JP2019204937A - Telescopic wiring member - Google Patents

Telescopic wiring member Download PDF

Info

Publication number
JP2019204937A
JP2019204937A JP2018101042A JP2018101042A JP2019204937A JP 2019204937 A JP2019204937 A JP 2019204937A JP 2018101042 A JP2018101042 A JP 2018101042A JP 2018101042 A JP2018101042 A JP 2018101042A JP 2019204937 A JP2019204937 A JP 2019204937A
Authority
JP
Japan
Prior art keywords
wiring member
base material
conductive
conduction path
stretchable wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018101042A
Other languages
Japanese (ja)
Other versions
JP7414208B2 (en
Inventor
雅道 石久保
Masamichi ISHIKUBO
雅道 石久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Polymatech Co Ltd
Original Assignee
Sekisui Polymatech Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Polymatech Co Ltd filed Critical Sekisui Polymatech Co Ltd
Priority to JP2018101042A priority Critical patent/JP7414208B2/en
Publication of JP2019204937A publication Critical patent/JP2019204937A/en
Application granted granted Critical
Publication of JP7414208B2 publication Critical patent/JP7414208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

To simplify the conductive connection to a connection object.SOLUTION: A telescopic wiring member 11a includes a stretchable base material 20, a stretchable wiring 30 laminated on the base material 20, and a conductive connection portion 50 electrically connected to the stretchable wiring 30 and extending vertically from the stretchable wiring 30, in which the conductive connection portion 50 is made of a rubber-like conductive rubber composition having compressibility, and the base material 20 includes a conduction path shape holding unit 60 that reduces the diffusion of the pressure stress that presses the conduction connection portion 50 against a connection object in the horizontal direction at a position overlapping the conduction connection portion 50 in the vertical direction.SELECTED DRAWING: Figure 2

Description

本発明は、柔軟基材に柔軟配線を備え伸縮して利用することができる伸縮配線部材に関する。   The present invention relates to a stretchable wiring member that can be used by being stretched and stretched on a flexible base material.

近年、脈拍などの身体の状態や、歩数などの身体の動きを計測するためのセンサが搭載されたスマートウォッチや活量計、脈拍計などのウェアラブルデバイスの開発が盛んになっているが、従来のウェアラブルデバイスでは、半導体素子がフレキシブル基板や硬いリジッド基板に配置されたユニットが用いられており身体の動きに追従しないため、快適な装着感が得られなかった。そこで、弾性体や衣類に導電回路を形成することで伸縮可能でフレキシブルなウェアラブルデバイスを得る技術が開発されている。   In recent years, the development of wearable devices such as smart watches, activity meters, and pulse meters equipped with sensors for measuring physical conditions such as pulse and body movements such as the number of steps has been active. In this wearable device, a unit in which a semiconductor element is arranged on a flexible substrate or a rigid rigid substrate is used and does not follow the movement of the body, so that a comfortable wearing feeling cannot be obtained. In view of this, a technique for obtaining a flexible wearable device that can be expanded and contracted by forming a conductive circuit on an elastic body or clothing has been developed.

こうした伸縮可能でフレキシブルなウェアラブルデバイスに用いられる伸縮配線部材では、伸長するゴムや布帛からなる基材の上に伸長する配線が備えられている一方で、配線の基端となる端部では、外部の接続対象物と導通接続するためにいろいろな接続方法が採用されている。例えば特開2016−145725号公報(特許文献1)に記載の発明では、雄型ホックと雌型ホックとを組合せた接続方法が採用されている。   In the stretchable wiring member used for such a stretchable and flexible wearable device, the wiring that extends on the base material made of stretchable rubber or fabric is provided, while at the end that becomes the base end of the wiring, Various connection methods are employed for conducting conductive connection with the connection object. For example, in the invention described in JP-A-2006-145725 (Patent Document 1), a connection method in which a male hook and a female hook are combined is employed.

特開2016−145725号公報JP-A-2006-145725

しかしながら、特開2016−145725号公報(特許文献1)に記載の接続方法では、専用のホックが必要であり、必ずしも手軽な導通接続方法ではなかった。そこで本発明は、伸縮配線部材と、これに導通接続する外部の接続対象物との間における接続の容易化を課題としてなされたものであり、接続対象物に対する導通接続を簡単にできる伸縮配線部材を提供することを目的とする。   However, the connection method described in JP-A-2006-145725 (Patent Document 1) requires a dedicated hook, and is not necessarily a simple conductive connection method. Accordingly, the present invention has been made with the object of facilitating the connection between the expansion wiring member and the external connection object that is conductively connected to the expansion wiring member, and the expansion wiring member that can simplify the conductive connection to the connection target. The purpose is to provide.

上記目的を達成するため本発明の伸縮配線部材は以下のとおり構成される。即ち、本発明は、伸縮可能な基材と、前記基材に配置されており前記基材の伸縮によって伸縮する伸縮配線とを備える伸縮配線部材について、接続対象物に導通接続する第1の接続端と、前記伸縮配線に導通接続する第2の接続端と、前記第1の接続端と前記第2の接続端との間に形成される導通路とを有しており、前記導通路の形成方向に沿って圧縮変形するとともに前記接続対象物と前記伸縮配線とを導通接続する導通接続部を備える。   In order to achieve the above object, the stretchable wiring member of the present invention is configured as follows. That is, the present invention relates to a first connection that is electrically connected to an object to be connected with respect to a stretchable wiring member including a stretchable base material and a stretchable wiring that is disposed on the base material and expands and contracts by the expansion and contraction of the base material. An end, a second connection end that is conductively connected to the telescopic wiring, and a conduction path formed between the first connection end and the second connection end. A conductive connection portion that compressively deforms along the forming direction and that conductively connects the connection object and the stretchable wiring is provided.

本発明の各種の伸縮配線部材によれば、接続容易性、接続安定性、利便性、信頼性、装着感を損なわないなど、接続対象物との間での種々の要素を満足することができる接続を達成できる。   According to the various stretchable wiring members of the present invention, it is possible to satisfy various elements with the connection object such as easy connection, connection stability, convenience, reliability, and a feeling of wearing. Connection can be achieved.

即ち、本発明の伸縮配線部材は、伸縮可能な基材と、前記基材に配置されており前記基材の伸縮によって伸縮する伸縮配線とを備えるため、伸び縮みを生じる箇所に利用して導電することができる。伸縮配線部材は、接続対象物に導通接続する第1の接続端と、前記伸縮配線に導通接続する第2の接続端と、前記第1の接続端と前記第2の接続端との間に形成される導通路とを有しており、前記導通路の形成方向に沿って圧縮変形するとともに前記接続対象物と前記伸縮配線とを導通接続する導通接続部を備えるため、この導通接続部を介して伸縮配線と接続対象物とを導電接続することができる。さらに、前記導通路は前記導通路の形成方向に沿って圧縮変形するため、接続対象物と導通接続部とを互いに圧接するだけで伸縮配線と接続対象物とを容易に導通させることができる。   That is, the stretchable wiring member of the present invention includes a base material that can be stretched and a stretchable wiring that is disposed on the base material and expands and contracts by the expansion and contraction of the base material. can do. The stretchable wiring member includes a first connection end that is conductively connected to the connection target, a second connection end that is conductively connected to the stretchable wiring, and the first connection end and the second connection end. And a conductive connection part that compressively deforms along the direction of formation of the conductive path and conductively connects the connection object and the expansion and contraction wiring. Thus, the expansion and contraction wiring and the connection object can be conductively connected. Furthermore, since the conduction path is compressed and deformed along the direction in which the conduction path is formed, it is possible to easily conduct the expansion and contraction wiring and the connection object only by pressing the connection object and the conduction connection portion together.

また前記基材は、圧縮変形した前記導通路が、前記伸縮配線の伸長方向に伸びた前記基材に引っ張られて前記形成方向の交差方向に変形するのを低減する導通路形状保持部を有するものとして構成することができる。前記基材は、圧縮変形した前記導通路が、前記伸縮配線の伸長方向に伸びた前記基材に引っ張られて前記形成方向の交差方向に変形するのを低減する導通路形状保持部を有するため、伸縮配線部材を伸長させた際の抵抗値上昇が過度に大きくなることを防止できる。   In addition, the base material has a conductive path shape holding portion that reduces the deformation of the conductive path that is compressed and deformed in the cross direction of the forming direction by being pulled by the base material extending in the extension direction of the stretchable wiring. Can be configured. The base material has a conductive path shape holding portion that reduces the deformation of the conductive path that is compressed and deformed in the crossing direction of the forming direction by being pulled by the base material extending in the extension direction of the stretchable wiring. It is possible to prevent the resistance value from increasing excessively when the elastic wiring member is extended.

即ち、発明者は本発明の開発の過程で、伸縮配線に上記導通接続部を設けると、こうした導通接続部を介さずに接続対象物に導電接続する場合と比較して、伸縮配線を伸長したときに抵抗値の変化が大きくなり易いことを見出した。上記導通接続部は、接続対象物と接続する際に押圧を受け、導通接続部の導通路自体は押圧方向に対する交差方向、換言すれば伸縮配線部材の伸長方向に膨らむように作用する。そのため、この作用に伸縮配線部材の伸長が加わると、導通路はさらに伸長する基材に引っ張られるようにして伸縮配線部材の伸長方向に伸ばされる。しかしながら導通路形状保持部は、導通接続部が前記伸長方向に過度に伸長することを防ぐことができる。換言すると導通接続部を接続対象物に圧接する圧接応力が水平方向へ拡散するのを低減できる。このため導通接続部を接続対象物に圧接しながら、伸縮配線部材を伸ばした場合でも、伸縮配線部材の抵抗値上昇を抑えることができる。   That is, in the course of the development of the present invention, the inventor provided the conductive connection portion on the expansion / contraction wiring, and extended the expansion / contraction wiring as compared with the case of conductive connection to the connection object without using the conductive connection portion. It has been found that sometimes the resistance value changes easily. The conductive connection portion is pressed when connected to the connection object, and the conductive path itself of the conductive connection portion acts so as to swell in the crossing direction with respect to the pressing direction, in other words, in the extending direction of the elastic wiring member. Therefore, when the expansion / contraction wiring member is extended to this action, the conduction path is extended in the extending direction of the expansion / contraction wiring member so as to be pulled by the extending base material. However, the conduction path shape holding part can prevent the conduction connection part from excessively extending in the extension direction. In other words, it is possible to reduce the diffusion of the pressure stress that presses the conductive connection portion against the connection object in the horizontal direction. Therefore, even when the stretchable wiring member is extended while the conductive connection portion is pressed against the connection object, an increase in the resistance value of the stretchable wiring member can be suppressed.

前記導通路形状保持部は、前記基材に埋めてあるものとして構成できる。前記導通路形状保持部は、前記基材に埋めてあるため、導通路形状保持部の表面を別途保護する必要がなく基材で保護することができる。また、伸縮配線部材の表面に導通路形状保持部の硬い部分を露出させることがないため、基材の柔らかな、あるいは温かみのある感触を保持することができる。   The conduction path shape holding portion can be configured as being embedded in the base material. Since the conduction path shape holding part is buried in the base material, it is not necessary to separately protect the surface of the conduction path shape holding part and can be protected by the base material. Moreover, since the hard part of the conduction path shape holding portion is not exposed on the surface of the stretchable wiring member, the soft or warm feeling of the base material can be held.

本発明は、前記導通路形状保持部が金属箔または樹脂フィルムであるものとして構成できる。前記導通路形状保持部が金属箔または樹脂フィルムであるため、伸縮配線部材の厚みを薄くすることができる。   This invention can be comprised as the said conduction path shape holding | maintenance part being what is a metal foil or a resin film. Since the conduction path shape holding part is a metal foil or a resin film, the thickness of the stretchable wiring member can be reduced.

前記導通路形状保持部は、前記導通路の前記形成方向で前記第2の接続端と重なる位置にあるものとして構成できる。前記導通路形状保持部は、前記導通路の前記形成方向で前記第2の接続端と重なる位置にあるため、伸縮配線部材の伸長に伴ってその伸長方向に変形し易い導通路の変形を抑えることができる。   The conduction path shape holding portion may be configured to be in a position overlapping the second connection end in the formation direction of the conduction path. Since the conduction path shape holding portion is located at a position overlapping the second connection end in the formation direction of the conduction path, it suppresses deformation of the conduction path that easily deforms in the extension direction as the telescopic wiring member extends. be able to.

