストーカを有し、前記汚泥供給装置が、前記乾燥ストーカの上流側位置の鉛直上方に配設された汚泥供給口を備える。   Further, a second aspect of the waste incinerator according to the present invention is the first aspect, wherein the furnace main body includes a dry stoker, a combustion stoker, and a post-combustion stoker, and the sludge supply device includes: A sludge supply port is provided vertically above the upstream position of the dry stoker.

本発明に係る廃棄物焼却炉の第3の態様は、上記第1の態様において、前記演算制御部が、前記汚泥供給装置の汚泥供給速度を制御することにより、燃焼排ガスの水分濃度を制御する。   According to a third aspect of the waste incinerator according to the present invention, in the first aspect, the arithmetic control unit controls the moisture concentration of the combustion exhaust gas by controlling the sludge supply speed of the sludge supply device. .

本発明に係る廃棄物焼却炉の第4の態様は、上記第3の態様において、前記演算制御部は、前記水分濃度検出器により検出された水分濃度の変動を減少させるように前記汚泥供給装置の汚泥供給速度を調節する。   According to a fourth aspect of the waste incinerator according to the present invention, in the third aspect, the calculation control unit is configured to reduce the fluctuation of the moisture concentration detected by the moisture concentration detector. Adjust the sludge supply rate.

本明細書において、「ごみ」は「汚泥」を含まない用語として用いている。具体的には、「ごみ」は、一般廃棄物(家庭系ごみ及び事業系ごみ)のことであり、「汚泥」は、排水処理や下水処理の過程で出てくる泥状の物質で有機物と無機物の集合体のことである。下水汚泥は、主に下水処理過程で使用された微生物の死骸の集合体である。このとこは特許請求の範囲においても同様である。   In this specification, “garbage” is used as a term not including “sludge”. Specifically, “garbage” is general waste (household waste and business waste), and “sludge” is a muddy substance that comes out in the process of wastewater treatment and sewage treatment, and organic matter. It is an aggregate of inorganic substances. Sewage sludge is a collection of dead bodies of microorganisms used mainly in the sewage treatment process. The same applies to the claims.

本発明によれば、給じん速度と汚泥供給速度とを別々に制御することで、ごみと汚泥の混合物から発生する水分を迅速に調整することができる。その結果、水分の多い下水汚泥をごみと効率良く安定燃焼させることができる。   According to the present invention, moisture generated from the mixture of waste and sludge can be quickly adjusted by separately controlling the feed rate and the sludge supply rate. As a result, sewage sludge with a high water content can be efficiently and stably combusted with waste.

本発明に係る廃棄物焼却炉の一実施形態を示す概略構成図である。It is a schematic structure figure showing one embodiment of a waste incinerator concerning the present invention. ごみと汚泥の水分量の経時変化を模式的に示すグラフである。It is a graph which shows typically a time-dependent change of the moisture content of garbage and sludge.

本発明に係る廃棄物焼却炉の実施形態について、以下に図1〜図2を参照して説明する。   Embodiments of the waste incinerator according to the present invention will be described below with reference to FIGS.

廃棄物焼却炉1は、炉本体2、炉本体2に接続されたホッパー3、ホッパー3内の焼却対象物を炉本体2内に供給する給じん装置4、炉本体2内で発生する燃焼排ガスから熱回収する廃熱ボイラ5、炉本体2内に燃焼用空気を供給する燃焼用空気供給装置6、主灰シュート7等を有するストーカ式焼却炉20と、ストーカ式焼却炉20に汚泥を供給する汚泥供給装置8と、燃焼を制御する演算制御部9と、を備えている。   The waste incinerator 1 includes a furnace body 2, a hopper 3 connected to the furnace body 2, a dust supply device 4 for supplying the incineration object in the hopper 3 into the furnace body 2, and combustion exhaust gas generated in the furnace body 2 Waste heat boiler 5 for recovering heat from the furnace, a combustion air supply device 6 for supplying combustion air into the furnace body 2, a stalker-type incinerator 20 having a main ash chute 7 and the like, and supplying sludge to the stalker-type incinerator 20 The sludge supply device 8 that performs the operation and the arithmetic control unit 9 that controls the combustion are provided.

炉本体2内にストーカ10が設けられている。ストーカ10は、上流側から下流側にかけて、乾燥ストーカ10c、燃焼ストーカ10d、後燃焼ストーカ10eで構成されている。ストーカ10は、ごみ送り方向(図1の左側から右側へ向かう方向)に、可動火格子10aと固定火格子10bが交互に階段状に配列された階段式ストーカである。   A stoker 10 is provided in the furnace body 2. The stalker 10 includes a dry stalker 10c, a combustion stalker 10d, and a post-combustion stalker 10e from the upstream side to the downstream side. The stalker 10 is a stepped stalker in which the movable grate 10a and the fixed grate 10b are alternately arranged in a staircase pattern in the garbage feed direction (the direction from the left side to the right side in FIG. 1).

