JP2019204855A - Heat dissipation structure - Google Patents

Heat dissipation structure Download PDF

Info

Publication number
JP2019204855A
JP2019204855A JP2018098215A JP2018098215A JP2019204855A JP 2019204855 A JP2019204855 A JP 2019204855A JP 2018098215 A JP2018098215 A JP 2018098215A JP 2018098215 A JP2018098215 A JP 2018098215A JP 2019204855 A JP2019204855 A JP 2019204855A
Authority
JP
Japan
Prior art keywords
heat
temperature
thermal deformation
transformation point
deformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018098215A
Other languages
Japanese (ja)
Inventor
横田 秀之
Hideyuki Yokota
秀之 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2018098215A priority Critical patent/JP2019204855A/en
Publication of JP2019204855A publication Critical patent/JP2019204855A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Telephone Set Structure (AREA)

Abstract

To realize a heat dissipation structure capable of preventing a temperature of a housing from rising excessively to prevent burns.SOLUTION: A heat dissipation structure (20) comprises a heat transfer unit (10) between a cabinet (1) and a heating body (6). The heat transfer unit includes at least one thermal deformation member (2) having a heat deformation unit (22) at least partially made of a shape memory alloy. When reaching a transformation point, the thermal deformation unit deforms so that an air heat insulation layer (8) may be formed between the cabinet and the heating body.SELECTED DRAWING: Figure 4

Description

本発明は、携帯電話機等の電子機器に用いられる発熱体から放熱を行う放熱構造体に関する。   The present invention relates to a heat dissipation structure that dissipates heat from a heating element used in an electronic device such as a mobile phone.

特許文献1には、発熱体から発生する熱を、熱拡散フィルムで面方向に効率良く広げてから筐体(支持体)に逃がすことで、筐体の温度が部分的に上昇することを抑制することができる放熱構造体が開示されている。   In Patent Document 1, the heat generated from the heating element is efficiently spread in the surface direction with a heat diffusion film and then released to the casing (support), thereby suppressing the temperature of the casing from partially rising. A heat dissipating structure is disclosed.

特開2010−171030号公報(2010年8月5日公開)JP 2010-171030 A (released on August 5, 2010)

しかしながら、特許文献1に記載の放熱構造体は、発熱体で発生した熱が、筐体に伝わり続ける。このため、発熱体の温度がさらに上昇し、放熱、および熱の拡散が追いつかなくなると、筐体の温度が上昇し、筐体に人体が触れていると、火傷するおそれがある。   However, in the heat dissipation structure described in Patent Document 1, the heat generated by the heating element continues to be transmitted to the housing. For this reason, if the temperature of the heating element further rises and heat dissipation and heat diffusion cannot catch up, the temperature of the casing rises, and if a human body touches the casing, there is a risk of burns.

本発明の一態様は、筐体の温度が上昇しすぎることがなく、火傷を防止することができる放熱構造体を実現することを目的とする。   An object of one embodiment of the present invention is to realize a heat dissipation structure that can prevent burns without excessively increasing the temperature of a housing.

上記の課題を解決するために、本発明の一態様にかかる放熱構造体は、筐体と、発熱体と、上記筐体と上記発熱体との間に配置された伝熱部とを含み、上記伝熱部は、少なくとも一部が形状記憶合金からなる熱変形部を有する熱変形部材を少なくとも1つ含み、上記熱変形部は、該熱変形部の温度が変態点に達すると、上記筐体と上記発熱体との間に空気断熱層を形成するように変形する。   In order to solve the above problems, a heat dissipation structure according to an aspect of the present invention includes a housing, a heating element, and a heat transfer section disposed between the casing and the heating element. The heat transfer portion includes at least one heat deformation member having a heat deformation portion at least part of which is made of a shape memory alloy, and the heat deformation portion, when the temperature of the heat deformation portion reaches the transformation point, It deform | transforms so that an air heat insulation layer may be formed between a body and the said heat generating body.

本発明の一態様によれば、上記熱変形部材の熱変形部の温度が変態点に達すると、上記筐体と上記発熱体との間に上記空気断熱層が形成されるので、上記筐体の温度が下がる。したがって、上記一態様によれば、上記筐体の温度が上昇しすぎることがなく、火傷を防止することができる放熱構造体を実現することができる。   According to one aspect of the present invention, when the temperature of the thermally deformable portion of the thermally deformable member reaches the transformation point, the air insulation layer is formed between the housing and the heating element. The temperature drops. Therefore, according to the said one aspect | mode, the temperature of the said housing | casing does not rise too much and can implement | achieve the thermal radiation structure which can prevent a burn.

実施形態1にかかる放熱構造体の一例を示す断面図である。It is sectional drawing which shows an example of the thermal radiation structure concerning Embodiment 1. FIG. 実施形態1にかかる熱変形部材の一例を示す斜視図である。It is a perspective view which shows an example of the heat deformation member concerning Embodiment 1. FIG. (a)は、熱変形部の温度が変態点よりも低いときの、実施形態1にかかる熱変形部材の形状を示す斜視図であり、(b)は、熱変形部の温度が変態点以上であるときの、実施形態1にかかる熱変形部材の形状を示す斜視図である。(A) is a perspective view which shows the shape of the heat deformation member concerning Embodiment 1 when the temperature of a heat deformation part is lower than a transformation point, (b) is the temperature of a heat deformation part more than a transformation point. It is a perspective view which shows the shape of the heat deformation member concerning Embodiment 1 when it is. (a)は、熱変形部の温度が変態点よりも低いときの、実施形態1にかかる放熱構造体における熱の移動を示す断面図であり、(b)は、熱変形部の温度が変態点以上であるときの、実施形態1にかかる放熱構造体における熱の移動を示す断面図である。(A) is sectional drawing which shows the movement of the heat | fever in the thermal radiation structure concerning Embodiment 1 when the temperature of a heat deformation part is lower than a transformation point, (b) is the temperature of a heat deformation part transformed. It is sectional drawing which shows the movement of the heat | fever in the thermal radiation structure concerning Embodiment 1 when it is more than a point. 実施形態1の変形例1にかかる熱変形部材の一例を示す斜視図である。It is a perspective view which shows an example of the heat deformation member concerning the modification 1 of Embodiment 1. FIG. 実施形態2にかかる放熱構造体の一例を示す断面図である。It is sectional drawing which shows an example of the thermal radiation structure concerning Embodiment 2. (a)は、熱変形部の温度がT1未満であるときの、実施形態3にかかる熱変形部材の形状を示す断面図であり、(b)は、熱変形部の温度がT1以上、T2未満であるときの、実施形態3にかかる熱変形部材の形状を示す断面図であり、(c)は、熱変形部の温度がT2以上であるときの、実施形態3にかかる熱変形部材の形状を示す断面図である。(A) is sectional drawing which shows the shape of the heat-deformable member concerning Embodiment 3 when the temperature of a heat-deformation part is less than T1, (b) is the temperature of a heat-deformation part T1 or more, T2 It is sectional drawing which shows the shape of the heat-deformable member concerning Embodiment 3 when it is less than (c), (c) is the heat-deformable member concerning Embodiment 3 when the temperature of a heat-deformation part is T2 or more. It is sectional drawing which shows a shape. (a)は、熱変形部の温度が変態点よりも低いときの、実施形態4にかかる熱変形部材の形状を示す斜視図であり、(b)は、熱変形部の温度が変態点以上であるときの、実施形態4にかかる熱変形部材の形状を示す斜視図である。(A) is a perspective view which shows the shape of the heat deformation member concerning Embodiment 4 when the temperature of a heat deformation part is lower than a transformation point, (b) is the temperature of a heat deformation part more than a transformation point. It is a perspective view which shows the shape of the heat deformation member concerning Embodiment 4 when it is. (a)は、熱変形部の温度が変態点よりも低いときの、実施形態5にかかる熱変形部材の形状を示す斜視図であり、(b)は、熱変形部の温度が変態点以上であるときの、実施形態5にかかる熱変形部材の形状を示す斜視図である。(A) is a perspective view which shows the shape of the heat deformation member concerning Embodiment 5 when the temperature of a heat deformation part is lower than a transformation point, (b) is the temperature of a heat deformation part more than a transformation point. It is a perspective view which shows the shape of the heat deformation member concerning Embodiment 5 when it is. (a)は、熱変形部の温度が変態点よりも低いときの、実施形態6にかかる熱変形部材の形状を示す斜視図であり、(b)は、熱変形部の温度が変態点以上であるときの、実施形態6にかかる熱変形部材の形状を示す斜視図である。(A) is a perspective view which shows the shape of the heat deformation member concerning Embodiment 6 when the temperature of a heat deformation part is lower than a transformation point, (b) is the temperature of a heat deformation part more than a transformation point. It is a perspective view which shows the shape of the heat deformation member concerning Embodiment 6 when it is. (a)は、熱変形部の温度が変態点よりも低いときの、実施形態6にかかる熱変形部材の形状を示す断面図であり、(b)は、熱変形部の温度が変態点以上であるときの、実施形態6にかかる熱変形部材の形状を示す断面図である。(A) is sectional drawing which shows the shape of the heat deformation member concerning Embodiment 6 when the temperature of a heat deformation part is lower than a transformation point, (b) is the temperature of a heat deformation part more than a transformation point. It is sectional drawing which shows the shape of the heat deformation member concerning Embodiment 6 when it is. (a)は、熱変形部の温度が変態点よりも低いときの、実施形態7にかかる熱変形部材の形状を示す断面図であり、(b)は、熱変形部の温度が変態点以上であるときの、実施形態7にかかる熱変形部材の形状を示す断面図である。(A) is sectional drawing which shows the shape of the heat deformation member concerning Embodiment 7 when the temperature of a heat deformation part is lower than a transformation point, (b) is the temperature of a heat deformation part more than a transformation point. It is sectional drawing which shows the shape of the heat deformation member concerning Embodiment 7 when it is.

