WO2022215381A1 - Connecting structure, and antenna module - Google Patents

Connecting structure, and antenna module Download PDF

Info

Publication number
WO2022215381A1
WO2022215381A1 PCT/JP2022/007848 JP2022007848W WO2022215381A1 WO 2022215381 A1 WO2022215381 A1 WO 2022215381A1 JP 2022007848 W JP2022007848 W JP 2022007848W WO 2022215381 A1 WO2022215381 A1 WO 2022215381A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
dielectric
antenna
substrate
connection structure
Prior art date
Application number
PCT/JP2022/007848
Other languages
French (fr)
Japanese (ja)
Inventor
夏海 南谷
健吾 尾仲
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2022215381A1 publication Critical patent/WO2022215381A1/en
Priority to US18/482,121 priority Critical patent/US20240039143A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • H01P1/047Strip line joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits

Definitions

  • the present disclosure relates to a connection structure and an antenna module, and more particularly to a technique for improving connection strength between substrates in an antenna module including two substrates.
  • Patent Document 1 discloses a connection structure for connecting a multilayer substrate and a flexible substrate.
  • connection structure disclosed in Patent Document 1 the ends of the flexible substrate are connected so as to be embedded inside the multilayer substrate. A flexible substrate bends in a connected state.
  • connection structure of Patent Document 1 the end of the flexible substrate is embedded inside the multilayer substrate. not communicated to department. Patent Document 1 describes that the connection reliability between the multilayer substrate and the flexible substrate is thereby improved.
  • connection structure of Patent Document 1 when a force is applied to one of the connected substrates in the direction in which the substrate is pulled out from the connection portion, that is, in the extension direction of the substrate, the degree of adhesion between the two substrates decreases. If it is weak, the connection between the two boards may break.
  • the present disclosure has been made to solve such problems, and an object of the present disclosure is to provide a connection structure for connecting two substrates, in which a connection portion is provided for one of the substrates connected. To improve the connection strength between substrates when a force is applied in the direction in which they are pulled out from a substrate.
  • a connection structure is a connection structure for connecting a first substrate and a second substrate, the first substrate comprising a first dielectric and a first electrode, the second substrate comprising: , a second dielectric formed by stacking a plurality of dielectric layers, and a second electrode.
  • the first electrode is electrically connected to the second electrode.
  • the second dielectric has a first surface and a second surface perpendicular to the stacking direction of the second dielectric.
  • the second dielectric sandwiches dielectric 130 by placing a portion of dielectric 130 between upper surface US and lower surface BS.
  • a first recess is formed in the first electrode, in which a region overlapping with the second electrode is recessed when viewed from above in the stacking direction.
  • connection structure when viewed from above in the stacking direction of the second dielectric, the first electrode provided on the first substrate has a first concave portion that is recessed in a region overlapping with the second electrode provided on the second substrate. is formed.
  • the contact area between the two substrates is increased and the degree of adhesion is increased compared to a connection structure in which the above-described region of the first electrode is not recessed, so that the connection strength between the substrates is improved. becomes possible.
  • FIG. 1 is an example of a block diagram of a communication device according to Embodiment 1.
  • FIG. 2A and 2B are a plan view and a cross-sectional view of a connection portion between an antenna substrate and a rigid substrate in Embodiment 1.
  • FIG. 4 is an enlarged view of the antenna electrode of the antenna substrate according to Embodiment 1 when viewed in plan from the positive direction of the Z-axis;
  • FIG. 2 is a cross-sectional view of the antenna substrate and the rigid substrate in Embodiment 1.
  • FIG. 8A and 8B are a plan view and a cross-sectional view of a connection portion between an antenna substrate and a rigid substrate in Embodiment 2;
  • FIG. 10 is a cross-sectional view of an antenna substrate and a rigid substrate in Embodiment 2;
  • FIG. 10 is a diagram showing a first modification of the connection structure between the antenna substrate and the rigid substrate according to the second embodiment;
  • FIG. 10 is a diagram showing a second modification of the connection structure between the antenna substrate and the rigid substrate in the second embodiment;
  • 8A and 8B are a plan view and a cross-sectional view of a connection portion between an antenna substrate and a rigid substrate in Embodiment 3;
  • FIG. 11 is a cross-sectional view of an antenna substrate and a rigid substrate in Embodiment 3;
  • FIG. 10 is a diagram showing a first modification of the connection structure between the antenna substrate and the rigid substrate in Embodiment 3;
  • FIG. 12 is a diagram showing a second modification of the connection structure between the antenna substrate and the rigid substrate in the third embodiment;
  • FIG. 12 is a diagram showing a third modification of the connection structure between the antenna substrate and the rigid substrate in the third embodiment;
  • FIG. 11 is a diagram for explaining details of a connection structure between an antenna substrate and a rigid substrate in Embodiment 4;
  • FIG. 11 is a diagram for explaining details of a connection structure between an antenna substrate and a rigid substrate according to Embodiment 5;
  • FIG. 1 is an example of a block diagram of a communication device 10 according to Embodiment 1.
  • the communication device 10 is, for example, a mobile terminal such as a mobile phone, a smart phone or a tablet, a personal computer having a communication function, or a base station.
  • An example of the frequency band of the radio waves used in the antenna module 100 in Embodiment 1 is, for example, millimeter wave band radio waves with center frequencies of 28 GHz, 39 GHz, and 60 GHz. It is possible.
  • communication device 10 includes antenna module 100 and BBIC 200 that configures a baseband signal processing circuit.
  • the antenna module 100 includes an RFIC 110 that is an example of a feeding circuit, and an antenna substrate 120 .
  • the communication device 10 up-converts a signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal in the RFIC 110 and radiates it from the antenna substrate 120 via the rigid substrate 300 . Further, the communication device 10 transmits a high-frequency signal received by the antenna substrate 120 to the RFIC 110 via the rigid substrate 300, down-converts the signal, and then processes the signal by the BBIC 200.
  • FIG. 1 shows an example in which the antenna substrate 120 is formed of a plurality of radiation electrodes 121 arranged in a two-dimensional array. A case where the antenna substrate 120 is formed of the electrode 121 may be used. A one-dimensional array in which a plurality of radiation electrodes 121 are arranged in a line may also be used.
  • radiation electrode 121 is described as an example of a patch antenna having a substantially square flat plate shape. may be
  • RFIC 110 includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal combiner/demultiplexer. 116 , a mixer 118 and an amplifier circuit 119 .
  • switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT, and the switch 117 is connected to the amplifier circuit 119 on the transmission side.
  • switches 111A to 111D and 113A to 113D are switched to low noise amplifiers 112AR to 112DR, and switch 117 is connected to the receiving amplifier of amplifier circuit 119.
  • a signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118 .
  • a transmission signal which is an up-converted high-frequency signal, is divided into four waves by the signal combiner/demultiplexer 116, passes through four signal paths, and is fed to different radiation electrodes 121, respectively.
  • the directivity of the antenna substrate 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115D arranged in each signal path. Attenuators 114A-114D also adjust the strength of the transmitted signal.
  • the received signals which are high-frequency signals received by each radiation electrode 121 , pass through four different signal paths and are multiplexed by the signal combiner/demultiplexer 116 .
  • the multiplexed received signal is down-converted by mixer 118 , amplified by amplifier circuit 119 , and transmitted to BBIC 200 .
  • the RFIC 110 is formed, for example, as a one-chip integrated circuit component including the above circuit configuration.
  • devices switching, power amplifiers, low-noise amplifiers, attenuators, phase shifters
  • corresponding to each radiation electrode 121 in the RFIC 110 may be formed as one-chip integrated circuit components for each corresponding radiation electrode 121. .
  • FIG. 2A and 2B are a plan view (FIG. 2(a)) and a cross-sectional view (FIG. 2(b)) of the connecting portion of the antenna substrate 120 and the rigid substrate 300 along the line II-II in FIG.
  • FIG. 3 is an enlarged view of the antenna electrodes 122A and 122B of the antenna substrate 120 when viewed from the positive direction of the Z axis.
  • FIG. 4 is a cross-sectional view taken along line III-III of FIG. 2(a). 2, 3, and 4, the case where the antenna substrate 120 forms a dipole antenna will be described.
  • the thickness direction of the antenna substrate 120 is defined as the Z-axis direction, and the plane perpendicular to the Z-axis direction is defined as the X-axis and the Y-axis.
  • the positive direction of the Z-axis in each drawing may be referred to as the upper surface side, and the negative direction thereof as the lower surface side.
  • the antenna substrate 120 corresponds to the "first substrate” in the present disclosure
  • the rigid substrate 300 corresponds to the "second substrate” in the present disclosure.
  • Antenna substrate 120 includes dielectric 130 and antenna electrodes 122A and 122B.
  • Rigid substrate 300 includes dielectric 330, wiring electrodes 322A and 322B, and ground electrode GND.
  • the dielectric 330 is formed by laminating a plurality of dielectric layers in the Z-axis direction.
  • the dielectric layer forming dielectric 330 is, for example, a liquid crystal polymer (LCP). Note that the dielectric 330 corresponds to the "second dielectric" in the present disclosure.
  • the antenna substrate 120 and the rigid substrate 300 are compressed, heated, and baked to bring the substrates into close contact with each other. Thereby, the antenna substrate 120 and the rigid substrate 300 are connected to each other.
  • the thickness (dimension in the Z-axis direction) of the dielectric 130 of the antenna substrate 120 is thinner than the thickness of the dielectric 330 of the rigid substrate 300 .
  • dielectric 330 has an upper surface US and a lower surface BS perpendicular to the dielectric stacking direction.
  • a portion of the antenna substrate 120 is positioned between the top surface US of the dielectric 330 and the bottom surface BS of the dielectric 330 . That is, in the connection structure of FIG. 2, the end portion of the antenna substrate 120 on the negative direction side of the X-axis is embedded in the rigid substrate 300 for connection.
  • the upper surface US of the dielectric 330 corresponds to the "first surface” in the present disclosure, and the lower surface BS of the dielectric 330 corresponds to the "second surface”.
  • the antenna electrodes 122A and 122B are arranged on the surface of the dielectric 130 on the positive direction side of the Z axis.
  • the ends of the antenna electrodes 122A and 122B on the positive direction side of the X-axis function as the radiation electrode 121 . That is, the antenna electrodes 122A and 122B form a dipole antenna that radiates radio waves from the radiation electrode 121 by being differentially fed from the RFIC 110 .
  • each of the antenna electrodes 122A and 122B has a mesh shape when viewed from above in the positive direction of the Z axis.
  • the mesh shape of the antenna electrodes 122A and 122B will be described with reference to FIG.
  • the antenna electrodes 122A and 122B are formed by weaving together a plurality of linear conductors.
  • the distance D1 between the linear conductors is 50-100 ⁇ m.
  • the width of one linear conductor that is, the thickness of the linear conductor is 1 to 2 ⁇ m.
  • the antenna electrodes 122A and 122B block most of the light emitted from the negative direction side of the Z axis. It can be passed in the positive direction of the Z-axis without any need.
  • the antenna electrode 122A or the antenna electrode 122B corresponds to the "first electrode" in the present disclosure.
  • the dielectric 130 is, for example, a film made of translucent PET (Polyethylene Terephthalate) material. Accordingly, in the antenna substrate 120 according to the first embodiment, most of the light emitted from the negative side of the Z-axis can pass through in the positive direction of the Z-axis with respect to the dielectric 130 .
  • the dielectric 130 of the antenna substrate 120 may be a multi-layer substrate. Note that the dielectric 130 corresponds to the "first dielectric" in the present disclosure.
  • Dielectric 130 or dielectric 330 is, for example, a low temperature co-fired ceramics (LTCC) multi-layer substrate, or a multi-layer resin formed by laminating a plurality of resin layers composed of resin such as epoxy or polyimide.
  • a substrate, a multilayer resin substrate formed by laminating multiple resin layers composed of liquid crystal polymer (LCP) with a lower dielectric constant, and a multilayer resin substrate formed by laminating multiple resin layers composed of fluorine resin It may be a multi-layered resin substrate or a ceramics multi-layer substrate other than LTCC.
  • dielectric 130 or dielectric 330 may be made of glass or plastic.
  • FIG. 2(b) a cross section taken along line II-II is illustrated in order to describe the connection between the wiring electrode 322B and the antenna electrode 122B.
  • wiring electrodes 322A and 322B and a ground electrode GND are arranged inside the rigid substrate 300.
  • the ground electrode GND the antenna substrate 120, the wiring electrodes 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B,
  • connection structure between the wiring electrode 322A and the antenna electrode 122A although not shown, it has the same connection structure as the connection structure between the wiring electrode 322B and the antenna electrode 122B shown in FIG. 2(b).
  • the ground electrode GND is a flat plate electrode having an XY plane surface that overlaps with both of the wiring electrodes 322A and 322B when viewed from the Z-axis direction.
  • the wiring electrode 322B and the antenna electrode 122B are connected by vias VB. That is, the wiring electrodes 322A, 322B are electrically connected to the antenna electrodes 122A, 122B through vias.
  • the ground electrode GND is a ground electrode that serves as a reference potential.
  • the impedance of the wiring electrodes 322A, 322B and the antenna electrodes 122A, 122B is 50 ⁇ with respect to the reference potential of the ground electrode GND.
  • the antenna electrode 122B extends downward in the negative direction of the Z-axis from the outside to the inside of the rigid substrate 300. As shown in FIG. That is, the concave portion H is formed in the antenna electrode 122B. The concave portion H is formed in a region overlapping with the wiring electrode 322B when viewed from above in the stacking direction of the dielectric 330 .
  • the recess H of the antenna electrode 122B corresponds to the "first recess" of the present disclosure.
  • FIG. 4 illustrates a cross section of the rigid substrate 300 taken along line III-III in FIG. 2(a) after the antenna electrode 122B has fallen in the negative direction of the Z axis.
  • the dielectric 330 of the rigid substrate 300 includes, in order from the negative direction of the Z axis, the ground electrode GND, the dielectric 130, the antenna electrode 122B, the via VB, and the wiring electrode 322B. include.
  • the recess H is formed in the antenna electrode 122B, the antenna electrode 122B extends downward in the negative direction of the Z axis. Therefore, the recess H1 is formed in the dielectric 130 so as to be recessed in the negative direction of the Z-axis corresponding to the depression of the antenna electrode 122B. Antenna electrode 122B is arranged so as to be in contact with the surface of dielectric 130 that forms recess H1. In Embodiment 1, recess H1 is formed to be recessed by half the thickness of dielectric 130 (dimension in the Z-axis direction).
  • connection structure in which one substrate is partially embedded in the other substrate as shown in the first embodiment, the connection structure is such that one substrate is pulled out in the extending direction of the substrate. If the adhesion between the substrates is weak when a force is applied, the connection between the substrates may be broken.
  • connection structure according to Embodiment 1 As shown in FIG. 2B, the concave portion H is formed in the antenna electrode 122B.
  • the area of contact between 122B and dielectric 330 increases.
  • the concave portion H in the antenna electrode 122B is formed in the dielectric 130, and the contact area between the dielectric 130 and the dielectric 330 increases.
  • the degree of adhesion between dielectrics 130 and 330 can be further improved when compression and heating are performed in the manufacturing stage.