前記導通路形状保持部は、前記基材の伸縮方向で前記導通路と重なる位置にあるものとして構成できる。前記導通路形状保持部は、前記基材の伸縮方向で前記導通路と重なる位置にあっても、伸縮配線部材の伸長に伴ってその伸長方向に変形し易い導通路の変形を抑えることができる。また、導通路形状保持部を前記基材の伸縮方向で前記導通路と重なる位置に設けたため、例えば前記導通路の前記形成方向で導通路とは重ならない位置となる導通路の周囲に導通路形状保持部を設けることができる。この場合、導通路の形成方向で導通路と重なる位置に導通路形状保持部を設けた場合と比べて、伸縮配線部材を薄くすることができる。   The conduction path shape holding portion can be configured to be in a position overlapping the conduction path in the expansion and contraction direction of the base material. The conductive path shape holding portion can suppress deformation of the conductive path that easily deforms in the extension direction along with the extension of the telescopic wiring member, even if the conductive path shape holding portion is located at a position overlapping the conductive path in the extension / contraction direction of the base material. . In addition, since the conduction path shape holding portion is provided at a position that overlaps the conduction path in the expansion and contraction direction of the base material, for example, the conduction path around the conduction path that does not overlap with the conduction path in the formation direction of the conduction path. A shape holding part can be provided. In this case, the stretchable wiring member can be made thinner than in the case where the conductive path shape holding portion is provided at a position overlapping the conductive path in the direction in which the conductive path is formed.

前記第2の接続端は、前記基材の内部で前記伸縮配線に導通接続されるように、前記基材の内部に位置するものとして構成できる。前記第2の接続端は、前記基材の内部で前記伸縮配線に導通接続されるように、前記基材の内部に位置するため、基材の内部に位置する伸縮配線と直接導通接続させることができる。そのため、導通部と伸縮配線の導通接続をより確実なものとすることができる。   The second connection end can be configured to be located inside the base material so as to be conductively connected to the telescopic wiring inside the base material. Since the second connection end is located inside the base material so as to be conductively connected to the extension wiring inside the base material, the second connection end is directly connected to the extension wiring located inside the base material. Can do. Therefore, the conductive connection between the conductive portion and the stretchable wiring can be made more reliable.

前記導通接続部は、ゴム状の高分子材料に導電性フィラーが分散した導電性ゴム組成物であるものとして構成できる。前記導通接続部が、ゴム状の高分子材料に導電性フィラーが分散した導電性ゴム組成物であるため、接続対象物との間で押圧して導通接続することができる。また本発明の構成であれば製造も容易である。   The conductive connection portion can be configured as a conductive rubber composition in which a conductive filler is dispersed in a rubber-like polymer material. Since the conductive connection portion is a conductive rubber composition in which a conductive filler is dispersed in a rubber-like polymer material, the conductive connection portion can be pressed and connected to a connection object. Moreover, if it is the structure of this invention, manufacture is also easy.

前記基材は、前記導通路を包囲する絶縁性の被覆部を有するものとして構成できる。前記基材は、前記導通路を包囲する絶縁性の被覆部を有するため、使用時に導通接続部の側面に導電異物等が接触することによる不具合を防止することができる。   The base material can be configured to have an insulating covering portion surrounding the conduction path. Since the base material has an insulating covering portion that surrounds the conduction path, it is possible to prevent problems caused by contact of a conductive foreign object or the like with the side surface of the conduction connection portion during use.

本発明は、前記導通接続部の周囲に防水リブを備えるものとして構成できる。前記導通接続部の周囲に防水リブを備えるため、伸縮配線部材を防水とすることができる。そのため、伸縮配線部材を水の飛散があるような場合でも水の影響を抑止でき、その用途を広げることができる。さらに、この防水リブは前記導通路形状保持部上に設けるものとして構成できる。防水リブを前記導通路形状保持部上に設けるものとして構成すれば、この導通路形状保持部で防水リブの伸長方向の変形を抑制しながら接続対象物の所定の位置に圧接することができ、防水性を良くすることができる。   This invention can be comprised as what equips the circumference | surroundings of the said conduction | electrical_connection connection part with a waterproof rib. Since the waterproof rib is provided around the conductive connection portion, the stretchable wiring member can be made waterproof. Therefore, even when the elastic wiring member has water scattering, the influence of water can be suppressed, and its application can be expanded. Further, the waterproof rib can be configured to be provided on the conduction path shape holding portion. If the waterproof rib is configured to be provided on the conductive path shape holding portion, the conductive path shape holding portion can be pressed against a predetermined position of the connection object while suppressing deformation in the extending direction of the waterproof rib. Waterproofness can be improved.

本発明の伸縮配線部材によれば、接続対象物との導通接続が簡単にできる。また、伸長に伴う導通接続部の変形を抑制し、抵抗値の上昇率を抑えることができる伸縮配線部材である。   According to the stretchable wiring member of the present invention, the conductive connection with the connection object can be easily performed. Moreover, it is an expansion | extension wiring member which can suppress the deformation | transformation of the conduction | electrical_connection part accompanying expansion | extension, and can suppress the raise rate of resistance value.

本発明の第1実施形態である伸縮配線部材の模式平面図である。It is a model top view of the expansion-contraction wiring member which is 1st Embodiment of this invention. 図1の伸縮配線部材のII−II線断面図である。It is the II-II sectional view taken on the line of the expansion-contraction wiring member of FIG. 図1の伸縮配線部材の導通路の別の態様を示す断面図であり、分図3(a)はその一態様を示す断面図、分図3(b)はまた別の態様を示す断面図である。It is sectional drawing which shows another aspect of the conduction path of the expansion-contraction wiring member of FIG. 1, and FIG.3 (a) is sectional drawing which shows the one aspect, and FIG.3 (b) is sectional drawing which shows another aspect. It is. 図1の伸縮配線部材の一の使用態様を説明する説明図である。It is explanatory drawing explaining the one usage condition of the expansion-contraction wiring member of FIG. 図1の伸縮配線部材の別の使用態様を説明する説明図である。It is explanatory drawing explaining another usage condition of the expansion-contraction wiring member of FIG. 図1の伸縮配線部材の接続する接続対象物の態様を説明する説明図である。It is explanatory drawing explaining the aspect of the connection target object which the expansion-contraction wiring member of FIG. 1 connects. 図1の伸縮配線部材の接続対象物とのまた別の接続態様を示す説明図である。It is explanatory drawing which shows another connection aspect with the connection target object of the expansion-contraction wiring member of FIG. 伸縮配線部材を伸ばした際の導通接続部の状態を説明する説明図であり、分図7(a)は従来の伸縮配線部材、分図7(b)は本発明の伸縮配線部材を示す。It is explanatory drawing explaining the state of the conduction | electrical_connection connection part at the time of extending an expansion-contraction wiring member, FIG.7 (a) shows the conventional expansion-contraction wiring member and FIG.7 (b) shows the expansion-contraction wiring member of this invention. 本発明の変形例1−1の伸縮配線部材の一部拡大断面図である。It is a partial expanded sectional view of the expansion-contraction wiring member of the modification 1-1 of this invention. 本発明の変形例1−2の伸縮配線部材の一部拡大断面図である。It is a partial expanded sectional view of the expansion-contraction wiring member of the modification 1-2 of this invention. 本発明の変形例1−3の伸縮配線部材の一部拡大断面図であり、分図11(a)は断面図、分図11(b)は平面図である。It is a partial expanded sectional view of the expansion-contraction wiring member of the modification 1-3 of this invention, Minute drawing 11 (a) is sectional drawing, and FIG. 11 (b) is a top view. 本発明の第2実施形態の伸縮配線部材の一部拡大断面図であり、分図12(a)は断面図、分図12(b)は平面図である。It is a partial expanded sectional view of the expansion-contraction wiring member of 2nd Embodiment of this invention, and FIG.12 (a) is sectional drawing and FIG.12 (b) is a top view. 本発明の変形例2−1の伸縮配線部材の一部拡大断面図であり、分図13(a)は断面図、分図13(b)は平面図である。It is a partial expanded sectional view of the expansion-contraction wiring member of the modified example 2-1 of this invention, and FIG.13 (a) is sectional drawing and FIG.13 (b) is a top view. 本発明の第3実施形態の伸縮配線部材の一部拡大断面図である。It is a partial expanded sectional view of the expansion-contraction wiring member of 3rd Embodiment of this invention. 本発明の第4実施形態の伸縮配線部材の一部拡大断面図である。It is a partial expanded sectional view of the expansion-contraction wiring member of 4th Embodiment of this invention. 本発明の第5実施形態の伸縮配線部材の一部拡大断面図であり、分図16(a)は断面図、分図16(b)は平面図である。FIG. 16 is a partially enlarged cross-sectional view of a stretchable wiring member according to a fifth embodiment of the present invention, where FIG. 16 (a) is a cross-sectional view and FIG. 16 (b) is a plan view. 本発明の変形例の一部拡大断面図であり、分図17(a)は変形例5−1の一部拡大断面図、分図17(b)は変形例5−2の一部拡大断面図である。FIG. 17 is a partially enlarged sectional view of a modified example of the present invention, and FIG. 17A is a partially enlarged sectional view of a modified example 5-1, and FIG. 17B is a partially enlarged sectional view of a modified example 5-2. FIG. 本発明の別の実施形態の伸縮配線部材の一部拡大断面図である。It is a partial expanded sectional view of the expansion-contraction wiring member of another embodiment of this invention. 本発明のまた別の実施形態の伸縮配線部材の一部拡大断面図である。It is a partially expanded sectional view of the expansion-contraction wiring member of another embodiment of this invention. 本発明のさらに別の実施形態の伸縮配線部材の一部拡大断面図である。It is a partial expanded sectional view of the expansion-contraction wiring member of another embodiment of this invention. 本発明のさらにまた別の実施形態の伸縮配線部材の一部拡大断面図である。It is a partial expanded sectional view of the expansion-contraction wiring member of another embodiment of this invention. 抵抗値測定の方法を説明する説明図であり、分図20(a)は本発明の試験片に測定用押し子を操作しようとする断面図、分図20(b)はその試験片の平面図、分図20(c)は、比較例の試験片に対する分図20(a)相当の断面図である。FIGS. 20A and 20B are explanatory views for explaining a resistance value measuring method. FIG. 20A is a cross-sectional view of a test piece according to the present invention, and FIG. 20B is a plan view of the test piece. FIG. 20 and FIG. 20C are cross-sectional views corresponding to FIG. 20A with respect to the test piece of the comparative example.

実施形態に即してさらに詳しく説明する。なお、各実施形態において同一の材質、組成、製法、作用、効果等については重複説明を省略する。   This will be described in more detail according to the embodiment. In addition, duplication description is abbreviate | omitted about the same material, a composition, a manufacturing method, an effect | action, an effect, etc. in each embodiment.

第1実施形態[図1〜図7]: 本実施形態の伸縮配線部材11aについて説明する。図1には伸縮配線部材11aの平面図を、図2にはその断面図を示す。伸縮配線部材11aは、伸縮可能な基材20と、前記基材20に積層している伸縮配線30と、前記伸縮配線30に電気的に接続される導通接続部50と、導通路形状保持部60と、を備えている。次に伸縮配線部材11aを構成する各部位について説明する。   First Embodiment [FIGS. 1 to 7]: The stretchable wiring member 11a of this embodiment will be described. FIG. 1 is a plan view of the stretchable wiring member 11a, and FIG. 2 is a sectional view thereof. The stretchable wiring member 11a includes a stretchable base material 20, a stretchable wiring 30 stacked on the base material 20, a conductive connection portion 50 electrically connected to the stretchable wiring 30, and a conductive path shape holding portion. 60. Next, each part which comprises the expansion-contraction wiring member 11a is demonstrated.