油圧シリンダ等の油圧機器で構成されるストーカ駆動装置10f、10g、10hによって、乾燥ストーカ10c、燃焼ストーカ10d、及び後燃焼ストーカ10eの其々の可動火格子10aを往復動させることにより、ごみを攪拌しながら上流側から下流側へ移送する。可動火格子10aが往復動する速度、即ちストーカ速度は、演算制御部9により制御され得る。演算制御部9は、制御部、演算部、記憶部、インターフェース等を備えている。   By reciprocating the movable grate 10a of the dry stalker 10c, the combustion stalker 10d, and the post-combustion stalker 10e by the stalker driving devices 10f, 10g, and 10h configured by hydraulic equipment such as a hydraulic cylinder, garbage is regenerated. Transfer from the upstream side to the downstream side while stirring. The speed at which the movable grate 10 a reciprocates, that is, the stalker speed, can be controlled by the arithmetic control unit 9. The calculation control unit 9 includes a control unit, a calculation unit, a storage unit, an interface, and the like.

図示例の給じん装置4は、プッシャー4aの往復動により、ホッパー3内のごみを焼却炉内に押し込むプッシャー方式である。プッシャー4aの往復動速度、即ち、給じん速度が演算制御部9によって制御され、ホッパー3から炉本体2内に供給されるごみの供給量が制御される。プッシャー4aは、油圧シリンダ等のプッシャー駆動装置4bによって往復動する。   The dust supply device 4 in the illustrated example is a pusher type in which the dust in the hopper 3 is pushed into the incinerator by the reciprocating motion of the pusher 4a. The reciprocating speed of the pusher 4a, that is, the feeding speed is controlled by the arithmetic control unit 9, and the amount of dust supplied from the hopper 3 into the furnace body 2 is controlled. The pusher 4a reciprocates by a pusher drive device 4b such as a hydraulic cylinder.

燃焼用空気供給装置6は、燃焼に必要な空気、即ち燃焼用空気を炉内に送り込む装置であり、押込送風機6a、空気予熱器6b、空気ダクト6c、ダンパ6d等によって構成されている。燃焼用空気は、ストーカ10の下から送られる1次空気と、燃焼室上部に送られる2次空気とに分けられる。燃焼用空気供給装置6のダンパ6dの制御又は押込送風機6aの電動機の回転数が演算制御部9によって制御され、燃焼用空気量が制御される。   The combustion air supply device 6 is a device that feeds air necessary for combustion, that is, combustion air, into the furnace, and includes a pusher fan 6a, an air preheater 6b, an air duct 6c, a damper 6d, and the like. The combustion air is divided into primary air sent from under the stoker 10 and secondary air sent to the upper part of the combustion chamber. The control of the damper 6d of the combustion air supply device 6 or the rotational speed of the electric motor of the forced air blower 6a is controlled by the arithmetic control unit 9, and the amount of combustion air is controlled.

汚泥供給装置8は、例えば、一軸ねじポンプやピストンポンプ等の容積移動型ポンプや、スクリューフィーダー等を備えることができ、それらを駆動する駆動モータの回転数が演算制御部9によって制御され、汚泥供給量、汚泥供給速度が制御される。   The sludge supply device 8 can include, for example, a displacement pump such as a uniaxial screw pump or a piston pump, a screw feeder, and the like, and the number of rotations of a drive motor that drives them is controlled by the arithmetic control unit 9, Supply amount and sludge supply speed are controlled.

汚泥供給装置8は、乾燥ストーカ10cの上流側位置の鉛直上方に配設された汚泥供給口8aを備える。汚泥供給口8aは、図示例では炉本体2の上部壁に開口しているが、例えば、炉本体2の側壁部から汚泥供給管8bを挿通して所定位置に汚泥供給口8aを配置することもできる。   The sludge supply device 8 includes a sludge supply port 8a disposed vertically above the upstream position of the dry stoker 10c. The sludge supply port 8a is opened in the upper wall of the furnace body 2 in the illustrated example. For example, the sludge supply port 8a is disposed at a predetermined position by inserting the sludge supply pipe 8b from the side wall of the furnace body 2. You can also.

汚泥供給口8aは、乾燥ストーカ10cの幅方向(図1の奥行き方向)に複数個配置することができ、その配置間隔は例えば0.5〜1.5m間隔とすることが、汚泥を炉本体2の幅方向に均等に乾燥させるために好ましい。   A plurality of the sludge supply ports 8a can be arranged in the width direction (the depth direction in FIG. 1) of the dry stoker 10c, and the arrangement interval thereof is, for example, 0.5 to 1.5 m. It is preferable for drying evenly in the width direction of 2.

汚泥供給口8aから炉本体2内に供給された汚泥Sは、乾燥ストーカ10c上のごみGの上に落下し、乾燥ストーカ10c上のごみGの上で、ごみ燃焼の火炎に下から煽られるとともに、燃焼ストーカ10d上の火炎からの輻射熱を受け、乾燥が促進される。乾燥ストーカ10c上で乾燥させられた汚泥Sは、燃焼ストーカ10d上でごみGとともに燃焼させられる。   The sludge S supplied into the furnace body 2 from the sludge supply port 8a falls on the waste G on the dry stalker 10c, and is blown from below by the flame of waste combustion on the waste G on the dry stalker 10c. At the same time, the radiant heat from the flame on the combustion stoker 10d is received and drying is accelerated. The sludge S dried on the dry stoker 10c is burned together with the waste G on the combustion stoker 10d.