  • the dielectric 130 is formed with a concave portion H1 in which a region overlapping the wiring electrode 322B and the antenna electrode 122B is concave when viewed from the stacking direction of the dielectric 330 . That is, in the connection structure according to the first embodiment, since the concave portion H1 is formed, the antenna electrode B is compressed so as to be pushed into the dielectric 130 in the manufacturing stage, and the antenna electrode 122B and the dielectric 130 are compressed. It also increases the contact area between Thus, in the connection structure according to the first embodiment, not only the degree of adhesion between dielectric 130 and dielectric 330 but also the degree of adhesion between dielectric 130 and antenna electrode 122B can be improved.
  • the degree of adhesion between antenna electrode 122B and dielectric 330 can be improved.
  • the degree of adhesion between the substrates can be improved, and the connection strength between the substrates is improved. That is, compared to the connection structure in which the recess H and the recess H1 are not formed in the dielectric 130, in the connection structure according to the first embodiment, a force is applied to pull out the antenna substrate 120 in the positive direction of the X axis. Even in this case, the connection between the antenna substrate 120 and the rigid substrate 300 is less likely to break.
  • 5A and 5B are a plan view (FIG. 5A) and a cross-sectional view (FIG. 5B) taken along line II-II of FIG.
  • FIG. 6 is a cross-sectional view taken along line III--III of FIG. 5(a).
  • the dielectric 130A has a convex portion formed on the lower surface of the dielectric 130A at a position corresponding to the concave portion formed on the upper surface.
  • dielectric 130A like antenna electrode 122B, extends from the outside to the inside of rigid substrate 300 after falling in the negative direction of the Z axis. Since dielectric 130A has a convex portion on the lower surface, concave portion H1A is formed to be concave by the same thickness as dielectric 130 (dimension in the Z-axis direction).
  • the contact area between dielectric 130A and dielectric 330 is further increased, and the thickness of dielectric 130A can be reduced. That is, the degree of adhesion between dielectric 130A and dielectric 330 is further improved during compression and heating in the manufacturing stage.
  • the recess H1A may be recessed larger than the thickness of the dielectric 130A.
  • the recess H1A is formed so as to be recessed to a thickness that is twice the thickness of the dielectric 130A.
  • a concave portion H2 is formed in a region where the antenna electrode 122B and the wiring electrode 322B overlap when viewed from above in the stacking direction of the dielectric 330 . That is, the recess H2 is arranged in a region of the ground electrode GNDA that overlaps with the recess H1A when viewed in plan from the Z-axis direction.
  • the recess H2 is formed so as to be recessed in the negative direction of the Z-axis, similar to the recess H1A. That is, the recess H2 is recessed in the same direction as the recess H1A.
  • the "recess H2" in Embodiment 2 corresponds to the "second recess” in the present disclosure.
  • the ground electrode GNDA includes a ground electrode GNDL, a ground electrode GNDC, and a ground electrode GNDR.
  • the ground electrode GNDC overlaps the antenna electrode 122B and the wiring electrode 322B when viewed from above in the stacking direction.
  • the antenna electrode 122B and the wiring electrode 322B do not overlap when viewed in plan from the stacking direction.
  • ground electrode GNDC is formed in a dielectric layer having bottom surface BS among the dielectric layers forming dielectric 330 . That is, the ground electrode GNDC is formed inside the dielectric layer arranged on the most negative direction side of the Z axis.
  • the ground electrode GNDL and the ground electrode GNDR are arranged in a dielectric layer arranged on the positive direction side of the Z-axis of the dielectric layer where the ground electrode GNDC is arranged. That is, the ground electrode GNDC and the ground electrodes GNDL and GNDR are arranged on different dielectric layers.
  • the ground electrode GNDC is connected to the ground electrode GNDL and the ground electrode GNDR through vias.
  • the method for connecting the ground electrode GNDC to the ground electrodes GNDL and GNDR is not limited to the method using vias.
  • an electrically conductive adhesive or the like may be used.
  • Ground electrode GNDC corresponds to the "first ground electrode” in the present disclosure.
  • Ground electrode GNDL and “ground electrode GNDR” correspond to “second ground electrode” in the present disclosure.
  • the ground electrode GNDA can match the impedance between the wiring electrode 322B and the antenna electrode 122B more reliably than the ground electrode GND of the first embodiment.
  • Antenna electrode 122B and wiring electrode 322B are electrically coupled to ground electrode GNDA to transmit a high frequency signal. That is, the antenna electrode 122B and the ground electrode GNDA function as a stripline.
  • a plurality of electric lines of force are generated between the antenna electrode 122B and the wiring electrode 322B functioning as a strip line and the ground electrode GNDA.
  • the dielectric constant of the region through which the lines of electric force pass is uniform.
  • the ratio of the dielectric 130 and the dielectric 330 through which all the lines of electric force pass becomes more uniform. In other words, the difference in dielectric constant between regions through which all electric lines of force each pass becomes small.
  • the recess H2 is formed in the ground electrode GNDA in a region overlapping the recess H1A when viewed from the Z-axis direction.
  • the difference in dielectric constant between the antenna electrode 122B/wiring electrode 322B and the ground electrode GNDA through which the lines of electric force pass can be suppressed. Therefore, the ground electrode GNDA can more reliably match the impedance between the wiring electrode 322B and the antenna electrode 122B.
  • FIG. 7 shows a first modification of the connection structure between the antenna substrate 120 and the rigid substrate 300 according to the second embodiment.
  • electronic components IC ⁇ b>1 and IC ⁇ b>2 are mounted on lower surface BS of dielectric 330 .
  • the electronic components IC1 and IC2 are, for example, RFIC110 or BBIC200. Note that the electronic components IC1 and IC2 may be other electronic components. Electronic components IC ⁇ b>1 and IC ⁇ b>2 may be mounted on top surface US of dielectric 330 . As described above, in Modification 1 of Embodiment 2, an arbitrary electronic component can be mounted even in the vicinity of the connecting portion between antenna substrate 120 and rigid substrate 300 .
  • the electronic components IC1 and IC2 are mounted on the lower surface BS in a region that does not overlap the concave portion H2 when viewed from the Z-axis direction.
  • the lower surface BS of the dielectric 330 may not have sufficient flatness due to the influence of the recess H2 in the region overlapping the recess H2 of the ground electrode GNDA. If the electronic components IC1 and IC2 are mounted on the lower surface BS that is not sufficiently flat, there is a risk that the electronic components IC1 and IC2 will be poorly connected.
  • the electronic components IC1 and IC2 are mounted on the lower surface BS in a region that does not overlap the concave portion H2 when viewed from the Z-axis direction. IC1 and IC2 can be mounted, and connection failure can be prevented.
  • FIG. 8 is a diagram showing a second modification of the connection structure between the antenna substrate 120 and the rigid substrate 300 according to the second embodiment.
  • the electronic component IC1 is located in a region A1 that does not overlap with the concave portion H2 and overlaps with the portion of the ground electrode GNDA where the concave portion H2 is not formed when viewed from above in the Z-axis direction.
  • the area A1 becomes an area isolated from other areas of the dielectric 330 by forming the recess H2 in the ground electrode GNDA.
  • the area A1 can be effectively utilized by mounting the electronic component IC1 in the isolated area A1.
  • the electronic component is placed in the area A1. By mounting, the area A1 can be used more effectively.
  • Embodiment 3 In the first and second embodiments described above, the configuration in which the antenna electrode 122B and the wiring electrode 322B are connected through the via VB has been described. In Embodiment 3, an example in which the antenna electrode 122B and the wiring electrode 322B are in direct contact will be described.
  • FIGS. 9 and 10 are a plan view (FIG. 9(a)) and a cross-sectional view (FIG. 9(b)) of the connecting portion of the antenna substrate 120 and the rigid substrate 300, taken along the line II-II in FIG. 9(a).
  • FIG. 10 is a cross-sectional view taken along line III-III of FIG. 9(a).
  • the antenna electrode 122B and the wiring electrode 322B are electrically connected without using the via VB in FIGS.
  • Other configurations are the same.
  • description of elements similar to those in FIGS. 5 and 6 of the second embodiment will not be repeated.
  • the wiring electrode 322B and the antenna electrode 122B are in direct contact without vias. As shown in FIGS. 9B and 10, the wiring electrode 322B and the antenna electrode 122B are in surface contact.
  • the connection structure of the third embodiment since vias are not used, the cost for connecting the wiring electrode 322B and the antenna electrode 122B can be reduced.
  • the connection strength between the wiring electrode 322B and the antenna electrode 122B can be further improved by increasing the surface contact area between the wiring electrode 322B and the antenna electrode 122B. Furthermore, the connection resistance between the wiring electrode 322B and the antenna electrode 122B can be reduced.
  • FIG. 11 shows a first modification of the connection structure between the antenna substrate 120 and the rigid substrate 300 according to the third embodiment.
  • antenna substrate 120 and rigid substrate 300 are connected by conductive adhesive G1.
  • the conductive adhesive G1 is arranged between the antenna electrode 122B and the wiring electrode 322B, and electrically or physically connects the antenna electrode 122B and the wiring electrode 322B.
  • the conductive adhesive G1 is, for example, an epoxy-based or silicone-based resin containing a conductive filler. Also, the conductive adhesive may be other thermosetting resins and solders.
  • the physical connection strength between the antenna electrode 122B and the wiring electrode 322B is improved. Furthermore, by improving the physical connection strength, it is possible to prevent poor contact between the antenna electrode 122B and the wiring electrode 322B, and as a result, it is possible to improve the electrical connection strength.
  • FIG. 12 shows a second modification of the connection structure between the antenna substrate 120 and the rigid substrate 300 according to the third embodiment.
  • antenna substrate 120 and rigid substrate 300 are connected via a plurality of vias.
  • via V1, via V2, via V3 and via V4 are arranged between antenna electrode 122B and wiring electrode 322B to electrically and physically connect antenna electrode 122B and wiring electrode 322B. do.
  • the physical distance between the antenna electrode 122B and the wiring electrode 322B is reduced. Improves connection strength.
  • FIG. 13 shows a third modification of the connection structure between the antenna substrate 120 and the rigid substrate 300 according to the third embodiment. 13 shows a plan view of the antenna substrate 120 (FIG. 13(a)) and a sectional view of the connection structure between the antenna substrate 120 and the rigid substrate 300 (FIG. 13(b)).
  • the antenna electrode 122B is arranged at a distance D2 from the end of the dielectric 130A on the negative direction side of the X axis. That is, with reference to FIG. 13(a), antenna electrodes 122A and 122B are arranged inside the outer peripheral edge of dielectric 130A when viewed from the positive direction of the Z axis.
  • the antenna electrode 122B is arranged at a distance D2 from the end of the dielectric 130A on the negative direction side of the X axis, so that force is applied only to the dielectric 130A. Even if it does, a region of dielectric 130A corresponding to distance D2 will catch on antenna electrode 122B. Therefore, only the dielectric 130A can be prevented from being cut, and the connection strength between the antenna substrate 120 and the rigid substrate 300 is improved.
  • Embodiment 4 In Embodiments 1 to 3 above, the configuration in which the antenna substrate 120 forms a dipole antenna has been described. In Embodiment 4, an example of forming a patch antenna will be described.
  • FIG. 14 is a diagram for explaining the details of the connection structure between the antenna boards 120C and 120D and the rigid board 300 according to the fourth embodiment. 14 shows a plan view (FIG. 14(a)) of the connecting portion of the antenna substrate 120C and the rigid substrate 300 and a cross-sectional view (FIG. 14(b)) taken along the line II-II in FIG. 14(a).
  • FIG. 14(a) plan view of the connecting portion of the antenna substrate 120C and the rigid substrate 300
  • FIG. 14(b) cross-sectional view taken along the line II-II in FIG. 14(a).
  • rigid board 300 is connected to two boards, antenna board 120C and antenna board 120D.
  • Antenna substrate 120C includes dielectric 130C and antenna electrode 122C.
  • a square region of the antenna electrode 122C shown in FIG. 14(a) functions as the radiation electrode 121C of the patch antenna.
  • the antenna substrate 120D includes a dielectric 130D and a ground electrode GNDB. That is, the ground electrode GNDB functions as a ground electrode electrically coupled with the radiation electrode 121C of the patch antenna. That is, in FIG. 14, the patch antenna is formed by the square area of the antenna substrate 120D and the area of the ground electrode GNDB that overlaps with the square area when viewed from the Z-axis direction.
  • the rigid substrate 300 includes wiring electrodes 332C and 332D.
  • the wiring electrodes 332C and 332D are electrically connected to the antenna electrode 122C and the ground electrode GNDB, respectively.
  • connection structure shown in Embodiments 1 to 3 can also be used between the antenna substrates 120C and 120D forming patch antennas and the rigid substrate 300.
  • FIG. 1 the connection structure shown in Embodiments 1 to 3 can also be used between the antenna substrates 120C and 120D forming patch antennas and the rigid substrate 300.
  • Embodiments 1 to 4 above the configuration in which the antenna substrate 120 forms one antenna has been described.
  • Embodiment 5 an example in which the connection structure of the present application is applied to an array antenna forming a plurality of antennas will be described.
  • FIG. 15 is a diagram for explaining the details of the connection structure between the antenna substrate 120E and the rigid substrate 300 according to the fifth embodiment.
  • FIG. 15 shows a plan view of the connecting portion of the antenna substrate 120E and the rigid substrate 300. As shown in FIG. In the fifth embodiment, description of elements similar to those of the first to fourth embodiments will not be repeated.
  • antenna substrate 120E includes dielectric 130B and antenna electrodes 122AD, 122BD, 122AE, 122BE, 122AF, 122BF, 122AG and 122BG.
  • the rigid substrate 300 includes a dielectric 330 and wiring electrodes 332AD, 332BD, 332AE, 332BE, 332AF, 332BF, 332AG and 332BG.
  • the antenna electrodes 122AD-122BG are electrically connected to the wiring electrodes 332AD-332BG, respectively.
  • each of the antenna electrodes 122AD and 122BD on the positive direction side of the X axis functions as a radiation electrode 121D. That is, the antenna electrodes 122AD and 122BD are differentially fed from the RFIC 110 to form a dipole antenna that radiates radio waves from the radiation electrode 121D. Similarly, antenna electrodes 122AE, 122BE-122AG, and 122BG form dipole antennas that radiate radio waves from radiation electrodes 121D-121G, respectively.
  • the antenna substrate 120E is an array antenna forming a plurality of antennas, it is possible to use the connection structure shown in Embodiments 1 to 4.
  • the antenna characteristics of the antenna substrate 120E can be improved.
  • the array antenna included in the antenna substrate 120E may be composed of a plurality of patch antennas shown in FIG.
  • Each of the antenna electrodes 122AE-122AG and the antenna electrodes 122BE-122BG corresponds to the "third electrode” in the present disclosure.
  • Each of the wiring electrodes 322AD-322AG and the wiring electrodes 322BD-322BG corresponds to the "fourth electrode” in the present disclosure.
  • Each of the radiation electrodes 121E-121G corresponds to the "third radiation electrode” in the present disclosure.
  • FIG. 15 describes the configuration in which the antenna substrate 120E includes the antenna electrodes 122AD to 122AG and 122BD to 122BG
  • the antenna substrate 120E may include only one antenna electrode to form an array antenna. That is, the antenna substrate 120E has only one antenna electrode connected to one wiring electrode included in the rigid substrate 300.
  • FIG. One antenna electrode is branched within the antenna substrate 120E to form radiation electrodes 121D to 121G.
  • the number of wiring electrodes and antenna electrodes used can be reduced, and costs can be reduced.
  • 10 communication device 100 antenna module, 111A to 111D, 113A to 113D, 117 switch, 112AR to 112DR low noise amplifier, 112AT to 112DT power amplifier, 114A to 114D attenuator, 115A to 115D phase shifter, 116 branching filter, 118 Mixer, 119 Amplifier circuit, 120, 120C to 120E Antenna substrate, 121, 121C to 121G Radiation electrode, 122A, 122B, 122C, 122AD to 122BG Antenna electrode, 130, 130A to 130D, 330 Dielectric, 300 Rigid substrate, 322A, 332C, 332D, 322AD to 332BG wiring electrodes, A1 area, BS lower surface, US upper surface, D1, D2 distance, G1 conductive adhesive, GND, GNDA, GNDB ground electrode, H, H1, H1A, H2 concave portions, IC1, IC2 Electronic parts, II, III lines, V1, V