<基材20> 基材20は、伸縮配線30を保持するベースとなる部位であって絶縁性の柔軟材料からなり伸縮可能な性質を有している。絶縁性柔軟材料としては、熱硬化性ゴムや熱可塑性エラストマの他、織物やニットなどの繊維シートやこれらを組合せたものなどが挙げられる。基材20としては、少なくとも初期の長さの120%以上の長さまで伸縮可能な材料を用いることが好ましく、150%以上の長さまで伸縮可能であることがより好ましい。   <Base Material 20> The base material 20 is a portion serving as a base for holding the stretchable wiring 30 and is made of an insulating flexible material and has a property of being stretchable. Examples of the insulating flexible material include thermosetting rubber and thermoplastic elastomer, fiber sheets such as woven fabric and knit, and combinations thereof. As the base material 20, it is preferable to use a material that can be stretched to at least 120% of the initial length, and more preferably stretchable to a length of 150% or more.

これらの材質の中で熱硬化性ゴムまたは熱可塑性エラストマを用いる場合には、JIS K6253規定のゴム硬度がA硬度で90(以後A90と記載する)以下であることが好ましい。ゴム硬度がA90を超えると、伸長したときの応力が必要以上に大きくなり、高い伸長率まで伸長することが難しくなるためである。また、伸縮性が良好な点でA0−A70がより好ましく、伸縮性と取扱い性の両立の観点からA20−A50がさらに好ましい。但し、E硬度で20未満の場合は、耐摩耗性や引張り破断応力が低いことから一部の用途では懸念が生じる場合がある。   Among these materials, when a thermosetting rubber or a thermoplastic elastomer is used, the rubber hardness specified in JIS K6253 is preferably 90 or less (hereinafter referred to as A90) in terms of A hardness. This is because if the rubber hardness exceeds A90, the stress at the time of expansion becomes larger than necessary, and it becomes difficult to expand to a high elongation rate. A0-A70 is more preferable in terms of good stretchability, and A20-A50 is more preferable from the viewpoint of achieving both stretchability and handleability. However, when the E hardness is less than 20, the wear resistance and tensile rupture stress are low, which may cause concern in some applications.

基材20として繊維シートを用いる場合は、織物や編物、不織布等の布帛(布)が挙げられ、複数の単糸を撚った撚糸からなる繊維をシート状に構成したものが好ましい。繊維シートとして用いる繊維の種類は限定されず、一般的な天然繊維や合成繊維を用いることができ、また、ガラス繊維のような無機繊維を用いることができる。身体に身につける用途では、絶縁性があり、しなやかな性質を持つ綿、ウール、レーヨン、ナイロン繊維、ポリエステル繊維、ポリウレタン繊維、アクリル繊維等が好ましい。   In the case of using a fiber sheet as the base material 20, fabrics (fabrics) such as woven fabrics, knitted fabrics, and nonwoven fabrics can be used, and it is preferable that fibers formed of twisted yarns obtained by twisting a plurality of single yarns are formed into a sheet shape. The kind of fiber used as the fiber sheet is not limited, and general natural fiber and synthetic fiber can be used, and inorganic fiber such as glass fiber can be used. For applications worn on the body, cotton, wool, rayon, nylon fiber, polyester fiber, polyurethane fiber, acrylic fiber, etc. that have insulating properties and have supple properties are preferred.

シートを構成する撚糸の直径は、0.01〜1.0mm程度が好ましい。ニットの場合には1.0mmよりも太ければ生じる編み目の凹凸が大きくなり伸縮配線30を積層し難くなる。また、0.01mmよりも細くても良いが、ニットの場合は耐摩耗性が弱くなり、伸長配線部材の耐久性が低くなることが懸念される。   The diameter of the twisted yarn constituting the sheet is preferably about 0.01 to 1.0 mm. In the case of knit, if the thickness is larger than 1.0 mm, the unevenness of the stitches that are generated becomes large and it becomes difficult to stack the stretchable wiring 30. Moreover, although it may be thinner than 0.01 mm, in the case of a knit, there is a concern that the wear resistance becomes weak and the durability of the elongated wiring member is lowered.

<伸縮配線30> 伸縮配線30は、基材20に配置されておりこの基材20の伸縮によって伸縮する性質を有している。基材20の両側に導通接続部50を設けることで、この導通接続部50に伸縮配線30の端部を電気的に接続し、導通接続部50どうしの間隔が変化しても両者の導電接続状態を保持する導電部位である。伸縮配線30は、基材20の表面に形成することもできるが、基材20の内部に埋設して設ける方が好ましい。伸縮配線30の保護のためである。   <Extensible wiring 30> The elastic wiring 30 is arrange | positioned at the base material 20, and has the property to expand-contract by the expansion / contraction of this base material 20. As shown in FIG. By providing the conductive connection portions 50 on both sides of the base material 20, the end portions of the stretchable wiring 30 are electrically connected to the conductive connection portions 50, and even if the interval between the conductive connection portions 50 changes, both conductive connections It is a conductive part that maintains the state. Although the stretchable wiring 30 can be formed on the surface of the base material 20, it is preferable to embed it in the base material 20. This is to protect the stretchable wiring 30.

伸縮配線30には、伸縮性のある導電材料を用いる。具体的には、熱硬化性ゴムや熱可塑性エラストマに銀フィラーなどの導電性フィラーを分散させた柔軟導電性樹脂や、導電糸、コイル状金属線等を挙げることができるが、柔軟導電性樹脂を用いることが好ましい。また、柔軟導電性樹脂を用いる場合に、基材20として熱硬化性ゴムや熱可塑性エラストマを用いたときは、同種の樹脂の銀やカーボンの粉末を分散させた柔軟導電性樹脂を用いて伸縮配線30を形成することが好ましい。基材20と伸縮配線30との固着性が高まるからである。   The stretchable wiring 30 is made of a stretchable conductive material. Specific examples include flexible conductive resins in which conductive fillers such as silver filler are dispersed in thermosetting rubber or thermoplastic elastomer, conductive yarns, coiled metal wires, etc. Is preferably used. When a flexible conductive resin is used, when a thermosetting rubber or a thermoplastic elastomer is used as the substrate 20, the flexible conductive resin in which silver or carbon powder of the same kind of resin is dispersed is used for expansion and contraction. It is preferable to form the wiring 30. This is because the adhesion between the base material 20 and the stretchable wiring 30 is enhanced.

伸縮配線30も基材20も柔軟な材質で形成されるため、その両者の硬度は同一とすることもできるが、伸縮配線30の硬度を基材20の硬度よりも高硬度とすることができる。こうした硬さの関係性で伸縮配線部材11aを構成すると、伸縮配線部材11aが圧縮されたときでも基材20は圧縮変形し易いが伸縮配線30は圧縮変形し難い。したがって、圧縮時の伸縮配線30の体積変化を生じさせ難いため、伸長方向以外にも圧力を受ける用途で、安定した抵抗値を示すことができる。   Since both the stretchable wiring 30 and the base material 20 are formed of a flexible material, the hardness of both can be the same, but the hardness of the stretchable wiring 30 can be higher than the hardness of the base material 20. . When the stretchable wiring member 11a is configured with such a hardness relationship, even when the stretchable wiring member 11a is compressed, the base material 20 is easily compressed and deformed, but the stretchable wiring 30 is difficult to compressively deform. Therefore, since it is difficult to cause a volume change of the stretchable wiring 30 at the time of compression, it is possible to show a stable resistance value in applications where pressure is applied in a direction other than the extension direction.

伸縮配線30と基材20との固着力は伸縮配線30の引張り破断力よりも大きいものとすることが好ましい。反対に伸縮配線30と基材20の固着力に対して伸縮配線30の引張り破断力が大きいと、伸縮配線部材11aを、200%を超えて大きく伸長したような場合に基材20から伸縮配線30が剥離するおそれがある。この場合は伸縮配線30自体の縮径方向の変形が大きくなり、基材20との間に応力が生じることから剥離が起こり易くなるものと考えられる。   It is preferable that the fixing force between the stretchable wiring 30 and the base material 20 is larger than the tensile breaking force of the stretchable wiring 30. On the other hand, if the tensile breaking force of the stretchable wiring 30 is larger than the adhesive strength between the stretchable wiring 30 and the base material 20, the stretchable wiring member 11a is stretched from the base material 20 in a case where the stretchable wiring member 11a is greatly extended exceeding 200%. 30 may peel off. In this case, it is considered that the stretchable wiring 30 itself is greatly deformed in the reduced diameter direction, and stress is generated between the stretchable wiring 30 and the base material 20 so that peeling is likely to occur.

こうした懸念に対して、伸縮配線30の引張り破断力を小さくすることで、剥離する前に、伸縮配線30に部分的な亀裂が生じるようにすることができる。こうした亀裂は、小さな亀裂が細かく生じ、抵抗値は上昇するものの、伸縮配線30を切断するほど大きな亀裂にはなり難い。したがって、剥離を抑制しながら、伸縮配線30の断線も抑制することができ、抵抗値上昇をモニタリングすることで、伸長の限界をセンシングすることもできる。なお、上記固着力と引張り破断力の関係は、伸縮配線部材11aの伸長試験を行い、剥離する前に亀裂が生じるか否かで判断することができる。すなわち、前記伸長試験で亀裂が生じる前に剥離した場合には、伸縮配線30と基材20の固着力に対して伸縮配線30の引張り破断力が大きい、反対に剥離する前に部分的な亀裂が生じた場合は、伸縮配線30と基材20との固着力は伸縮配線30の引張り破断力よりも大きいと判断することできる。   In response to such a concern, by reducing the tensile breaking force of the stretchable wiring 30, it is possible to cause a partial crack in the stretchable wiring 30 before peeling. Such cracks are small cracks and the resistance value increases, but the cracks are less likely to become large as the stretchable wiring 30 is cut. Therefore, disconnection of the stretchable wiring 30 can be suppressed while suppressing peeling, and the limit of extension can be sensed by monitoring the increase in resistance value. The relationship between the fixing force and the tensile breaking force can be determined by performing an extension test on the stretchable wiring member 11a and determining whether or not a crack occurs before peeling. That is, when peeling before the crack is generated in the extension test, the tensile breaking force of the stretchable wiring 30 is larger than the fixing force between the stretchable wiring 30 and the base material 20. If this occurs, it can be determined that the adhesion force between the stretchable wiring 30 and the base material 20 is greater than the tensile breaking force of the stretchable wiring 30.

<導通接続部50> 導通接続部50は、伸縮配線部材11aにおいて基板Pなどの接続対象物と導電接続するためのコネクタ部位である。接続対象物Pに導通接続する第1の接続端51aと、伸縮配線30に導通接続する第2の接続端51bと、を有し、第1の接続端51aと第2の接続端51bとの間に形成される導通路51を通じて、接続対象物Pと伸縮配線30とを電気的に接続している。そしてこの導通接続部50は導通路51の形成方向に沿って圧縮変形することができる。導通接続部50は、基本的には伸縮配線部材11aが導通接続される基板Pなどの一方側の接続対象物と、筐体W等との間に挟持、押圧されて保持される。   <Conductive connection part 50> The conductive connection part 50 is a connector part for conducting conductive connection with a connection object such as the substrate P in the stretchable wiring member 11a. The first connection end 51a that is conductively connected to the connection object P and the second connection end 51b that is conductively connected to the stretchable wiring 30 are provided, and the first connection end 51a and the second connection end 51b The connection object P and the expansion / contraction wiring 30 are electrically connected through a conduction path 51 formed therebetween. The conductive connection portion 50 can be compressed and deformed along the direction in which the conductive path 51 is formed. Basically, the conductive connection part 50 is sandwiched and pressed between a connection object on one side, such as the substrate P, to which the elastic wiring member 11a is conductively connected, and the housing W or the like, and is held.