演算制御部9は、設定された目標焼却量や目標蒸発量に応じて、給じん速度、ストーカ速度、燃焼用空気量、汚泥供給速度を制御する。目標焼却量は、ごみと汚泥の合計焼却量と汚泥の混燃比率として設定されたり、ごみと汚泥の其々について設定される。安定した余熱利用のための制御目標として、廃熱ボイラ5の蒸発量が目標蒸発量として用いられる。制御には、シーケンス制御やPID制御が用いられるほか、ファジイ制御システムや自己回帰モデル制御システム等を利用した自動燃焼制御(ACC)が用いられることもある。   The arithmetic control unit 9 controls the dust supply speed, the stoker speed, the combustion air amount, and the sludge supply speed according to the set target incineration amount and target evaporation amount. The target incineration amount is set as the total incineration amount of waste and sludge and the mixed fuel ratio of sludge, or is set for each of waste and sludge. As a control target for stable use of residual heat, the evaporation amount of the waste heat boiler 5 is used as the target evaporation amount. For the control, sequence control or PID control is used, and automatic combustion control (ACC) using a fuzzy control system, an autoregressive model control system, or the like may be used.

廃熱ボイラ5の蒸発量は、差圧式流量計等の蒸発量計測器によって実測する蒸発量実測方法と、燃焼排ガス中の成分を測定して成分濃度から演算する蒸発量演算方法が知られている。本発明では、蒸発量演算方法が利用される。蒸発量演算方法は、例えば特許5996762号明細書に開示されているため、計算式等に関する詳細な説明は省略する。   The evaporation amount of the waste heat boiler 5 is known by an evaporation amount actual measurement method that is actually measured by an evaporation amount measuring device such as a differential pressure type flow meter, and an evaporation amount calculation method that measures a component in combustion exhaust gas and calculates it from the component concentration. Yes. In the present invention, an evaporation amount calculation method is used. Since the evaporation amount calculation method is disclosed in, for example, Japanese Patent No. 5996762, detailed description regarding the calculation formula and the like is omitted.

蒸発量実測方法では燃焼排ガスと缶水との熱交換により発生する蒸気流量を測定するのに対し、蒸気量演算方法は、燃焼排ガス中の水分濃度と酸素濃度から直ちに廃熱ボイラ5の蒸発量を演算するため、蒸気量実測方法より早く廃熱ボイラ5の蒸発量を得ることができる。特に、燃焼排ガス中の水分は、主として乾燥ストーカ10c上で発生するため、早い段階で、ごみ質、即ち焼却対象物中の水分に関する情報が検出され得る。   The evaporation amount measurement method measures the flow rate of steam generated by heat exchange between combustion exhaust gas and can water, whereas the steam amount calculation method immediately determines the evaporation amount of the waste heat boiler 5 from the moisture concentration and oxygen concentration in the combustion exhaust gas. Therefore, the evaporation amount of the waste heat boiler 5 can be obtained earlier than the steam amount measurement method. In particular, since moisture in the combustion exhaust gas is mainly generated on the dry stoker 10c, information on the waste quality, that is, the moisture in the incineration object can be detected at an early stage.

燃焼排ガス中の水分濃度及び酸素濃度をリアルタイムで測定するための水分濃度検出器11及び酸素濃度検出器12が、燃焼排ガス通路に設置されている。水分濃度検出器11及び酸素濃度検出器12の測定データは、演算制御部9に送られる。   A moisture concentration detector 11 and an oxygen concentration detector 12 for measuring the moisture concentration and oxygen concentration in the combustion exhaust gas in real time are installed in the combustion exhaust gas passage. The measurement data of the moisture concentration detector 11 and the oxygen concentration detector 12 are sent to the arithmetic control unit 9.

演算制御部9は、測定した水分濃度及び酸素濃度からストーカ10上の燃焼ごみの発熱量を演算し、発熱量の演算値を基に廃熱ボイラ5の蒸発量を演算する。演算制御部9は、廃熱ボイラ5の蒸発量の演算値が制御目標である目標蒸発量となるように、給じん装置4の給じん速度、燃焼用空気供給装置6の燃焼用空気量、及び汚泥供給装置8の汚泥供給速度の其々を制御するとともに、目標焼却量となるように、給じん装置4の給じん速度、及び汚泥供給装置8の汚泥供給速度の各々を制御することにより、燃焼を制御する。   The calculation control unit 9 calculates the calorific value of the combustion waste on the stoker 10 from the measured water concentration and oxygen concentration, and calculates the evaporation amount of the waste heat boiler 5 based on the calorific value calculation value. The calculation control unit 9 is configured so that the calculation value of the evaporation amount of the waste heat boiler 5 becomes a target evaporation amount that is a control target, the supply speed of the dust supply device 4, the combustion air amount of the combustion air supply device 6, And by controlling each of the sludge supply speed of the sludge supply device 8 and the sludge supply speed of the sludge supply device 8 so as to achieve the target incineration amount. Control the combustion.