Abstract

This connecting structure is for connecting an antenna board (120) and a rigid board (300), wherein: the antenna board (120) is provided with a dielectric (130) and an antenna electrode (122B); and the rigid board (300) is provided with a dielectric (330) formed by stacking a plurality of dielectric layers on one another, and a wiring electrode (322B). The antenna electrode (122B) is electrically connected to the wiring electrode (322B). The dielectric (330) has an upper surface (US) and a lower surface (BS) perpendicular to a stacking direction, and sandwiches the dielectric (130) by a portion of the dielectric (130) being disposed between the upper surface (US) and the lower surface (BS). The antenna electrode (122B) has formed therein a first recessed portion in which a region overlapping the wiring electrode (322B) when viewed from the stacking direction is recessed.

Description

接続構造およびアンテナモジュールConnection structure and antenna module
 本開示は、接続構造およびアンテナモジュールに関し、より特定的には、2つの基板を含むアンテナモジュールにおいて、基板同士の接続強度を向上させるための技術に関する。 The present disclosure relates to a connection structure and an antenna module, and more particularly to a technique for improving connection strength between substrates in an antenna module including two substrates.
 国際公開第2009/113202号公報(特許文献1)には、多層基板とフレキシブル基板とを接続する接続構造が開示されている。 International Publication No. 2009/113202 (Patent Document 1) discloses a connection structure for connecting a multilayer substrate and a flexible substrate.
 特許文献1に開示されている接続構造では、フレキシブル基板の端部が多層基板の内部に埋め込まれるようにして接続されている。可撓性を有するフレキシブル基板は、接続された状態において屈曲する。特許文献1の接続構造では、フレキシブル基板の端部が多層基板の内部に埋め込まれているため、フレキシブル基板が屈曲しても、屈曲によって生じる応力が多層基板の電極とフレキシブル基板の電極との接続部に伝わらない。これにより、特許文献1には、多層基板とフレキシブル基板との接続信頼性が高くなることが記載されている。 In the connection structure disclosed in Patent Document 1, the ends of the flexible substrate are connected so as to be embedded inside the multilayer substrate. A flexible substrate bends in a connected state. In the connection structure of Patent Document 1, the end of the flexible substrate is embedded inside the multilayer substrate. not communicated to department. Patent Document 1 describes that the connection reliability between the multilayer substrate and the flexible substrate is thereby improved.
国際公開第2009/113202号WO2009/113202
 しかしながら、特許文献1の接続構造では、接続されている基板のうちの1つに対して、接続部から引き抜かれる方向、すなわち、基板の延伸方向に力が加えられた場合、両基板の密着度が弱ければ、両基板の接続が破断してしまう可能性がある。 However, in the connection structure of Patent Document 1, when a force is applied to one of the connected substrates in the direction in which the substrate is pulled out from the connection portion, that is, in the extension direction of the substrate, the degree of adhesion between the two substrates decreases. If it is weak, the connection between the two boards may break.
 本開示は、このような課題を解決するためになされたものであり、その目的は2つの基板を接続するための接続構造において、接続されている基板のうちの1つに対して、接続部から引き抜かれる方向に力が加えられたときの基板同士の接続強度を向上させることである。 The present disclosure has been made to solve such problems, and an object of the present disclosure is to provide a connection structure for connecting two substrates, in which a connection portion is provided for one of the substrates connected. To improve the connection strength between substrates when a force is applied in the direction in which they are pulled out from a substrate.
 本開示のある局面に従う接続構造は、第1基板と第2基板とを接続するための接続構造であって、第1基板は、第1誘電体と第1電極とを備え、第2基板は、複数の誘電体層が積層されて形成される第2誘電体と第2電極とを備える。第1電極は、第2電極と電気的に接続される。第2誘電体は、第2誘電体の積層方向に対して垂直な第1面および第2面を有する。第2誘電体は、誘電体130の一部が上面USと下面BSとの間に配置されることにより、誘電体130を挟持する。第1電極には、積層方向から平面視した場合に第2電極と重なる領域が凹んだ第1凹部が形成される。 A connection structure according to one aspect of the present disclosure is a connection structure for connecting a first substrate and a second substrate, the first substrate comprising a first dielectric and a first electrode, the second substrate comprising: , a second dielectric formed by stacking a plurality of dielectric layers, and a second electrode. The first electrode is electrically connected to the second electrode. The second dielectric has a first surface and a second surface perpendicular to the stacking direction of the second dielectric. The second dielectric sandwiches dielectric 130 by placing a portion of dielectric 130 between upper surface US and lower surface BS. A first recess is formed in the first electrode, in which a region overlapping with the second electrode is recessed when viewed from above in the stacking direction.
 本開示による接続構造においては、第2誘電体の積層方向から平面視した場合に、第1基板が備える第1電極には、第2基板が備える第2電極と重なる領域が凹んだ第1凹部が形成される。このような構成とすることによって、第1電極の上述の領域が凹まない接続構造と比較して、両基板の接触面積が増大し、密着度が増大するため、基板同士の接続強度を向上させることが可能となる。 In the connection structure according to the present disclosure, when viewed from above in the stacking direction of the second dielectric, the first electrode provided on the first substrate has a first concave portion that is recessed in a region overlapping with the second electrode provided on the second substrate. is formed. By adopting such a structure, the contact area between the two substrates is increased and the degree of adhesion is increased compared to a connection structure in which the above-described region of the first electrode is not recessed, so that the connection strength between the substrates is improved. becomes possible.
実施の形態1における通信装置のブロック図の一例である。1 is an example of a block diagram of a communication device according to Embodiment 1. FIG. 実施の形態1におけるアンテナ基板およびリジッド基板の接続部分の平面図および断面図である。2A and 2B are a plan view and a cross-sectional view of a connection portion between an antenna substrate and a rigid substrate in Embodiment 1. FIG. 実施の形態1におけるアンテナ基板が有するアンテナ電極をZ軸の正方向から平面視した場合の拡大図である。4 is an enlarged view of the antenna electrode of the antenna substrate according to Embodiment 1 when viewed in plan from the positive direction of the Z-axis; FIG. 実施の形態1におけるアンテナ基板およびリジッド基板の断面図である。2 is a cross-sectional view of the antenna substrate and the rigid substrate in Embodiment 1. FIG. 実施の形態2におけるアンテナ基板およびリジッド基板の接続部分の平面図および断面図である。8A and 8B are a plan view and a cross-sectional view of a connection portion between an antenna substrate and a rigid substrate in Embodiment 2; FIG. 実施の形態2におけるアンテナ基板およびリジッド基板の断面図である。FIG. 10 is a cross-sectional view of an antenna substrate and a rigid substrate in Embodiment 2; 実施の形態2におけるアンテナ基板とリジッド基板との接続構造の第1の変形例を示す図である。FIG. 10 is a diagram showing a first modification of the connection structure between the antenna substrate and the rigid substrate according to the second embodiment; 実施の形態2におけるアンテナ基板とリジッド基板との接続構造の第2の変形例を示す図である。FIG. 10 is a diagram showing a second modification of the connection structure between the antenna substrate and the rigid substrate in the second embodiment; 実施の形態3におけるアンテナ基板およびリジッド基板の接続部分の平面図および断面図である。8A and 8B are a plan view and a cross-sectional view of a connection portion between an antenna substrate and a rigid substrate in Embodiment 3; 実施の形態3におけるアンテナ基板およびリジッド基板の断面図である。FIG. 11 is a cross-sectional view of an antenna substrate and a rigid substrate in Embodiment 3; 実施の形態3におけるアンテナ基板とリジッド基板との接続構造の第1の変形例を示す図である。FIG. 10 is a diagram showing a first modification of the connection structure between the antenna substrate and the rigid substrate in Embodiment 3; 実施の形態3におけるアンテナ基板とリジッド基板との接続構造の第2の変形例を示す図である。FIG. 12 is a diagram showing a second modification of the connection structure between the antenna substrate and the rigid substrate in the third embodiment; 実施の形態3におけるアンテナ基板とリジッド基板との接続構造の第3の変形例を示す図である。FIG. 12 is a diagram showing a third modification of the connection structure between the antenna substrate and the rigid substrate in the third embodiment; 実施の形態4におけるアンテナ基板とリジッド基板との接続構造の詳細について説明するための図である。FIG. 11 is a diagram for explaining details of a connection structure between an antenna substrate and a rigid substrate in Embodiment 4; 実施の形態5におけるアンテナ基板とリジッド基板との接続構造の詳細について説明するための図である。FIG. 11 is a diagram for explaining details of a connection structure between an antenna substrate and a rigid substrate according to Embodiment 5;
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 [実施の形態1]
 (通信装置の基本構成)
 図1は、実施の形態1における通信装置10のブロック図の一例である。通信装置10は、たとえば、携帯電話、スマートフォンあるいはタブレットなどの携帯端末、通信機能を備えたパーソナルコンピュータ、または基地局などである。実施の形態1におけるアンテナモジュール100に用いられる電波の周波数帯域の一例は、たとえば28GHz、39GHzおよび60GHzなどを中心周波数とするミリ波帯の電波であるが、上記以外の周波数帯域の電波についても適用可能である。
[Embodiment 1]
(Basic configuration of communication device)
FIG. 1 is an example of a block diagram of a communication device 10 according to Embodiment 1. As shown in FIG. The communication device 10 is, for example, a mobile terminal such as a mobile phone, a smart phone or a tablet, a personal computer having a communication function, or a base station. An example of the frequency band of the radio waves used in the antenna module 100 in Embodiment 1 is, for example, millimeter wave band radio waves with center frequencies of 28 GHz, 39 GHz, and 60 GHz. It is possible.
 図1を参照して、通信装置10は、アンテナモジュール100と、ベースバンド信号処理回路を構成するBBIC200とを備える。アンテナモジュール100は、給電回路の一例であるRFIC110と、アンテナ基板120とを備える。通信装置10は、BBIC200からアンテナモジュール100へ伝達された信号をRFIC110において高周波信号にアップコンバートし、リジッド基板300を介してアンテナ基板120から放射する。また、通信装置10はアンテナ基板120で受信した高周波信号を、リジッド基板300を介してRFIC110に伝達し、ダウンコンバートを行なった後にBBIC200にて信号を処理する。 Referring to FIG. 1, communication device 10 includes antenna module 100 and BBIC 200 that configures a baseband signal processing circuit. The antenna module 100 includes an RFIC 110 that is an example of a feeding circuit, and an antenna substrate 120 . The communication device 10 up-converts a signal transmitted from the BBIC 200 to the antenna module 100 into a high-frequency signal in the RFIC 110 and radiates it from the antenna substrate 120 via the rigid substrate 300 . Further, the communication device 10 transmits a high-frequency signal received by the antenna substrate 120 to the RFIC 110 via the rigid substrate 300, down-converts the signal, and then processes the signal by the BBIC 200. FIG.
 図1では、説明を容易にするために、アンテナ基板120を構成する複数の放射電極121のうち、4つの放射電極121に対応する構成のみ示され、同様の構成を有する他の放射電極121に対応する構成については省略されている。なお、図1においてはアンテナ基板120が二次元のアレイ状に配置された複数の放射電極121で形成される例を示しているが、放射電極121は必ずしも複数である必要はなく、1つの放射電極121でアンテナ基板120が形成される場合であってもよい。また、複数の放射電極121が一列に配置された一次元アレイであってもよい。実施の形態1においては、放射電極121は、略正方形の平板状を有するパッチアンテナを例として説明するが、放射電極121の形状は円形、楕円形、あるいは、六角形のような他の多角形であってもよい。 In FIG. 1, for ease of explanation, only configurations corresponding to four radiation electrodes 121 among the plurality of radiation electrodes 121 constituting the antenna substrate 120 are shown, and other radiation electrodes 121 having similar configurations are shown. Corresponding structures are omitted. Note that FIG. 1 shows an example in which the antenna substrate 120 is formed of a plurality of radiation electrodes 121 arranged in a two-dimensional array. A case where the antenna substrate 120 is formed of the electrode 121 may be used. A one-dimensional array in which a plurality of radiation electrodes 121 are arranged in a line may also be used. In Embodiment 1, radiation electrode 121 is described as an example of a patch antenna having a substantially square flat plate shape. may be
 RFIC110は、スイッチ111A~111D,113A~113D,117と、パワーアンプ112AT~112DTと、ローノイズアンプ112AR~112DRと、減衰器114A~114Dと、移相器115A~115Dと、信号合成/分波器116と、ミキサ118と、増幅回路119とを備える。 RFIC 110 includes switches 111A to 111D, 113A to 113D, 117, power amplifiers 112AT to 112DT, low noise amplifiers 112AR to 112DR, attenuators 114A to 114D, phase shifters 115A to 115D, and signal combiner/demultiplexer. 116 , a mixer 118 and an amplifier circuit 119 .
 高周波信号を送信する場合には、スイッチ111A~111D,113A~113Dがパワーアンプ112AT~112DT側へ切換えられるとともに、スイッチ117が増幅回路119の送信側アンプに接続される。高周波信号を受信する場合には、スイッチ111A~111D,113A~113Dがローノイズアンプ112AR~112DR側へ切換えられるとともに、スイッチ117が増幅回路119の受信側アンプに接続される。 When transmitting high-frequency signals, the switches 111A to 111D and 113A to 113D are switched to the power amplifiers 112AT to 112DT, and the switch 117 is connected to the amplifier circuit 119 on the transmission side. When receiving a high frequency signal, switches 111A to 111D and 113A to 113D are switched to low noise amplifiers 112AR to 112DR, and switch 117 is connected to the receiving amplifier of amplifier circuit 119. FIG.
 BBIC200から伝達された信号は、増幅回路119で増幅され、ミキサ118でアップコンバートされる。アップコンバートされた高周波信号である送信信号は、信号合成/分波器116で4分波され、4つの信号経路を通過して、それぞれ異なる放射電極121に給電される。このとき、各信号経路に配置された移相器115A~115Dの移相度が個別に調整されることにより、アンテナ基板120の指向性を調整することができる。また、減衰器114A~114Dは送信信号の強度を調整する。 A signal transmitted from the BBIC 200 is amplified by the amplifier circuit 119 and up-converted by the mixer 118 . A transmission signal, which is an up-converted high-frequency signal, is divided into four waves by the signal combiner/demultiplexer 116, passes through four signal paths, and is fed to different radiation electrodes 121, respectively. At this time, the directivity of the antenna substrate 120 can be adjusted by individually adjusting the degree of phase shift of the phase shifters 115A to 115D arranged in each signal path. Attenuators 114A-114D also adjust the strength of the transmitted signal.
 各放射電極121で受信された高周波信号である受信信号は、それぞれ、異なる4つの信号経路を経由し、信号合成/分波器116で合波される。合波された受信信号は、ミキサ118でダウンコンバートされ、増幅回路119で増幅されてBBIC200へ伝達される。 The received signals, which are high-frequency signals received by each radiation electrode 121 , pass through four different signal paths and are multiplexed by the signal combiner/demultiplexer 116 . The multiplexed received signal is down-converted by mixer 118 , amplified by amplifier circuit 119 , and transmitted to BBIC 200 .
 RFIC110は、例えば、上記回路構成を含む1チップの集積回路部品として形成される。あるいは、RFIC110における各放射電極121に対応する機器(スイッチ、パワーアンプ、ローノイズアンプ、減衰器、移相器)については、対応する放射電極121毎に1チップの集積回路部品として形成されてもよい。 The RFIC 110 is formed, for example, as a one-chip integrated circuit component including the above circuit configuration. Alternatively, devices (switches, power amplifiers, low-noise amplifiers, attenuators, phase shifters) corresponding to each radiation electrode 121 in the RFIC 110 may be formed as one-chip integrated circuit components for each corresponding radiation electrode 121. .
 (アンテナ基板と配線基板との接続構造)
 次に、図2、図3、および図4を用いて、図1におけるアンテナ基板120とリジッド基板300との接続構造の詳細について説明する。図2は、アンテナ基板120およびリジッド基板300の接続部分の平面図(図2(a))および図2(a)の線II-IIにおける断面図(図2(b))である。
(Connection structure between antenna board and wiring board)
Next, details of the connection structure between the antenna substrate 120 and the rigid substrate 300 in FIG. 1 will be described with reference to FIGS. 2, 3, and 4. FIG. 2A and 2B are a plan view (FIG. 2(a)) and a cross-sectional view (FIG. 2(b)) of the connecting portion of the antenna substrate 120 and the rigid substrate 300 along the line II-II in FIG.
 図3は、アンテナ基板120が有するアンテナ電極122A,122BをZ軸の正方向から平面視した場合の拡大図である。図4は、図2(a)の線III-IIIにおける断面図である。図2、図3、および図4においては、アンテナ基板120がダイポールアンテナを形成する場合について説明する。 FIG. 3 is an enlarged view of the antenna electrodes 122A and 122B of the antenna substrate 120 when viewed from the positive direction of the Z axis. FIG. 4 is a cross-sectional view taken along line III-III of FIG. 2(a). 2, 3, and 4, the case where the antenna substrate 120 forms a dipole antenna will be described.