本発明の一実施形態について詳細に説明する。なお、以下の各実施形態では先に説明した部材と同じ機能を有する部材については同じ符号を付記し、その説明を繰り返さない。   An embodiment of the present invention will be described in detail. In the following embodiments, members having the same functions as those described above are denoted by the same reference numerals, and the description thereof will not be repeated.

〔実施形態1〕
図1は、本実施形態にかかる放熱構造体20の一例を示す断面図である。図1では、本実施形態にかかる放熱構造体20として、携帯電話機に設けられた放熱構造体を例に挙げて図示している。以下、図1に示す基板7の法線方向(垂直軸方向)、言い換えれば、キャビネット1と発熱体6とを結ぶ方向をZ方向とし、Z方向に直交する水平軸方向のうち、熱変形部材2における熱変形部22の固定端22aに平行な方向をY方向とし、Y方向に直交する水平軸方向をX方向として説明する。
Embodiment 1
FIG. 1 is a cross-sectional view showing an example of a heat dissipation structure 20 according to the present embodiment. In FIG. 1, as a heat dissipation structure 20 according to the present embodiment, a heat dissipation structure provided in a mobile phone is illustrated as an example. Hereinafter, the normal direction (vertical axis direction) of the substrate 7 shown in FIG. 1, in other words, the direction connecting the cabinet 1 and the heating element 6 is defined as the Z direction, and the thermal deformation member among the horizontal axis directions orthogonal to the Z direction. 2, the direction parallel to the fixed end 22a of the thermally deformable portion 22 is defined as the Y direction, and the horizontal axis direction orthogonal to the Y direction is defined as the X direction.

図1に示すように、本実施形態にかかる放熱構造体20は、キャビネット1(筐体)と、伝熱部10と、発熱体6と、基板7と、を備えている。なお、図1では、図示の便宜上、キャビネット1の一部のみを図示している。発熱体6は、キャビネット1で囲まれた空間内に配置されている。携帯電話機の発熱体6は、主にCPU(Central Processing Unit)であり、基板7に実装されている。伝熱部10は、キャビネット1と発熱体6との間に配置されている。伝熱部10は、発熱体6から発生する熱を、キャビネット1に熱伝導させる。伝熱部10は、熱変形部材2と、熱拡散フィルム3と、板金4と、熱伝導性材料層5と、を備えている。   As shown in FIG. 1, the heat dissipation structure 20 according to the present embodiment includes a cabinet 1 (housing), a heat transfer unit 10, a heating element 6, and a substrate 7. In FIG. 1, for convenience of illustration, only a part of the cabinet 1 is illustrated. The heating element 6 is disposed in a space surrounded by the cabinet 1. A heating element 6 of the mobile phone is mainly a CPU (Central Processing Unit) and is mounted on a substrate 7. The heat transfer unit 10 is disposed between the cabinet 1 and the heating element 6. The heat transfer unit 10 conducts heat generated from the heating element 6 to the cabinet 1. The heat transfer unit 10 includes a heat deformation member 2, a heat diffusion film 3, a sheet metal 4, and a heat conductive material layer 5.

熱伝導性材料層5は、発熱体6の熱を外部に効率良く逃がすために、発熱体6と板金4との間に設けられている。発熱体6の熱を拡散させるために、板金4における、熱伝導性材料層5とは反対側の面には、図示しない接着剤により、熱拡散フィルム3が貼り付けられている。熱拡散フィルム3とキャビネット1との間には、熱変形部材2が設けられている。熱変形部材2は、例えば、Ni−Ti合金等の形状記憶合金を用いて形成されている。熱変形部材2は、その全体が形状記憶合金で形成されていてもよし、後述する熱変形部22のみが形状記憶合金で形成されていてもよい。あるいは、熱変形部22における、実際に変形する部分(本実施形態の場合、例えば後述する固定端22a)のみが形状記憶合金で形成されていてもよい。   The heat conductive material layer 5 is provided between the heating element 6 and the sheet metal 4 in order to efficiently release the heat of the heating element 6 to the outside. In order to diffuse the heat of the heating element 6, the heat diffusion film 3 is attached to the surface of the sheet metal 4 opposite to the heat conductive material layer 5 with an adhesive (not shown). A thermal deformation member 2 is provided between the heat diffusion film 3 and the cabinet 1. The thermally deformable member 2 is formed using, for example, a shape memory alloy such as a Ni—Ti alloy. The entire heat deformation member 2 may be formed of a shape memory alloy, or only the heat deformation portion 22 described later may be formed of a shape memory alloy. Or only the part (in the case of this embodiment, fixed end 22a mentioned later) in the heat deformation part 22 which deform | transforms actually may be formed with the shape memory alloy.

図2は、本実施形態にかかる熱変形部材2の一例を示す斜視図である。図2に示すように、本実施形態では、熱拡散フィルム3とキャビネット1との間に、複数の熱変形部材2が設けられている。図3の(a)は、熱変形部22の温度が変態点よりも低いときの、本実施形態にかかる熱変形部材2の形状を示す斜視図であり、図3の(b)は、熱変形部22の温度が変態点以上であるときの、本実施形態にかかる熱変形部材2の形状を示す斜視図である。   FIG. 2 is a perspective view showing an example of the thermally deformable member 2 according to the present embodiment. As shown in FIG. 2, in the present embodiment, a plurality of thermal deformation members 2 are provided between the thermal diffusion film 3 and the cabinet 1. FIG. 3A is a perspective view showing the shape of the thermal deformation member 2 according to the present embodiment when the temperature of the thermal deformation portion 22 is lower than the transformation point, and FIG. It is a perspective view which shows the shape of the heat deformation member 2 concerning this embodiment when the temperature of the deformation | transformation part 22 is more than a transformation point.

図2および図3の(a)・(b)に示すように、熱変形部材2は、固定部21と、熱変形部22と、を有している。固定部21は、例えば枠形状を有する枠体である。固定部21は、該固定部21の底面21aで、例えば熱拡散フィルム3に固定されている。熱変形部22の一部は、固定部21に固定されている。本実施形態では、熱変形部22が、例えばフラップ形状を有している。熱変形部22の一端は、固定端22aであり、上記枠体内の一辺に固定されている。   As shown in FIGS. 2 and 3 (a) and (b), the heat deformation member 2 has a fixing portion 21 and a heat deformation portion 22. The fixing | fixed part 21 is a frame which has a frame shape, for example. The fixing portion 21 is fixed to the heat diffusion film 3, for example, on the bottom surface 21 a of the fixing portion 21. A part of the thermal deformation portion 22 is fixed to the fixing portion 21. In the present embodiment, the thermal deformation portion 22 has, for example, a flap shape. One end of the thermally deformable portion 22 is a fixed end 22a and is fixed to one side of the frame.

熱変形部材2は、例えば、3辺に沿って溝部23が形成された四角形状を有している。熱変形部材2における、溝部23で囲まれた部分が、熱変形部22であり、熱変形部22を囲む、溝部23の外側の部分が固定部21である。熱変形部22における溝部23との対向端は、どこにも固定されていない自由端である。   The heat-deformable member 2 has, for example, a quadrangular shape in which grooves 23 are formed along three sides. In the thermally deformable member 2, a portion surrounded by the groove portion 23 is the thermally deformable portion 22, and a portion outside the groove portion 23 surrounding the thermally deformable portion 22 is the fixed portion 21. The opposite end of the thermally deformable portion 22 to the groove portion 23 is a free end that is not fixed anywhere.

熱変形部材2は、図1に示すように、上記形状記憶合金の変態点(変形温度)未満の温度で、熱変形部22の一部がキャビネット1に接触するように形成されている。図1および図3の(a)に示すように、熱変形部22は、変態点未満の温度(例えば通常温度)では、固定部21に対して、Z方向に直角に曲がった状態に起立している。このため、本実施形態では、変態点未満の温度において、熱変形部22の先端22b(言い換えれば、固定端22aとは反対側の端面)が、キャビネット1に接触する。図2に示すように、熱変形部材2は、熱変形部22がY方向に並ぶようにキャビネット1に接触する。   As shown in FIG. 1, the heat-deformable member 2 is formed so that a part of the heat-deformable portion 22 contacts the cabinet 1 at a temperature lower than the transformation point (deformation temperature) of the shape memory alloy. As shown in FIG. 1 and FIG. 3A, the thermally deformable portion 22 stands in a state bent at a right angle to the Z direction with respect to the fixed portion 21 at a temperature lower than the transformation point (for example, a normal temperature). ing. For this reason, in this embodiment, the tip 22b (in other words, the end surface opposite to the fixed end 22a) of the thermal deformation portion 22 contacts the cabinet 1 at a temperature lower than the transformation point. As shown in FIG. 2, the heat deformable member 2 contacts the cabinet 1 so that the heat deformable portions 22 are arranged in the Y direction.

一方、熱変形部22は、図3の(b)に示すように、該熱変形部22の温度が変態点(閾値)に達すると、キャビネット1と発熱体6との間に空気断熱層8を形成するように、キャビネット1から離間する方向に変形(倒伏)する。熱変形部22は、該熱変形部22の温度が変態点に達すると、固定端22aを軸にして、矢印で示す倒伏方向に例えば90度屈曲することで、固定部21と水平になる。   On the other hand, as shown in FIG. 3B, when the temperature of the heat deforming portion 22 reaches the transformation point (threshold), the heat deforming portion 22 is interposed between the cabinet 1 and the heat generating element 6. Are deformed (fall down) in a direction away from the cabinet 1. When the temperature of the heat-deformed portion 22 reaches the transformation point, the heat-deformed portion 22 becomes horizontal with the fixed portion 21 by bending, for example, 90 degrees in the inclining direction indicated by the arrow about the fixed end 22a.

