JP2019204801A - Lead-acid battery - Google Patents

Lead-acid battery Download PDF

Info

Publication number
JP2019204801A
JP2019204801A JP2019161433A JP2019161433A JP2019204801A JP 2019204801 A JP2019204801 A JP 2019204801A JP 2019161433 A JP2019161433 A JP 2019161433A JP 2019161433 A JP2019161433 A JP 2019161433A JP 2019204801 A JP2019204801 A JP 2019204801A
Authority
JP
Japan
Prior art keywords
electrode plate
battery
lead
negative electrode
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019161433A
Other languages
Japanese (ja)
Other versions
JP6791326B2 (en
Inventor
真輔 小林
Shinsuke Kobayashi
真輔 小林
和也 丸山
Kazuya Maruyama
和也 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2019161433A priority Critical patent/JP6791326B2/en
Publication of JP2019204801A publication Critical patent/JP2019204801A/en
Application granted granted Critical
Publication of JP6791326B2 publication Critical patent/JP6791326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a lead-acid battery capable of reducing corrosion (ear loss) of a negative electrode grid current collector unit of the lead-acid battery.SOLUTION: In the lead-acid battery that houses a plate group in which a positive electrode plate and a negative electrode plate are alternately stacked via a separator in a battery case, when a total surface area of the positive electrode plate is denoted as S and a volume of the electrode plate group is denoted as V, S/V is 3.95 cmor more and 5.2 cmor less, and, when an active material amount of the positive electrode plate is denoted as X and an active material amount of the negative electrode plate is denoted as Y, X/Y is 1.35 or more.SELECTED DRAWING: Figure 1

Description

本発明は、鉛蓄電池に関するものである。   The present invention relates to a lead-acid battery.

鉛蓄電池は、信頼性、価格の安さから産業用、民生用に広く用いられており、特に自動車用鉛蓄電池(いわゆるバッテリー)の需要が多い。   Lead storage batteries are widely used for industrial use and consumer use because of their reliability and low price. In particular, there is a great demand for lead storage batteries for automobiles (so-called batteries).

近年、環境保護及び燃費改善の取り組みとして、停車時にはエンジンを停止させ、発進時に再始動するアイドリングストップスタート(以下ISSと略す)車の開発が加速されている。ISS車に搭載さている鉛蓄電池は頻繁にエンジン始動、停止が繰り返されることにより、始動時に大電流放電回数が増え、停車中には電装品への電力供給が必要となり、放電負荷が多くなる。車両の充電はオルタネータによるが、これはエンジンを動力源としているために停車中にはスットプしてしまう。これらISS特有の使用条件により、鉛蓄電池は完全には充電されない状態、すなわち部分充電状態(PSOC:Partial State Of Charge)で使用される。   In recent years, as an effort to protect the environment and improve fuel efficiency, the development of an idling stop start (hereinafter abbreviated as ISS) vehicle that stops the engine when the vehicle stops and restarts the vehicle when starting is accelerated. Lead storage batteries mounted on ISS cars frequently start and stop the engine, increasing the number of large current discharges at start-up, requiring electric power to be supplied to electrical components while the car is stopped, and increasing the discharge load. The vehicle is charged by an alternator, which stops when the vehicle is stopped because the engine is used as a power source. Under these usage conditions peculiar to the ISS, the lead-acid battery is used in a state where it is not completely charged, that is, in a partially charged state (PSOC).

PSOC状態で鉛蓄電池を使用した場合、従来の満充電状態で使用される状況では発生しなかった問題が発生する。これは、負極格子体の集電部(耳部)が放電され、集電部の厚みが減少してしまう、いわゆる耳痩せ現象が知られている。前記耳痩せ現象が発生すると、集電部の抵抗が増加して、鉛蓄電池の充放電特性が低下し、サイクル寿命性能が低下する。   When a lead-acid battery is used in the PSOC state, a problem that does not occur in a situation where the battery is used in a conventional full charge state occurs. This is known as a so-called ear-thinning phenomenon in which the current collector (ear part) of the negative electrode grid is discharged and the thickness of the current collector decreases. When the earburn phenomenon occurs, the resistance of the current collector increases, the charge / discharge characteristics of the lead-acid battery deteriorate, and the cycle life performance deteriorates.

特許文献1では、鉛−錫合金層を負極格子体の耳部の表面に設け、かつ、満充電後における負極活物質に0.25〜0.75質量%のカーボンを含ませることで、耳痩せを抑制させる技術が開示されている。   In Patent Document 1, a lead-tin alloy layer is provided on the surface of the ear portion of the negative electrode lattice body, and the negative electrode active material after full charge is contained in an amount of 0.25 to 0.75% by mass of carbon. A technique for suppressing skinnyness is disclosed.