 なお、以降の説明においては、アンテナ基板120の厚さ方向をZ軸方向とし、Z軸方向に垂直な面をX軸およびY軸で規定する。また、各図におけるZ軸の正方向を上面側、負方向を下面側と称する場合がある。アンテナ基板120は本開示における「第1基板」に対応し、リジッド基板300は本開示における「第2基板」に対応する。 In the following description, the thickness direction of the antenna substrate 120 is defined as the Z-axis direction, and the plane perpendicular to the Z-axis direction is defined as the X-axis and the Y-axis. In addition, the positive direction of the Z-axis in each drawing may be referred to as the upper surface side, and the negative direction thereof as the lower surface side. The antenna substrate 120 corresponds to the "first substrate" in the present disclosure, and the rigid substrate 300 corresponds to the "second substrate" in the present disclosure.
 図2(a),図2(b)を参照して、アンテナ基板120とリジッド基板300とが接続されている。アンテナ基板120は、誘電体130と、アンテナ電極122A,122Bとを含む。リジッド基板300は、誘電体330と、配線電極322A,322Bと、接地電極GNDとを含む。誘電体330は、複数の誘電体層がZ軸方向に積層されて形成されている。誘電体330を形成する誘電体層はたとえば液晶ポリマー(LCP)である。なお、誘電体330は本開示における「第2誘電体」に対応する。 With reference to FIGS. 2(a) and 2(b), the antenna substrate 120 and the rigid substrate 300 are connected. Antenna substrate 120 includes dielectric 130 and antenna electrodes 122A and 122B. Rigid substrate 300 includes dielectric 330, wiring electrodes 322A and 322B, and ground electrode GND. The dielectric 330 is formed by laminating a plurality of dielectric layers in the Z-axis direction. The dielectric layer forming dielectric 330 is, for example, a liquid crystal polymer (LCP). Note that the dielectric 330 corresponds to the "second dielectric" in the present disclosure.
 実施の形態1が示す接続構造では、アンテナ基板120とリジッド基板300とを圧縮および加熱して焼成することにより、基板同士を密着させる。これにより、アンテナ基板120とリジッド基板300とが互いに接続される。 In the connection structure shown in Embodiment 1, the antenna substrate 120 and the rigid substrate 300 are compressed, heated, and baked to bring the substrates into close contact with each other. Thereby, the antenna substrate 120 and the rigid substrate 300 are connected to each other.
 アンテナ基板120の誘電体130の厚み(Z軸方向の寸法)は、リジッド基板300の誘電体330の厚みよりも薄い。図2(b)を参照して、誘電体330は、誘電体の積層方向に対して垂直な上面USおよび下面BSを有する。アンテナ基板120の一部は、誘電体330の上面USと、誘電体330の下面BSとの間に配置される。すなわち、図2の接続構造では、アンテナ基板120のX軸の負方向側の端部がリジッド基板300の内部に埋め込まれるようにして接続されている。 The thickness (dimension in the Z-axis direction) of the dielectric 130 of the antenna substrate 120 is thinner than the thickness of the dielectric 330 of the rigid substrate 300 . Referring to FIG. 2B, dielectric 330 has an upper surface US and a lower surface BS perpendicular to the dielectric stacking direction. A portion of the antenna substrate 120 is positioned between the top surface US of the dielectric 330 and the bottom surface BS of the dielectric 330 . That is, in the connection structure of FIG. 2, the end portion of the antenna substrate 120 on the negative direction side of the X-axis is embedded in the rigid substrate 300 for connection.
 誘電体330の上面USは本開示における「第1面」に対応し、誘電体330の下面BSは「第2面」に対応する。 The upper surface US of the dielectric 330 corresponds to the "first surface" in the present disclosure, and the lower surface BS of the dielectric 330 corresponds to the "second surface".
 アンテナ基板120において、アンテナ電極122A,122Bは、誘電体130のZ軸の正方向側の面に配置される。アンテナ電極122A,122Bの各々のX軸の正方向側の端部は放射電極121として機能する。すなわち、アンテナ電極122A,122Bは、RFIC110から差動給電されることにより、放射電極121から電波を放射するダイポールアンテナを形成する。 In the antenna substrate 120, the antenna electrodes 122A and 122B are arranged on the surface of the dielectric 130 on the positive direction side of the Z axis. The ends of the antenna electrodes 122A and 122B on the positive direction side of the X-axis function as the radiation electrode 121 . That is, the antenna electrodes 122A and 122B form a dipole antenna that radiates radio waves from the radiation electrode 121 by being differentially fed from the RFIC 110 .
 また、アンテナ電極122A,122Bの各々は、Z軸の正方向から平面視した場合においてメッシュ形状を有する。図3を参照して、アンテナ電極122A,122Bが有するメッシュ形状について説明する。図3に示されるように、アンテナ電極122A,122Bは、線状の複数の導電体が編み込まれるようにして形成される。線状の導電体の間の距離D1は50~100μmである。1本の線状の導電体の幅、すなわち、線状である導電体の太さは1~2μmである。このように、アンテナ電極122A,122Bは細い線状の導電体が編み込まれて形成されているため、アンテナ電極122A,122Bは、Z軸の負方向側から照射される光の大部分を遮断することなく、Z軸の正方向側へと通過させることができる。なお、アンテナ電極122Aまたはアンテナ電極122Bは本開示における「第1電極」に対応する。 Also, each of the antenna electrodes 122A and 122B has a mesh shape when viewed from above in the positive direction of the Z axis. The mesh shape of the antenna electrodes 122A and 122B will be described with reference to FIG. As shown in FIG. 3, the antenna electrodes 122A and 122B are formed by weaving together a plurality of linear conductors. The distance D1 between the linear conductors is 50-100 μm. The width of one linear conductor, that is, the thickness of the linear conductor is 1 to 2 μm. In this way, since the antenna electrodes 122A and 122B are formed by weaving thin linear conductors, the antenna electrodes 122A and 122B block most of the light emitted from the negative direction side of the Z axis. It can be passed in the positive direction of the Z-axis without any need. Note that the antenna electrode 122A or the antenna electrode 122B corresponds to the "first electrode" in the present disclosure.
 図2に戻り、誘電体130は、たとえば、透光性を有するPET(Polyethylene Terephthalate)材から構成されるフィルムである。これにより、実施の形態1におけるアンテナ基板120では、誘電体130よりもZ軸の負方向側から照射される光の大部分をZ軸の正方向側へと通過させることができる。 Returning to FIG. 2, the dielectric 130 is, for example, a film made of translucent PET (Polyethylene Terephthalate) material. Accordingly, in the antenna substrate 120 according to the first embodiment, most of the light emitted from the negative side of the Z-axis can pass through in the positive direction of the Z-axis with respect to the dielectric 130 .
 すなわち、通信装置10がスマートフォンなどの携帯端末である場合であって、アンテナ基板120がディスプレイと重なるように配置される場合、ユーザーがアンテナ基板120を通してディスプレイを視認することを阻害することがない。言い換えれば、アンテナ電極122A,122Bは、ユーザーに肉眼で視認されにくくなっている。アンテナ基板120の誘電体130は多層基板であってもよい。なお、誘電体130は本開示における「第1誘電体」に対応する。 That is, when the communication device 10 is a mobile terminal such as a smartphone and the antenna substrate 120 is arranged so as to overlap the display, the user's view of the display through the antenna substrate 120 is not hindered. In other words, the antenna electrodes 122A and 122B are less visible to the user with the naked eye. The dielectric 130 of the antenna substrate 120 may be a multi-layer substrate. Note that the dielectric 130 corresponds to the "first dielectric" in the present disclosure.
 誘電体130または誘電体330は、たとえば、低温同時焼成セラミックス(LTCC:Low Temperature Co-fired Ceramics)多層基板、エポキシ、ポリイミドなどの樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、より低い誘電率を有する液晶ポリマー(Liquid Crystal Polymer:LCP)から構成される樹脂層を複数積層して形成された多層樹脂基板、フッ素系樹脂から構成される樹脂層を複数積層して形成された多層樹脂基板、あるいは、LTCC以外のセラミックス多層基板であってもよい。また、誘電体130または誘電体330は、ガラスあるいはプラスチックで形成されていてもよい。 Dielectric 130 or dielectric 330 is, for example, a low temperature co-fired ceramics (LTCC) multi-layer substrate, or a multi-layer resin formed by laminating a plurality of resin layers composed of resin such as epoxy or polyimide. A substrate, a multilayer resin substrate formed by laminating multiple resin layers composed of liquid crystal polymer (LCP) with a lower dielectric constant, and a multilayer resin substrate formed by laminating multiple resin layers composed of fluorine resin It may be a multi-layered resin substrate or a ceramics multi-layer substrate other than LTCC. Alternatively, dielectric 130 or dielectric 330 may be made of glass or plastic.
 図2(b)では、配線電極322Bとアンテナ電極122Bとの接続を説明するために、線II-IIにおける断面が説明されている。リジッド基板300の内部には、配線電極322A,322B、接地電極GNDが配置されている。図2(b)を参照して、Z軸の負方向側から、接地電極GND,アンテナ基板120,配線電極322A,322Bの順番となるように、接地電極GND,アンテナ基板120,配線電極322A,322Bが配置される。 In FIG. 2(b), a cross section taken along line II-II is illustrated in order to describe the connection between the wiring electrode 322B and the antenna electrode 122B. Inside the rigid substrate 300, wiring electrodes 322A and 322B and a ground electrode GND are arranged. 2B, the ground electrode GND, the antenna substrate 120, the wiring electrodes 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322A, 322B, 322B is arranged.
 配線電極322Aとアンテナ電極122Aとの接続構造に関して、図示されていないが、図2(b)に示されている配線電極322Bとアンテナ電極122Bとの接続構造と同様の接続構造を有する。接地電極GNDは、図2(a)に図示されていないが、Z軸方向から平面視したときに、配線電極322A,322Bの両方の電極と重なるXY平面の面を有する平板電極である。 Regarding the connection structure between the wiring electrode 322A and the antenna electrode 122A, although not shown, it has the same connection structure as the connection structure between the wiring electrode 322B and the antenna electrode 122B shown in FIG. 2(b). Although not shown in FIG. 2A, the ground electrode GND is a flat plate electrode having an XY plane surface that overlaps with both of the wiring electrodes 322A and 322B when viewed from the Z-axis direction.
 図2(b)に示されるように、配線電極322Bとアンテナ電極122Bとは、ビアVBによって接続されている。すなわち、配線電極322A,322Bは、ビアを介して、アンテナ電極122A,122Bに電気的にそれぞれ接続される。 As shown in FIG. 2(b), the wiring electrode 322B and the antenna electrode 122B are connected by vias VB. That is, the wiring electrodes 322A, 322B are electrically connected to the antenna electrodes 122A, 122B through vias.
 接地電極GNDは、基準電位となる接地電極である。接地電極GNDの基準電位に対して、配線電極322A,322Bおよびアンテナ電極122A,122Bのインピーダンスは50Ωとなる。 The ground electrode GND is a ground electrode that serves as a reference potential. The impedance of the wiring electrodes 322A, 322B and the antenna electrodes 122A, 122B is 50Ω with respect to the reference potential of the ground electrode GND.
 図2(b)に示されるように、アンテナ電極122Bは、リジッド基板300の外部から内部にかけて、Z軸の負方向に落ち込んで延伸する。すなわち、アンテナ電極122Bには、凹部Hが形成される。凹部Hは、誘電体330の積層方向から平面視した場合に、配線電極322Bと重なる領域に形成される。アンテナ電極122Bの凹部Hは、本開示の「第1凹部」に対応する。 As shown in FIG. 2(b), the antenna electrode 122B extends downward in the negative direction of the Z-axis from the outside to the inside of the rigid substrate 300. As shown in FIG. That is, the concave portion H is formed in the antenna electrode 122B. The concave portion H is formed in a region overlapping with the wiring electrode 322B when viewed from above in the stacking direction of the dielectric 330 . The recess H of the antenna electrode 122B corresponds to the "first recess" of the present disclosure.
 図4では、アンテナ電極122BがZ軸の負方向に落ち込んだ後の状態の図2(a)の線III-IIIにおけるリジッド基板300の断面について説明する。図2(a)の線III-IIIにおける断面において、リジッド基板300の誘電体330は、Z軸の負方向から順に、接地電極GND,誘電体130,アンテナ電極122B,ビアVB,配線電極322Bを含む。 FIG. 4 illustrates a cross section of the rigid substrate 300 taken along line III-III in FIG. 2(a) after the antenna electrode 122B has fallen in the negative direction of the Z axis. 2A, the dielectric 330 of the rigid substrate 300 includes, in order from the negative direction of the Z axis, the ground electrode GND, the dielectric 130, the antenna electrode 122B, the via VB, and the wiring electrode 322B. include.
 アンテナ電極122Bには、凹部Hが形成されているため、アンテナ電極122Bは、Z軸の負方向に落ち込むようにして延伸する。そのため、誘電体130には、アンテナ電極122Bが落ち込むことに対応してZ軸の負方向に対して凹むように凹部H1が形成される。アンテナ電極122Bは、誘電体130のうち、凹部H1を形成する面と接触するように配置される。実施の形態1において、凹部H1は誘電体130の厚み(Z軸方向の寸法)の半分の厚さだけ、凹むように形成される。 Since the recess H is formed in the antenna electrode 122B, the antenna electrode 122B extends downward in the negative direction of the Z axis. Therefore, the recess H1 is formed in the dielectric 130 so as to be recessed in the negative direction of the Z-axis corresponding to the depression of the antenna electrode 122B. Antenna electrode 122B is arranged so as to be in contact with the surface of dielectric 130 that forms recess H1. In Embodiment 1, recess H1 is formed to be recessed by half the thickness of dielectric 130 (dimension in the Z-axis direction).
 実施の形態1に示すような一方の基板の一部が他方の基板の内部に埋め込まれるように接続される接続構造では、一方の基板に対して、基板の延伸方向に向かって引き抜かれるような力が加えられた場合に、基板同士の密着度が弱ければ、両基板の接続が破断されてしまう可能性がある。 In the connection structure in which one substrate is partially embedded in the other substrate as shown in the first embodiment, the connection structure is such that one substrate is pulled out in the extending direction of the substrate. If the adhesion between the substrates is weak when a force is applied, the connection between the substrates may be broken.
 実施の形態1に係る接続構造においては、図2(b)に示されるように、アンテナ電極122Bに凹部Hが形成されることにより、アンテナ電極122Bが平板である場合と比較して、アンテナ電極122Bと誘電体330とが接触する面積が増大する。これにより、実施の形態1に係る接続構造では、製造段階において圧縮および加熱をする際に、アンテナ電極122Bと誘電体330との密着度をより向上させることができる。 In the connection structure according to Embodiment 1, as shown in FIG. 2B, the concave portion H is formed in the antenna electrode 122B. The area of contact between 122B and dielectric 330 increases. As a result, in the connection structure according to the first embodiment, it is possible to further improve the adhesion between the antenna electrode 122B and the dielectric 330 when compressing and heating in the manufacturing stage.
 さらに、アンテナ電極122Bに凹部Hが形成されることにより、誘電体130には凹部H1が形成され、誘電体130と誘電体330とが接触する面積が増大する。これにより、実施の形態1に係る接続構造では、製造段階において圧縮および加熱をする際に、誘電体130と誘電体330との密着度をより向上させることができる。 Further, by forming the concave portion H in the antenna electrode 122B, the concave portion H1 is formed in the dielectric 130, and the contact area between the dielectric 130 and the dielectric 330 increases. Thus, in the connection structure according to the first embodiment, the degree of adhesion between dielectrics 130 and 330 can be further improved when compression and heating are performed in the manufacturing stage.
 また、誘電体130には、誘電体330の積層方向から平面視した場合に、配線電極322Bとアンテナ電極122Bと重なる領域が凹んだ凹部H1が形成される。すなわち、実施の形態1における接続構造では、凹部H1が形成されることにより、製造段階において、アンテナ電極Bが誘電体130に対して押し込まれるように圧縮され、アンテナ電極122Bと誘電体130との間の接触面積をも増大する。これにより、実施の形態1における接続構造では、誘電体130と誘電体330との密着度のみならず、誘電体130とアンテナ電極122Bとの密着度を向上させることができる。 In addition, the dielectric 130 is formed with a concave portion H1 in which a region overlapping the wiring electrode 322B and the antenna electrode 122B is concave when viewed from the stacking direction of the dielectric 330 . That is, in the connection structure according to the first embodiment, since the concave portion H1 is formed, the antenna electrode B is compressed so as to be pushed into the dielectric 130 in the manufacturing stage, and the antenna electrode 122B and the dielectric 130 are compressed. It also increases the contact area between Thus, in the connection structure according to the first embodiment, not only the degree of adhesion between dielectric 130 and dielectric 330 but also the degree of adhesion between dielectric 130 and antenna electrode 122B can be improved.