図4の(a)は、熱変形部22の温度が変態点よりも低いときの、本実施形態にかかる放熱構造体20における熱の移動を示す断面図であり、図4の(b)は、熱変形部22の温度が変態点以上であるときの、本実施形態にかかる放熱構造体20における熱の移動を示す断面図である。なお、図4の(a)では、発熱体6から伝熱部10を介してキャビネット1に伝導される熱を実線で示す矢印で示している。また、図4の(b)では、発熱体6から伝熱部10に伝導される熱を実線で示す矢印で示す一方、空気断熱層8で断熱される熱を、破線で示す矢印で示している。   FIG. 4A is a cross-sectional view showing the movement of heat in the heat dissipation structure 20 according to the present embodiment when the temperature of the thermal deformation portion 22 is lower than the transformation point, and FIG. FIG. 5 is a cross-sectional view showing heat transfer in the heat dissipation structure 20 according to the present embodiment when the temperature of the heat-deformed portion 22 is equal to or higher than the transformation point. In FIG. 4A, heat conducted from the heating element 6 to the cabinet 1 via the heat transfer section 10 is indicated by an arrow indicated by a solid line. In FIG. 4B, the heat conducted from the heating element 6 to the heat transfer section 10 is indicated by an arrow indicated by a solid line, while the heat insulated by the air heat insulating layer 8 is indicated by an arrow indicated by a broken line. Yes.

図4の(a)に示すように、本実施形態では、熱変形部22の温度が変態点よりも低い場合、発熱体6の熱は、熱伝導性材料層5、板金4、熱拡散フィルム3、熱変形部材2を経由し、キャビネット1に伝導される。このとき、熱変形部材2は、熱変形部22の先端22bが、キャビネット1に接触するように起立している。このため、発熱体6の熱を効率的にキャビネット1に伝導させることができる。キャビネット1に伝導された熱は、空気と接する、キャビネット1の外側表面を介して、空気中に放散される。本実施形態では、このとき、放熱経路をZ軸方向とすることで、熱拡散フィルム3の効果により、該熱拡散フィルム3の面方向(水平方向、X方向およびY方向)に熱が拡散され、発熱体6の直上にヒートスポットができるのを防いでいる。   As shown to (a) of FIG. 4, in this embodiment, when the temperature of the heat deformation part 22 is lower than a transformation point, the heat of the heat generating body 6 is the heat conductive material layer 5, the sheet metal 4, and a thermal diffusion film. 3. Conducted to the cabinet 1 via the heat deformation member 2. At this time, the thermally deformable member 2 stands so that the tip 22 b of the thermally deformable portion 22 contacts the cabinet 1. For this reason, the heat of the heating element 6 can be efficiently conducted to the cabinet 1. The heat conducted to the cabinet 1 is dissipated into the air through the outer surface of the cabinet 1 in contact with the air. In this embodiment, at this time, heat is diffused in the surface direction (horizontal direction, X direction and Y direction) of the heat diffusion film 3 by the effect of the heat diffusion film 3 by setting the heat dissipation path in the Z-axis direction. The heat spot is prevented from being formed immediately above the heating element 6.

しかしながら、発熱体6の温度がさらに上昇し、放熱、および熱の拡散が追いつかなくなると、発熱体6の直上に高温のヒートスポットができてしまい、ユーザに不快な思いをさせるおそれがある。場合によっては、ユーザにやけどを負わせてしまうおそれがある。   However, if the temperature of the heating element 6 further rises and heat dissipation and heat diffusion cannot catch up, a high-temperature heat spot is formed immediately above the heating element 6, which may make the user feel uncomfortable. In some cases, the user may be burned.

そこで、本実施形態では、キャビネット1と発熱体6との間(より具体的には、熱拡散フィルム3とキャビネット1との間)に、上記熱変形部材2を設けている。上記熱変形部材2は、該熱変形部22の温度が変態点よりも低いときに、該熱変形部22の一部がキャビネット1に接触し、上記温度が変態点に達すると、キャビネット1から離間する方向に変形する。このため、図4の(b)に示すように、熱変形部22の温度が変態点に達すると、熱変形部材2とキャビネット1との接触面積は0(ゼロ)になる。これにより、熱拡散フィルム3とキャビネット1との間に、空気による断面層(空気断熱層8)が形成され、伝熱部10からキャビネット1への熱伝導が抑制される。この結果、キャビネット1における、発熱体6の直上部分の温度を下げ、高温のヒートスポットができることを抑制することができる。したがって、本実施形態によれば、キャビネット1の温度が高くなりすぎてユーザが火傷してしまうことを防ぐことができる。   Therefore, in the present embodiment, the thermal deformation member 2 is provided between the cabinet 1 and the heating element 6 (more specifically, between the thermal diffusion film 3 and the cabinet 1). When the temperature of the thermal deformation part 22 is lower than the transformation point, a part of the thermal deformation part 22 comes into contact with the cabinet 1 and the temperature reaches the transformation point. Deforms in the direction of separation. For this reason, as shown in FIG. 4B, when the temperature of the thermally deformable portion 22 reaches the transformation point, the contact area between the thermally deformable member 2 and the cabinet 1 becomes 0 (zero). Thereby, the cross-sectional layer (air heat insulation layer 8) by air is formed between the thermal diffusion film 3 and the cabinet 1, and the heat conduction from the heat transfer part 10 to the cabinet 1 is suppressed. As a result, it is possible to reduce the temperature of the portion directly above the heating element 6 in the cabinet 1 and suppress the formation of a high-temperature heat spot. Therefore, according to this embodiment, it can prevent that the temperature of the cabinet 1 becomes high too much and a user gets burned.

なお、熱変形部22が変態点未満の温度となった場合(言い換えれば、熱変形部22が高温でなくなった場合)には、逆の変形が起こる。すなわち、熱変形部22が、図4の(b)に示す倒伏状態から、固定端22aを軸にして矢印とは逆の方向に90度曲がり、固定部21に対し90度屈曲した、図4の(a)に示す起立状態となる。これにより、熱変形部22がキャビネット1と接触し、空気断熱層8がなくなるため、発熱体6の熱を、キャビネット1に効率的に伝導させることができる。   In addition, when the temperature of the heat-deformed portion 22 becomes lower than the transformation point (in other words, when the temperature of the heat-deformed portion 22 is no longer high), the reverse deformation occurs. That is, the thermally deformable portion 22 bends 90 degrees in the direction opposite to the arrow around the fixed end 22a from the lying state shown in FIG. The standing state shown in (a) of FIG. Thereby, since the heat deformation part 22 contacts with the cabinet 1 and the air heat insulation layer 8 is lost, the heat of the heating element 6 can be efficiently conducted to the cabinet 1.

なお、形状記憶合金の変態点は、任意に設定できる。例えば、変態点が所望の温度となるように、形状記憶合金の組成を変更すればよい。例えば、特許文献1に示すように、キャビネット1の外面の温度が60℃を超えると、キャビネット1が、形態電話機等の小型電子機器等の筐体である場合、低温火傷を起こすおそれがある。英国国家規格BS EN563は、低温火傷を負うことになる「機器表面温度/接触時間」を「43℃/8時間、48℃/10分、60℃/1分」と規定している。したがって、形状記憶合金の変態点は、例えば60℃以下に設定されていることが望ましく、50℃以下に設定されていることがより望ましい。   The transformation point of the shape memory alloy can be arbitrarily set. For example, the composition of the shape memory alloy may be changed so that the transformation point becomes a desired temperature. For example, as shown in Patent Document 1, when the temperature of the outer surface of the cabinet 1 exceeds 60 ° C., the cabinet 1 may cause a low-temperature burn when it is a housing of a small electronic device such as a form phone. The British national standard BS EN563 stipulates that “equipment surface temperature / contact time” that will cause low temperature burns is “43 ° C./8 hours, 48 ° C./10 minutes, 60 ° C./1 minute”. Therefore, the transformation point of the shape memory alloy is preferably set to 60 ° C. or lower, for example, and more preferably set to 50 ° C. or lower.

<変形例1>
図5は、本変形例にかかる熱変形部材2の一例を示す斜視図である。熱変形部材2は、一部が熱拡散フィルム3に接触し、別の部分がキャビネット1に接触する形状を有していればよい。したがって、図5に示すように、熱変形部材2は、例えば、Y方向に長尺な長方形状に形成されていてもよい。言い換えれば、図2に示す熱変形部22が、Y方向に一つに繋がっていてもよい。
<Modification 1>
FIG. 5 is a perspective view showing an example of the thermally deformable member 2 according to this modification. The heat-deformable member 2 only needs to have a shape in which a part contacts the heat diffusion film 3 and another part contacts the cabinet 1. Therefore, as shown in FIG. 5, the heat-deformable member 2 may be formed in a rectangular shape that is long in the Y direction, for example. In other words, the thermal deformation portions 22 shown in FIG. 2 may be connected to one in the Y direction.

<変形例2>
また、本実施形態では、熱変形部22が、変態点に達すると、固定端22aを軸にして、矢印で示す倒伏方向に90度屈曲することで、固定部21と水平になる場合を例に挙げて説明した。しかしながら、本実施形態は、熱変形部材2とキャビネット1との接触面積は0(ゼロ)になるように熱変形部22が変形すれば、上記屈曲角度は、90度に限定されず、90度未満であっても構わない。
<Modification 2>
Further, in the present embodiment, when the thermal deformation portion 22 reaches the transformation point, the heat deformation portion 22 becomes horizontal with the fixing portion 21 by bending 90 degrees in the lying down direction indicated by the arrow with the fixing end 22a as an axis. And explained. However, in this embodiment, if the thermal deformation portion 22 is deformed so that the contact area between the thermal deformation member 2 and the cabinet 1 becomes 0 (zero), the bending angle is not limited to 90 degrees, but 90 degrees. It may be less.