再公表WO2010/032782号公報Republished WO2010 / 032782

負極板は、負極格子体に活物質ペーストを充填して作製される。前記活物質ペーストは、鉛粉に有機添加剤、カーボン、硫酸バリウムを混合し、水及び希硫酸を添加、混練して作製される。カーボンあるいは炭素材は、導電補助剤として添加されている。   The negative electrode plate is produced by filling an active material paste into a negative electrode grid. The active material paste is prepared by mixing an organic additive, carbon, and barium sulfate with lead powder, adding water and dilute sulfuric acid, and kneading. Carbon or a carbon material is added as a conductive auxiliary agent.

通常、鉛蓄電池において、満充電後における負極活物質に対して、カーボンは0.1〜0.3質量%含まれている。0.5質量%以上カーボン量を増やすと活物質ペーストが固くなり、負極格子体への充填がしにくくなり、充填不良が発生し歩留りが低下する。   Usually, in a lead storage battery, 0.1 to 0.3 mass% of carbon is contained with respect to the negative electrode active material after full charge. When the amount of carbon is increased by 0.5% by mass or more, the active material paste becomes hard, it becomes difficult to fill the negative electrode lattice body, filling failure occurs, and the yield decreases.

活物質ペーストを適正な固さにするために、前記混練時に加える水の量を増やし、水分量を多くする方法がある。しかし、ペースト水分量を増やした負極板は、充填後の熟成、乾燥工程で水分が抜けることで活物質が収縮し、負極板表面に亀裂が生じる。このような状態では、続く電池の組み立て工程において、活物質の脱落が生じることになる。従って、ペースト水分量を増やすことは好ましくない。   In order to make the active material paste have an appropriate hardness, there is a method of increasing the amount of water by increasing the amount of water added during the kneading. However, in the negative electrode plate with an increased amount of paste water, the active material shrinks due to the release of water in the aging and drying steps after filling, and cracks occur on the surface of the negative electrode plate. In such a state, the active material falls off in the subsequent battery assembly process. Therefore, it is not preferable to increase the paste water content.

本発明の目的は、ペースト仕様を変えることなく、負極集電部の耳痩せを緩和することである。   An object of the present invention is to alleviate the ear burn of the negative electrode current collector without changing the paste specifications.

そこで本発明は、上記課題を解決するために以下の構成とする。   Therefore, the present invention has the following configuration in order to solve the above problems.

第1の発明は、セパレータを介して正極板と負極板を交互に積層した極板群を電槽に収納する鉛蓄電池において、前記正極板の総表面積をS、前記極板群の体積をVとしたとき、S/Vが3.95cm−1以上であり、かつ、前記正極板の活物質量をX、前記負極板の活物質量をYとしたとき、X/Yが1.35以上とする。 1st invention WHEREIN: In the lead storage battery which accommodates the electrode group which laminated | stacked the positive electrode plate and the negative electrode plate alternately via the separator in a battery case, the total surface area of the said positive electrode plate is set to S, and the volume of the said electrode plate group is set to V. When the S / V is 3.95 cm −1 or more, the active material amount of the positive electrode plate is X, and the active material amount of the negative electrode plate is Y, X / Y is 1.35 or more. And

第2の発明は、第1の発明において、S/Vが4.2cm−1以上であり、かつ、X/Yが1.45以上とする。 According to a second invention, in the first invention, S / V is 4.2 cm −1 or more and X / Y is 1.45 or more.

本発明によれば、ペースト仕様を変えることなく、負極集電部の耳痩せを緩和することができ、サイクル寿命特性に優れた鉛蓄電池を得ることができる。   According to the present invention, it is possible to relieve the earring of the negative electrode current collector without changing the paste specifications, and it is possible to obtain a lead storage battery having excellent cycle life characteristics.

本発明の極板群を示す図である。It is a figure which shows the electrode group of this invention. エキスパンド格子体を示す図である。It is a figure which shows an expanded lattice body. 正極板を示す図である。It is a figure which shows a positive electrode plate. 微多孔性のポリエチレン製シートを示す図である。It is a figure which shows a microporous polyethylene sheet. 袋セパレータに負極板を入れる図である。It is a figure which puts a negative electrode plate in a bag separator. 電槽を示す図である。It is a figure which shows a battery case. 電池を示す図である。It is a figure which shows a battery.