 このように、実施の形態1における接続構造によれば、アンテナ電極122Bと誘電体330との間の密着度を向上させることができ、さらに、誘電体130と、誘電体330およびアンテナ電極122Bとの間の密着度を向上させることができ、基板同士の接続強度が向上する。すなわち、誘電体130に凹部Hおよび凹部H1が形成されない接続構造と比較して、実施の形態1における接続構造では、アンテナ基板120がX軸の正方向に向かって引き抜かれるような力が加えられた場合であっても、アンテナ基板120とリジッド基板300との接続が破断されにくくなる。 As described above, according to the connection structure in Embodiment 1, the degree of adhesion between antenna electrode 122B and dielectric 330 can be improved. The degree of adhesion between the substrates can be improved, and the connection strength between the substrates is improved. That is, compared to the connection structure in which the recess H and the recess H1 are not formed in the dielectric 130, in the connection structure according to the first embodiment, a force is applied to pull out the antenna substrate 120 in the positive direction of the X axis. Even in this case, the connection between the antenna substrate 120 and the rigid substrate 300 is less likely to break.
 [実施の形態2]
 上記の実施の形態1の接続構造においては、アンテナ基板120が有するアンテナ電極122Bと誘電体130とに凹部が形成される構成について説明した。実施の形態2においては、誘電体130Aの下面に凸部が形成され、接地電極GNDAに凹部が形成される例について説明する。
[Embodiment 2]
In the connection structure of the first embodiment, the configuration in which the recesses are formed in the antenna electrode 122B of the antenna substrate 120 and the dielectric 130 has been described. In the second embodiment, an example in which a convex portion is formed on the lower surface of dielectric 130A and a concave portion is formed on ground electrode GNDA will be described.
 図5および図6においては、実施の形態2におけるアンテナ基板120とリジッド基板300との接続構造の詳細について説明する。図5は、アンテナ基板120およびリジッド基板300の接続部分の平面図(図5(a))および図5(a)の線II-IIにおける断面図(図5(b))である。図6は、図5(a)の線III-IIIにおける断面図である。 5 and 6, the details of the connection structure between the antenna substrate 120 and the rigid substrate 300 in Embodiment 2 will be described. 5A and 5B are a plan view (FIG. 5A) and a cross-sectional view (FIG. 5B) taken along line II-II of FIG. FIG. 6 is a cross-sectional view taken along line III--III of FIG. 5(a).
 なお、図5および図6においては、実施の形態1について説明した図2および図4における誘電体130および接地電極GNDの形状が変化したものとなっており、その他の構成については同様である。図5および図6において、実施の形態1の図2および図4と同様の要素についての説明は繰り返さない。 5 and 6, the shapes of the dielectric 130 and the ground electrode GND in FIGS. 2 and 4 described in the first embodiment are changed, and other configurations are the same. 5 and 6, the description of elements similar to those in FIGS. 2 and 4 of Embodiment 1 will not be repeated.
 図6を参照して、誘電体130Aは、誘電体130Aの下面において、上面に形成された凹部と対応した位置に凸部が形成される。図5(b)を参照して、誘電体130Aは、アンテナ電極122Bと同様に、リジッド基板300の外部から内部にかけて、Z軸の負方向に落ち込んだ後、延伸する。誘電体130Aが下面に凸部を有することにより、凹部H1Aは誘電体130の厚み(Z軸方向の寸法)と同じ厚みだけ、凹むように形成される。 Referring to FIG. 6, the dielectric 130A has a convex portion formed on the lower surface of the dielectric 130A at a position corresponding to the concave portion formed on the upper surface. Referring to FIG. 5B, dielectric 130A, like antenna electrode 122B, extends from the outside to the inside of rigid substrate 300 after falling in the negative direction of the Z axis. Since dielectric 130A has a convex portion on the lower surface, concave portion H1A is formed to be concave by the same thickness as dielectric 130 (dimension in the Z-axis direction).
 すなわち、実施の形態1の接続構造と比較して、誘電体130Aと誘電体330との接触面積がさらに増大し、さらに、誘電体130Aの厚みを薄くすることができる。すなわち、製造段階において圧縮および加熱する際に、誘電体130Aと誘電体330との間の密着度がさらに向上する。凹部H1Aは誘電体130Aの厚みよりも大きく凹んでもよい。たとえば、凹部H1Aは誘電体130Aの厚みの2倍の厚みまで凹むように形成される。 That is, compared to the connection structure of the first embodiment, the contact area between dielectric 130A and dielectric 330 is further increased, and the thickness of dielectric 130A can be reduced. That is, the degree of adhesion between dielectric 130A and dielectric 330 is further improved during compression and heating in the manufacturing stage. The recess H1A may be recessed larger than the thickness of the dielectric 130A. For example, the recess H1A is formed so as to be recessed to a thickness that is twice the thickness of the dielectric 130A.
 以下、接地電極GNDAに形成される凹部H2について説明する。実施の形態2のリジッド基板300が備える接地電極GNDAには、誘電体330の積層方向から平面視した場合に、アンテナ電極122Bと配線電極322Bとが重なる領域が凹んだ凹部H2が形成される。すなわち、凹部H2は、Z軸方向から平面視したときに、接地電極GNDAのうち、凹部H1Aと重なる領域に配置される。 The recess H2 formed in the ground electrode GNDA will be described below. In the ground electrode GNDA included in the rigid substrate 300 of the second embodiment, a concave portion H2 is formed in a region where the antenna electrode 122B and the wiring electrode 322B overlap when viewed from above in the stacking direction of the dielectric 330 . That is, the recess H2 is arranged in a region of the ground electrode GNDA that overlaps with the recess H1A when viewed in plan from the Z-axis direction.
 凹部H2は、凹部H1Aと同様に、Z軸の負方向に向かって凹むように形成される。すなわち、凹部H2は、凹部H1Aの凹み方向と同じ方向へ凹む。なお、実施の形態2における「凹部H2」は、本開示における「第2凹部」に対応する。 The recess H2 is formed so as to be recessed in the negative direction of the Z-axis, similar to the recess H1A. That is, the recess H2 is recessed in the same direction as the recess H1A. The "recess H2" in Embodiment 2 corresponds to the "second recess" in the present disclosure.
 接地電極GNDAは、接地電極GNDL、接地電極GNDC、および接地電極GNDRを含む。接地電極GNDCは、積層方向から平面視した場合にアンテナ電極122Bと配線電極322Bとが重なる。接地電極GNDLおよび接地電極GNDRは、積層方向から平面視した場合にアンテナ電極122Bと配線電極322Bとが重ならない。 The ground electrode GNDA includes a ground electrode GNDL, a ground electrode GNDC, and a ground electrode GNDR. The ground electrode GNDC overlaps the antenna electrode 122B and the wiring electrode 322B when viewed from above in the stacking direction. As for the ground electrode GNDL and the ground electrode GNDR, the antenna electrode 122B and the wiring electrode 322B do not overlap when viewed in plan from the stacking direction.
 図6を参照して、接地電極GNDCは、誘電体330を形成する誘電体層のうち、下面BSを有する誘電体層に形成される。すなわち、接地電極GNDCは、Z軸の最も負方向側に配置されている誘電体層の内部に形成される。一方で、接地電極GNDLおよび接地電極GNDRは、接地電極GNDCが配置されている誘電体層のZ軸の正方向側に配置される誘電体層に配置される。すなわち、接地電極GNDCと、接地電極GNDLおよび接地電極GNDRとは、異なる誘電体層に配置される。 Referring to FIG. 6, ground electrode GNDC is formed in a dielectric layer having bottom surface BS among the dielectric layers forming dielectric 330 . That is, the ground electrode GNDC is formed inside the dielectric layer arranged on the most negative direction side of the Z axis. On the other hand, the ground electrode GNDL and the ground electrode GNDR are arranged in a dielectric layer arranged on the positive direction side of the Z-axis of the dielectric layer where the ground electrode GNDC is arranged. That is, the ground electrode GNDC and the ground electrodes GNDL and GNDR are arranged on different dielectric layers.
 接地電極GNDCは、ビアを介して、接地電極GNDLおよび接地電極GNDRと接続する。接地電極GNDCが接地電極GNDLと接地電極GNDRと接続する方法は、ビアを用いる方法に限られない。たとえば、電性の接着剤等が用いられてもよい。 The ground electrode GNDC is connected to the ground electrode GNDL and the ground electrode GNDR through vias. The method for connecting the ground electrode GNDC to the ground electrodes GNDL and GNDR is not limited to the method using vias. For example, an electrically conductive adhesive or the like may be used.
 「接地電極GNDC」は、本開示における「第1接地電極」に対応する。「接地電極GNDL」および「接地電極GNDR」は、本開示における「第2接地電極」に対応する。 "Ground electrode GNDC" corresponds to the "first ground electrode" in the present disclosure. “Ground electrode GNDL” and “ground electrode GNDR” correspond to “second ground electrode” in the present disclosure.
 これにより、接地電極GNDAは、実施の形態1の接地電極GNDと比較して、配線電極322Bとアンテナ電極122Bとの間のインピーダンスをより確実に整合させることができる。アンテナ電極122Bおよび配線電極322Bは、接地電極GNDAと電気的に結合することにより高周波信号を伝達させる。すなわち、アンテナ電極122Bと接地電極GNDAとは、ストリップ線路として機能する。 Thereby, the ground electrode GNDA can match the impedance between the wiring electrode 322B and the antenna electrode 122B more reliably than the ground electrode GND of the first embodiment. Antenna electrode 122B and wiring electrode 322B are electrically coupled to ground electrode GNDA to transmit a high frequency signal. That is, the antenna electrode 122B and the ground electrode GNDA function as a stripline.
 ストリップ線路として機能するアンテナ電極122Bおよび配線電極322Bと接地電極GNDAとの間には、複数の電気力線が生じる。ストリップ線路において、高周波信号を伝達させるとき、電気力線が通過する領域の誘電率は一様であることが望ましい。 A plurality of electric lines of force are generated between the antenna electrode 122B and the wiring electrode 322B functioning as a strip line and the ground electrode GNDA. When transmitting a high-frequency signal in a stripline, it is desirable that the dielectric constant of the region through which the lines of electric force pass is uniform.
 接地電極GNDAに凹部H2が形成されることにより、全ての電気力線の各々が通過する誘電体130と誘電体330との割合が一様に近づく。言い換えれば、全ての電気力線の各々が通過する領域ごとの誘電率の差が小さくなる。 By forming the concave portion H2 in the ground electrode GNDA, the ratio of the dielectric 130 and the dielectric 330 through which all the lines of electric force pass becomes more uniform. In other words, the difference in dielectric constant between regions through which all electric lines of force each pass becomes small.
 実施の形態2の接続構造では、接地電極GNDAには、Z軸方向から平面視したときに凹部H1Aと重なる領域に凹部H2が形成される。これにより、アンテナ電極122Bおよび配線電極322Bと接地電極GNDAとの間の各電気力線が通過する領域の誘電率の差を抑えられる。したがって、接地電極GNDAは、配線電極322Bとアンテナ電極122Bとの間のインピーダンスをより確実に整合させることができる。 In the connection structure of the second embodiment, the recess H2 is formed in the ground electrode GNDA in a region overlapping the recess H1A when viewed from the Z-axis direction. As a result, the difference in dielectric constant between the antenna electrode 122B/wiring electrode 322B and the ground electrode GNDA through which the lines of electric force pass can be suppressed. Therefore, the ground electrode GNDA can more reliably match the impedance between the wiring electrode 322B and the antenna electrode 122B.
 (実施の形態2の変形例1)
 図7は、実施の形態2におけるアンテナ基板120とリジッド基板300との接続構造の第1の変形例を示す図である。実施の形態2における変形例1では、誘電体330の下面BSに、電子部品IC1,IC2が実装されている。
(Modification 1 of Embodiment 2)
FIG. 7 shows a first modification of the connection structure between the antenna substrate 120 and the rigid substrate 300 according to the second embodiment. In Modification 1 of Embodiment 2, electronic components IC<b>1 and IC<b>2 are mounted on lower surface BS of dielectric 330 .
 電子部品IC1,IC2は、たとえば、RFIC110またはBBIC200などである。なお、電子部品IC1,IC2は、その他の電子部品であってもよい。電子部品IC1,IC2は、誘電体330の上面USに実装されてもよい。このように、実施の形態2における変形例1では、アンテナ基板120とリジッド基板300との接続部の近傍においても、任意の電子部品を実装することができる。 The electronic components IC1 and IC2 are, for example, RFIC110 or BBIC200. Note that the electronic components IC1 and IC2 may be other electronic components. Electronic components IC<b>1 and IC<b>2 may be mounted on top surface US of dielectric 330 . As described above, in Modification 1 of Embodiment 2, an arbitrary electronic component can be mounted even in the vicinity of the connecting portion between antenna substrate 120 and rigid substrate 300 .
 電子部品IC1,IC2は、下面BSにおいて、Z軸方向から平面視した場合に凹部H2と重ならない領域に実装される。誘電体330の下面BSは、接地電極GNDAの凹部H2と重なる領域において、凹部H2の影響により、平坦性が十分ではない場合がある。平坦性が十分ではない状態の下面BSに電子部品IC1,IC2を実装した場合、電子部品IC1,IC2の接続不良が生じる虞がある。 The electronic components IC1 and IC2 are mounted on the lower surface BS in a region that does not overlap the concave portion H2 when viewed from the Z-axis direction. The lower surface BS of the dielectric 330 may not have sufficient flatness due to the influence of the recess H2 in the region overlapping the recess H2 of the ground electrode GNDA. If the electronic components IC1 and IC2 are mounted on the lower surface BS that is not sufficiently flat, there is a risk that the electronic components IC1 and IC2 will be poorly connected.
 図7に示す接続構造では、電子部品IC1,IC2が下面BSにおいて、Z軸方向から平面視した場合に凹部H2と重ならない領域に実装されることにより、平坦性が確保された領域に電子部品IC1,IC2を実装することができ、接続不良が生じることを防止することができる。 In the connection structure shown in FIG. 7, the electronic components IC1 and IC2 are mounted on the lower surface BS in a region that does not overlap the concave portion H2 when viewed from the Z-axis direction. IC1 and IC2 can be mounted, and connection failure can be prevented.
 (実施の形態2の変形例2)
 図8は、実施の形態2におけるアンテナ基板120とリジッド基板300との接続構造の第2の変形例を示す図である。実施の形態2における変形例2では、Z軸方向から平面視した場合に、凹部H2と重ならない領域であって、接地電極GNDAの凹部H2を形成しない部分と重なる領域A1に、電子部品IC1が実装される。
(Modification 2 of Embodiment 2)
FIG. 8 is a diagram showing a second modification of the connection structure between the antenna substrate 120 and the rigid substrate 300 according to the second embodiment. In Modified Example 2 of Embodiment 2, the electronic component IC1 is located in a region A1 that does not overlap with the concave portion H2 and overlaps with the portion of the ground electrode GNDA where the concave portion H2 is not formed when viewed from above in the Z-axis direction. Implemented.
 図8に示されるように、接地電極GNDAに凹部H2が形成されたことにより、領域A1は、誘電体330の他の領域から隔離された領域となる。図8では、隔離された領域A1に電子部品IC1が実装されることにより、領域A1の有効活用をすることができる。特に、図8に示すように、接地電極GNDAのY軸の負方向側の端部と、誘電体330のY軸の負方向側の端部との距離が近い場合、領域A1に電子部品を実装することにより、領域A1をより有効に活用することができる。 As shown in FIG. 8, the area A1 becomes an area isolated from other areas of the dielectric 330 by forming the recess H2 in the ground electrode GNDA. In FIG. 8, the area A1 can be effectively utilized by mounting the electronic component IC1 in the isolated area A1. In particular, as shown in FIG. 8, when the end of the ground electrode GNDA on the negative direction side of the Y axis is close to the end of the dielectric 330 on the negative direction side of the Y axis, the electronic component is placed in the area A1. By mounting, the area A1 can be used more effectively.
 [実施の形態3]
 上記の実施の形態1および実施の形態2では、アンテナ電極122Bと配線電極322BとがビアVBを介して接続される構成について説明した。実施の形態3においては、アンテナ電極122Bと配線電極322Bとが直接接触する例について説明する。
[Embodiment 3]
In the first and second embodiments described above, the configuration in which the antenna electrode 122B and the wiring electrode 322B are connected through the via VB has been described. In Embodiment 3, an example in which the antenna electrode 122B and the wiring electrode 322B are in direct contact will be described.
 図9および図10においては、実施の形態3におけるアンテナ基板120とリジッド基板300との接続構造の詳細について説明する。図9は、アンテナ基板120およびリジッド基板300の接続部分の平面図(図9(a))および図9(a)の線II-IIにおける断面図(図9(b))である。図10は、図9(a)の線III-IIIにおける断面図である。 9 and 10, the details of the connection structure between the antenna substrate 120 and the rigid substrate 300 in Embodiment 3 will be described. 9A and 9B are a plan view (FIG. 9(a)) and a cross-sectional view (FIG. 9(b)) of the connecting portion of the antenna substrate 120 and the rigid substrate 300, taken along the line II-II in FIG. 9(a). FIG. 10 is a cross-sectional view taken along line III-III of FIG. 9(a).
 なお、実施の形態3においては、実施の形態2について説明した図5および図6において、ビアVBを用いずにアンテナ電極122Bと配線電極322Bとが電気的に接続されたものとなっており、その他の構成については同様である。実施の形態3において、実施の形態2の図5および図6と同様の要素についての説明は繰り返さない。 In the third embodiment, the antenna electrode 122B and the wiring electrode 322B are electrically connected without using the via VB in FIGS. Other configurations are the same. In the third embodiment, description of elements similar to those in FIGS. 5 and 6 of the second embodiment will not be repeated.