〔実施形態2〕
図6は、本実施形態にかかる放熱構造体20の一例を示す断面図である。本実施形態にかかる放熱構造体20は、図6に示すように、固定部21の底面21aがキャビネット1に固定されており、熱変形部22の先端22bが熱拡散フィルム3に接触する点を除けば、実施形態1にかかる放熱構造体20と同じ構成を有している。本実施形態でも、熱変形部22は、該熱変形部22の温度が変態点に達すると、キャビネット1と発熱体6との間に、前述した空気断熱層8(図4の(b)参照)を形成するように変形する。より具体的には、このとき、熱変形部22は、熱変形部材2と熱拡散フィルム3との間に、空気断熱層8を形成するように変形する。この結果、実施形態1にかかる放熱構造体20と同様の効果を得ることができる。
[Embodiment 2]
FIG. 6 is a cross-sectional view showing an example of the heat dissipation structure 20 according to the present embodiment. As shown in FIG. 6, in the heat dissipation structure 20 according to the present embodiment, the bottom surface 21 a of the fixing portion 21 is fixed to the cabinet 1, and the tip 22 b of the heat deformation portion 22 contacts the heat diffusion film 3. Except for this, the heat dissipation structure 20 according to the first embodiment has the same configuration. Also in the present embodiment, when the temperature of the thermal deformation portion 22 reaches the transformation point, the thermal deformation portion 22 is interposed between the cabinet 1 and the heating element 6 and the air heat insulating layer 8 (see FIG. 4B). ) To form. More specifically, at this time, the thermal deformation portion 22 is deformed so as to form the air heat insulating layer 8 between the thermal deformation member 2 and the thermal diffusion film 3. As a result, the same effect as the heat dissipation structure 20 according to the first embodiment can be obtained.

加えて、本実施形態によれば、固定部21の底面21aがキャビネット1に固定されていることで、発熱体6の熱は、熱拡散フィルム3から熱変形部22を介して固定部21に伝導され、固定部21からキャビネット1に伝導される。このため、本実施形態によれば、実施形態1のように、発熱体6の熱が、熱拡散フィルム3から固定部21を介して熱変形部22に伝導され、熱変形部22からキャビネット1に伝導される場合と比較して、熱変形部材2とキャビネット1との接触面積を大きくすることができる。したがって、本実施形態によれば、熱拡散フィルム3から熱変形部22に伝導された熱を、面方向に効率良く広げてからキャビネット1に逃がすことができる。このため、本実施形態によれば、実施形態1と比較して、キャビネット1の局所的な昇温をより抑制することができる。   In addition, according to this embodiment, the bottom surface 21 a of the fixing portion 21 is fixed to the cabinet 1, so that the heat of the heating element 6 is transferred from the heat diffusion film 3 to the fixing portion 21 via the thermal deformation portion 22. Conducted and conducted from the fixed portion 21 to the cabinet 1. Therefore, according to the present embodiment, as in the first embodiment, the heat of the heating element 6 is conducted from the thermal diffusion film 3 to the thermal deformation portion 22 via the fixing portion 21, and from the thermal deformation portion 22 to the cabinet 1. Compared with the case where the heat conduction member 2 is conducted, the contact area between the thermal deformation member 2 and the cabinet 1 can be increased. Therefore, according to this embodiment, the heat conducted from the thermal diffusion film 3 to the thermal deformation portion 22 can be efficiently spread in the surface direction and then released to the cabinet 1. For this reason, according to this embodiment, compared with Embodiment 1, the local temperature rise of the cabinet 1 can be suppressed more.

なお、以下の実施形態では、実施形態1と同じく、固定部21の底面21aが熱拡散フィルム3に固定されている場合を例に挙げて説明するが、本実施形態のように、固定部21の底面21aがキャビネット1に固定されていてもよいことは言うまでもない。以下の説明において、熱拡散フィルム3とキャビネット1とは、相互に読み替えることができる。   In the following embodiment, as in the first embodiment, the case where the bottom surface 21a of the fixing portion 21 is fixed to the heat diffusion film 3 will be described as an example. However, as in the present embodiment, the fixing portion 21 is described. Needless to say, the bottom surface 21a of the housing may be fixed to the cabinet 1. In the following description, the heat diffusion film 3 and the cabinet 1 can be read each other.

〔実施形態3〕
図7の(a)は、熱変形部22の温度がT1未満であるときの、本実施形態にかかる熱変形部材2の形状を示す断面図であり、図7の(b)は、熱変形部22の温度がT1以上、T2未満であるときの、本実施形態にかかる熱変形部材2の形状を示す断面図であり、図7の(c)は、熱変形部22の温度がT2以上であるときの、本実施形態にかかる熱変形部材2の形状を示す断面図である。
[Embodiment 3]
FIG. 7A is a cross-sectional view showing the shape of the thermally deformable member 2 according to the present embodiment when the temperature of the thermally deformable portion 22 is less than T1, and FIG. FIG. 7C is a cross-sectional view showing the shape of the thermally deformable member 2 according to the present embodiment when the temperature of the portion 22 is T1 or more and less than T2, and FIG. It is sectional drawing which shows the shape of the heat deformation member 2 concerning this embodiment when it is.

本実施形態にかかる放熱構造体20は、図7の(a)〜(c)に示すように、変態点が異なる形状記憶合金を用いた熱変形部22を有する複数の熱変形部材2を備えている点を除けば、例えば実施形態1にかかる放熱構造体20と同じ構成を有している。つまり、上述した各実施形態において、各熱変形部22の変形温度は、同一温度でなくても構わない。本実施形態にかかる放熱構造体20は、熱変形部材2として、変態点がT1度の形状記憶合金からなる熱変形部材2Aと、変態点がT2度(但し、T1<T2)の形状記憶合金からなる熱変形部材2Bとを備えている。熱変形部材2A・2Bの構造は、例えば実施形態1にかかる熱変形部材2と同じである。以下、熱変形部材2Aの固定部21および熱変形部22を、固定部21Aおよび熱変形部22Aと称し、熱変形部材2Bの固定部21および熱変形部22を、固定部21Bおよび熱変形部22Bと称する。   As shown to (a)-(c) of FIG. 7, the thermal radiation structure 20 concerning this embodiment is provided with the several thermal deformation member 2 which has the thermal deformation part 22 using the shape memory alloy from which a transformation point differs. For example, the heat dissipation structure 20 according to the first embodiment has the same configuration. That is, in each embodiment mentioned above, the deformation temperature of each thermal deformation part 22 does not need to be the same temperature. The heat dissipating structure 20 according to the present embodiment includes a heat deformation member 2A made of a shape memory alloy having a transformation point of T1 degrees and a shape memory alloy having a transformation point of T2 degrees (where T1 <T2). The thermal deformation member 2B which consists of is provided. The structure of the thermally deformable members 2A and 2B is the same as that of the thermally deformable member 2 according to the first embodiment, for example. Hereinafter, the fixing part 21 and the thermal deformation part 22 of the thermal deformation member 2A are referred to as the fixing part 21A and the thermal deformation part 22A, and the fixing part 21 and the thermal deformation part 22 of the thermal deformation member 2B are referred to as the fixing part 21B and the thermal deformation part. 22B.

図7の(a)に示すように、熱変形部22A・22Bの温度がT1未満の場合、熱変形部22A・22Bは、ともに変形しない。このため、この場合、熱変形部22A・22Bは、ともにキャビネット1に接触するように起立している。   As shown to (a) of FIG. 7, when the temperature of heat deformation part 22A * 22B is less than T1, neither heat deformation part 22A * 22B deform | transforms. For this reason, in this case, the heat-deformed portions 22 </ b> A and 22 </ b> B stand up so as to come into contact with the cabinet 1.

これに対し、図7の(b)に示すように、熱変形部22A・22Bの温度がT1以上、T2未満である場合、熱変形部22Bは変形しないが、熱変形部22Aは変形する。このため、この場合、熱変形部22Bのみがキャビネット1に接触するように起立し、熱変形部22Aは、例えば固定部21Aと水平になる。これにより、熱変形部材2Bのみが、キャビネット1に接触する。このとき、熱変形部材2Aの数と熱変形部材2Bの数とが、例えば1:1であるとする。この場合、熱変形部材2Bとキャビネット1との接触面積は、図7の(a)に示す、熱変形部材2A・2Bとキャビネット1との接触面積の半分になる。この結果、発熱体6からキャビネット1への熱伝導が抑制され、キャビネット1の表面温度が下がる。   On the other hand, as shown in FIG. 7B, when the temperature of the thermal deformation portions 22A and 22B is equal to or higher than T1 and lower than T2, the thermal deformation portion 22B is not deformed, but the thermal deformation portion 22A is deformed. For this reason, in this case, only the thermal deformation portion 22B stands up so as to come into contact with the cabinet 1, and the thermal deformation portion 22A is horizontal with, for example, the fixing portion 21A. Thereby, only the heat deformation member 2 </ b> B comes into contact with the cabinet 1. At this time, it is assumed that the number of the heat deformation members 2A and the number of the heat deformation members 2B are 1: 1, for example. In this case, the contact area between the thermally deformable member 2B and the cabinet 1 is half of the contact area between the thermally deformable members 2A and 2B and the cabinet 1 shown in FIG. As a result, heat conduction from the heating element 6 to the cabinet 1 is suppressed, and the surface temperature of the cabinet 1 is lowered.