導通接続部50は、ゴム状の高分子材料に導電性フィラーが分散した導電性ゴム組成物とすることができる。こうした導電性ゴム組成物には、液状の高分子組成物中に導電性フィラーが分散した組成物を磁場内で導電性フィラーを導通方向に配向(または配列)させた後、液状の高分子組成物を固体に硬化させたものが例示できる。この導電性ゴム組成物は、高分子組成物が硬化した絶縁性の被覆部52に包囲された中に導電性フィラーが連続した導通路51を有する。導通路51を巨視的に観察すれば導電性フィラーのみが存在するように見えるが、微視的に観察すれば、ゴム状弾性体の内部に導電性フィラーが配向しており、導電性フィラーの充てん量が少なくても電気抵抗を低く抑えることができ、また導通路51自体にも適度な柔軟性を備えることができる、という点で好ましい。ゴム状の高分子材料に導電性フィラーが分散した導電性ゴム組成物は、こうした態様の他、柔軟な高分子材料に導電性フィラーを均一に分散させた導電ゴムとすることもできる。   The conductive connection portion 50 can be a conductive rubber composition in which a conductive filler is dispersed in a rubber-like polymer material. In such a conductive rubber composition, a composition in which a conductive filler is dispersed in a liquid polymer composition is oriented (or arranged) in a conduction direction in a magnetic field, and then a liquid polymer composition is formed. The thing which hardened the thing to solid can be illustrated. This conductive rubber composition has a conduction path 51 in which a conductive filler is continuous while being surrounded by an insulating coating 52 in which the polymer composition is cured. When the conduction path 51 is observed macroscopically, it seems that only the conductive filler exists, but when microscopically observed, the conductive filler is oriented inside the rubber-like elastic body. Even if the filling amount is small, the electrical resistance can be kept low, and the conduction path 51 itself can be provided with appropriate flexibility. The conductive rubber composition in which the conductive filler is dispersed in the rubber-like polymer material may be a conductive rubber in which the conductive filler is uniformly dispersed in the flexible polymer material in addition to such a mode.

導通路51を構成する導電性フィラーの隙間を埋めるゴム状弾性体は、被覆部52を構成する材料と同じである。また、導電性フィラーとしては、粒子状、繊維状、細片状、細線状の金属粒子が挙げられる。より具体的には、ニッケル、コバルト、鉄、フェライト、またはそれらを多く含有する合金、良電性の金、銀、白金、アルミ、銅、鉄、パラジウム、クロム等の金属類やステンレス等の合金類、樹脂、セラミック等からなる粉末や細線を磁性導電体で鍍金したもの、あるいは逆に磁性導電体に良導電体の金属を鍍金したものを用いることができる。金属粒子の大きさは、平均粒径が1〜200μm程度の大きさのものであれば、成形金型内に作用させる磁場中で効率よく磁力線方向に沿って連鎖状態を形成することができ好ましい。   The rubber-like elastic body that fills the gap between the conductive fillers constituting the conduction path 51 is the same as the material constituting the covering portion 52. In addition, examples of the conductive filler include particulate, fibrous, strip-like, and fine-line metal particles. More specifically, nickel, cobalt, iron, ferrite, or an alloy containing a large amount thereof, good electrical gold, silver, platinum, aluminum, copper, iron, palladium, chromium, and other metals, and stainless steel, etc. For example, a powder or fine wire made of metal, resin, ceramic or the like is plated with a magnetic conductor, or conversely, a magnetic conductor is plated with a metal of a good conductor. As long as the average particle diameter is about 1 to 200 μm, the metal particles are preferably capable of forming a chain state along the direction of the magnetic field in a magnetic field that acts in the molding die. .

被覆部52は、導電接点となる導通路51の露出部分以外を被覆して導通路51の周囲を保護し導通路51と一体化している。被覆部52は絶縁性のゴム状弾性体からなり、材質としては、天然ゴムや、シリコーンゴム、イソプレンゴム、ブタジエンゴム、アクリロニトリルブタジエンゴム、1,2−ポリブタジエン、スチレン−ブタジエンゴム、クロロプレンゴム、ニトリルゴム、ブチルゴム、エチレン−プロプレンゴム、クロロスルホンゴム、ポリエチレンゴム、アクリルゴム、エピクロルヒドリンゴム、フッ素ゴム、ウレタンゴム、スチレン系熱可塑性エラストマ、オレフィン系熱可塑性エラストマ、エステル系熱可塑性エラストマ、ウレタン系熱可塑性エラストマ、アミド系熱可塑性エラストマ、塩化ビニル熱可塑性エラストマ、フッ化系樹脂熱可塑性エラストマ、イオン架橋系熱可塑性エラストマなどが挙げられる。なかでも、電気絶縁性、及び環境特性に優れるシリコーンゴムが好ましい。また、金型中で加熱硬化して導通接続部50を製造する場合は熱硬化性ゴムであることが好ましく、なかでも耐熱性の高いシリコーンゴムやフッ素ゴムがより好ましい。   The covering portion 52 covers the portion other than the exposed portion of the conduction path 51 that becomes a conductive contact, protects the periphery of the conduction path 51, and is integrated with the conduction path 51. The covering portion 52 is made of an insulating rubber-like elastic body, and the material is natural rubber, silicone rubber, isoprene rubber, butadiene rubber, acrylonitrile butadiene rubber, 1,2-polybutadiene, styrene-butadiene rubber, chloroprene rubber, nitrile. Rubber, Butyl rubber, Ethylene-propylene rubber, Chlorosulfone rubber, Polyethylene rubber, Acrylic rubber, Epichlorohydrin rubber, Fluoro rubber, Urethane rubber, Styrenic thermoplastic elastomer, Olefin thermoplastic elastomer, Ester thermoplastic elastomer, Urethane thermoplastic elastomer Amide-based thermoplastic elastomer, vinyl chloride thermoplastic elastomer, fluorinated resin thermoplastic elastomer, ion-crosslinked thermoplastic elastomer, and the like. Of these, silicone rubber having excellent electrical insulation and environmental characteristics is preferable. Further, when the conductive connection part 50 is manufactured by heat curing in a mold, it is preferably a thermosetting rubber, and more preferably silicone rubber or fluorine rubber having high heat resistance.

被覆部52の硬度は、JISK6253に準じてA硬度で5〜70の範囲が好ましく、15〜50の範囲がより好ましい。A硬度が25を超えると導通接続部50を圧縮した際の圧縮荷重が上昇し接続対象物Pや筐体Wにかかる負荷が大きくなる。A硬度が5.0を下回ると導通接続部50を圧縮した際に、導通接続部50が潰れ易くなり、容易に座屈して粒子どうしが離れ易くなり、安定した導電性を確保できないおそれがある。   The hardness of the covering portion 52 is preferably 5 to 70 in terms of A hardness according to JISK6253, and more preferably 15 to 50. When A hardness exceeds 25, the compression load at the time of compressing the conduction | electrical_connection connection part 50 will rise, and the load concerning the connection target P or the housing | casing W will become large. When the A hardness is less than 5.0, when the conductive connecting portion 50 is compressed, the conductive connecting portion 50 is liable to be crushed, easily buckled, and particles are easily separated from each other, so that stable conductivity may not be ensured. .

導通接続部50を製造するには、種々の方法を利用することができる。例えば、導電性フィラーを配合した液状の高分子を成形金型に注入し、成形金型内に配置した磁極によって導電性フィラーを配向させて導電経路を形成した後、液状の高分子を硬化させて導通路51と被覆部52とが一体となった導通接続部50を得ることができる。あるいは、予め所定の電気抵抗を備える導電性ゴムを導通路51の形状に成形しておいても良い。   Various methods can be used to manufacture the conductive connection portion 50. For example, a liquid polymer containing a conductive filler is injected into a molding die, and the conductive filler is oriented by magnetic poles arranged in the molding die to form a conductive path, and then the liquid polymer is cured. Thus, it is possible to obtain the conduction connecting portion 50 in which the conduction path 51 and the covering portion 52 are integrated. Alternatively, a conductive rubber having a predetermined electrical resistance may be molded in the shape of the conduction path 51 in advance.

導通接続部50を基材20に組み込むには、導通路51と被覆部52が一体となった導通接続部50や、導電ゴムからなる導通接続部50を形成しておき、基材20成形時の金型にこうした導通接続部50をインサートして、導通接続部50と一体化した基材20を製造することができるが、液状高分子内で磁性導電性フィラーを磁場配向させるような場合には、基材20を形成する金型内で導通路51を磁場配向させれば、基材20が被覆部52となるように製造できる。このように被覆部52は、その材質が基材20と同一である場合には、基材20の一部を被覆部52とすることができる。   In order to incorporate the conductive connection part 50 into the base material 20, the conductive connection part 50 in which the conductive path 51 and the covering part 52 are integrated or the conductive connection part 50 made of conductive rubber is formed, and the base material 20 is formed. The base material 20 can be manufactured by inserting such a conductive connection part 50 into the metal mold of the mold, but in the case where the magnetic conductive filler is magnetically oriented in the liquid polymer. Can be manufactured such that the base material 20 becomes the covering portion 52 if the conduction path 51 is magnetically oriented in the mold forming the base material 20. Thus, when the material of the covering portion 52 is the same as that of the base material 20, a part of the base material 20 can be used as the covering portion 52.

図3(a)に示す伸縮配線部材11bは、導通接続部50の変形形態を有する伸縮配線部材であり、導通接続部50の表面が基材20の表面と略面一としている。また、導通接続部50の被覆部52は、基材20の一部が兼ねている。   The stretchable wiring member 11 b shown in FIG. 3A is a stretchable wiring member having a modified form of the conductive connection portion 50, and the surface of the conductive connection portion 50 is substantially flush with the surface of the substrate 20. In addition, a part of the base material 20 also serves as the covering portion 52 of the conductive connection portion 50.

図3(b)に示す伸縮配線部材11cも導通接続部50の変形形態を有する伸縮配線部材であり、導通路51の表面が基材20の表面と面一の面からドーム状に突き出した伸縮配線部材である。この伸縮配線部材11cでも伸縮配線部材11bと同様に、導通路51の周囲近傍で導通路51に接触する基材20の部分が被覆部52をなしている。   The stretchable wiring member 11c shown in FIG. 3B is also a stretchable wiring member having a modified form of the conductive connection portion 50, and the surface of the conductive path 51 extends and contracts from the surface of the base material 20 in a dome shape. Wiring member. In the stretchable wiring member 11c as well as the stretchable wiring member 11b, the portion of the base material 20 that contacts the conduction path 51 in the vicinity of the periphery of the conduction path 51 forms the covering portion 52.

<導通路形状保持部60> 導通路形状保持部60は、圧縮変形した導通路51が伸縮配線30の伸長方向に伸びた基材20に引っ張られて導通方向の交差方向に変形するのを低減する部位である。換言すれば、導通接続部50を接続対象物Pに圧接する圧接応力が、導通接続部50への圧接方向に対する水平方向、即ち、伸縮配線部材の伸長方向へ拡散することを低減する部位である。図2で示す伸縮配線部材11aでは、導通路51の導通方向(伸縮配線部材11aの厚み方向)で前記第2の接続端51bと重なる位置に導通路形状保持部60を設けている。   <Conducting path shape holding part 60> The conducting path shape holding part 60 reduces that the compressed conducting path 51 is pulled by the base material 20 extending in the extending direction of the stretchable wiring 30 and deformed in the direction intersecting the conducting direction. It is a part to do. In other words, it is a part that reduces the diffusion of the pressure stress that presses the conductive connection portion 50 against the connection object P in the horizontal direction with respect to the pressure contact direction to the conductive connection portion 50, that is, the extension direction of the elastic wiring member. . In the stretchable wiring member 11a shown in FIG. 2, the conducting path shape holding portion 60 is provided at a position overlapping the second connecting end 51b in the conducting direction of the conducting path 51 (thickness direction of the stretchable wiring member 11a).

導通路形状保持部60を形成する材質は、可撓性を有していてもいなくても良い。また、その面内方向にほぼ伸縮しない程度の剛性を備えた部材を用いることができる。こうした性質を備えた絶縁性硬質材料としてPETフィルムなどの樹脂フィルムや、硬質樹脂基板等の硬質樹脂成形体、セラミック基板や金属フィルム等が挙げられる。あるいはまた、基材20と同等程度以上の硬さがあれば良く、基材20にも用いることができる熱硬化性ゴムや熱可塑性エラストマで基材20よりも硬質の部位として形成することができる。例えば、基材20の一部を高硬度にして導通路形状保持部60とする場合である。   The material forming the conduction path shape holding portion 60 may or may not have flexibility. Further, a member having a rigidity that does not substantially expand and contract in the in-plane direction can be used. Examples of the insulating hard material having such properties include a resin film such as a PET film, a hard resin molded body such as a hard resin substrate, a ceramic substrate, and a metal film. Alternatively, the base material 20 may have a hardness equal to or higher than that of the base material 20, and can be formed as a harder part than the base material 20 with a thermosetting rubber or a thermoplastic elastomer that can be used for the base material 20. . For example, this is a case where a part of the base material 20 is made to have a high hardness to form the conduction path shape holding unit 60.