ごみは、燃えやすいごみ(プラスチック等の乾燥したごみ)と燃えにくいごみ(水分の多いごみ)とが混在するとともに、燃えやすいごみと燃えにくいごみの比率(ごみ質)が経時的に変化することにより、燃焼が変動する。燃焼の変動によりボイラの蒸発量が大きく変動する。燃焼の変動を抑えるために、廃熱ボイラ5の蒸発量の演算値を基に、給じん速度や燃焼用空気量が調節され得る。給じん速度を調節することによりごみの供給量が調節され、それに応じた燃焼用空気量に調整することで、廃熱ボイラ5の蒸発量を目標蒸発量に近付けことができる。   Garbage is a mixture of flammable garbage (dry garbage such as plastic) and non-flammable garbage (waste with a lot of moisture), and the ratio of flammable garbage to non-flammable garbage (garbage quality) changes over time. Due to this, the combustion varies. The amount of boiler evaporation varies greatly due to fluctuations in combustion. In order to suppress fluctuations in combustion, the feed rate and the combustion air amount can be adjusted based on the calculated value of the evaporation amount of the waste heat boiler 5. By adjusting the dust supply speed, the amount of dust supply is adjusted, and by adjusting the amount of combustion air corresponding thereto, the evaporation amount of the waste heat boiler 5 can be brought close to the target evaporation amount.

廃熱ボイラ5の蒸発量は、ごみ供給量とごみ質とに依存し、ごみの供給量が減れば廃熱ボイラ5の蒸発量も減り、ごみ質が低下(含水率が増加)すれば廃熱ボイラ5の蒸発量は減る。ごみ質はごみの含水率に依存するため、ごみの含水率が変動すると廃熱ボイラ5の蒸発量も変動する。   The amount of evaporation of the waste heat boiler 5 depends on the amount of waste supply and the quality of the waste. If the amount of waste supply decreases, the amount of evaporation of the waste heat boiler 5 also decreases, and if the waste quality decreases (the moisture content increases), it is discarded. The amount of evaporation of the heat boiler 5 is reduced. Since the waste quality depends on the moisture content of the waste, the amount of evaporation of the waste heat boiler 5 also varies when the moisture content of the waste varies.

給じん速度の制御では、ごみ供給量を制御することによって廃熱ボイラ5の蒸発量が制御されるが、ごみ質を制御することができない。そのため、給じん速度の制御のみでは、ごみ質の経時的変化による廃熱ボイラ5の蒸発量の変動を抑えることは困難である。   In the control of the dust feeding speed, the amount of evaporation of the waste heat boiler 5 is controlled by controlling the amount of dust supply, but the quality of dust cannot be controlled. For this reason, it is difficult to suppress fluctuations in the amount of evaporation of the waste heat boiler 5 due to temporal changes in the dust quality only by controlling the feed rate.

一方、下水処理場で処理された汚泥は、含水率がほぼ一定である。そのため汚泥の供給量が増えれば、炉内に供給される水分が増えることになり、燃焼によって発生する燃焼排ガス中の水分も増えることになる。従って、汚泥供給装置8の汚泥供給速度を制御すれば、炉本体2内で汚泥から蒸発する水分の濃度を制御することができる。   On the other hand, the sludge treated at the sewage treatment plant has a substantially constant water content. Therefore, if the supply amount of sludge increases, the moisture supplied into the furnace increases, and the moisture in the combustion exhaust gas generated by combustion also increases. Therefore, if the sludge supply speed of the sludge supply device 8 is controlled, the concentration of water evaporated from the sludge in the furnace body 2 can be controlled.

含水率が変動するごみに、含水率がほぼ一定の汚泥の混ぜる量を調節することで、ごみと汚泥の混合物の含水率の変動を減少させることができる。すなわち、ごみの含水率が径時的に変化しても、汚泥供給量(汚泥供給速度)を調整することにより、ごみと汚泥の混合物の含水率を安定した含水率に制御することができ、その結果、燃焼を安定させ、廃熱ボイラ5の蒸発量を安定させることができる。   By adjusting the amount of sludge with a substantially constant moisture content to the waste with varying moisture content, fluctuations in the moisture content of the mixture of waste and sludge can be reduced. That is, even if the moisture content of the waste changes with time, the moisture content of the mixture of waste and sludge can be controlled to a stable moisture content by adjusting the sludge supply rate (sludge feed rate). As a result, combustion can be stabilized and the evaporation amount of the waste heat boiler 5 can be stabilized.