発熱体6の温度がさらに上昇し、図7の(c)に示すように、熱変形部22A・22Bの温度がT2以上になると、熱変形部22Aだけでなく、熱変形部22Bも変形する。この場合、熱変形部22Aと同様に、熱変形部22Bも例えば固定部21Bと水平になる。この結果、熱変形部材2A・2Bとキャビネット1との接触面積は0(ゼロ)になる。したがって、この場合、熱の移動をさらに抑制することができる。   When the temperature of the heating element 6 further rises and the temperature of the thermal deformation portions 22A and 22B reaches T2 or more as shown in FIG. 7C, not only the thermal deformation portion 22A but also the thermal deformation portion 22B is deformed. . In this case, similarly to the thermally deformable portion 22A, the thermally deformable portion 22B is horizontal with the fixed portion 21B, for example. As a result, the contact area between the thermally deformable members 2A and 2B and the cabinet 1 becomes 0 (zero). Therefore, in this case, heat transfer can be further suppressed.

以上のように、本実施形態によれば、熱変形部材2として、変態点が異なる形状記憶合金を用いた熱変形部22を有する複数の熱変形部材2A・2Bを設けることで、より細かく温度制御を行うことができる。   As described above, according to the present embodiment, by providing a plurality of heat-deformable members 2A and 2B having the heat-deformable portions 22 using shape memory alloys having different transformation points as the heat-deformable member 2, the temperature becomes finer. Control can be performed.

〔実施形態4〕
図8の(a)は、熱変形部22の温度が変態点よりも低いときの、本実施形態にかかる熱変形部材2の形状を示す斜視図であり、図8の(b)は、熱変形部22の温度が変態点以上であるときの、本実施形態にかかる熱変形部材2の形状を示す斜視図である。
[Embodiment 4]
FIG. 8A is a perspective view showing the shape of the thermal deformation member 2 according to the present embodiment when the temperature of the thermal deformation portion 22 is lower than the transformation point, and FIG. It is a perspective view which shows the shape of the heat deformation member 2 concerning this embodiment when the temperature of the deformation | transformation part 22 is more than a transformation point.

熱変形部22が屈曲する部分は、実施形態1のように固定端22aではなく、固定端22aと先端22bとの間の部分であっても構わない。本実施形態にかかる放熱構造体20は、図8の(a)・(b)に示すように、固定端22aと先端22bとの間の部分に屈曲部22cを有していることを除けば、例えば実施形態1にかかる放熱構造体20と同じ構成を有している。   The portion where the thermal deformation portion 22 bends may be a portion between the fixed end 22a and the tip 22b instead of the fixed end 22a as in the first embodiment. As shown in FIGS. 8A and 8B, the heat dissipation structure 20 according to the present embodiment has a bent portion 22c at a portion between the fixed end 22a and the tip 22b. For example, it has the same configuration as the heat dissipation structure 20 according to the first embodiment.

図8の(a)に示すように、熱変形部22の温度が変態点よりも低い場合の熱変形部材2の形状は、図3の(a)に示す熱変形部材2の形状と同じである。但し、本実施形態では、熱変形部22の温度が変態点以上である場合、図8の(b)に示すように、屈曲部22cから先の部分(言い換えれば、屈曲部22cと先端22bとの間の部分)のみが、キャビネット1に接触しないように屈曲する。   As shown in FIG. 8A, the shape of the heat-deformable member 2 when the temperature of the heat-deformable portion 22 is lower than the transformation point is the same as the shape of the heat-deformable member 2 shown in FIG. is there. However, in this embodiment, when the temperature of the thermal deformation portion 22 is equal to or higher than the transformation point, as shown in FIG. 8B, the portion ahead of the bent portion 22c (in other words, the bent portion 22c and the tip 22b Only the portion between the two is bent so as not to contact the cabinet 1.

つまり、本実施形態では、固定端22aは、温度によって変形(屈曲)しない。固定端22aと屈曲部22cとの間の部分は、熱変形部22の温度に拘らず、固定部21に対して、Z方向に直角に曲がった状態に起立している。一方、熱変形部22の温度が変態点に達すると、屈曲部22cと先端22bとの間の部分が、屈曲部22cを軸にして、図8の(a)に示す矢印で示す倒伏方向に例えば90度曲がり、固定部21と水平になる。つまり、本実施形態では、熱変形部22の温度が変態点に達すると、熱変形部22が逆L字状となるように変形する。この結果、熱変形部材2とキャビネット1との接触面積は0(ゼロ)になる。   That is, in this embodiment, the fixed end 22a does not deform (bend) due to temperature. A portion between the fixed end 22a and the bent portion 22c stands up in a state of being bent at a right angle in the Z direction with respect to the fixed portion 21, regardless of the temperature of the thermal deformation portion 22. On the other hand, when the temperature of the thermally deformable portion 22 reaches the transformation point, the portion between the bent portion 22c and the tip 22b is in the lying down direction indicated by the arrow shown in FIG. For example, it bends 90 degrees and becomes horizontal with the fixed part 21. That is, in this embodiment, when the temperature of the heat-deformable part 22 reaches the transformation point, the heat-deformable part 22 is deformed so as to have an inverted L shape. As a result, the contact area between the heat-deformable member 2 and the cabinet 1 becomes 0 (zero).

したがって、本実施形態によれば、実施形態1にかかる放熱構造体20と同様の効果を得ることができる。また、屈曲部22cから先端22bまでの熱変形部22の面積は、固定端22aから先端22bまでの熱変形部22の面積よりも小さい。このため、屈曲部22cを屈曲させる場合に屈曲部22cにかかる負荷は、固定端22aを屈曲させる場合に固定端22aにかかる負荷よりも小さい。したがって、本実施形態によれば、実施形態1のように固定端22aを屈曲させる場合と比較して、変形(屈曲)による金属疲労を抑制することができる。   Therefore, according to the present embodiment, the same effect as the heat dissipation structure 20 according to the first embodiment can be obtained. In addition, the area of the thermally deformable portion 22 from the bent portion 22c to the tip 22b is smaller than the area of the thermally deformable portion 22 from the fixed end 22a to the tip 22b. For this reason, the load applied to the bent portion 22c when the bent portion 22c is bent is smaller than the load applied to the fixed end 22a when the fixed end 22a is bent. Therefore, according to this embodiment, compared with the case where the fixed end 22a is bent as in the first embodiment, metal fatigue due to deformation (bending) can be suppressed.

〔実施形態5〕
図9の(a)は、熱変形部22の温度が変態点よりも低いときの、本実施形態にかかる熱変形部材2の形状を示す斜視図であり、図9の(b)は、熱変形部22の温度が変態点以上であるときの、本実施形態にかかる熱変形部材2の形状を示す斜視図である。
[Embodiment 5]
FIG. 9A is a perspective view showing the shape of the thermal deformation member 2 according to the present embodiment when the temperature of the thermal deformation portion 22 is lower than the transformation point, and FIG. It is a perspective view which shows the shape of the heat deformation member 2 concerning this embodiment when the temperature of the deformation | transformation part 22 is more than a transformation point.

熱変形部22の変形(屈曲)箇所は、一箇所ではなく、複数箇所あってもよい。本実施形態にかかる放熱構造体20は、以下の点を除けば、例えば実施形態1にかかる放熱構造体20と同じ構成を有している。   The deformation (bending) part of the thermal deformation part 22 may be a plurality of places instead of a single place. The heat dissipation structure 20 according to the present embodiment has the same configuration as the heat dissipation structure 20 according to the first embodiment, for example, except for the following points.

本実施形態では、熱変形部22が、変態点以上の温度において、固定端22aと屈曲部22cとの2箇所で屈曲する。図9の(a)に示すように、本実施形態では、熱変形部22の温度が、変態点よりも低い場合に、逆L字状となるように形成されている。   In the present embodiment, the thermally deformable portion 22 bends at two locations, that is, the fixed end 22a and the bent portion 22c at a temperature equal to or higher than the transformation point. As shown to (a) of FIG. 9, in this embodiment, when the temperature of the heat deformation part 22 is lower than a transformation point, it forms so that it may become a reverse L-shape.

つまり、本実施形態では、熱変形部22の温度が変態点よりも低い場合、固定端22aと屈曲部22cとの間の部分が、固定部21に対して、Z方向に直角に曲がった状態に起立している。また、このとき、屈曲部22cから先の部分が、固定部21の固定面(底面21a)に平行(言い換えれば、キャビネット1における熱変形部材2との対向面および熱拡散フィルム3に平行)に倒伏するように折れ曲がっている。   That is, in this embodiment, when the temperature of the heat-deformed portion 22 is lower than the transformation point, the portion between the fixed end 22a and the bent portion 22c is bent at a right angle in the Z direction with respect to the fixed portion 21. Is standing up. Further, at this time, the portion beyond the bent portion 22c is parallel to the fixing surface (bottom surface 21a) of the fixing portion 21 (in other words, parallel to the surface facing the heat-deformable member 2 and the heat diffusion film 3 in the cabinet 1). It is bent so as to surrender.

このため、本実施形態では、熱変形部22の温度が、変態点よりも低い場合、熱変形部22の屈曲部22cと先端22bとの間の部分における上面(先端側上面22d)が、キャビネット1に接触する。このため、本実施形態によれば、熱変形部22の先端22bがキャビネット1に接触している場合と比較して、発熱体6の熱を、より効率良くキャビネット1に伝導させることができる。また、上記の効果に加え、先端側上面22dがキャビネット1の熱を拡散させ、キャビネット1の局所的な昇温をより抑制することができる。   For this reason, in this embodiment, when the temperature of the heat-deformed part 22 is lower than the transformation point, the upper surface (tip-side upper surface 22d) in the portion between the bent part 22c and the tip 22b of the heat-deformed part 22 is the cabinet. 1 is contacted. For this reason, according to this embodiment, compared with the case where the front-end | tip 22b of the thermal deformation part 22 is contacting the cabinet 1, the heat | fever of the heat generating body 6 can be more efficiently conducted to the cabinet 1. FIG. In addition to the above effects, the tip-side upper surface 22d can diffuse the heat of the cabinet 1 and further suppress local temperature rise of the cabinet 1.