樹脂フィルムは、フィルムの面内方向にはほぼ伸縮せず、フィルム面に対する垂直方向には変形し易い性質を有する。一方、硬質樹脂基板やセラミック基板は、その面内方向にはほぼ伸縮せず、その面に対する垂直方向にも変形し難い。これらの中でもプリント配線の基材として用いられているポリイミドフィルムや、フェノール樹脂、エポキシ樹脂を用いることは好ましい一態様である。   The resin film does not substantially expand and contract in the in-plane direction of the film and has a property of being easily deformed in the direction perpendicular to the film surface. On the other hand, a hard resin substrate or a ceramic substrate does not substantially expand and contract in the in-plane direction and hardly deforms in a direction perpendicular to the surface. Among these, it is a preferable aspect to use a polyimide film, a phenol resin, or an epoxy resin that is used as a substrate for printed wiring.

基材20と導通路形状保持部60との固着方法には、材料自体の接着性を利用する方法、接着剤等を用いる方法、熱融着による方法、構造的な固定による固着方法などを採用することができる。接着性を採用できる材料としては、半硬化状態の熱硬化ゴムを例示することができる。また、熱融着による固着を採用できる材料としては、熱可塑性エラストマや熱可塑性の布帛を例示することができる。   As a method for fixing the base material 20 and the conduction path shape holding portion 60, a method using the adhesiveness of the material itself, a method using an adhesive, a method using thermal fusion, a fixing method using structural fixing, etc. are adopted. can do. A semi-cured thermosetting rubber can be exemplified as a material that can employ adhesiveness. In addition, examples of the material that can employ fixing by thermal fusion include thermoplastic elastomers and thermoplastic fabrics.

図4には、この伸縮配線部材11aの使用形態の一例を示す。接続対象である基板Pの接点Sに伸縮配線部材11aの導通接続部50を当接させるように配置して、背面20bの筐体Wなどで押圧して導通接続部50を接続対象に圧接する。図5には別の使用形態の一例を示す。図4で示す使用形態との差異は、接続対象に伸縮配線部材11aを巻き付けている点であり、背面20bから圧接する筐体Wのような部材がないという点である。なお、図5で示す態様では、伸縮配線部材11a自体の張力等を利用して圧接することもできる。即ち、巻き付けなくても伸縮配線部材11aの両端を図面上方に引っ張る張力で圧接できる。   FIG. 4 shows an example of a usage pattern of the stretchable wiring member 11a. It arrange | positions so that the conduction | electrical_connection connection part 50 of the expansion-contraction wiring member 11a may contact | abut to the contact S of the board | substrate P which is a connection object, and it presses with the housing | casing W etc. of the back surface 20b, and press-contacts the conduction | electrical_connection connection part 50 to a connection object. . FIG. 5 shows an example of another usage pattern. The difference from the usage pattern shown in FIG. 4 is that the stretchable wiring member 11a is wound around the connection target, and there is no member such as the casing W that is pressed from the back surface 20b. In addition, in the aspect shown in FIG. 5, it can also press-contact using the tension | tensile_strength etc. of expansion-contraction wiring member 11a itself. That is, both ends of the stretchable wiring member 11a can be pressed by tension that pulls upward in the drawing without winding.

図6には、伸縮配線部材11aの接続対象物である基板Pのいくつかの態様を示す。図6の左側図で示すように、接点Sが基板Pの内部に組み込まれた態様である場合や、図6の右側図で示すように、接点Sの周囲を基板Pの一部が突出して保護する態様等が例示できる。こうした態様に限らず、伸縮配線部材11aの導通路51と接続対象物Pの接点Sが当接するように形成される。   In FIG. 6, several aspects of the board | substrate P which is a connection target object of the expansion-contraction wiring member 11a are shown. As shown in the left side view of FIG. 6, when the contact S is built into the inside of the substrate P, or as shown in the right side view of FIG. 6, a part of the substrate P protrudes around the contact S. The aspect etc. to protect can be illustrated. Not only in such an aspect, it forms so that the conduction path 51 of the expansion | extension wiring member 11a and the contact S of the connection target P may contact | abut.

伸縮配線部材11aと接続対象物Pとが適度に当接し、互いに安定して保持されるように、伸縮配線部材11aまたは接続対象物Pに図7で示したような固定具70を設けることができる。この例での固定具70は、硬質樹脂からなり、伸縮配線部材11aに設けられ、伸縮配線部材11aと基板Pとが当接する際には、固定具70が基材20を貫通して設けられた貫通孔Hを貫通して基板Pの表面に固定具70のフック71が引っかかるように構成されている。   The stretchable wiring member 11a or the connection target P is provided with the fixture 70 as shown in FIG. 7 so that the expansion / contraction wiring member 11a and the connection target P are appropriately in contact with each other and stably held. it can. The fixture 70 in this example is made of a hard resin and is provided on the stretchable wiring member 11a. When the stretchable wiring member 11a and the substrate P are in contact with each other, the fixture 70 is provided through the base material 20. The hook 71 of the fixing tool 70 is hooked on the surface of the substrate P through the through hole H.

伸縮配線部材11aを製造するには、基材20の半分の大きさのものを準備してその表面にスクリーン印刷等で伸縮配線30を形成した上に導通接続部50を固着し、伸縮配線30を形成した基材20の表面にさらに別の半分の大きさの基材20を貼り合わせる方法が挙げられる。この方法では、導通接続部50のインサート成形で半分の大きさの基材20と一体化することもできる。   In order to manufacture the stretchable wiring member 11a, a member having a size half that of the substrate 20 is prepared, the stretchable wiring 30 is formed on the surface thereof by screen printing or the like, and the conductive connection portion 50 is fixed. There is a method in which another half of the size of the base material 20 is bonded to the surface of the base material 20 on which is formed. In this method, the conductive connecting portion 50 can be integrated with the half-sized base material 20 by insert molding.

本発明の伸縮配線部材11aによれば、導通接続部50付近の水平方向への伸長を抑制して、圧接応力が水平方向へ拡散することを防ぐことができる。この効果について図面を参照しつつ、導通路形状保持部60が無い伸縮配線部材Rの場合と比較して説明する。図8(a)に示したのは、導通路形状保持部60を有しない伸縮配線部材Rについて、この伸縮配線部材Rにおける導通接続部50が圧接されるとともに伸縮配線部材Rが引っ張られた状態の断面図である。導通接続部50を圧接しながら伸縮配線部材Rが引っ張られると、図8(a)で示すように、導通接続部50は、圧接方向に対する水平方向に広がる変形が生じる。   According to the stretchable wiring member 11a of the present invention, it is possible to suppress the extension in the horizontal direction in the vicinity of the conductive connection portion 50 and to prevent the pressure contact stress from spreading in the horizontal direction. This effect will be described in comparison with the case of the stretchable wiring member R without the conduction path shape holding portion 60 with reference to the drawings. FIG. 8A shows a state in which the conductive connection portion 50 of the elastic wiring member R is pressed and the elastic wiring member R is pulled for the elastic wiring member R that does not have the conductive path shape holding portion 60. FIG. When the stretchable wiring member R is pulled while pressing the conductive connecting portion 50, the conductive connecting portion 50 is deformed to expand in the horizontal direction with respect to the pressing direction, as shown in FIG.

一方、図8(b)には伸縮配線部材11aにおいて、導通接続部50を圧接しながら引っ張られた状態を示したものである。伸縮配線部材11aでは、この図で示すように、水平方向の導通接続部50の変形を抑制することができる。こうした差異は、導通路形状保持部50の有無によるものと考えられる。このように、導通接続部50の導通方向で、この導通接続部50と重なる位置、即ち導通接続部50を圧接する箇所に、導通路形状保持部60を配置することで、導通接続部50を圧接する箇所の水平方向への伸長を抑制して、圧接応力が水平方向へ拡散することを防いでいる。こうした作用により、ゴム状の導電性ゴム組成物からなる導通接続部50であっても、導通接続部50を圧接する箇所の水平方向への過度な変形を防止し、抵抗値の過度な上昇を抑制できる。   On the other hand, FIG. 8B shows a state in which the stretchable wiring member 11a is pulled while pressing the conduction connecting portion 50. In the stretchable wiring member 11a, as shown in this figure, the deformation of the conductive connection portion 50 in the horizontal direction can be suppressed. Such a difference is considered to be due to the presence or absence of the conduction path shape holding portion 50. As described above, the conductive connection portion 50 is arranged in the conductive direction of the conductive connection portion 50 by disposing the conductive path shape holding portion 60 at a position overlapping the conductive connection portion 50, that is, at a position where the conductive connection portion 50 is pressed. The extension in the horizontal direction of the portion to be pressed is suppressed, and the pressure stress is prevented from spreading in the horizontal direction. By such an action, even in the conductive connection portion 50 made of a rubber-like conductive rubber composition, excessive deformation in the horizontal direction of the portion where the conductive connection portion 50 is pressed is prevented, and the resistance value is excessively increased. Can be suppressed.

変形例1−1[図9]: 図9には変形例1−1の伸縮配線部材11dを示す。伸縮配線部材11dは、先の実施形態で示した伸縮配線部材11aとは導通路形状保持部60の配置位置が異なる。伸縮配線部材11dでは、導通路形状保持部60を基材20のほぼ中間位置となる内部に設けている。本実施形態で示したように、導通路形状保持部60は基材20に埋めるように配置することが可能である。導通路形状保持部60を基材20の内部に埋めたため、基材20の表面に導通路形状保持部60を設けるよりも基材20との一体化を強化することができ、導通路形状保持部60を安定的に設けることができる。   Modification 1-1 [FIG. 9]: FIG. 9 shows an expandable wiring member 11d of Modification 1-1. The extension wiring member 11d is different from the extension wiring member 11a shown in the previous embodiment in the arrangement position of the conduction path shape holding portion 60. In the stretchable wiring member 11 d, the conduction path shape holding portion 60 is provided inside the base material 20 at a substantially intermediate position. As shown in the present embodiment, the conduction path shape holding unit 60 can be disposed so as to be embedded in the base material 20. Since the conduction path shape holding part 60 is embedded in the base material 20, the integration with the base material 20 can be strengthened rather than providing the conduction path shape holding part 60 on the surface of the base material 20, and the conduction path shape holding is performed. The part 60 can be provided stably.

変形例1−2[図10]: また、図10には変形例1−2の伸縮配線部材11eを示す。図10の伸縮配線部材11eも図9で示す伸縮配線部材11dと同様に導通路形状保持部60の配置位置が異なるものだが、伸縮配線部材11eでは、導通路形状保持部60を伸縮配線30に接する位置に設けている。本実施形態の伸縮配線部材11eでは、導通路形状保持部60が導通路51に接触するため、導通路形状保持部60に導電性の素材を用いると、複数個設けられた導通路51が導通することになる。そのため、導通路51が複数個ある場合には、導通路形状保持部60は絶縁体の材質からなるものとする。なお、導通路51が単極の場合は金属フィルムなどの導電体であっても良い。   Modified Example 1-2 [FIG. 10]: FIG. 10 shows an expandable wiring member 11e of Modified Example 1-2. The extension wiring member 11e of FIG. 10 is also different from the extension wiring member 11d shown in FIG. 9 in the arrangement position of the conduction path shape holding part 60. However, in the extension wiring member 11e, the conduction path shape holding part 60 is connected to the extension wiring 30. It is provided at a position where it touches. In the stretchable wiring member 11e of the present embodiment, since the conduction path shape holding part 60 contacts the conduction path 51, if a conductive material is used for the conduction path shape holding part 60, a plurality of conduction paths 51 are conducted. Will do. Therefore, when there are a plurality of conduction paths 51, the conduction path shape holding portion 60 is made of an insulating material. In addition, when the conduction path 51 is monopolar, a conductor such as a metal film may be used.