以下、図面を参照して本発明の好ましい実施形態を詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

(格子体)
格子体は、鉛−カルシウム−スズ系合金シートに切れ目をいれて拡開した図2に示すエキスパンド格子体1を用いた。集電部2を除いた寸法は、正極用が幅145mm、高さ115mm、厚さ1.5mm、負極用が幅145mm、高さ115mm、厚さ1.3mmである。なお、集電部2は耳部とも呼ばれる。
(Lattice)
As the lattice body, the expanded lattice body 1 shown in FIG. 2, which was expanded by cutting a lead-calcium-tin alloy sheet, was used. The dimensions excluding the current collector 2 are 145 mm wide, 115 mm high, and 1.5 mm thick for the positive electrode, and 145 mm wide, 115 mm high, and 1.3 mm thick for the negative electrode. The current collector 2 is also called an ear.

(正極板)
ボールミル法によって作製した酸化度70%の鉛粉に、鉛丹化度90%の鉛丹を希硫酸と混合・反応させたスラリと水および希硫酸を加えて混練し、活物質ペーストを作製する。この活物質ペーストを、前記正極用エキスパンド格子体1に充填し、常法により熟成・乾燥後に、図3に示す正極板3を得る。図2において、活物質ペーストを充填した部分が充填部4である。
(Positive electrode plate)
An active material paste is prepared by adding slurry and water and dilute sulfuric acid prepared by mixing and reacting lead tan with a lead oxidation degree of 90% to dilute sulfuric acid to lead powder with an oxidation degree of 70% produced by the ball mill method. . The active material paste is filled into the positive electrode expanded lattice 1 and after aging and drying by a conventional method, the positive electrode plate 3 shown in FIG. 3 is obtained. In FIG. 2, the portion filled with the active material paste is a filling portion 4.

(負極板)
ボールミル法によって作製した酸化度70%の鉛粉に、添加剤として、炭素粉末、リグニン粉末、バリウム化合物粉末を加え混合する。続いて、水および希硫酸を加えて混練し、活物質ペーストを作製する。この活物質ペーストを、前記負極用エキスパンド格子体に充填し、常法により熟成・乾燥して負極板とする。
(Negative electrode plate)
Carbon powder, lignin powder, and barium compound powder are added and mixed as additives to lead powder having a degree of oxidation of 70% produced by the ball mill method. Subsequently, water and dilute sulfuric acid are added and kneaded to prepare an active material paste. The active material paste is filled into the negative electrode expanded lattice and aged and dried by a conventional method to form a negative electrode plate.

(袋セパレータ)
図4に微多孔性のポリエチレン製シート6を示す。ポリエチレン製シート6の片面には、長手方向にセパレータのリブ7が設けられており、ポリエチレン製シート6のベース部の厚みは0.2mm、リブ7を含めた総厚みは0.8mmである。ポリエチレン製シート6を長さ235mm、幅152mmに切り出し二つ折りにする。続いて両側部をメカニカルシール、又は熱溶着し、図5のような袋セパレータ8に加工する。
(Bag separator)
FIG. 4 shows a microporous polyethylene sheet 6. A separator rib 7 is provided on one side of the polyethylene sheet 6 in the longitudinal direction. The thickness of the base portion of the polyethylene sheet 6 is 0.2 mm, and the total thickness including the rib 7 is 0.8 mm. The polyethylene sheet 6 is cut into a length of 235 mm and a width of 152 mm and folded in half. Subsequently, both sides are mechanically sealed or heat-welded and processed into a bag separator 8 as shown in FIG.

(ストラップ形成と極板群)
図5に示すように、前記袋セパレータ8に負極板5を入れ、正極板7枚と袋セパレータに包まれた負極板8枚を交互に積層する。正極、負極それぞれの集電部2をキャストオンストラップ(Cast On Strap)法で溶接し、図1に示す溶接部、すなわちストラップ9を形成させ、極板群10を得る。
なお、ストラップ9の合金組成としては、鉛−アンチモン系合金または鉛−スズ系合金を用いることができる。
(Strap formation and electrode plate group)
As shown in FIG. 5, the negative electrode plate 5 is put in the bag separator 8, and the seven positive electrode plates and the eight negative electrode plates wrapped in the bag separator are alternately laminated. The current collector 2 of each of the positive electrode and the negative electrode is welded by a cast on strap method to form a welded portion, that is, a strap 9 shown in FIG.
As the alloy composition of the strap 9, a lead-antimony alloy or a lead-tin alloy can be used.