なお、図9の(b)に示すように、本実施形態において、熱変形部22の温度が変態点以上である場合の熱変形部材2の形状は、図3の(b)に示す熱変形部材2の形状と同じである。このため、本実施形態では、熱変形部22の温度が変態点に達すると、熱変形部22が固定部21の固定面(底面21a)に平行になるように、固定端22aおよび屈曲部22cがそれぞれ屈曲する。これにより、本実施形態でも、実施形態1と同様の効果を得ることができる。   As shown in FIG. 9B, in this embodiment, the shape of the heat-deformable member 2 when the temperature of the heat-deformable portion 22 is equal to or higher than the transformation point is the heat-deformation shown in FIG. The shape of the member 2 is the same. For this reason, in this embodiment, when the temperature of the thermal deformation part 22 reaches the transformation point, the fixed end 22a and the bent part 22c are arranged so that the thermal deformation part 22 is parallel to the fixed surface (bottom surface 21a) of the fixed part 21. Each bend. Thereby, also in this embodiment, the same effect as Embodiment 1 can be acquired.

〔実施形態6〕
図10の(a)は、熱変形部22の温度が変態点よりも低いときの、本実施形態にかかる熱変形部材2の形状を示す斜視図であり、図10の(b)は、熱変形部22の温度が変態点以上であるときの、本実施形態にかかる熱変形部材2の形状を示す斜視図である。図11の(a)は、熱変形部22の温度が変態点よりも低いときの、本実施形態にかかる熱変形部材2の形状を示す断面図であり、図11の(b)は、熱変形部22の温度が変態点以上であるときの、本実施形態にかかる熱変形部材2の形状を示す断面図である。
[Embodiment 6]
FIG. 10A is a perspective view showing the shape of the thermal deformation member 2 according to the present embodiment when the temperature of the thermal deformation portion 22 is lower than the transformation point, and FIG. It is a perspective view which shows the shape of the heat deformation member 2 concerning this embodiment when the temperature of the deformation | transformation part 22 is more than an transformation point. FIG. 11A is a cross-sectional view showing the shape of the thermal deformation member 2 according to the present embodiment when the temperature of the thermal deformation portion 22 is lower than the transformation point, and FIG. It is sectional drawing which shows the shape of the heat deformation member 2 concerning this embodiment when the temperature of the deformation | transformation part 22 is more than an transformation point.

本実施形態にかかる放熱構造体20は、以下の点を除けば、例えば、実施形態1にかかる放熱構造体20と同じである。本実施形態にかかる放熱構造体20は、図10の(a)・(b)および図11の(a)・(b)に示すように、熱変形部22が円筒形状を有している。熱変形部22は、該熱変形部22の軸方向が固定部21の固定面(底面21a)に平行になるように、該熱変形部22の側面(円周面)の底壁側端部で固定部21に固定されている。より具体的には、熱変形部22は、該熱変形部22の軸方向が、枠体からなる固定部21の一辺と平行となるように、固定部21に固定されている。   The heat dissipation structure 20 according to the present embodiment is the same as the heat dissipation structure 20 according to the first embodiment, for example, except for the following points. In the heat dissipation structure 20 according to the present embodiment, as shown in FIGS. 10A and 10B and FIGS. 11A and 11B, the thermally deformable portion 22 has a cylindrical shape. The thermal deformation portion 22 has an end on the bottom wall side of the side surface (circumferential surface) of the thermal deformation portion 22 such that the axial direction of the thermal deformation portion 22 is parallel to the fixing surface (bottom surface 21a) of the fixing portion 21. It is being fixed to the fixing | fixed part 21 by. More specifically, the thermally deformable portion 22 is fixed to the fixed portion 21 so that the axial direction of the thermally deformable portion 22 is parallel to one side of the fixed portion 21 made of a frame.

このため、熱変形部22は、該熱変形部22の温度が変態点よりも低い場合、図11の(a)に示すように、該熱変形部22の側面の一部でキャビネット1と接触する。一方、熱変形部22は、図10の(b)および図11の(b)に示すように、該熱変形部22の温度が変態点(閾値)に達すると、図10の(a)に矢印で示すように固定部21の固定面(底面21a)側に向かって潰れるように変形する。言い換えれば、熱変形部22は、該熱変形部22のZ方向の厚みが小さくなるように縮む。これにより、キャビネット1と発熱体6とが接触しなくなり、キャビネット1と発熱体6との間(具体的には、キャビネット1と熱変形部材2との間)に、空気断熱層8が形成される。なお、熱変形部22の温度が変態点よりも低くなると、熱変形部22は、Z方向の厚みが元に戻る。つまり、熱変形部22は、該熱変形部22の厚みが大きくなるように伸長する。   Therefore, when the temperature of the thermal deformation portion 22 is lower than the transformation point, the thermal deformation portion 22 contacts the cabinet 1 at a part of the side surface of the thermal deformation portion 22 as shown in FIG. To do. On the other hand, as shown in (b) of FIG. 10 and (b) of FIG. 11, when the temperature of the thermal deformation part 22 reaches the transformation point (threshold), the thermal deformation part 22 is changed to (a) of FIG. As indicated by the arrows, the fixing portion 21 is deformed so as to be crushed toward the fixing surface (bottom surface 21a) side. In other words, the thermally deformable portion 22 shrinks so that the thickness of the thermally deformable portion 22 in the Z direction becomes small. As a result, the cabinet 1 and the heating element 6 are not in contact with each other, and the air heat insulating layer 8 is formed between the cabinet 1 and the heating element 6 (specifically, between the cabinet 1 and the heat-deformable member 2). The In addition, when the temperature of the heat deformation part 22 becomes lower than the transformation point, the thickness of the heat deformation part 22 returns to the original. That is, the thermally deformable portion 22 extends so that the thickness of the thermally deformable portion 22 increases.

したがって、本実施形態によれば、実施形態1と同様の効果を得ることができる。加えて、本実施形態によれば、熱変形部22が、部分的に屈曲するのではなく、熱変形部22が、該熱変形部22のZ方向の厚みが小さくなるように変形することで、部分的な応力集中を抑制することができる。したがって、本実施形態によれば、熱変形部22を部分的に屈曲させる場合と比較して、変形(屈曲)による金属疲労を軽減することができる。   Therefore, according to the present embodiment, the same effect as that of the first embodiment can be obtained. In addition, according to the present embodiment, the thermal deformation portion 22 is not partially bent, but the thermal deformation portion 22 is deformed so that the thickness in the Z direction of the thermal deformation portion 22 is reduced. , Partial stress concentration can be suppressed. Therefore, according to the present embodiment, metal fatigue due to deformation (bending) can be reduced as compared with the case where the thermal deformation portion 22 is partially bent.

なお、本実施形態では、熱変形部22が円筒形状を有している場合を例に挙げて図示したが、熱変形部22は、円柱形状を有していても構わない。   In the present embodiment, the case where the thermal deformation portion 22 has a cylindrical shape is illustrated as an example, but the thermal deformation portion 22 may have a columnar shape.

〔実施形態7〕
図12の(a)は、熱変形部22の温度が変態点よりも低いときの、本実施形態にかかる熱変形部材2の形状を示す断面図であり、図12の(b)は、熱変形部22の温度が変態点以上であるときの、本実施形態にかかる熱変形部材2の形状を示す断面図である。
[Embodiment 7]
12A is a cross-sectional view showing the shape of the thermal deformation member 2 according to the present embodiment when the temperature of the thermal deformation portion 22 is lower than the transformation point, and FIG. It is sectional drawing which shows the shape of the heat deformation member 2 concerning this embodiment when the temperature of the deformation | transformation part 22 is more than a transformation point.

本実施形態にかかる放熱構造体20は、以下の点を除けば、例えば、実施形態1にかかる放熱構造体20と同じである。本実施形態にかかる放熱構造体20は、図12の(a)・(b)に示すように、熱変形部22が直方体に形成されている。熱変形部22は、平面視で、直方体の各辺が、枠体からなる固定部21の各辺と平行となるように、固定部21に固定されている。   The heat dissipation structure 20 according to the present embodiment is the same as the heat dissipation structure 20 according to the first embodiment, for example, except for the following points. As shown in FIGS. 12A and 12B, the heat dissipating structure 20 according to the present embodiment has a heat deformation portion 22 formed in a rectangular parallelepiped. The thermal deformation part 22 is fixed to the fixing part 21 so that each side of the rectangular parallelepiped is parallel to each side of the fixing part 21 made of a frame in plan view.

このため、熱変形部22は、該熱変形部22の温度が変態点よりも低い場合、図12の(a)に示すように、該熱変形部22における、固定部21との固定面とは反対側の面でキャビネット1と接触する。一方、熱変形部22は、図12の(b)に示すように、該熱変形部22の温度が変態点(閾値)に達すると、斜め方向に歪むことで、側面が平行四辺形となるように変形する。これにより、熱変形部22のZ方向の厚みが小さくなり、キャビネット1と発熱体6とが接触しなくなる。この結果、キャビネット1と発熱体6との間(具体的には、キャビネット1と熱変形部材2との間)に、空気断熱層8が形成される。なお、熱変形部22の温度が変態点よりも低くなると、熱変形部22は、側面が長方形状に戻ることで、Z方向の厚みが元に戻る。   For this reason, when the temperature of the thermally deformable portion 22 is lower than the transformation point, the thermally deformable portion 22 has a fixed surface with the fixed portion 21 in the thermally deformable portion 22 as shown in FIG. Contacts the cabinet 1 on the opposite side. On the other hand, as shown in FIG. 12B, when the temperature of the thermal deformation portion 22 reaches the transformation point (threshold), the thermal deformation portion 22 is distorted in an oblique direction, so that the side surface becomes a parallelogram. It deforms as follows. Thereby, the thickness of the Z direction of the heat deformation part 22 becomes small, and the cabinet 1 and the heat generating body 6 do not contact. As a result, the air heat insulating layer 8 is formed between the cabinet 1 and the heating element 6 (specifically, between the cabinet 1 and the heat-deformable member 2). In addition, when the temperature of the heat-deformation part 22 becomes lower than the transformation point, the heat-deformation part 22 returns to its original thickness in the Z direction by returning the side surface to a rectangular shape.