導通路形状保持部60の位置は、伸縮配線30に近すぎると、伸縮配線30と交差する導通路形状保持部60の端において、伸長時に伸縮配線30が断線するおそれが高まる。そうした一方で伸縮配線30に近いほど伸縮配線部材を押圧したときに伸縮配線30や導通接続部50へかかる水平方向の応力を低減する効果が大きい。したがって、伸縮配線部材の厚み方向における導通路形状保持部60の位置は、伸縮配線30の破断予防と、水平方向の応力低減の両方の観点を考慮して適度な位置に配置することが好ましく、伸縮配線部材11eに接触しない伸縮配線部材11eの近傍位置は好ましい実施態様の一である。   If the position of the conduction path shape holding portion 60 is too close to the stretchable wiring 30, the possibility that the stretchable wiring 30 is disconnected at the end of the conduction path shape holding portion 60 that intersects the stretchable wiring 30 increases. On the other hand, the closer to the stretchable wiring 30, the greater the effect of reducing the horizontal stress applied to the stretchable wiring 30 and the conductive connection portion 50 when the stretchable wiring member is pressed. Therefore, the position of the conduction path shape holding portion 60 in the thickness direction of the stretchable wiring member is preferably disposed at an appropriate position in consideration of both the prevention of breakage of the stretchable wiring 30 and the horizontal stress reduction, A position near the stretchable wiring member 11e that does not contact the stretchable wiring member 11e is one of the preferred embodiments.

変形例1−3[図11]: 図11には変形例1−3の伸縮配線部材11fを示す。伸縮配線部材11fも導通路形状保持部60の配置位置が第1実施形態の伸縮配線部材11aと異なる点では伸縮配線部材11d,11eと同じだが、伸縮配線部材11fでは、導通路形状保持部60を基材20の表面20aに設けている。また、その形状は、導通接続部50を囲うようにリング状に設けている。伸縮配線部材fでは、導通路51の導通方向(伸縮配線部材11aの厚み方向)で第2の接続端51bと重ならない位置ではあるが、基材20の伸縮方向で導通路52と重なる位置に導通路形状保持部60を設けている。こうした位置に導通路形状保持部60を設けても、これまで説明した伸縮配線部材11a〜11eと同様に圧接応力が水平方向へ拡散することを防ぐ効果を奏する。加えて、伸縮配線部材11fでは、導通路形状保持部60を導通接続部50に近接する上面側に配置できるため、伸縮配線部材の厚みを薄くすることができ、導通接続部50へかかる水平方向の応力をいっそう低減することができる。   Modification 1-3 [FIG. 11]: FIG. 11 shows an expandable wiring member 11f of Modification 1-3. The extension wiring member 11f is the same as the extension wiring members 11d and 11e in that the arrangement position of the conduction path shape holding portion 60 is different from the extension wiring member 11a of the first embodiment. However, the extension wiring member 11f has the conduction path shape holding portion 60. Is provided on the surface 20 a of the substrate 20. Moreover, the shape is provided in the ring shape so that the conduction | electrical_connection connection part 50 may be enclosed. In the stretchable wiring member f, although it is a position that does not overlap the second connection end 51b in the conduction direction of the conduction path 51 (thickness direction of the stretchable wiring member 11a), it is at a position that overlaps the conduction path 52 in the stretching direction of the base member 20. A conduction path shape holding unit 60 is provided. Even if the conduction path shape holding portion 60 is provided at such a position, the effect of preventing the pressure stress from diffusing in the horizontal direction is exhibited as in the case of the stretchable wiring members 11a to 11e described so far. In addition, in the stretchable wiring member 11f, since the conduction path shape holding portion 60 can be disposed on the upper surface side close to the conduction connecting portion 50, the thickness of the stretchable wiring member can be reduced, and the horizontal direction applied to the conduction connecting portion 50 Can be further reduced.

なお、上記例ではリング状の導通路形状保持部材60を、基材20の伸縮方向で導通路52と重なる位置に設けたが、厚みなどの制約がない場合には基材20の伸縮方向で導通路52と重ならない位置に設けることもできる。   In the above example, the ring-shaped conduction path shape holding member 60 is provided at a position overlapping the conduction path 52 in the expansion / contraction direction of the base material 20, but in the expansion / contraction direction of the base material 20 when there is no restriction such as thickness. It can also be provided at a position that does not overlap with the conduction path 52.

第2実施形態[図12]: 本実施形態の伸縮配線部材12aでは、伸縮配線30が1本である点で、これまでに説明した伸縮配線部材11a〜11fが2本の伸縮配線30を有していたのと異なる。また、本実施形態の伸縮配線部材12aでは、銅箔などの金属箔や金属板等の導電性の導通路形状保持部60を用いている。導電性の導通路形状保持部60を用いることで、その導通路形状保持部60の上面に導通接続部50を電気的に接続した状態で配置し、導通接続部50の下面に伸縮配線30を配置する態様とすることができる。この態様では、導通接続部50の第2の接続端51bが導通路形状保持部60を介して伸縮配線30と導通接続しており、本実施形態のように導通路51の第2の接続端51bは伸縮配線30と間接的に導通接続する場合もあり得る。   Second Embodiment [FIG. 12]: In the stretchable wiring member 12a of the present embodiment, the number of the stretchable wiring 30 is one, and the stretchable wiring members 11a to 11f described so far have two stretchable wires 30. It was different from what I was doing. Further, in the stretchable wiring member 12a of the present embodiment, a conductive conductive path shape holding unit 60 such as a metal foil such as a copper foil or a metal plate is used. By using the conductive conduction path shape holding part 60, the conductive connection part 50 is disposed in an electrically connected state on the upper surface of the conduction path shape holding part 60, and the expansion / contraction wiring 30 is provided on the lower surface of the conduction connection part 50. It can be set as the aspect to arrange. In this aspect, the second connection end 51b of the conductive connection portion 50 is conductively connected to the stretchable wiring 30 via the conductive path shape holding portion 60, and the second connection end of the conductive path 51 as in this embodiment. There is a case where 51b is indirectly connected to the expandable wiring 30 indirectly.

また、伸縮配線部材12aにおける導通路形状保持部60の形状は、平面視で伸長方向に向かって突出した突出部61を導通路形状保持部60の両端に備えたものとしている。突出部61を有することで、この両端の突出部61,61に囲まれた凹部における基材20の伸長を抑制することができ、この凹部に配した伸縮配線30が切断され難くすることができる。   In addition, the shape of the conduction path shape holding portion 60 in the stretchable wiring member 12 a is provided with protrusions 61 protruding in the extending direction in plan view at both ends of the conduction path shape holding portion 60. By having the protrusions 61, it is possible to suppress the extension of the base material 20 in the recesses surrounded by the protrusions 61, 61 at both ends, and it is possible to make the stretchable wiring 30 arranged in the recesses difficult to cut. .

変形例2−1[図13]: 図13には変形例2−1の伸縮配線部材12bを示す。伸縮配線部材12bは、導通接続部50の裏面に銅箔などの金属箔や金属板等の導電性部材60を貼り合わせたものを用いて、伸縮配線30と接続させた例であり製造が容易である。即ち、あらかじめ銅箔等が付いた導通接続部50を準備し、伸縮配線30を設けた基材20と貼り合わせることで製造できる。本実施形態ではこの銅箔等の導電性部材が導通路形状保持部60となっている。   Modification 2-1 [FIG. 13]: FIG. 13 shows an expandable wiring member 12b of Modification 2-1. The stretchable wiring member 12b is an example in which a metal foil such as a copper foil or a conductive member 60 such as a metal plate is bonded to the back surface of the conductive connection portion 50 and is connected to the stretchable wiring 30 and is easy to manufacture. It is. That is, it can be manufactured by preparing a conductive connection portion 50 previously provided with a copper foil or the like and bonding it to the base material 20 provided with the stretchable wiring 30. In the present embodiment, the conductive member such as the copper foil is the conduction path shape holding portion 60.

第3実施形態[図14]: 図14には第3実施形態の伸縮配線部材13aを示す。伸縮配線部材13aでは、基材20の内部に設けた導通路形状保持部60を基材20の外まで延伸し、その延伸した導通路形状保持部60の上に導通接続部50を設けたものである。別の見方をすれば、FPC一体の接続構造の接続用の接点部位に導通接続部50を設けたものである。この構造の利点は、導通接続部50を圧接したとき、その応力が伸縮配線30にまったく影響しないことである。なお、本実施形態では、導通接続部50と伸縮配線30との導通接続のために固定配線31が設けられている。固定配線31は、伸縮配線30と同様の材質で形成することもできるが、伸長しないため、伸縮する成分を含まない材質で形成することもできる。   Third Embodiment [FIG. 14]: FIG. 14 shows an expandable wiring member 13a of a third embodiment. In the stretchable wiring member 13a, the conductive path shape holding portion 60 provided inside the base material 20 is extended to the outside of the base material 20, and the conductive connection portion 50 is provided on the extended conductive path shape holding portion 60. It is. From another point of view, the conductive connection portion 50 is provided at the contact point for connection of the FPC-integrated connection structure. The advantage of this structure is that the stress does not affect the stretchable wiring 30 at all when the conductive connection portion 50 is pressed. In the present embodiment, the fixed wiring 31 is provided for the conductive connection between the conductive connection portion 50 and the stretchable wiring 30. The fixed wiring 31 can be formed of the same material as the stretchable wiring 30, but can also be formed of a material that does not include a component that stretches and contracts because it does not stretch.

また、伸縮配線部材13aを製造する方法としては、FPCでなる導通路形状保持部60に導通接続部50を一体成形した後に、基材20と一体にする方法や、あらかじめ基材20と導通路形状保持部60を一体にして、前記変形例2−1で用いた銅箔等の導電性部材を裏面に備える導通接続部50を、固定配線31に半田や導電性接着剤で固着する方法などを採用することができる。なお、変形例2−1で用いた銅箔等の導電性部材を裏面に備える導通接続部50を用いる後者の例では、上述の基材20の内部から外まで延伸する導通路形状保持部60と、銅箔等の導電性部材とが共に導通路形状保持部60となる。   In addition, as a method of manufacturing the stretchable wiring member 13a, after the conductive connection portion 50 is integrally formed with the conductive path shape holding portion 60 made of FPC, it is integrated with the base material 20, or the base material 20 and the conductive path are preliminarily formed. A method of fixing the conductive connecting portion 50 including the shape holding portion 60 on the back surface with the conductive member such as the copper foil used in the modified example 2-1 to the fixed wiring 31 with solder or a conductive adhesive. Can be adopted. In addition, in the latter example using the conductive connection part 50 provided with a conductive member such as a copper foil used in the modified example 2-1, the conductive path shape holding part 60 extending from the inside of the base material 20 to the outside. And a conductive member such as a copper foil together form a conduction path shape holding portion 60.

第4実施形態[図15]: 図15には第4実施形態の伸縮配線部材14aを示す。本実施形態の伸縮配線部材14aでは、基材20に布帛を用いた例である。布帛の上面に導通接続部50を一体成形し、下面に導通路形状保持部60を一体成形することで製造できる。   Fourth Embodiment [FIG. 15]: FIG. 15 shows an expandable wiring member 14a of a fourth embodiment. The stretchable wiring member 14a of the present embodiment is an example in which a fabric is used for the base material 20. It can be manufactured by integrally forming the conductive connection portion 50 on the upper surface of the fabric and integrally forming the conductive path shape holding portion 60 on the lower surface.

第5実施形態[図16]: 図16には第5実施形態の伸縮配線部材15aを示す。本実施形態の伸縮配線部材15aでは、防水リブ80を設けた点に特徴があり、第1実施形態で説明した伸縮配線部材11aに防水リブ80を設けた構成に相当する。防水リブ80は、基材20と接続対象物Pとの間にあって、伸縮配線部材15aを押圧し接続対象物Pと圧接した際の導通路51を外部から隔絶し、防水リブ80の外部から導通路51への水の浸入を防ぐための部位である。   Fifth Embodiment [FIG. 16]: FIG. 16 shows a stretchable wiring member 15a of a fifth embodiment. The stretchable wiring member 15a of the present embodiment is characterized in that the waterproof rib 80 is provided, and corresponds to the configuration in which the waterproof rib 80 is provided on the stretchable wiring member 11a described in the first embodiment. The waterproof rib 80 is located between the base material 20 and the connection target P, isolates the conduction path 51 when pressed against the connection target P by pressing the stretchable wiring member 15a, and is guided from the outside of the waterproof rib 80. This is a part for preventing water from entering the passage 51.