従って、ごみの含水率の経時的変化による燃焼ガス中の水分濃度の変動を減少させるように汚泥供給速度を調節することにより、燃焼の変動をいっそう抑制することが可能となり、廃熱ボイラ5のいっそう安定した蒸発量が得られる。   Therefore, by adjusting the sludge supply speed so as to reduce the fluctuation of the moisture concentration in the combustion gas due to the change in the moisture content of the garbage over time, the fluctuation of the combustion can be further suppressed, and the waste heat boiler 5 A more stable evaporation amount can be obtained.

例えば、図2に模式的に示すグラフを参照して、ごみの水分量Hgが図2のように変動している場合を仮定すると、汚泥の水分量Hsが図2のようにごみの水分量Hgの変化を相殺するように汚泥供給量を調整することにより、全体の水分量Htの変動を減少させることができる。   For example, referring to the graph schematically shown in FIG. 2, assuming that the water content Hg of the waste fluctuates as shown in FIG. 2, the water content Hs of the sludge becomes the water content of the waste as shown in FIG. By adjusting the sludge supply amount so as to offset the change in Hg, it is possible to reduce fluctuations in the total water amount Ht.

ごみと汚泥の全体の水分量は、水分濃度検出器11の検出値に比例する。汚泥供給速度を調節し、水分濃度検出器11により検出された水分濃度の変動が抑えられれば、ごみと汚泥の混合したごみ質の変動が抑えられ、その結果、燃焼の変動が減少し、廃熱ボイラ5の蒸発量の安定化が実現される。このようにして、給じん速度の制御による燃焼の不安定さを汚泥供給速度の制御で補うことにより、よりいっそう安定な燃焼が実現され得る。   The total amount of water in the garbage and sludge is proportional to the detection value of the water concentration detector 11. If the sludge supply rate is adjusted and fluctuations in the moisture concentration detected by the moisture concentration detector 11 are suppressed, fluctuations in the quality of the mixed waste and sludge can be suppressed, resulting in reduced combustion fluctuations and waste. Stabilization of the evaporation amount of the heat boiler 5 is realized. In this way, even more stable combustion can be realized by compensating for the instability of combustion by controlling the feed rate by controlling the sludge supply rate.

給じん速度と汚泥供給速度とは、互いに独立して制御されるため、例えば、廃熱ボイラ5の蒸発量の演算により廃熱ボイラ5の蒸発量が減ることが予測された場合には、給じん速度を増加させつつ、汚泥供給速度を下げ、炉本体2内に持ち込まれる水分を下げることにより、炉本体2内に供給されるごみと汚泥の混合物の発熱量(∝廃熱ボイラの蒸発量)が下がるのを抑え、燃焼を安定させることができる。   Since the feed rate and the sludge supply rate are controlled independently of each other, for example, when the evaporation amount of the waste heat boiler 5 is predicted to be reduced by the calculation of the evaporation amount of the waste heat boiler 5, While increasing the dust rate, lowering the sludge supply rate and lowering the moisture brought into the furnace body 2, the heating value of the mixture of waste and sludge supplied into the furnace body 2 (the evaporation amount of the waste heat boiler) ) Can be suppressed and combustion can be stabilized.

また、本発明によれば、ごみと汚泥の混合物の水分量を制御することができるため、汚泥供給装置8によって炉本体2内に供給される汚泥の含水率は、60〜90%の範囲で安定燃焼が可能である。脱水処理前の汚泥の含水率は、例えば80%以上である。また、ごみに対する汚泥の割合も10%以上としても安定燃焼が可能である。   In addition, according to the present invention, the moisture content of the mixture of waste and sludge can be controlled, so the moisture content of the sludge supplied into the furnace body 2 by the sludge supply device 8 is in the range of 60 to 90%. Stable combustion is possible. The moisture content of the sludge before dehydration is, for example, 80% or more. Moreover, stable combustion is possible even if the ratio of sludge to waste is 10% or more.

本発明は、上記実施形態に限定解釈されず、本発明の趣旨を逸脱しない範囲において種々の変更が可能である。例えば、上記実施形態においては、炉本体2の上部壁に設けた汚泥供給口8aから乾燥ストーカ10cの上流部に向けて汚泥を落下供給する構成としているが、汚泥をホッパー3に供給する構成とすることもできる。また、上記実施形態において給じん装置をプッシャー式としたが、乾燥ストーカcの動きに伴ってホッパー内のごみを送り出す形式の供給フィーダ式を採用することもできる。また、上記実施形態では、助燃バーナを設けていないが、助燃バーナを設けることも可能である。   The present invention is not construed as being limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the said embodiment, although it is set as the structure which drops and supplies sludge toward the upstream part of the dry stalker 10c from the sludge supply port 8a provided in the upper wall of the furnace main body 2, the structure which supplies sludge to the hopper 3 and You can also Further, in the above embodiment, the dust feeder is a pusher type, but it is also possible to adopt a supply feeder type in which the dust in the hopper is sent out along with the movement of the dry stoker c. Moreover, in the said embodiment, although the auxiliary combustion burner is not provided, it is also possible to provide an auxiliary combustion burner.