(電槽)
図6にポリプロピレン製の電槽11を示す。電槽11は、隔壁12によって6区画に分割され、セル室13を設けられる。前記極板群10は別名単電池といい、これは2Vの電池能力しかない。自動車用の電装品は、直流電圧12Vを昇圧または降圧して駆動するため、極板群10を6個直列接続して、2V×6=12Vとしている。そのため、セル室13は6個必要である。
電槽11の隔壁12の両面及び電槽11の両端面の内壁面に、リブ14が電槽11の高さ方向に複数本設けられている。リブ14は、極板群を適切に加圧する役割がある。
(Battery case)
FIG. 6 shows a battery case 11 made of polypropylene. The battery case 11 is divided into six sections by a partition wall 12 and a cell chamber 13 is provided. The electrode plate group 10 is also called a single cell, which has only a battery capacity of 2V. In order to drive an electric component for automobiles by stepping up or down a DC voltage of 12V, six electrode plate groups 10 are connected in series to be 2V × 6 = 12V. Therefore, six cell chambers 13 are required.
A plurality of ribs 14 are provided in the height direction of the battery case 11 on both surfaces of the partition wall 12 of the battery case 11 and inner wall surfaces of both end surfaces of the battery case 11. The rib 14 has a role of appropriately pressing the electrode plate group.

(電池の作製)
前記極板群10を電槽11のセル室13に挿入し、隣あう極板群同士のストラップ9を隔壁貫通溶接で溶接する。前記電槽11にポリプロピレン製の蓋15を熱溶着し、図7に示す電池16を作製する。なお、図7に示す両端のセル室に収納する極板群10には、ストラップ9に柱状部分を付与した極柱を形成する。これは、蓋15に突設された正極端子17Aおよび負極端子17Bに接続させるためのものである。
(Production of battery)
The electrode plate group 10 is inserted into the cell chamber 13 of the battery case 11, and the straps 9 between adjacent electrode plate groups are welded by partition wall welding. A polypropylene lid 15 is thermally welded to the battery case 11 to produce a battery 16 shown in FIG. In the electrode plate group 10 accommodated in the cell chambers at both ends shown in FIG. This is for connection to the positive terminal 17A and the negative terminal 17B protruding from the lid 15.

続いて、蓋15のセル室13に対応した注液口18から電解液である希硫酸を注液し、周囲温度40℃、電流25Aで20時間通電して電槽化成する。電槽化成後、電解液液面を調整し、JISD5301規定の80D23形電池を作製した。   Subsequently, dilute sulfuric acid, which is an electrolytic solution, is injected from the injection port 18 corresponding to the cell chamber 13 of the lid 15 and energized for 20 hours at an ambient temperature of 40 ° C. and a current of 25 A to form a battery case. After the formation of the battery case, the electrolyte solution level was adjusted to produce an 80D23 type battery defined by JIS D5301.

(正極板の総表面積、極板群の体積)
正極板3の総表面積とは、鉛蓄電池の最小単位である単電池、すなわち前記セル室13内に収容される極板群10において、この中の正極板3の発電に関与する部分の表面積の合計である。これは、図3において、各正極板の集電部2および活物質ペーストの未充填部を除いた部分の表と裏両面の表面積の合計に、極板群10を構成する正極板の枚数を乗じたものである。
すなわち、極板群10当たりの正極板の総表面積Sは、図3から(数1)で与えられる。なお、本発明では、Sの単位として〔cm〕を用いる。
S=(充填部幅×充填部高さ)×2×正極板枚数・・・(数1)
極板群10の体積とは、鉛蓄電池の最小単位である1セル内に収容される極板群の各部のうち、集電部2およびストラップ9を含まない部分で、袋セパレータ8の極板に当接していないはみ出し部分と極板群10の両端面のリブ7の高さを含む外形寸法から計算される見かけの体積である。
(Total surface area of positive electrode plate, volume of electrode plate group)
The total surface area of the positive electrode plate 3 is the surface area of the portion of the positive electrode plate 3 involved in power generation in the unit cell that is the smallest unit of the lead storage battery, that is, the electrode plate group 10 accommodated in the cell chamber 13. Total. In FIG. 3, the total number of the surface areas of the front and back surfaces of the positive electrode plates excluding the current collecting part 2 and the unfilled part of the active material paste is the number of positive electrode plates constituting the electrode group 10. It is multiplied.
That is, the total surface area S of the positive electrode plate per electrode plate group 10 is given by (Equation 1) from FIG. In the present invention, [cm 2 ] is used as a unit of S.
S = (filling portion width × filling portion height) × 2 × number of positive electrode plates (Equation 1)
The volume of the electrode plate group 10 is a portion of the electrode plate group accommodated in one cell, which is the minimum unit of the lead storage battery, and does not include the current collector 2 and the strap 9. This is the apparent volume calculated from the external dimensions including the protruding portion not in contact with the rib and the height of the ribs 7 on both end faces of the electrode plate group 10.