 配線電極322Bとアンテナ電極122Bとはビアを介さずに直接接触する。図9(b),図10に示すように、配線電極322Bとアンテナ電極122Bとは面接触する。これにより、実施の形態3の接続構造では、ビアを使用しないため配線電極322Bとアンテナ電極122Bとを接続するためのコストを低減することができる。また、実施の形態3の接続構造では、配線電極322Bとアンテナ電極122Bとが面接触する面積を増大させることにより、配線電極322Bとアンテナ電極122Bとの間の接続強度をより向上させることができ、さらに、配線電極322Bとアンテナ電極122Bとの間での接続抵抗を小さくすることができる。 The wiring electrode 322B and the antenna electrode 122B are in direct contact without vias. As shown in FIGS. 9B and 10, the wiring electrode 322B and the antenna electrode 122B are in surface contact. Thus, in the connection structure of the third embodiment, since vias are not used, the cost for connecting the wiring electrode 322B and the antenna electrode 122B can be reduced. Further, in the connection structure of Embodiment 3, the connection strength between the wiring electrode 322B and the antenna electrode 122B can be further improved by increasing the surface contact area between the wiring electrode 322B and the antenna electrode 122B. Furthermore, the connection resistance between the wiring electrode 322B and the antenna electrode 122B can be reduced.
 (実施の形態3の変形例1)
 図11は、実施の形態3におけるアンテナ基板120とリジッド基板300との接続構造の第1の変形例を示す図である。実施の形態3における変形例1では、アンテナ基板120とリジッド基板300とが導電性接着剤G1により接続されている。
(Modification 1 of Embodiment 3)
FIG. 11 shows a first modification of the connection structure between the antenna substrate 120 and the rigid substrate 300 according to the third embodiment. In Modification 1 of Embodiment 3, antenna substrate 120 and rigid substrate 300 are connected by conductive adhesive G1.
 図11を参照して、導電性接着剤G1は、アンテナ電極122Bと配線電極322Bとの間に配置され、アンテナ電極122Bと配線電極322Bとを電気的または物理的に接続する。導電性接着剤G1は、たとえば、導電性フィラーを含むエポキシ系またはシリコーン系樹脂である。また、導電性接着剤はその他の熱硬化性樹脂およびはんだであってもよい。 Referring to FIG. 11, the conductive adhesive G1 is arranged between the antenna electrode 122B and the wiring electrode 322B, and electrically or physically connects the antenna electrode 122B and the wiring electrode 322B. The conductive adhesive G1 is, for example, an epoxy-based or silicone-based resin containing a conductive filler. Also, the conductive adhesive may be other thermosetting resins and solders.
 これにより、実施の形態3における変形例1では、アンテナ電極122Bと配線電極322Bとの間の物理的な接続強度が向上する。さらに、物理的な接続強度が向上することにより、アンテナ電極122Bと配線電極322Bとの間で接触不良が発生することを防止し、その結果、電気的な接続強度も向上させることができる。 Accordingly, in Modification 1 of Embodiment 3, the physical connection strength between the antenna electrode 122B and the wiring electrode 322B is improved. Furthermore, by improving the physical connection strength, it is possible to prevent poor contact between the antenna electrode 122B and the wiring electrode 322B, and as a result, it is possible to improve the electrical connection strength.
 (実施の形態3の変形例2)
 図12は、実施の形態3におけるアンテナ基板120とリジッド基板300との接続構造の第2の変形例を示す図である。実施の形態3における変形例2では、アンテナ基板120とリジッド基板300とが複数のビアを介して接続されている。
(Modification 2 of Embodiment 3)
FIG. 12 shows a second modification of the connection structure between the antenna substrate 120 and the rigid substrate 300 according to the third embodiment. In Modification 2 of Embodiment 3, antenna substrate 120 and rigid substrate 300 are connected via a plurality of vias.
 図12を参照して、ビアV1,ビアV2,ビアV3,ビアV4は、アンテナ電極122Bと配線電極322Bとの間に配置され、アンテナ電極122Bと配線電極322Bとを電気的および物理的に接続する。 Referring to FIG. 12, via V1, via V2, via V3 and via V4 are arranged between antenna electrode 122B and wiring electrode 322B to electrically and physically connect antenna electrode 122B and wiring electrode 322B. do.
 これにより、アンテナ電極122Bと配線電極322Bとを接続するビアが1本である場合と比較して、実施の形態3における変形例2では、アンテナ電極122Bと配線電極322Bとの間の物理的な接続強度が向上する。 As a result, compared with the case where the number of vias connecting the antenna electrode 122B and the wiring electrode 322B is one, in the modification 2 of the third embodiment, the physical distance between the antenna electrode 122B and the wiring electrode 322B is reduced. Improves connection strength.
 さらに、アンテナ電極122Bと配線電極322Bとの間に複数のビアV1~V4が配置されることにより、アンテナ電極122Bと配線電極322Bとの間において、高周波信号が流れる経路が複数となり、電気的な接続強度をより向上させることができ、さらに、アンテナ電極122Bと配線電極322Bとの間での接続抵抗を小さくすることができる。また、図12では、複数のビアV1~V4がX軸方向に並べられた構成について説明したが、複数のビアがY軸方向に並べられた構成であってもよい。 Furthermore, by arranging a plurality of vias V1 to V4 between the antenna electrode 122B and the wiring electrode 322B, there are a plurality of paths through which high-frequency signals flow between the antenna electrode 122B and the wiring electrode 322B. The connection strength can be further improved, and the connection resistance between the antenna electrode 122B and the wiring electrode 322B can be reduced. Also, in FIG. 12, a configuration in which a plurality of vias V1 to V4 are arranged in the X-axis direction has been described, but a configuration in which a plurality of vias are arranged in the Y-axis direction is also possible.
 (実施の形態3の変形例3)
 図13は、実施の形態3におけるアンテナ基板120とリジッド基板300との接続構造の第3の変形例を示す図である。図13では、アンテナ基板120の平面図(図13(a))、および、アンテナ基板120とリジッド基板300との接続構造の断面図(図13(b))が示されている。
(Modification 3 of Embodiment 3)
FIG. 13 shows a third modification of the connection structure between the antenna substrate 120 and the rigid substrate 300 according to the third embodiment. 13 shows a plan view of the antenna substrate 120 (FIG. 13(a)) and a sectional view of the connection structure between the antenna substrate 120 and the rigid substrate 300 (FIG. 13(b)).
 図13に示される接続構造では、アンテナ電極122Bが、誘電体130AのX軸の負方向側の端部から距離D2だけ離隔して配置される。すなわち、図13(a)を参照して、Z軸の正方向から平面視した場合において、アンテナ電極122A,122Bは誘電体130Aの外周端部の内側に配置されている。 In the connection structure shown in FIG. 13, the antenna electrode 122B is arranged at a distance D2 from the end of the dielectric 130A on the negative direction side of the X axis. That is, with reference to FIG. 13(a), antenna electrodes 122A and 122B are arranged inside the outer peripheral edge of dielectric 130A when viewed from the positive direction of the Z axis.
 図13(b)を参照して、誘電体130Aに対してのみ引き抜き方向に力が加えられた場合、アンテナ電極122A,122Bはビアと接合されていることから、誘電体130Aとアンテナ電極122A,122Bとの接続が破断され、誘電体130Aのみが引き抜かれる可能性がある。 Referring to FIG. 13B, when force is applied only to dielectric 130A in the pull-out direction, since antenna electrodes 122A and 122B are joined to vias, dielectric 130A and antenna electrodes 122A and 122A The connection with 122B may be broken and only the dielectric 130A may be pulled out.
 そのため、図13に示す接続構造では、アンテナ電極122Bが誘電体130AのX軸の負方向側の端部から距離D2だけ離隔して配置されることにより、誘電体130Aに対してのみ力が加えられた場合であっても、距離D2に対応する誘電体130Aの領域が、アンテナ電極122Bに引っかかる。したがって、誘電体130Aのみが切断されることを防止することができ、アンテナ基板120とリジッド基板300との間の接続強度が向上する。 Therefore, in the connection structure shown in FIG. 13, the antenna electrode 122B is arranged at a distance D2 from the end of the dielectric 130A on the negative direction side of the X axis, so that force is applied only to the dielectric 130A. Even if it does, a region of dielectric 130A corresponding to distance D2 will catch on antenna electrode 122B. Therefore, only the dielectric 130A can be prevented from being cut, and the connection strength between the antenna substrate 120 and the rigid substrate 300 is improved.
 [実施の形態4]
 上記の実施の形態1~実施の形態3では、アンテナ基板120がダイポールアンテナを形成する構成について説明した。実施の形態4においてはパッチアンテナを形成する例について説明する。
[Embodiment 4]
In Embodiments 1 to 3 above, the configuration in which the antenna substrate 120 forms a dipole antenna has been described. In Embodiment 4, an example of forming a patch antenna will be described.
 図14は、実施の形態4におけるアンテナ基板120C,120Dとリジッド基板300との接続構造の詳細について説明するための図である。図14では、アンテナ基板120Cおよびリジッド基板300の接続部分の平面図(図14(a))および図14(a)の線II-IIにおける断面図(図14(b))を示す。なお、実施の形態4において、実施の形態1~実施の形態3と同様の要素についての説明は繰り返さない。 FIG. 14 is a diagram for explaining the details of the connection structure between the antenna boards 120C and 120D and the rigid board 300 according to the fourth embodiment. 14 shows a plan view (FIG. 14(a)) of the connecting portion of the antenna substrate 120C and the rigid substrate 300 and a cross-sectional view (FIG. 14(b)) taken along the line II-II in FIG. 14(a). In the fourth embodiment, description of elements similar to those of the first to third embodiments will not be repeated.
 図14を参照して、リジッド基板300には、アンテナ基板120Cおよびアンテナ基板120Dの2つの基板が接続されている。アンテナ基板120Cは誘電体130Cとアンテナ電極122Cを含む。図14(a)に示されるアンテナ電極122Cのうちの正方形状の領域は、パッチアンテナの放射電極121Cとして機能する。 Referring to FIG. 14, rigid board 300 is connected to two boards, antenna board 120C and antenna board 120D. Antenna substrate 120C includes dielectric 130C and antenna electrode 122C. A square region of the antenna electrode 122C shown in FIG. 14(a) functions as the radiation electrode 121C of the patch antenna.
 アンテナ基板120Dは、誘電体130Dと接地電極GNDBを含む。すなわち、接地電極GNDBは、パッチアンテナの放射電極121Cと電気的に結合する接地電極として機能する。すなわち、図14では、アンテナ基板120Dの正方形状の領域および、Z軸方向から平面視したときに当該領域と重なる接地電極GNDBの領域とによってパッチアンテナが形成される。 The antenna substrate 120D includes a dielectric 130D and a ground electrode GNDB. That is, the ground electrode GNDB functions as a ground electrode electrically coupled with the radiation electrode 121C of the patch antenna. That is, in FIG. 14, the patch antenna is formed by the square area of the antenna substrate 120D and the area of the ground electrode GNDB that overlaps with the square area when viewed from the Z-axis direction.
 リジッド基板300は、配線電極332C,332Dを含む。配線電極332C,332Dは、それぞれ、アンテナ電極122C,接地電極GNDBと電気的に接続する。 The rigid substrate 300 includes wiring electrodes 332C and 332D. The wiring electrodes 332C and 332D are electrically connected to the antenna electrode 122C and the ground electrode GNDB, respectively.
 このように、パッチアンテナを形成するアンテナ基板120C,120Dとリジッド基板300との間においても、実施の形態1~実施の形態3に示す接続構造を用いることが可能である。 Thus, the connection structure shown in Embodiments 1 to 3 can also be used between the antenna substrates 120C and 120D forming patch antennas and the rigid substrate 300. FIG.
 [実施の形態5]
 上記の実施の形態1~実施の形態4では、アンテナ基板120が1つのアンテナを形成する構成について説明した。実施の形態5においては、複数のアンテナを形成するアレイアンテナに本願の接続構造を適用した例について説明する。
[Embodiment 5]
In Embodiments 1 to 4 above, the configuration in which the antenna substrate 120 forms one antenna has been described. In Embodiment 5, an example in which the connection structure of the present application is applied to an array antenna forming a plurality of antennas will be described.
 図15は、実施の形態5におけるアンテナ基板120Eとリジッド基板300との接続構造の詳細について説明するための図である。図15では、アンテナ基板120Eおよびリジッド基板300の接続部分の平面図が示されている。なお、実施の形態5において、実施の形態1~実施の形態4と同様の要素についての説明は繰り返さない。 FIG. 15 is a diagram for explaining the details of the connection structure between the antenna substrate 120E and the rigid substrate 300 according to the fifth embodiment. FIG. 15 shows a plan view of the connecting portion of the antenna substrate 120E and the rigid substrate 300. As shown in FIG. In the fifth embodiment, description of elements similar to those of the first to fourth embodiments will not be repeated.
 図15を参照して、アンテナ基板120Eは、誘電体130Bと、アンテナ電極122AD,122BD,122AE,122BE,122AF,122BF,122AG,122BGとを含む。リジッド基板300は、誘電体330と、配線電極332AD,332BD,332AE,332BE,332AF,332BF,332AG,332BGとを含む。アンテナ電極122AD~122BGは、それぞれ、配線電極332AD~332BGと電気的に接続される。 Referring to FIG. 15, antenna substrate 120E includes dielectric 130B and antenna electrodes 122AD, 122BD, 122AE, 122BE, 122AF, 122BF, 122AG and 122BG. The rigid substrate 300 includes a dielectric 330 and wiring electrodes 332AD, 332BD, 332AE, 332BE, 332AF, 332BF, 332AG and 332BG. The antenna electrodes 122AD-122BG are electrically connected to the wiring electrodes 332AD-332BG, respectively.
 アンテナ電極122AD,122BDの各々のX軸の正方向側の端部は、放射電極121Dとして機能する。すなわち、アンテナ電極122AD,122BDは、RFIC110から差動給電されることにより、放射電極121Dから電波を放射するダイポールアンテナを形成する。同様に、アンテナ電極122AE,122BE~122AG,122BGは、それぞれ、放射電極121D~121Gから電波を放射するダイポールアンテナを形成する。 The end of each of the antenna electrodes 122AD and 122BD on the positive direction side of the X axis functions as a radiation electrode 121D. That is, the antenna electrodes 122AD and 122BD are differentially fed from the RFIC 110 to form a dipole antenna that radiates radio waves from the radiation electrode 121D. Similarly, antenna electrodes 122AE, 122BE-122AG, and 122BG form dipole antennas that radiate radio waves from radiation electrodes 121D-121G, respectively.
 このように、アンテナ基板120Eが複数のアンテナを形成するアレイアンテナである場合であっても、実施の形態1~実施の形態4に示す接続構造を用いることが可能である。アレイアンテナを形成することにより、アンテナ基板120Eのアンテナの特性を向上させることができる。アンテナ基板120Eが含むアレイアンテナは、図14に示す複数のパッチアンテナから構成されてもよい。 Thus, even when the antenna substrate 120E is an array antenna forming a plurality of antennas, it is possible to use the connection structure shown in Embodiments 1 to 4. By forming an array antenna, the antenna characteristics of the antenna substrate 120E can be improved. The array antenna included in the antenna substrate 120E may be composed of a plurality of patch antennas shown in FIG.
 アンテナ電極122AE~122AGおよびアンテナ電極122BE~122BGの各々は、本開示における「第3電極」に対応する。配線電極322AD~322AGおよび配線電極322BD~322BGの各々は、本開示における「第4電極」に対応する。放射電極121E~121Gの各々は、本開示における「第3放射電極」に対応する。 Each of the antenna electrodes 122AE-122AG and the antenna electrodes 122BE-122BG corresponds to the "third electrode" in the present disclosure. Each of the wiring electrodes 322AD-322AG and the wiring electrodes 322BD-322BG corresponds to the "fourth electrode" in the present disclosure. Each of the radiation electrodes 121E-121G corresponds to the "third radiation electrode" in the present disclosure.
 図15では、アンテナ基板120Eがアンテナ電極122AD~122AGおよび122BD~122BGを含む構成について説明したが、アンテナ基板120Eが1つのアンテナ電極のみを含み、アレイアンテナを形成してもよい。すなわち、アンテナ基板120Eは、リジッド基板300が含む1つの配線電極に接続する1つのアンテナ電極のみを有する。1つのアンテナ電極は、アンテナ基板120E内において分岐し、放射電極121D~121Gを形成する。 Although FIG. 15 describes the configuration in which the antenna substrate 120E includes the antenna electrodes 122AD to 122AG and 122BD to 122BG, the antenna substrate 120E may include only one antenna electrode to form an array antenna. That is, the antenna substrate 120E has only one antenna electrode connected to one wiring electrode included in the rigid substrate 300. FIG. One antenna electrode is branched within the antenna substrate 120E to form radiation electrodes 121D to 121G.
 これにより、配線電極およびアンテナ電極の使用点数を少なくすることができ、コストを低減することができる。 As a result, the number of wiring electrodes and antenna electrodes used can be reduced, and costs can be reduced.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. The scope of the present invention is indicated by the scope of the claims rather than the description of the above-described embodiments, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 10 通信装置、100 アンテナモジュール、111A~111D,113A~113D,117 スイッチ、112AR~112DR ローノイズアンプ、112AT~112DT パワーアンプ、114A~114D 減衰器、115A~115D 移相器、116 分波器、118 ミキサ、119 増幅回路、120,120C~120E アンテナ基板、121,121C~121G 放射電極、122A,122B,122C,122AD~122BG アンテナ電極、130,130A~130D,330 誘電体、300 リジッド基板、322A,332C,332D,322AD~332BG 配線電極、A1 領域、BS 下面、US 上面、D1,D2 距離、G1 導電性接着剤、GND,GNDA,GNDB 接地電極、H,H1,H1A,H2 凹部、IC1,IC2 電子部品、II,III 線、V1,V2,V3,V4,VB ビア。 10 communication device, 100 antenna module, 111A to 111D, 113A to 113D, 117 switch, 112AR to 112DR low noise amplifier, 112AT to 112DT power amplifier, 114A to 114D attenuator, 115A to 115D phase shifter, 116 branching filter, 118 Mixer, 119 Amplifier circuit, 120, 120C to 120E Antenna substrate, 121, 121C to 121G Radiation electrode, 122A, 122B, 122C, 122AD to 122BG Antenna electrode, 130, 130A to 130D, 330 Dielectric, 300 Rigid substrate, 322A, 332C, 332D, 322AD to 332BG wiring electrodes, A1 area, BS lower surface, US upper surface, D1, D2 distance, G1 conductive adhesive, GND, GNDA, GNDB ground electrode, H, H1, H1A, H2 concave portions, IC1, IC2 Electronic parts, II, III lines, V1, V2, V3, V4, VB vias.