1 廃棄物焼却炉
2 炉本体
3 ホッパー
4 給じん装置
5 廃熱ボイラ
6 燃焼用空気供給装置
8 汚泥供給装置
9 演算制御部
10 ストーカ
10c 乾燥ストーカ
10d 燃焼ストーカ
10e 後燃焼ストーカ
11 水分濃度検出器
12 酸素濃度検出器
20 ストーカ式焼却炉
DESCRIPTION OF SYMBOLS 1 Waste incinerator 2 Furnace main body 3 Hopper 4 Dust supply device 5 Waste heat boiler 6 Combustion air supply device 8 Sludge supply device 9 Arithmetic control part 10 Stoker 10c Drying stoker 10d Combustion stoker 10e Post combustion stoker 11 Moisture concentration detector 12 Oxygen concentration detector 20 Stoker-type incinerator

上記目的を達成するため、本発明に係る廃棄物焼却炉の第1の態様は、炉本体に接続されたホッパー内の焼却対象物を前記炉本体内に供給する給じん装置、前記炉本体内で発生する燃焼排ガスから熱回収する廃熱ボイラ、燃焼排ガス中の水分濃度を検出する水分濃度検出器、及び、燃焼排ガス中の酸素濃度を検出する酸素濃度検出器を有するストーカ式焼却炉と、前記ストーカ式焼却炉に汚泥を供給する汚泥供給装置と、燃焼を制御する演算制御部と、を備え、前記炉本体内に、乾燥ストーカ、燃焼ストーカ、及び後燃焼ストーカを有し、前記汚泥供給装置は、前記乾燥ストーカにおける上流側位置の鉛直上方に配設された汚泥供給口を前記炉本体に備え、前記汚泥供給口は、前記乾燥ストーカの幅方向に0.5〜1.5m間隔で複数個配置されており、前記演算制御部は、前記水分濃度検出器により検出された水分濃度と、前記酸素濃度検出器により検出された酸素濃度とから、前記廃熱ボイラの蒸発量を演算し、蒸発量の演算値に基づいて、前記給じん装置の給じん速度と前記汚泥供給装置の汚泥供給速度とを別々に制御する。 In order to achieve the above object, a first aspect of a waste incinerator according to the present invention is a dust supply device for supplying an incineration object in a hopper connected to a furnace main body into the furnace main body, in the furnace main body. A waste heat boiler that recovers heat from the combustion exhaust gas generated in the above, a moisture concentration detector that detects the moisture concentration in the combustion exhaust gas, and a stoker-type incinerator having an oxygen concentration detector that detects the oxygen concentration in the combustion exhaust gas, A sludge supply device that supplies sludge to the stoker-type incinerator, and an arithmetic control unit that controls combustion, and has a dry stoker, a combustion stoker, and a post-combustion stoker in the furnace body, and the sludge supply The apparatus includes a sludge supply port disposed vertically above the upstream position of the dry stoker in the furnace body, and the sludge supply port is spaced 0.5 to 1.5 m apart in the width direction of the dry stoker. Multiple placement Are, the arithmetic control unit, said a water concentration detected by the water concentration detector, the oxygen concentration detected by said oxygen concentration detector, it calculates the amount of evaporation of the waste heat boiler, evaporation Based on the calculated value, the feed rate of the dust feed device and the sludge feed rate of the sludge feed device are controlled separately.

本発明に係る廃棄物焼却炉の第の態様は、上記第1の態様において、前記演算制御部が、前記汚泥供給装置の汚泥供給速度を制御することにより、燃焼排ガスの水分濃度を制御する。 In a second aspect of the waste incinerator according to the present invention, in the first aspect, the arithmetic control unit controls the moisture concentration of the combustion exhaust gas by controlling the sludge supply speed of the sludge supply device. .

本発明に係る廃棄物焼却炉の第の態様は、上記第の態様において、前記演算制御部は、前記水分濃度検出器により検出された水分濃度の変動を減少させるように前記汚泥供給装置の汚泥供給速度を調節する。 According to a third aspect of the waste incinerator according to the present invention, in the second aspect, the calculation control unit is configured to reduce the fluctuation of the water concentration detected by the moisture concentration detector. Adjust the sludge supply rate.

Claims (4)