防水リブ80は一般的なゴムよりも軟質のゴム状弾性体でなり、本実施形態の伸縮配線部材15aでは、導通接続部50の周囲にあって、基材20の表面20aから平面視で無端環状に突出して設けられた突起物である。防水リブ80のような構造もまた、伸長する基材20上に設けられるため、伸縮配線部材が伸ばされたときには変形し易い。防水リブ80の変形は、伸縮配線部材の伸長によって防水リブ80の水平方向に起きるため、防水リブ80の厚み方向の肉厚を薄くするように作用し、あるいは、防水リブ80の接続対象物Pとの接触面がずれるように作用することで防水性が低減するおそれがあった。しかしながら、伸縮配線部材15aでは、平面視で防水リブ80が導通路形状保持部60と重なる位置に設けているため、防水リブ80の水平方向の変形もまた抑制されることから高い防水性を維持することができる。   The waterproof rib 80 is made of a rubber-like elastic body that is softer than general rubber. In the stretchable wiring member 15a of the present embodiment, the waterproof rib 80 is located around the conductive connection portion 50 and is endless in plan view from the surface 20a of the base member 20. It is a projection provided projecting in an annular shape. Since the structure such as the waterproof rib 80 is also provided on the base material 20 that extends, the structure is easily deformed when the stretchable wiring member is stretched. The deformation of the waterproof rib 80 occurs in the horizontal direction of the waterproof rib 80 due to the extension of the stretchable wiring member. Therefore, the waterproof rib 80 acts to reduce the thickness of the waterproof rib 80 in the thickness direction, or the waterproof rib 80 connection object P There is a possibility that the waterproof property may be reduced by acting so that the contact surface with the lens is displaced. However, in the stretchable wiring member 15a, since the waterproof rib 80 is provided at a position overlapping the conduction path shape holding portion 60 in a plan view, horizontal deformation of the waterproof rib 80 is also suppressed, so that high waterproofness is maintained. can do.

変形例5−1,変形例5−2[図17(a),図17(b)]: 図17(a)には変形例5−1の伸縮配線部材15bを示す。この伸縮配線部材15bは、図11で示す伸縮配線部材11fに防水リブ80を付加した構成である。また、図17(b)には変形例5−2の伸縮配線部材15cを示す。この伸縮配線部材15cは、図14で示す伸縮配線部材13aに防水リブ80を付加した構成である。こうした実施形態で示す伸縮配線部材15b,15cのように、他の実施形態の代表的な構成について、防水リブ80を付加して、導通路形状保持部60を対応する位置に設けるように変更することができる。但し、基材20に布帛を用いた図15で示す伸縮配線部材14aについては、有意な防水リブ80を形成するには、布帛を通じた水の侵入も考慮して対応する必要があるため、例えば、伸縮配線30や導通接続部50の周囲にシリコーンゴムなどでなる防水層を設けてから、この防水層を設けた伸縮配線30と導通接続部50を布帛内に内蔵する方法などが挙げられる。   Modification 5-1 and Modification 5-2 [FIGS. 17A, 17B]: FIG. 17A shows an expandable wiring member 15b of Modification 5-1. This stretchable wiring member 15b has a configuration in which a waterproof rib 80 is added to the stretchable wiring member 11f shown in FIG. FIG. 17B shows the stretchable wiring member 15c of Modification 5-2. This stretchable wiring member 15c has a configuration in which waterproof ribs 80 are added to the stretchable wiring member 13a shown in FIG. Like the stretchable wiring members 15b and 15c shown in these embodiments, the representative configuration of the other embodiments is changed to add the waterproof rib 80 and provide the conduction path shape holding portion 60 at the corresponding position. be able to. However, for the stretchable wiring member 14a shown in FIG. 15 using a fabric as the base material 20, in order to form a significant waterproof rib 80, it is necessary to take into account the intrusion of water through the fabric. Examples include a method in which a waterproof layer made of silicone rubber or the like is provided around the stretchable wiring 30 and the conductive connection portion 50, and then the stretchable wiring 30 and the conductive connection portion 50 provided with this waterproof layer are built in the fabric.

上記実施形態は本発明の例示であり、本発明の趣旨を逸脱しない範囲で、実施形態の変更または公知技術の付加や、組合せ等を行い得るものであり、それらの技術もまた本発明の範囲に含まれるものである。   The above-described embodiment is an exemplification of the present invention, and modifications of the embodiment, addition of known techniques, combinations, and the like can be made without departing from the spirit of the present invention, and these techniques are also within the scope of the present invention. Is included.

例えば、導通路形状保持部60の形状は長方形状に限るものではなく、伸縮配線部材の設置場所や、接続対象物Pや筐体Wの大きさや形状との関係等によって種々の大きさ、形状に変更できる。既に図12(b)や図13(b)で示した形状や、図18で示した伸縮配線部材16aにおける導通路形状保持部60のように、基材20の外側部分に伸長方向に向かって突出した突出部61を形成したものであっても良い。突出部61を有することで、平面視で導通路形状保持部60と重なる位置との境界から外側近傍で伸縮配線30が切断され易いという不都合を生じ難くしている。   For example, the shape of the conduction path shape holding portion 60 is not limited to a rectangular shape, but may have various sizes and shapes depending on the installation location of the stretchable wiring member, the size and shape of the connection object P and the housing W, and the like. Can be changed. Like the shape already shown in FIG. 12B and FIG. 13B and the conductive path shape holding portion 60 in the stretchable wiring member 16a shown in FIG. A protruding portion 61 that protrudes may be formed. By having the protruding portion 61, it is difficult to cause the inconvenience that the stretchable wiring 30 is easily cut in the vicinity of the outside from the boundary with the position overlapping the conduction path shape holding portion 60 in plan view.

あるいは、防水リブ80の形状も基材20の表面20aからその上方に突出させたものに限るものではなく、例えば、図19で示した伸縮配線部材16bにおける防水リブ80のように、導通接続部50からその半径方向に突出ものとして構成することもできる。接続対象物Pに導通接続部50に対応する凹部が設けられている場合等に有効である。   Alternatively, the shape of the waterproof rib 80 is not limited to the one protruding upward from the surface 20a of the base member 20, and for example, a conductive connecting portion like the waterproof rib 80 in the stretchable wiring member 16b shown in FIG. It can also be configured to project from 50 in the radial direction. This is effective when the connection object P is provided with a recess corresponding to the conductive connection portion 50.

また、導通接続部50は基材20の一方面だけでなく多方面にも設けることができる。例えば、図20で示した伸縮配線部材16cでは、基材20の表面20aだけでなく裏面20bにも導通接続部50を設けている。即ち、伸縮配線部材16cでは、接続対象物Pに導通接続する第1の接続端51aと、伸縮配線30に導通接続する第2の接続端51bと、これらの接続端51a,51bとの間に形成される導通路51を有する導通接続部50を、伸縮配線部材11gの厚み方向で、伸縮配線30の表裏両面に設けている。本形態における導通路形状保持部60は、導通接続部50を囲うリング状としている。   In addition, the conductive connection portion 50 can be provided not only on one side of the substrate 20 but also on many sides. For example, in the stretchable wiring member 16c shown in FIG. 20, the conductive connection portion 50 is provided not only on the front surface 20a of the base member 20 but also on the back surface 20b. That is, in the expansion / contraction wiring member 16c, the first connection end 51a that is conductively connected to the connection object P, the second connection end 51b that is conductively connected to the expansion / contraction line 30, and the connection ends 51a and 51b. Conductive connection portions 50 having formed conductive paths 51 are provided on both front and back surfaces of the stretchable wiring 30 in the thickness direction of the stretchable wiring member 11g. In this embodiment, the conduction path shape holding portion 60 has a ring shape surrounding the conduction connection portion 50.

あるいはまた、伸縮配線部材16cの別の態様として、例えば、図21で示した伸縮配線部材16dでは、2つの導通接続部50の間に伸縮配線30だけでなく、導電性の導通路形状保持部60を設けた構成としている。   Alternatively, as another aspect of the expansion / contraction wiring member 16c, for example, in the expansion / contraction wiring member 16d shown in FIG. 21, not only the expansion / contraction wiring 30 but also the conductive conduction path shape holding portion between the two conduction connection portions 50. 60 is provided.

図4を用いて、伸縮配線部材11aの導通接続部50を接続対象物Pに当接させる使用形態を説明したが、伸縮配線部材11aに限らず本発明の伸縮配線部材は、接続対象物Pに接触させる側の導通接続部50の端部を接続対象物Pに対して導電性接着剤や半田で固着することもできる。半田で固着する場合には、導通接続部50の前記端部に銅箔や金属板でなる導電性部材を貼り合わせたものを準備しておくことで、この導電性部材を接続対象物Pの接点Sに半田で固着して圧接することができる。
こうした形態で伸縮配線部材11aを接続対象物Pに接続すれば、導通接続が確実なものとなる。また、導通接続部50を圧接する箇所の水平方向への過度な変形を防止することで、抵抗値の過度な上昇を抑制できることに加えて、導通接続部50と導電性部材および接点Sの剥離を抑制することができる。
Although the use form which contact | connects the connection part 50 of the expansion-contraction wiring member 11a to the connection target object P was demonstrated using FIG. 4, the expansion-contraction wiring member of this invention is not limited to the expansion wiring member 11a, but the connection target object P is used. It is also possible to fix the end of the conductive connection portion 50 on the side to be in contact with the connection object P with a conductive adhesive or solder. In the case of fixing with solder, by preparing a material in which a conductive member made of copper foil or a metal plate is bonded to the end portion of the conductive connection portion 50, this conductive member is connected to the connection object P. The contact S can be fixed by soldering and soldered.
If the expansion / contraction wiring member 11a is connected to the connection object P in such a form, the conductive connection is ensured. Moreover, in addition to being able to suppress an excessive increase in the resistance value by preventing excessive deformation in the horizontal direction at the place where the conductive connection portion 50 is pressed, the conductive connection portion 50 and the conductive member and the contact S are peeled off. Can be suppressed.

<抵抗値試験>: 図22で示す形状の伸縮配線部材の試験片(T1)を作製し、その試験片を伸長させた際の抵抗値を測定した。ゴム硬度がA30であるシリコーンゴムで形成した基材(20)は、幅が20mm、長さが50mm、厚みが0.5mmであり、その内部に設けた伸縮配線(30)は、幅が3.0mm、長さが25mm、厚みが0.07mmであり、導通路(51)は直径が1.0mm、長さが1mmで基材(20)表面と面一の面から伸縮配線(30)の表面までつながる大きさとしている。   <Resistance Value Test>: A test piece (T1) of the stretchable wiring member having the shape shown in FIG. 22 was produced, and the resistance value when the test piece was extended was measured. The base material (20) formed of silicone rubber having a rubber hardness of A30 has a width of 20 mm, a length of 50 mm, and a thickness of 0.5 mm. The stretchable wiring (30) provided therein has a width of 3 mm. 1.0 mm, 25 mm in length, 0.07 mm in thickness, the conductive path (51) has a diameter of 1.0 mm, a length of 1 mm, and stretchable wiring (30) from the surface of the base material (20). The size is connected to the surface.

また、幅は基材(20)と同じで長さが10mm、厚みが0.1mmの大きさとしたポリエチレンテレフタレートからなる導通路形状保持部(60)を導通路(51)のある基材(20)の背面(20b)に固着した。加えて、導通路(51)を設けた基材(20)の一端とは反対側の端部には、5.0mmの長さで伸縮配線(30)と重なり、10mmの長さで銅箔(Cu)が積層したポリイミドフィルムからなる測定用端子(E)を設けた。なお、上記試験片(T)における導通路(51)は、基材(20)製造用の金型内で磁性導電粒子を磁場配向させたものであり、基材(20)の一部が被覆部(52)となっており、導通路(51)と被覆部(52)とからなる導通接続部(50)が基材(20)と一体化して、基材(20)中に組み込まれている。   In addition, the conductive path shape holding portion (60) made of polyethylene terephthalate having the same width as the base material (20), the length of 10 mm, and the thickness of 0.1 mm is replaced with the base material (20 ) Adhered to the back surface (20b). In addition, the end opposite to one end of the base material (20) provided with the conduction path (51) overlaps with the stretchable wiring (30) with a length of 5.0 mm and a copper foil with a length of 10 mm. A measuring terminal (E) made of a polyimide film laminated with (Cu) was provided. The conduction path (51) in the test piece (T) is obtained by magnetically orienting magnetic conductive particles in a mold for manufacturing the base material (20), and a part of the base material (20) is covered. The conductive connection part (50) composed of the conduction path (51) and the covering part (52) is integrated with the base material (20) and incorporated into the base material (20). Yes.