Claims (16)

  1.  第1基板と第2基板とを接続するための接続構造であって、
     前記第1基板は、第1誘電体と第1電極とを備え、
     前記第2基板は、複数の誘電体層が積層されて形成される第2誘電体と第2電極とを備え、
     前記第1電極は、前記第2電極と電気的に接続され、
     前記第2誘電体は、前記第2誘電体の積層方向に対して垂直な第1面および第2面を有し、
     前記第2誘電体は、前記第1誘電体の一部が前記第1面と前記第2面との間に配置されることにより、前記第1誘電体を挟持し、
     前記第1電極には、前記積層方向から平面視した場合に前記第2電極と重なる領域が凹んだ第1凹部が形成される、接続構造。
    A connection structure for connecting a first substrate and a second substrate,
    the first substrate comprises a first dielectric and a first electrode;
    the second substrate includes a second dielectric formed by stacking a plurality of dielectric layers and a second electrode;
    the first electrode is electrically connected to the second electrode;
    the second dielectric has a first surface and a second surface perpendicular to the stacking direction of the second dielectric;
    the second dielectric sandwiches the first dielectric by a portion of the first dielectric being disposed between the first surface and the second surface;
    The connection structure, wherein the first electrode is formed with a first concave portion in which a region overlapping with the second electrode when viewed in plan from the stacking direction is concave.
  2.  前記第2基板は、接地電極をさらに備え、
     前記接地電極は、前記積層方向から平面視した場合に前記第1電極と前記第2電極とが重なる領域が凹んだ第2凹部を有し、
     前記第2凹部は、前記第1凹部の凹み方向と同じ方向へ凹む、請求項1に記載の接続構造。
    The second substrate further comprises a ground electrode,
    The ground electrode has a second concave portion in which a region where the first electrode and the second electrode overlap when viewed from above in the stacking direction is concave,
    2. The connection structure according to claim 1, wherein said second recess is recessed in the same direction as said first recess.
  3.  前記接地電極は、
      前記積層方向から平面視した場合に前記第1電極と前記第2電極とが重なる第1接地電極と、
      前記積層方向から平面視した場合に前記第1電極と前記第2電極とが重ならない第2接地電極とを含み、
     前記第1接地電極および前記第2接地電極の各々は、前記第2誘電体を形成する複数の誘電体層のうち、互いに異なる誘電体層に形成される、請求項2に記載の接続構造。
    The ground electrode is
    a first ground electrode in which the first electrode and the second electrode overlap when viewed in plan from the stacking direction;
    including a second ground electrode in which the first electrode and the second electrode do not overlap when viewed in plan from the stacking direction;
    3. The connection structure according to claim 2, wherein each of said first ground electrode and said second ground electrode is formed on a different dielectric layer among a plurality of dielectric layers forming said second dielectric.
  4.  前記第2基板は、電子部品をさらに備え、
     前記電子部品は、前記第2面において、前記積層方向から平面視した場合に前記第1誘電体と重ならない領域に実装される、請求項2または請求項3に記載の接続構造。
    The second substrate further comprises an electronic component,
    4. The connection structure according to claim 2, wherein said electronic component is mounted on said second surface in a region that does not overlap said first dielectric when viewed from above in said stacking direction.
  5.  前記第2基板は、電子部品をさらに備え、
     前記電子部品は、前記第2面において、前記積層方向から平面視した場合に前記第2凹部と重ならない領域に実装される、請求項2または請求項3に記載の接続構造。
    The second substrate further comprises an electronic component,
    4. The connection structure according to claim 2, wherein said electronic component is mounted on said second surface in a region that does not overlap with said second concave portion when viewed from above in said stacking direction.
  6.  前記第1電極は、前記第2電極と直接接触する、請求項1~5のいずれか1項に記載の接続構造。 The connection structure according to any one of claims 1 to 5, wherein the first electrode is in direct contact with the second electrode.
  7.  前記第1電極と前記第2電極との間に配置され、前記第1電極と前記第2電極とを接続する導電性接着剤をさらに備える、請求項1~5のいずれか1項に記載の接続構造。 6. The method according to any one of claims 1 to 5, further comprising a conductive adhesive disposed between said first electrode and said second electrode and connecting said first electrode and said second electrode. connection structure.
  8.  前記第1電極と前記第2電極とを接続する、少なくとも1つのビアをさらに備える、請求項1~5のいずれか1項に記載の接続構造。 The connection structure according to any one of claims 1 to 5, further comprising at least one via connecting said first electrode and said second electrode.
  9.  前記積層方向から平面視した場合において、前記第1電極は前記第1誘電体の外周端部の内側に配置される、請求項1~8のいずれか1項に記載の接続構造。 The connection structure according to any one of claims 1 to 8, wherein the first electrode is arranged inside the outer peripheral edge of the first dielectric when viewed in plan from the stacking direction.
  10.  前記積層方向から平面視した場合において、前記第1電極はメッシュ形状を有する、請求項1~9のいずれか1項に記載の接続構造。 The connection structure according to any one of claims 1 to 9, wherein the first electrode has a mesh shape when viewed in plan from the stacking direction.
  11.  前記第1誘電体は、透光性を有する、請求項1~10のいずれか1項に記載の接続構造。 The connection structure according to any one of claims 1 to 10, wherein the first dielectric has translucency.
  12.  請求項1~11のいずれか1項に記載の接続構造を含むアンテナモジュールであって、
     前記第1電極の一部は、電波を放射するための第1放射電極を形成する、アンテナモジュール。
    An antenna module comprising the connection structure according to any one of claims 1 to 11,
    The antenna module, wherein a part of the first electrode forms a first radiation electrode for radiating radio waves.
  13.  前記第1放射電極は、ダイポールアンテナの一部を形成する、請求項12に記載のアンテナモジュール。 The antenna module according to claim 12, wherein said first radiation electrode forms part of a dipole antenna.
  14.  前記第1放射電極は、パッチアンテナの一部を形成する、請求項12に記載のアンテナモジュール。 The antenna module according to claim 12, wherein said first radiation electrode forms part of a patch antenna.
  15.  前記第1電極の一部は、前記第1放射電極と異なる第2放射電極を形成する、請求項12~14のいずれか1項に記載のアンテナモジュール。 The antenna module according to any one of claims 12 to 14, wherein part of said first electrode forms a second radiation electrode different from said first radiation electrode.
  16.  前記第1基板は、第3電極をさらに備え、
     前記第2基板は、第4電極をさらに備え、
     前記第3電極は、前記第4電極と電気的に接続され、
     前記第3電極の一部は、電波を放射するための第3放射電極を形成する、請求項12~14のいずれか1項に記載のアンテナモジュール。
    The first substrate further comprises a third electrode,
    The second substrate further comprises a fourth electrode,
    the third electrode is electrically connected to the fourth electrode;
    The antenna module according to any one of claims 12 to 14, wherein part of said third electrode forms a third radiation electrode for radiating radio waves.
PCT/JP2022/007848 2021-04-09 2022-02-25 Connecting structure, and antenna module WO2022215381A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/482,121 US20240039143A1 (en) 2021-04-09 2023-10-06 Coupling structure and antenna module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021066169 2021-04-09
JP2021-066169 2021-04-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/482,121 Continuation US20240039143A1 (en) 2021-04-09 2023-10-06 Coupling structure and antenna module