炉本体に接続されたホッパー内の焼却対象物を前記炉本体内に供給する給じん装置、前記炉本体内で発生する燃焼排ガスから熱回収する廃熱ボイラ、燃焼排ガス中の水分濃度を検出する水分濃度検出器、及び、燃焼排ガス中の酸素濃度を検出する酸素濃度検出器を有するストーカ式焼却炉と、
前記ストーカ式焼却炉に汚泥を供給する汚泥供給装置と、
燃焼を制御する演算制御部と、を備え、
前記演算制御部は、前記水分濃度検出器により検出された水分濃度と、前記酸素濃度検出器により検出された酸素濃度とから、前記廃熱ボイラの蒸発量を演算し、蒸発量の演算値に基づいて、前記給じん装置の給じん速度と前記汚泥供給装置の汚泥供給速度とを別々に制御する、廃棄物焼却炉。
A dust supply device for supplying an incineration object in a hopper connected to the furnace body into the furnace body, a waste heat boiler for recovering heat from the combustion exhaust gas generated in the furnace body, and detecting a moisture concentration in the combustion exhaust gas A stoker-type incinerator having a moisture concentration detector and an oxygen concentration detector for detecting the oxygen concentration in the combustion exhaust gas;
A sludge supply device for supplying sludge to the stoker-type incinerator;
An arithmetic control unit for controlling combustion,
The calculation control unit calculates the evaporation amount of the waste heat boiler from the moisture concentration detected by the moisture concentration detector and the oxygen concentration detected by the oxygen concentration detector, and obtains the calculated evaporation amount. A waste incinerator that separately controls the feed rate of the dust feed device and the sludge feed rate of the sludge feed device.
前記炉本体内に、乾燥ストーカ、燃焼ストーカ、及び後燃焼ストーカを有し、
前記汚泥供給装置は、前記乾燥ストーカの上流側位置の鉛直上方に配設された汚泥供給口を備える、請求項1に記載の廃棄物焼却炉。
In the furnace body, having a dry stoker, a combustion stoker, and a post-combustion stoker,
2. The waste incinerator according to claim 1, wherein the sludge supply device includes a sludge supply port disposed vertically above a position upstream of the dry stoker.
前記演算制御部は、前記汚泥供給装置の汚泥供給速度を制御することにより、燃焼排ガスの水分濃度を制御することを特徴とする請求項1に記載の廃棄物焼却炉。   The waste incinerator according to claim 1, wherein the arithmetic control unit controls the moisture concentration of the combustion exhaust gas by controlling the sludge supply speed of the sludge supply device. 前記演算制御部は、前記水分濃度検出器により検出された水分濃度の変動を減少させるように前記汚泥供給装置の汚泥供給速度を調節することを特徴とする請求項3に記載の廃棄物焼却炉。
The waste incinerator according to claim 3, wherein the arithmetic control unit adjusts a sludge supply speed of the sludge supply device so as to reduce fluctuations in the water concentration detected by the moisture concentration detector. .
JP2018101737A 2018-05-28 2018-05-28 Waste incinerator Active JP6779255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018101737A JP6779255B2 (en) 2018-05-28 2018-05-28 Waste incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018101737A JP6779255B2 (en) 2018-05-28 2018-05-28 Waste incinerator

Publications (2)

Publication Number Publication Date
JP2019207048A true JP2019207048A (en) 2019-12-05
JP6779255B2 JP6779255B2 (en) 2020-11-04

Family

ID=68767977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018101737A Active JP6779255B2 (en) 2018-05-28 2018-05-28 Waste incinerator

Country Status (1)

Country Link
JP (1) JP6779255B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828989A (en) * 2020-06-29 2020-10-27 光大环境科技(中国)有限公司 In-pipe sludge cleaning device for sludge distribution on incinerator and garbage incinerator
WO2021244033A1 (en) * 2020-06-04 2021-12-09 中国天楹股份有限公司 Integrated incineration boiler system for efficient disposal of high-calorific-value waste
JP7382285B2 (en) 2020-06-08 2023-11-16 三菱重工業株式会社 Control device, control method and program

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146975A (en) * 1976-06-01 1977-12-07 Nittetsu Kakoki Kk Incineration method of leachate from garbage with city garbage concurrently
JPS5795517A (en) * 1980-12-05 1982-06-14 Ebara Infilco Co Ltd Incinerator
JPS60181540U (en) * 1984-05-09 1985-12-02 三菱重工業株式会社 Mixed combustion method of garbage and sludge
JPS61208421A (en) * 1985-03-13 1986-09-16 Mitsubishi Heavy Ind Ltd Method of incineration of dust and sludge mixture
JPS6249116A (en) * 1985-08-29 1987-03-03 Idemitsu Petrochem Co Ltd Controlling method for discharged gas of boiler
JPH01305214A (en) * 1988-05-31 1989-12-08 Sanki Eng Co Ltd Fuel mixing burning device for refuse and sewage sludge
JPH0242102A (en) * 1988-08-02 1990-02-13 Hitachi Ltd Method for recovering thermal energy and apparatus thereof
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP2000161635A (en) * 1998-11-24 2000-06-16 Nkk Corp Waste incinerating method
JP2000161636A (en) * 1998-11-24 2000-06-16 Nkk Corp Method for incinerating refuse
JP2001059606A (en) * 1999-06-16 2001-03-06 Nkk Corp Method and facility for incinerating refuse
JP2001090933A (en) * 1999-09-27 2001-04-03 Imanaka:Kk Waste melting device
JP2002160821A (en) * 2000-09-18 2002-06-04 Fuji Heavy Ind Ltd Delivery device for carrying conveyor
JP2003254523A (en) * 2002-03-04 2003-09-10 Kawasaki Heavy Ind Ltd In-furnace garbage stay distribution estimating method in incinerator, and combustion control method and device using method
JP2006052931A (en) * 2004-07-12 2006-02-23 Hitachi Metals Ltd Waste treatment furnace and waste treatment device for treating garbage and sludge together
JP3136980U (en) * 2007-08-28 2007-11-08 株式会社川崎技研 Waste incinerator for sludge mixed combustion