すなわち、極板群10の体積Vは、図1から(数2)で与えられる。なお、本発明では、Vの単位として〔cm〕を用いる。
V=極板群幅×極板群厚さ×極板群高さ・・・(数2)
That is, the volume V of the electrode plate group 10 is given by (Equation 2) from FIG. In the present invention, [cm 3 ] is used as a unit of V.
V = electrode group width × electrode group thickness × electrode group height (Equation 2)

(活物質量)
活物質量とは、電槽化成後の活物質の総量で、極板総質量から格子体総質量を引いた値である。
(Amount of active material)
The amount of active material is the total amount of active material after battery case formation, and is a value obtained by subtracting the total mass of the grid from the total mass of the electrode plates.

すなわち、正極活物質量は、1枚の正極板3の活物質量に、極板群10を構成する正極板の枚数を乗じたものである。負極活物質量は、1枚の負極板4の活物質量に、極板群10を構成する負極板の枚数を乗じたものである。   That is, the positive electrode active material amount is obtained by multiplying the active material amount of one positive electrode plate 3 by the number of positive electrode plates constituting the electrode plate group 10. The amount of negative electrode active material is obtained by multiplying the amount of active material of one negative electrode plate 4 by the number of negative electrode plates constituting the electrode plate group 10.

(評価試験)
前記電池に25℃環境下で以下の試験を実施する。
(ア)電流59Aで59秒間定電流放電。
(イ)電流300Aで1秒間定電流放電。
(ウ)定電圧14.0V、制限電流100Aで1分間定電流・定電圧充電。
(エ)(ア)から(ウ)を1サイクルとして充放電を繰り返す。
電池の寿命判定は、(イ)の1秒目電流が7.2V以下となったときとする。
(Evaluation test)
The following tests are performed on the battery in a 25 ° C. environment.
(A) Constant current discharge at a current of 59 A for 59 seconds.
(A) Constant current discharge at a current of 300 A for 1 second.
(C) Constant current / constant voltage charging at a constant voltage of 14.0 V and a limiting current of 100 A for 1 minute.
(D) Charging / discharging is repeated with (a) to (c) as one cycle.
The battery life is determined when the first-second current in (b) becomes 7.2 V or less.

以下、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施例1)
前記80D23形電池において、S/Vが以下のようになるように作製した。
(数1)から、S=(14.5×11)×2×7=2233〔cm
(数2)から、V=14.5×3.36×11.6=565〔cm
従って、S/Vは3.95cm−1となる。
X/Yは1.35になるように作製した。
Example 1
In the 80D23 type battery, S / V was produced as follows.
From (Equation 1), S = (14.5 × 11) × 2 × 7 = 2233 [cm 2 ]
From (Equation 2), V = 14.5 × 3.36 × 11.6 = 565 [cm 3 ]
Therefore, S / V is 3.95 cm −1 .
X / Y was made to be 1.35.

(実施例2)
実施例1において、S/Vが3.95cm−1であり、X/Yは1.4となる電池を作製した。
(Example 2)
In Example 1, a battery having S / V of 3.95 cm −1 and X / Y of 1.4 was produced.

(実施例3)
実施例1において、S/Vが3.95cm−1であり、X/Yは1.45となる電池を作製した。
Example 3
In Example 1, a battery having S / V of 3.95 cm −1 and X / Y of 1.45 was produced.

(実施例4)
実施例1において、S/Vが3.95cm−1であり、X/Yは1.47となる電池を作製した。
Example 4
In Example 1, a battery having S / V of 3.95 cm −1 and X / Y of 1.47 was manufactured.

(実施例5)
実施例1において、S/Vが4.1cm−1であり、X/Yは1.35となる電池を作製した。
(Example 5)
In Example 1, a battery having S / V of 4.1 cm −1 and X / Y of 1.35 was produced.

(実施例6)
実施例1において、S/Vが4.1cm−1であり、X/Yは1.4となる電池を作製した。
(Example 6)
In Example 1, a battery having S / V of 4.1 cm −1 and X / Y of 1.4 was produced.

(実施例7)
実施例1において、S/Vが4.1cm−1であり、X/Yは1.45となる電池を作製した。
(Example 7)
In Example 1, a battery having S / V of 4.1 cm −1 and X / Y of 1.45 was manufactured.

(実施例8)
実施例1において、S/Vが4.1cm−1であり、X/Yは1.47となる電池を作製した。
(Example 8)
In Example 1, a battery having S / V of 4.1 cm −1 and X / Y of 1.47 was manufactured.

(実施例9)
実施例1において、S/Vが4.2cm−1であり、X/Yは1.35となる電池を作製した。
Example 9
In Example 1, a battery having S / V of 4.2 cm −1 and X / Y of 1.35 was produced.