したがって、本実施形態によれば、実施形態1と同様の効果を得ることができる。また、本実施形態でも、熱変形部22が、部分的に屈曲するのではなく、熱変形部22が、該熱変形部22のZ方向の厚みが小さくなるように変形することで、部分的な応力集中を抑制することができる。したがって、本実施形態でも、熱変形部22を部分的に屈曲させる場合と比較して、変形(屈曲)による金属疲労を軽減することができる。   Therefore, according to the present embodiment, the same effect as that of the first embodiment can be obtained. Also in this embodiment, the thermally deformable portion 22 is not partially bent, but the thermally deformable portion 22 is deformed so that the thickness of the thermally deformable portion 22 in the Z direction is reduced. Stress concentration can be suppressed. Therefore, also in this embodiment, metal fatigue due to deformation (bending) can be reduced as compared with the case where the thermal deformation portion 22 is partially bent.

なお、本実施形態では、熱変形部22の温度が変態点よりも低い場合に、熱変形部22の側面が長方形状を有している場合を例に挙げて図示したが、上記側面は正方形状であっても構わない。   In the present embodiment, when the temperature of the thermal deformation portion 22 is lower than the transformation point, the side surface of the thermal deformation portion 22 has a rectangular shape as an example. It may be in the shape.

〔まとめ〕
本発明の態様1にかかる放熱構造体20は、筐体(キャビネット1)と、発熱体6と、上記筐体と上記発熱体6との間に配置された伝熱部10とを含み、上記伝熱部10は、少なくとも一部が形状記憶合金からなる熱変形部22を有する熱変形部材2を少なくとも1つ含み、上記熱変形部22は、該熱変形部22の温度が変態点に達すると、上記筐体と上記発熱体6との間に空気断熱層8を形成するように変形する。
[Summary]
The heat dissipation structure 20 according to the first aspect of the present invention includes a casing (cabinet 1), a heating element 6, and a heat transfer section 10 disposed between the casing and the heating element 6. The heat transfer section 10 includes at least one heat deformable member 2 having a heat deformable section 22 at least partially made of a shape memory alloy, and the heat deformable section 22 reaches the transformation point when the temperature of the heat deformable section 22 is reached. Then, it deform | transforms so that the air heat insulation layer 8 may be formed between the said housing | casing and the said heat generating body 6. FIG.

上記の構成によれば、上記熱変形部材2の熱変形部22の温度が変態点に達すると、上記筐体と上記発熱体6との間に上記空気断熱層8が形成されるので、上記筐体の温度が下がる。このため、上記筐体の温度が上昇しすぎることがなく、火傷を防止することができる。   According to said structure, when the temperature of the heat deformation part 22 of the said heat deformation member 2 reaches an transformation point, since the said air heat insulation layer 8 is formed between the said housing | casing and the said heat generating body 6, The temperature of the housing drops. For this reason, the temperature of the said housing | casing does not rise too much and a burn can be prevented.

本発明の態様2にかかる放熱構造体20は、上記態様1において、上記熱変形部材2は、上記熱変形部22の温度が上記変態点よりも低いときに上記熱変形部22の一部が上記筐体に接触するように形成されており、上記熱変形部22の温度が上記変態点に達すると、上記熱変形部22が上記筐体から離間する方向に変形してもよい。   The heat dissipating structure 20 according to aspect 2 of the present invention is the heat dissipating structure 20 according to aspect 1, wherein the heat deformable member 2 has a part of the heat deformable part 22 when the temperature of the heat deformable part 22 is lower than the transformation point. It is formed so as to come into contact with the casing, and when the temperature of the thermal deformation section 22 reaches the transformation point, the thermal deformation section 22 may be deformed in a direction away from the casing.

上記の構成によれば、上記熱変形部22の温度が上記変態点に達すると、上記熱変形部22が上記筐体から切り離され、上記筐体と上記発熱体6との間に上記空気断熱層8を形成することができる。   According to said structure, when the temperature of the said heat deformation part 22 reaches the said transformation point, the said heat deformation part 22 will be cut | disconnected from the said housing | casing, and the said heat insulation between the said housing | casing and the said heat generating body 6 will be carried out. Layer 8 can be formed.

本発明の態様3にかかる放熱構造体20は、上記態様2において、上記伝熱部10は、熱拡散フィルム3をさらに含み、上記熱変形部材2の一部(固定部21)は、上記熱拡散フィルムに固定されていてもよい。   In the heat dissipation structure 20 according to the third aspect of the present invention, in the second aspect, the heat transfer unit 10 further includes a heat diffusion film 3, and a part of the heat deformation member 2 (fixing unit 21) It may be fixed to the diffusion film.

上記の構成によれば、上記熱拡散フィルム3の効果により、該熱拡散フィルム3の面方向に熱が拡散され、上記発熱体6の直上にヒートスポットができるのを防ぐことができる。   According to said structure, according to the effect of the said heat | fever diffusion film 3, heat is spread | diffused in the surface direction of this heat | fever diffusion film 3, and it can prevent that a heat spot is made on the said heat generating body 6 directly.

本発明の態様4にかかる放熱構造体20は、上記態様1において、上記熱変形部材2の一部(固定部21)は、上記筐体に固定されているとともに、上記伝熱部10は、熱拡散フィルム3をさらに含み、上記熱変形部材2は、上記熱変形部22の温度が上記変態点よりも低いときに上記熱変形部材2の一部が上記熱拡散フィルム3に接触するように形成されており、上記熱変形部22の温度が上記変態点に達すると、上記熱変形部22が上記熱拡散フィルム3から離間する方向に変形してもよい。   In the heat dissipation structure 20 according to the aspect 4 of the present invention, in the aspect 1, a part of the thermal deformation member 2 (fixing part 21) is fixed to the casing, and the heat transfer part 10 is The thermal deformation member 2 further includes a thermal diffusion film 3 such that a part of the thermal deformation member 2 contacts the thermal diffusion film 3 when the temperature of the thermal deformation portion 22 is lower than the transformation point. When the temperature of the thermal deformation portion 22 is formed and reaches the transformation point, the thermal deformation portion 22 may be deformed in a direction away from the thermal diffusion film 3.

上記の構成によれば、上記熱変形部22の温度が上記変態点に達すると、上記熱変形部22が上記熱拡散フィルム3から切り離され、上記筐体と上記発熱体6との間に上記空気断熱層8を形成することができる。また、上記の構成によれば、上記熱拡散フィルム3の効果により、該熱拡散フィルム3の面方向に熱が拡散され、上記発熱体6の直上にヒートスポットができるのを防ぐことができるとともに、上記態様3と比較して、上記筐体の局所的な昇温をより抑制することができる。   According to said structure, when the temperature of the said heat deformation part 22 reaches the said transformation point, the said heat deformation part 22 will be cut | disconnected from the said heat | fever diffusion film 3, and the above-mentioned between the said housing | casing and the said heat generating body 6 will be described. The air insulation layer 8 can be formed. Moreover, according to said structure, while the effect of the said heat | fever diffusion film 3 can prevent that a heat | fever is spread | diffused in the surface direction of this heat | fever diffusion film 3, and a heat spot can be formed on the said heat generating body 6 directly. Compared with the said aspect 3, the local temperature rise of the said housing | casing can be suppressed more.

本発明の態様5にかかる放熱構造体20は、上記態様1〜4の何れかにおいて、上記伝熱部10は、上記熱変形部材2として、変態点が異なる形状記憶合金を用いた熱変形部(熱変形部22A・22B)を有する複数の熱変形部材(熱変形部材2A・2B)を備えていてもよい。   In the heat dissipation structure 20 according to the fifth aspect of the present invention, in any one of the first to fourth aspects, the heat transfer section 10 is a heat deformable section using a shape memory alloy having a different transformation point as the heat deformable member 2. You may provide the some heat deformation member (thermal deformation member 2A * 2B) which has (thermal deformation part 22A * 22B).

上記の構成によれば、より細かく温度制御を行うことができる。   According to said structure, temperature control can be performed more finely.

本発明の態様6にかかる放熱構造体20は、上記態様1〜5の何れかにおいて、上記熱変形部22は、一端(固定端22a)が固定されたフラップ形状を有し、上記熱変形部22の温度が上記変態点に達すると、上記筐体と上記発熱体6との間に空気断熱層8を形成するように、上記一端から上記一端とは反対側の端部(先端22b)までの間の少なくとも一箇所で屈曲してもよい。   In the heat dissipation structure 20 according to the sixth aspect of the present invention, in any one of the first to fifth aspects, the thermal deformation portion 22 has a flap shape in which one end (fixed end 22a) is fixed. When the temperature of 22 reaches the transformation point, from one end to the end opposite to the one end (tip 22b) so as to form an air heat insulating layer 8 between the casing and the heating element 6. You may bend in at least one place between.