抵抗値の測定は、基材(20)表面に面一で表出した導通路(51)の表面を測定用押し子(A)で、荷重0.2Nで押圧し、銅箔(Cu)との間の電気抵抗をデジタルマルチメータ(横河電機社製「73101」)で測定した。抵抗値は自然長(0%)の場合と、自然長に対して基材(20)を20%、40%、60%、80%、100%伸長させた場合とについて測定した。そして、自然長における抵抗値(初期抵抗値)に対して伸長時の抵抗値の増加割合を百分率(%)で求め、表1の「抵抗値上昇率(%)」欄に記載した。また、比較のため、導通路形状保持部(60)を設けない点で上記本発明の試験片(T1)とはことなる比較例の試験片(T2)を作製し、同様の抵抗値試験を行った。この結果も表1に示す。なお、表1において、斜線で示した箇所は抵抗値が高くなりすぎて測定限界外であることを示す。   The resistance value is measured by pressing the surface of the conductive path (51) that is flush with the surface of the base material (20) with a measuring pusher (A) with a load of 0.2 N, and a copper foil (Cu). Was measured with a digital multimeter (“73101” manufactured by Yokogawa Electric Corporation). The resistance value was measured for the natural length (0%) and when the base material (20) was stretched by 20%, 40%, 60%, 80%, and 100% with respect to the natural length. And the increase rate of the resistance value at the time of expansion | extension with respect to the resistance value (initial resistance value) in natural length was calculated | required in percentage (%), and it described in the "resistance value increase rate (%)" column of Table 1. In addition, for comparison, a test piece (T2) of a comparative example different from the above-described test piece (T1) of the present invention in that the conduction path shape holding portion (60) is not provided, and a similar resistance value test is performed. went. The results are also shown in Table 1. In Table 1, the hatched portions indicate that the resistance value is too high and is outside the measurement limit.

Figure 2019204937
Figure 2019204937

表1で示した結果から明らかなとおり、導通路形状保持部を設けた場合は伸縮配線部材の伸長によっても抵抗値の上昇を低く抑えることが可能であり、伸縮配線部材を100%伸長(長さを2倍)にしても、抵抗値の上昇率を500%以下に抑えることができた。   As is apparent from the results shown in Table 1, when the conduction path shape holding portion is provided, it is possible to keep the increase in the resistance value low even by stretching the stretchable wiring member. The rate of increase in resistance value could be suppressed to 500% or less.

11a〜11f 伸縮配線部材(第1実施形態)
12a,12b 伸縮配線部材(第2実施形態)
13a 伸縮配線部材(第3実施形態)
14a 伸縮配線部材(第4実施形態)
15a〜15c 伸縮配線部材(第5実施形態)
16a〜16d 伸縮配線部材(その他の実施形態)
20 基材
20a 表面
20b 背面
30 伸縮配線
31 固定配線
50 導通接続部
51 導通路
51a 第1の接続端
51b 第2の接続端
52 被覆部
60 導通路形状保持部
61 突出部
70固定具
71 フック
80 防水リブ
A 測定用押し子
E 測定用端子(銅箔)
H 貫通孔
P 基板(接続対象物)
R 伸縮配線部材(比較例)
S 接点
T1,T2 試験片
W 筐体
11a-11f Telescopic wiring member (first embodiment)
12a, 12b Telescopic wiring member (second embodiment)
13a Telescopic wiring member (third embodiment)
14a Telescopic wiring member (fourth embodiment)
15a-15c Telescopic wiring member (fifth embodiment)
16a-16d Telescopic wiring member (other embodiment)
DESCRIPTION OF SYMBOLS 20 Base material 20a Surface 20b Back surface 30 Telescopic wiring 31 Fixed wiring 50 Conductive connection part 51 Conductive path 51a First connection end 51b Second connection end 52 Covering part 60 Conductive path shape holding part 61 Protrusion part 70 Fixing tool 71 Hook 80 Waterproof rib A Measuring pusher E Measuring terminal (copper foil)
H Through hole P Substrate (object to be connected)
R Stretchable wiring member (comparative example)
S contact T1, T2 Test piece W Case

Claims (10)

伸縮可能な基材と、
前記基材に配置されており前記基材の伸縮によって伸縮する伸縮配線とを備える伸縮配線部材において、
接続対象物に導通接続する第1の接続端と、前記伸縮配線に導通接続する第2の接続端と、前記第1の接続端と前記第2の接続端との間に形成される導通路とを有しており、前記導通路の形成方向に沿って圧縮変形するとともに前記接続対象物と前記伸縮配線とを導通接続する導通接続部を備えることを特徴とする伸縮配線部材。
A stretchable substrate;
In the expansion / contraction wiring member provided with the expansion / contraction wiring disposed on the base material and expanding / contracting by expansion / contraction of the base material
A first connection end that is conductively connected to the connection object, a second connection end that is conductively connected to the stretchable wiring, and a conduction path that is formed between the first connection end and the second connection end. A stretchable wiring member comprising: a conductive connection portion that compressively deforms along a direction in which the conductive path is formed and that electrically connects the connection object and the stretchable wiring.
前記基材は、圧縮変形した前記導通路が、前記伸縮配線の伸長方向に伸びた前記基材に引っ張られて前記形成方向の交差方向に変形するのを低減する導通路形状保持部を有する請求項1記載の伸縮配線部材。
The said base material has a conduction path shape holding | maintenance part which reduces that the said conduction path compressed and deformed is pulled by the said base material extended in the expansion | extension direction of the said expansion-contraction wiring, and deform | transforms in the cross direction of the said formation direction. The expansion | extension wiring member of claim | item 1.
前記導通路形状保持部は、前記基材に埋めてある請求項2記載の伸縮配線部材。
The stretchable wiring member according to claim 2, wherein the conduction path shape holding portion is buried in the base material.
前記導通路形状保持部は、金属箔または樹脂フィルムである請求項2又は請求項3記載の伸縮配線部材。
The stretchable wiring member according to claim 2 or 3, wherein the conduction path shape holding portion is a metal foil or a resin film.
前記導通路形状保持部は、前記導通路の前記形成方向で前記第2の接続端と重なる位置にある請求項2〜請求項4何れか1項記載の伸縮配線部材。
The stretchable wiring member according to any one of claims 2 to 4, wherein the conduction path shape holding portion is located at a position overlapping the second connection end in the formation direction of the conduction path.
前記導通路形状保持部は、前記基材の伸縮方向で前記導通路と重なる位置にある請求項2〜請求項4何れか1項記載の伸縮配線部材。
The stretchable wiring member according to any one of claims 2 to 4, wherein the conduction path shape holding portion is located at a position overlapping the conduction path in the expansion and contraction direction of the base material.
前記第2の接続端は、前記基材の内部で前記伸縮配線に導通接続されるように、前記基材の内部に位置する請求項1〜請求項6何れか1項記載の伸縮配線部材。
The stretchable wiring member according to any one of claims 1 to 6, wherein the second connection end is located inside the base material so as to be conductively connected to the stretchable wiring inside the base material.
前記導通接続部が、ゴム状の高分子材料に導電性フィラーが分散した導電性ゴム組成物である請求項1〜請求項7何れか1項記載の伸縮配線部材。
The stretchable wiring member according to any one of claims 1 to 7, wherein the conductive connecting portion is a conductive rubber composition in which a conductive filler is dispersed in a rubber-like polymer material.
前記基材は、前記導通路を包囲する絶縁性の被覆部を有する請求項1〜請求項8何れか1項記載の伸縮配線部材。
The stretchable wiring member according to claim 1, wherein the base material has an insulating covering portion surrounding the conduction path.
前記導通接続部の周囲に防水リブを備える請求項1〜請求項9何れか1項記載の伸縮配線部材。 The expansion-contraction wiring member of any one of Claims 1-9 provided with a waterproof rib around the said conduction | electrical_connection connection part.
JP2018101042A 2018-05-25 2018-05-25 Telescopic wiring member Active JP7414208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018101042A JP7414208B2 (en) 2018-05-25 2018-05-25 Telescopic wiring member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018101042A JP7414208B2 (en) 2018-05-25 2018-05-25 Telescopic wiring member

Publications (2)

Publication Number Publication Date
JP2019204937A true JP2019204937A (en) 2019-11-28
JP7414208B2 JP7414208B2 (en) 2024-01-16

Family

ID=68727343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018101042A Active JP7414208B2 (en) 2018-05-25 2018-05-25 Telescopic wiring member

Country Status (1)

Country Link
JP (1) JP7414208B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215381A1 (en) * 2021-04-09 2022-10-13 株式会社村田製作所 Connecting structure, and antenna module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311085A (en) * 1991-04-08 1992-11-02 Teikoku Tsushin Kogyo Co Ltd Terminal pattern connection structure of flexible board
JP2016076531A (en) * 2014-10-03 2016-05-12 大日本印刷株式会社 Elastic wearable flexible board, and elastic wearable composite module
JP2016145725A (en) * 2015-02-06 2016-08-12 日本メクトロン株式会社 Conductive expandable substrate and distortion sensor
WO2017047519A1 (en) * 2015-09-17 2017-03-23 ポリマテック・ジャパン株式会社 Elastic wiring member
JP2017144239A (en) * 2016-02-12 2017-08-24 東洋紡株式会社 Wearable electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04311085A (en) * 1991-04-08 1992-11-02 Teikoku Tsushin Kogyo Co Ltd Terminal pattern connection structure of flexible board
JP2016076531A (en) * 2014-10-03 2016-05-12 大日本印刷株式会社 Elastic wearable flexible board, and elastic wearable composite module
JP2016145725A (en) * 2015-02-06 2016-08-12 日本メクトロン株式会社 Conductive expandable substrate and distortion sensor
WO2017047519A1 (en) * 2015-09-17 2017-03-23 ポリマテック・ジャパン株式会社 Elastic wiring member
JP2017144239A (en) * 2016-02-12 2017-08-24 東洋紡株式会社 Wearable electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215381A1 (en) * 2021-04-09 2022-10-13 株式会社村田製作所 Connecting structure, and antenna module

Also Published As

Publication number Publication date
JP7414208B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
WO2017047519A1 (en) Elastic wiring member
US10251262B2 (en) Stretchable wiring board
JP7440842B2 (en) Telescopic wiring member
JP6590391B1 (en) Telescopic wiring member
JP6502673B2 (en) Connection structure, wearable device and manufacturing method of connection structure
JP2019204937A (en) Telescopic wiring member
KR102436635B1 (en) Insol of sensing pressure
KR101753712B1 (en) Waterproof connection terminals for electronic equipment
TWI550980B (en) Connection connector and method of manufacturing the same
JPWO2019031302A1 (en) Telescopic wiring
KR102417498B1 (en) Sensor for detecting pressure and insol of sensing pressure including the same
KR20170108770A (en) Elastic electric contact terminal
CN209045415U (en) A kind of film key that pressing feel can be improved
TWI572255B (en) Flexible structure of flexible circuit board
KR101996870B1 (en) The method of manufacturing wiring structure used in a stretchable circuit board
JPH07141958A (en) Pressure sensitive switch
CN207338688U (en) Epidermis electrode
CN104201028B (en) A kind of film press-key structure and membrane keyboard with security confidentiality function
US20230147172A1 (en) Connector assembly
KR102142197B1 (en) Multi-direction film connector for detecting leaksge
KR102177853B1 (en) Method for Soldering on Flexible Substrate
JP6470130B2 (en) Pressure sensitive switch
CN206516783U (en) Circuit board and Wearable for Wearable
JP5995740B2 (en) Electrical connectors and electronic equipment
JP2020177727A (en) Connection structure of first and second circuits

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230906

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R150 Certificate of patent or registration of utility model

Ref document number: 7414208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150