(実施例10)
実施例1において、S/Vが4.2cm−1であり、X/Yは1.4となる電池を作製した。
(Example 10)
In Example 1, a battery having S / V of 4.2 cm −1 and X / Y of 1.4 was produced.

(実施例11)
実施例1において、S/Vが4.2cm−1であり、X/Yは1.45となる電池を作製した。
(Example 11)
In Example 1, a battery having S / V of 4.2 cm −1 and X / Y of 1.45 was produced.

(実施例12)
実施例1において、S/Vが4.2cm−1であり、X/Yは1.47となる電池を作製した。
(Example 12)
In Example 1, a battery having S / V of 4.2 cm −1 and X / Y of 1.47 was manufactured.

(実施例13)
実施例1において、S/Vが4.3cm−1であり、X/Yは1.35となる電池を作製した。
(Example 13)
In Example 1, a battery having S / V of 4.3 cm −1 and X / Y of 1.35 was produced.

(実施例14)
実施例1において、S/Vが4.3cm−1であり、X/Yは1.4となる電池を作製した。
(Example 14)
In Example 1, a battery having S / V of 4.3 cm −1 and X / Y of 1.4 was produced.

(実施例15)
実施例1において、S/Vが4.3cm−1であり、X/Yは1.45となる電池を作製した。
(Example 15)
In Example 1, a battery having S / V of 4.3 cm −1 and X / Y of 1.45 was manufactured.

(実施例16)
実施例1において、S/Vが4.3cm−1であり、X/Yは1.47となる電池を作製した。
(Example 16)
In Example 1, a battery having S / V of 4.3 cm −1 and X / Y of 1.47 was manufactured.

(比較例1)
実施例1において、S/Vが3.95cm−1であり、X/Yは1.33となる電池を作製した。
(Comparative Example 1)
In Example 1, a battery having S / V of 3.95 cm −1 and X / Y of 1.33 was produced.

(比較例2)
実施例1において、S/Vが4.1cm−1であり、X/Yは1.33となる電池を作製した。
(Comparative Example 2)
In Example 1, a battery having S / V of 4.1 cm −1 and X / Y of 1.33 was produced.

(比較例3)
実施例1において、S/Vが4.2cm−1であり、X/Yは1.33となる電池を作製した。
(Comparative Example 3)
In Example 1, a battery having S / V of 4.2 cm −1 and X / Y of 1.33 was produced.

(比較例4)
実施例1において、S/Vが4.3cm−1であり、X/Yは1.33となる電池を作製した。
(Comparative Example 4)
In Example 1, a battery having S / V of 4.3 cm −1 and X / Y of 1.33 was produced.

(比較例5)
実施例1において、S/Vが3.9cm−1であり、X/Yは1.35となる電池を作製した。
(Comparative Example 5)
In Example 1, a battery having S / V of 3.9 cm −1 and X / Y of 1.35 was produced.

(比較例6)
実施例1において、S/Vが3.9cm−1であり、X/Yは1.4となる電池を作製した。
(Comparative Example 6)
In Example 1, a battery having S / V of 3.9 cm −1 and X / Y of 1.4 was produced.

(比較例7)
実施例1において、S/Vが3.9cm−1であり、X/Yは1.45となる電池を作製した。
(Comparative Example 7)
In Example 1, a battery having S / V of 3.9 cm −1 and X / Y of 1.45 was produced.

(比較例8)
実施例1において、S/Vが3.9cm−1であり、X/Yは1.47となる電池を作製した。
(Comparative Example 8)
In Example 1, a battery having S / V of 3.9 cm −1 and X / Y of 1.47 was manufactured.

(比較例9)
実施例1において、S/Vが3.9cm−1であり、X/Yは1.33となる電池を作製した。
(Comparative Example 9)
In Example 1, a battery having S / V of 3.9 cm −1 and X / Y of 1.33 was produced.

表1に、これらの鉛蓄電池の寿命試験を行ったときのサイクル数の結果を示す。   Table 1 shows the results of the number of cycles when performing a life test of these lead storage batteries.

本発明を用いた実施例1〜16は、寿命サイクル数が優れることが分かる。寿命モードを検証するため、比較例9の寿命サイクル数で各電池を解体したところ、集電部(耳部)の厚みは比較例9が最も薄く、実施例11、12、15、16が最も厚かった。これより、本実施例では、負極集電部の耳痩せを緩和することができ、サイクル寿命特性が向上したといえる。   It turns out that Examples 1-16 using this invention are excellent in the number of life cycles. In order to verify the life mode, when each battery was disassembled with the life cycle number of Comparative Example 9, the thickness of the current collector (ear part) was the smallest in Comparative Example 9, and Examples 11, 12, 15, and 16 were the most. It was thick. From this, it can be said that in this example, it was possible to relieve the earring of the negative electrode current collector, and the cycle life characteristics were improved.