上記の構成によれば、上記熱変形部22の温度が上記変態点に達すると、上記熱変形部22が屈曲して、上記筐体と上記発熱体6との間に上記空気断熱層8を形成することができる。   According to said structure, when the temperature of the said heat deformation part 22 reaches the said transformation point, the said heat deformation part 22 will bend, and the said air heat insulation layer 8 will be provided between the said housing | casing and the said heat generating body 6. FIG. Can be formed.

本発明の態様7にかかる放熱構造体20は、上記態様1〜5の何れかにおいて、上記熱変形部22は、上記熱変形部22の温度が上記変態点に達すると、上記筐体と上記発熱体6とを結ぶ方向(Z方向)の上記熱変形部22の厚みが小さくなるように変形してもよい。   The heat dissipation structure 20 according to the seventh aspect of the present invention is the heat dissipation structure 20 according to any one of the first to fifth aspects, wherein the thermal deformation portion 22 is configured such that when the temperature of the thermal deformation portion 22 reaches the transformation point, You may deform | transform so that the thickness of the said heat deformation part 22 of the direction (Z direction) connecting the heat generating body 6 may become small.

上記の構成によれば、上記熱変形部22の温度が上記変態点に達すると、上記熱変形部22の上記厚みが小さくなることで、上記筐体と上記発熱体6との間に上記空気断熱層8を形成することができる。また、上記の構成によれば、部分的な応力集中を抑制し、変形による金属疲労を軽減することができる。   According to said structure, when the temperature of the said heat deformation part 22 reaches the said transformation point, the said thickness of the said heat deformation part 22 will become small, and the said air between the said housing | casing and the said heat generating body 6 will be carried out. The heat insulation layer 8 can be formed. Moreover, according to said structure, partial stress concentration can be suppressed and the metal fatigue by a deformation | transformation can be reduced.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.

1 キャビネット(筐体)
2、2A、2B 熱変形部材
3 熱拡散フィルム(伝熱部)
4 板金
5 熱伝導性材料層
6 発熱体
7 基板
8 空気断熱層
10 伝熱部
20 放熱構造体
21、21A、21B 固定部
21a 底面
22、22A、22B 熱変形部
22a 固定端
22b 先端
22c 屈曲部
22d 先端側上面
23 溝部
1 Cabinet (housing)
2, 2A, 2B Thermal deformation member 3 Thermal diffusion film (heat transfer part)
4 Sheet Metal 5 Thermal Conductive Material Layer 6 Heating Element 7 Substrate 8 Air Thermal Insulation Layer 10 Heat Transfer Part 20 Heat Dissipation Structure 21, 21A, 21B Fixed Part 21a Bottom Surface 22, 22A, 22B Thermal Deformation Part 22a Fixed End 22b Tip 22c Bent Part 22d Top end side upper surface 23 Groove

Claims (7)

筐体と、発熱体と、上記筐体と上記発熱体との間に配置された伝熱部とを含み、
上記伝熱部は、少なくとも一部が形状記憶合金からなる熱変形部を有する熱変形部材を少なくとも1つ含み、
上記熱変形部は、該熱変形部の温度が変態点に達すると、上記筐体と上記発熱体との間に空気断熱層を形成するように変形することを特徴とする放熱構造体。
A housing, a heating element, and a heat transfer section disposed between the casing and the heating element,
The heat transfer part includes at least one heat deformation member having a heat deformation part at least part of which is made of a shape memory alloy,
The heat-dissipating structure is characterized in that when the temperature of the heat-deformable part reaches the transformation point, the heat-deformable part is deformed so as to form an air heat insulating layer between the casing and the heating element.
上記熱変形部材は、上記熱変形部の温度が上記変態点よりも低いときに上記熱変形部の一部が上記筐体に接触するように形成されており、上記熱変形部の温度が上記変態点に達すると、上記熱変形部が上記筐体から離間する方向に変形することを特徴とする請求項1に記載の放熱構造体。   The thermally deformable member is formed such that a part of the thermally deformable portion is in contact with the housing when the temperature of the thermally deformable portion is lower than the transformation point, and the temperature of the thermally deformable portion is The heat dissipation structure according to claim 1, wherein when the transformation point is reached, the thermal deformation portion is deformed in a direction away from the housing. 上記伝熱部は、熱拡散フィルムをさらに含み、
上記熱変形部材の一部は、上記熱拡散フィルムに固定されていることを特徴とする請求項2に記載の放熱構造体。
The heat transfer part further includes a heat diffusion film,
The heat radiating structure according to claim 2, wherein a part of the heat deformable member is fixed to the heat diffusion film.
上記熱変形部材の一部は、上記筐体に固定されているとともに、
上記伝熱部は、熱拡散フィルムをさらに含み、
上記熱変形部材は、上記熱変形部の温度が上記変態点よりも低いときに上記熱変形部材の一部が上記熱拡散フィルムに接触するように形成されており、上記熱変形部の温度が上記変態点に達すると、上記熱変形部が上記熱拡散フィルムから離間する方向に変形することを特徴とする請求項1に記載の放熱構造体。
A part of the thermal deformation member is fixed to the housing,
The heat transfer part further includes a heat diffusion film,
The thermal deformation member is formed so that a part of the thermal deformation member is in contact with the thermal diffusion film when the temperature of the thermal deformation portion is lower than the transformation point, and the temperature of the thermal deformation portion is 2. The heat dissipation structure according to claim 1, wherein when the transformation point is reached, the thermal deformation portion is deformed in a direction away from the thermal diffusion film.
上記伝熱部は、上記熱変形部材として、変態点が異なる形状記憶合金を用いた熱変形部を有する複数の熱変形部材を備えていることを特徴とする請求項1〜4の何れか1項に記載の放熱構造体。   The heat transfer section includes a plurality of heat deformable members having heat deformable sections using shape memory alloys having different transformation points as the heat deformable members. The heat dissipation structure according to item. 上記熱変形部は、一端が固定されたフラップ形状を有し、
上記熱変形部の温度が上記変態点に達すると、上記筐体と上記発熱体との間に空気断熱層を形成するように、上記一端から上記一端とは反対側の端部までの間の少なくとも一箇所で屈曲することを特徴とする請求項1〜5の何れか1項に記載の放熱構造体。
The thermal deformation part has a flap shape with one end fixed,
When the temperature of the heat-deformed portion reaches the transformation point, a space between the one end and the end opposite to the one end is formed so as to form an air insulation layer between the housing and the heating element. The heat dissipation structure according to any one of claims 1 to 5, wherein the heat dissipation structure is bent at at least one location.
上記熱変形部は、上記熱変形部の温度が上記変態点に達すると、上記筐体と上記発熱体とを結ぶ方向の上記熱変形部の厚みが小さくなるように変形することを特徴とする請求項1〜5の何れか1項に記載の放熱構造体。   When the temperature of the thermally deformable portion reaches the transformation point, the thermally deformable portion is deformed so that the thickness of the thermally deformable portion in a direction connecting the casing and the heating element is reduced. The heat dissipation structure according to any one of claims 1 to 5.
JP2018098215A 2018-05-22 2018-05-22 Heat dissipation structure Pending JP2019204855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018098215A JP2019204855A (en) 2018-05-22 2018-05-22 Heat dissipation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018098215A JP2019204855A (en) 2018-05-22 2018-05-22 Heat dissipation structure

Publications (1)

Publication Number Publication Date
JP2019204855A true JP2019204855A (en) 2019-11-28

Family

ID=68727373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018098215A Pending JP2019204855A (en) 2018-05-22 2018-05-22 Heat dissipation structure

Country Status (1)

Country Link
JP (1) JP2019204855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111399563A (en) * 2020-03-24 2020-07-10 Oppo广东移动通信有限公司 User terminal equipment
CN115413209A (en) * 2022-11-01 2022-11-29 中国航空工业集团公司金城南京机电液压工程研究中心 Heat dissipation method of control device integrated in electromechanical equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111399563A (en) * 2020-03-24 2020-07-10 Oppo广东移动通信有限公司 User terminal equipment
CN111399563B (en) * 2020-03-24 2021-10-19 Oppo广东移动通信有限公司 User terminal equipment
CN115413209A (en) * 2022-11-01 2022-11-29 中国航空工业集团公司金城南京机电液压工程研究中心 Heat dissipation method of control device integrated in electromechanical equipment
CN115413209B (en) * 2022-11-01 2022-12-30 中国航空工业集团公司金城南京机电液压工程研究中心 Heat dissipation method of control device integrated in electromechanical equipment

Similar Documents

Publication Publication Date Title
US9565786B2 (en) Sheet-like heat pipe, and electronic device provided with same
EP3133364B1 (en) Heat spreading module for portable electronic device
JP5970581B1 (en) Thermal diffusion plate for portable electronic devices
JPWO2008126444A1 (en) Heat dissipation structure and portable device
JP2019204855A (en) Heat dissipation structure
TWI292089B (en) Dissipation module
JP2005328000A (en) Thermoelectric conversion device
WO2019082810A1 (en) Electronic device structure
JP2018195633A (en) Electronic device
JP4494879B2 (en) Heat sink using carbon graphite
JP2000332175A (en) Heat sink with fin
JP6984252B2 (en) Semiconductor package
JP6598740B2 (en) Semiconductor device
US20190137187A1 (en) Heat sink structure
JP5193431B2 (en) Heat dissipation structure
JP5480123B2 (en) Heat dissipation structure
JP6135363B2 (en) heat pipe
JP6928588B2 (en) Heat sink structure
JP3151098U (en) Heat dissipation module
WO2018181933A1 (en) Heat sink
JP6266044B2 (en) Heat sink structure
JP6574404B2 (en) Heat sink structure
JP2019054218A (en) Heat sink
JP2022133169A (en) Heat conductive member
JP2022133171A (en) Heat conductive member