Publications (1)

Publication Number Publication Date
WO2022215381A1 true WO2022215381A1 (en) 2022-10-13

Family

ID=83545837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007848 WO2022215381A1 (en) 2021-04-09 2022-02-25 Connecting structure, and antenna module

Country Status (2)

Country Link
US (1) US20240039143A1 (en)
WO (1) WO2022215381A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168960B1 (en) * 2006-02-08 2007-01-30 Lotes Co., Inc. Connecting mechanism
US20110194262A1 (en) * 2010-02-05 2011-08-11 Ibiden, Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
JP2019204937A (en) * 2018-05-25 2019-11-28 積水ポリマテック株式会社 Telescopic wiring member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7168960B1 (en) * 2006-02-08 2007-01-30 Lotes Co., Inc. Connecting mechanism
US20110194262A1 (en) * 2010-02-05 2011-08-11 Ibiden, Co., Ltd. Flex-rigid wiring board and method for manufacturing the same
JP2019204937A (en) * 2018-05-25 2019-11-28 積水ポリマテック株式会社 Telescopic wiring member

Also Published As

Publication number Publication date
US20240039143A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US11024955B2 (en) Antenna module and communication apparatus
CN110785893B (en) Antenna module and communication device
WO2017047396A1 (en) Antenna-integrated communication module and method for manufacturing same
JP6874829B2 (en) Antenna module and communication device
CN110462933B (en) Planar antenna and wireless module
WO2020149138A1 (en) Antenna module, communication device using same, and method for making antenna module
WO2019163419A1 (en) Antenna module and communication device installed therein
CN110854548B (en) Antenna structure and wireless communication device with same
US11936096B2 (en) Wiring substrate, antenna module, and communication device
US11888245B2 (en) Flexible substrate and antenna module including flexible substrate
WO2020145392A1 (en) Antenna module and communication device with same mounted thereon
US11539122B2 (en) Antenna module and communication unit provided with the same
WO2021059738A1 (en) Antenna module, method for manufacturing same, and aggregate substrate
US20230187837A1 (en) Antenna module and connection structure
JP7166226B2 (en) Antenna device and manufacturing method
WO2022215381A1 (en) Connecting structure, and antenna module
US11916312B2 (en) Antenna module, communication device mounting the same, and circuit board
WO2022264737A1 (en) Antenna module and communication device having same
KR102290591B1 (en) Switch beam-forming antenna device for millimeter wave band wireless communication
US20220384945A1 (en) Antenna module and communication device equipped with the same
WO2022215421A1 (en) Antenna module
US20240047883A1 (en) Antenna module and communication apparatus equipped with the same
CN219436154U (en) Multilayer substrate, antenna module, filter, communication device, and transmission line
WO2023047801A1 (en) Antenna module and communication device equipped with same
WO2023090182A1 (en) Antenna module, and communication device equipped with same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22784366

Country of ref document: EP

Kind code of ref document: A1