これらの理由は、定かではないが極板群体積に対する正極板の総表面積の比率(S/V)が3.95cm−1以上であることで充電時の過電圧の上昇を緩やかにしたと考えられる。また、負極活物質に対する正極活物質の比率(X/Y)を1.35以上とすることで、負極耳部で生成した硫酸鉛が完全に金属鉛に還元されるためであると考えられる。特に、正極板の表面積が増えることで抵抗が減少し、より過電圧が低下すると考えられるので、S/Vが4.2cm−1以上にあると好ましい。また、正極の活物質量が増えることでより負極が充分卑な電位で還元されるためであると考えられるので、X/Yが1.45以上にあると好ましい。 Although it is not clear, it is considered that the ratio of the total surface area of the positive electrode plate to the electrode group volume (S / V) is 3.95 cm −1 or more, which moderates the increase in overvoltage during charging. . Moreover, it is considered that the ratio of the positive electrode active material to the negative electrode active material (X / Y) is 1.35 or more, so that lead sulfate generated at the negative electrode ear is completely reduced to metallic lead. In particular, it is considered that when the surface area of the positive electrode plate is increased, the resistance is decreased and the overvoltage is further lowered. Therefore, the S / V is preferably 4.2 cm −1 or more. Further, since it is considered that the negative electrode is reduced at a sufficiently low potential by increasing the amount of the active material of the positive electrode, X / Y is preferably 1.45 or more.

なお、本発明において上限値を規定していないが、鉛蓄電池の実用上、S/Vの上限は5.2cm−1、X/Yの上限は1.6が好ましい。 In addition, although the upper limit is not prescribed | regulated in this invention, the upper limit of S / V is 5.2 cm < -1 > and the upper limit of X / Y is 1.6 for the practical use of lead acid battery.

なお、本発明においてはS/Vの上限値を規定していないが、鉛蓄電池の実用上、上限は5.2cm−1が好ましい。 In addition, although the upper limit of S / V is not prescribed | regulated in this invention, 5.2 cm < -1 > is preferable on the practical use of a lead storage battery.

上記実施例において、極板の厚みを調整してS/Vを変えたが、エキスパンド格子体1の厚み、ポリエチレン製シート6のベース厚み、リブ7の高さを変えることによってもS/Vを変えることもできる。   In the above embodiment, the S / V was changed by adjusting the thickness of the electrode plate. However, the S / V was also changed by changing the thickness of the expanded grid 1, the base thickness of the polyethylene sheet 6, and the height of the rib 7. It can also be changed.

1.エキスパンド格子体、2.集電部、3.正極板、4.充填部、5.負極板、6.ポリエチレン製シート、7.リブ、8.袋セパレータ、9.ストラップ、10.極板群、11.電槽、12.隔壁、13.セル室、14.リブ、15.蓋、16.電池、17A.正極端子、17B.負極端子、18.注液口。
1. Expanded lattice, 2. 2. current collector; Positive electrode plate, 4. Filling section, 5. Negative electrode plate, 6. 6. a polyethylene sheet; Ribs, 8. Bag separator, 9. Strap, 10. 10. Electrode plate group, Battery case, 12. Partition, 13. Cell chamber, 14. Ribs, 15. Lid, 16. Battery, 17A. Positive terminal, 17B. Negative electrode terminal, 18. Injection port.

Claims (2)

セパレータを介して正極板と負極板を交互に積層した極板群を電槽に収納する鉛蓄電池において、前記正極板の総表面積をS、前記極板群の体積をVとしたとき、S/Vが3.95cm−1以上5.2cm−1以下であり、かつ、前記正極板の活物質量をX、前記負極板の活物質量をYとしたとき、X/Yが1.35以上であることを特徴とする鉛蓄電池。 In a lead storage battery in which a battery case in which a group of electrode plates in which a positive electrode plate and a negative electrode plate are alternately stacked via a separator is housed in a battery case, when the total surface area of the positive electrode plate is S and the volume of the electrode plate group is V, S / V is less 3.95Cm -1 or 5.2 cm -1, and an active material of the positive electrode plate X, when the amount of active material of the negative electrode plate was Y, X / Y is 1.35 or more Lead acid battery characterized by being. 請求項1において、S/Vが4.2cm−1以上であり、かつ、X/Yが1.45以上であることを特徴とする鉛蓄電池。
The lead acid battery according to claim 1, wherein S / V is 4.2 cm -1 or more and X / Y is 1.45 or more.
JP2019161433A 2019-09-04 2019-09-04 Lead-acid battery Active JP6791326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019161433A JP6791326B2 (en) 2019-09-04 2019-09-04 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019161433A JP6791326B2 (en) 2019-09-04 2019-09-04 Lead-acid battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014212412A Division JP6582386B2 (en) 2014-10-17 2014-10-17 Lead acid battery