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52146975A (en) * 1976-06-01 1977-12-07 Nittetsu Kakoki Kk Incineration method of leachate from garbage with city garbage concurrently
JPS5795517A (en) * 1980-12-05 1982-06-14 Ebara Infilco Co Ltd Incinerator
JPS60181540U (en) * 1984-05-09 1985-12-02 三菱重工業株式会社 Mixed combustion method of garbage and sludge
JPS61208421A (en) * 1985-03-13 1986-09-16 Mitsubishi Heavy Ind Ltd Method of incineration of dust and sludge mixture
JPS6249116A (en) * 1985-08-29 1987-03-03 Idemitsu Petrochem Co Ltd Controlling method for discharged gas of boiler
JPH01305214A (en) * 1988-05-31 1989-12-08 Sanki Eng Co Ltd Fuel mixing burning device for refuse and sewage sludge
JPH0242102A (en) * 1988-08-02 1990-02-13 Hitachi Ltd Method for recovering thermal energy and apparatus thereof
JPH1194227A (en) * 1997-09-26 1999-04-09 Sumitomo Heavy Ind Ltd Method of presuming low heating value of combustible waste and presuming heating value of combustible part of garbage of garbage incinerator
JP2000161635A (en) * 1998-11-24 2000-06-16 Nkk Corp Waste incinerating method
JP2000161636A (en) * 1998-11-24 2000-06-16 Nkk Corp Method for incinerating refuse
JP2001059606A (en) * 1999-06-16 2001-03-06 Nkk Corp Method and facility for incinerating refuse
JP2001090933A (en) * 1999-09-27 2001-04-03 Imanaka:Kk Waste melting device
JP2002160821A (en) * 2000-09-18 2002-06-04 Fuji Heavy Ind Ltd Delivery device for carrying conveyor
JP2003254523A (en) * 2002-03-04 2003-09-10 Kawasaki Heavy Ind Ltd In-furnace garbage stay distribution estimating method in incinerator, and combustion control method and device using method
JP2006052931A (en) * 2004-07-12 2006-02-23 Hitachi Metals Ltd Waste treatment furnace and waste treatment device for treating garbage and sludge together
JP3136980U (en) * 2007-08-28 2007-11-08 株式会社川崎技研 Waste incinerator for sludge mixed combustion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021244033A1 (en) * 2020-06-04 2021-12-09 中国天楹股份有限公司 Integrated incineration boiler system for efficient disposal of high-calorific-value waste
JP7382285B2 (en) 2020-06-08 2023-11-16 三菱重工業株式会社 Control device, control method and program
CN111828989A (en) * 2020-06-29 2020-10-27 光大环境科技(中国)有限公司 In-pipe sludge cleaning device for sludge distribution on incinerator and garbage incinerator

Also Published As

Publication number Publication date
JP6779255B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
US4838183A (en) Apparatus and method for incinerating heterogeneous materials
JP6011295B2 (en) Waste incinerator and waste incineration method
JP2019207048A (en) Waste incinerator
JP5950299B2 (en) Stoker-type incinerator and combustion method thereof
JP2012211727A (en) Sludge incineration disposal system and sludge incineration disposal method
JP2010216990A (en) Device and method for measurement of moisture percentage in waste
JP5800237B2 (en) Waste incinerator and waste incineration method
JP5871207B2 (en) Waste incinerator and waste incineration method
JP2002098308A (en) Circulated fluidized bed combustion apparatus
JP7397627B2 (en) Incineration plant and its combustion control method
KR100517485B1 (en) Dry fuelization recycling system of trash organic matter and waste matter
JP2011149658A (en) Operation control method for circulating fluidized bed boiler
CN110500595B (en) Method suitable for waste incineration air distribution of Martin furnace
JP2003322321A (en) Combustion method for stoker type refuse incinerator and stoker type refuse incinerator
JP7178814B2 (en) Stoker type waste power generation system and method for stabilizing waste power generation amount
JP2012122623A (en) Method and apparatus for drying and incinerating sewage sludge
JP2001304525A (en) Waste incinerator and its operation method
JP2015209992A (en) Waste incineration treatment equipment and waste incineration treatment method
KR20000002871A (en) Incinerator drying facilitating device using recirculation of ignition gas
JP2015187514A (en) waste incinerator and waste incineration method
JP7265671B2 (en) Stoker type waste power generation system and method for stabilizing waste power generation amount
JP3936884B2 (en) Control method of stoker type incinerator
JP2002195534A (en) Method and system for controlling combustion of refuse incinerator
KR0148030B1 (en) Multi-stage combustion system
JP2009270739A (en) Combustion method of stoker type incinerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190301

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190320

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190918

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200624

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200908

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20201013

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201013

R150 Certificate of patent or registration of utility model

Ref document number: 6779255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250