Publications (2)

Publication Number Publication Date
JP2019204801A true JP2019204801A (en) 2019-11-28
JP6791326B2 JP6791326B2 (en) 2020-11-25

Family

ID=68727270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019161433A Active JP6791326B2 (en) 2019-09-04 2019-09-04 Lead-acid battery

Country Status (1)

Country Link
JP (1) JP6791326B2 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169659A (en) * 1989-08-18 1992-12-08 Exide Corporation Hot climate battery
JPH07201331A (en) * 1993-12-29 1995-08-04 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2002313332A (en) * 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Control valve type lead-acid battery
WO2005124920A1 (en) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. Lead storage battery
JP2006049025A (en) * 2004-08-03 2006-02-16 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
JP2009170234A (en) * 2008-01-15 2009-07-30 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
JP2011233390A (en) * 2010-04-28 2011-11-17 Panasonic Corp Control valve type lead-acid battery
WO2011142072A1 (en) * 2010-05-10 2011-11-17 新神戸電機株式会社 Lead storage battery
WO2013058058A1 (en) * 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery
WO2013073420A1 (en) * 2011-11-16 2013-05-23 新神戸電機株式会社 Lead storage battery
WO2014097522A1 (en) * 2012-12-21 2014-06-26 パナソニック株式会社 Lead-acid battery

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5169659A (en) * 1989-08-18 1992-12-08 Exide Corporation Hot climate battery
JPH07201331A (en) * 1993-12-29 1995-08-04 Japan Storage Battery Co Ltd Sealed lead-acid battery
JPH07240227A (en) * 1994-02-25 1995-09-12 Shin Kobe Electric Mach Co Ltd Sealed lead-acid battery
JP2002313332A (en) * 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Control valve type lead-acid battery
WO2005124920A1 (en) * 2004-06-16 2005-12-29 Matsushita Electric Industrial Co., Ltd. Lead storage battery
JP2006049025A (en) * 2004-08-03 2006-02-16 Furukawa Battery Co Ltd:The Control valve type lead-acid storage battery
JP2009170234A (en) * 2008-01-15 2009-07-30 Furukawa Battery Co Ltd:The Control valve type lead-acid battery
JP2011233390A (en) * 2010-04-28 2011-11-17 Panasonic Corp Control valve type lead-acid battery
WO2011142072A1 (en) * 2010-05-10 2011-11-17 新神戸電機株式会社 Lead storage battery
WO2013058058A1 (en) * 2011-10-18 2013-04-25 新神戸電機株式会社 Lead storage battery
WO2013073420A1 (en) * 2011-11-16 2013-05-23 新神戸電機株式会社 Lead storage battery
WO2014097522A1 (en) * 2012-12-21 2014-06-26 パナソニック株式会社 Lead-acid battery

Also Published As

Publication number Publication date
JP6791326B2 (en) 2020-11-25

Similar Documents

Publication Publication Date Title
EP2263276B1 (en) Flooded lead-acid battery
US9118080B2 (en) Lead-acid battery
US20110027653A1 (en) Negative plate for lead acid battery
JP6043734B2 (en) Lead acid battery
JP2009104914A (en) Lead-acid battery
JP7245168B2 (en) Lead-acid battery separator and lead-acid battery
EP2381524B1 (en) Lead acid battery
JP6582386B2 (en) Lead acid battery
JP6791326B2 (en) Lead-acid battery
JP6398111B2 (en) Lead acid battery
JP7128482B2 (en) lead acid battery
JP6665426B2 (en) Lead storage battery
JP2008071717A (en) Method of chemical conversion of lead-acid battery
JP6318852B2 (en) Lead acid battery
JP4892827B2 (en) Lead acid battery
JP6921037B2 (en) Lead-acid battery
JP2007273403A (en) Control valve type lead-acid battery and its charging method
JP2019079778A (en) Lead acid battery
JP4483308B2 (en) Lead acid battery
JP2002198085A (en) Lead storage battery
JP6497460B2 (en) Lead acid battery
JP2005294142A (en) Lead storage battery
JP2004273305A (en) Lead-acid battery
JP4742424B2 (en) Control valve type lead acid battery
JPH0850896A (en) Manufacture of lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201019

R151 Written notification of patent or utility model registration

Ref document number: 6791326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250