JP2019203679A - Once-through tubular boiler - Google Patents

Once-through tubular boiler Download PDF

Info

Publication number
JP2019203679A
JP2019203679A JP2018108131A JP2018108131A JP2019203679A JP 2019203679 A JP2019203679 A JP 2019203679A JP 2018108131 A JP2018108131 A JP 2018108131A JP 2018108131 A JP2018108131 A JP 2018108131A JP 2019203679 A JP2019203679 A JP 2019203679A
Authority
JP
Japan
Prior art keywords
boiler
heat transfer
once
transfer surface
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018108131A
Other languages
Japanese (ja)
Inventor
梧郎 田口
Goro Taguchi
梧郎 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKYO ENERGY KK
Original Assignee
KANKYO ENERGY KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKYO ENERGY KK filed Critical KANKYO ENERGY KK
Priority to JP2018108131A priority Critical patent/JP2019203679A/en
Publication of JP2019203679A publication Critical patent/JP2019203679A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To solve the problem of having to pursue economical efficiency while securing safety in site assembly of a radiation heat transfer surface breakdown voltage part, prolongation of a construction term, proper dispatch of a welding technician, and securing of welding quality in a conventional boiler whose radiation heat transfer surface dimensions exceed transport limit dimensions.SOLUTION: In a boiler, a gas passage of the boiler is formed by combining and connecting a plurality of once-through tubular boilers which have the number of folds of a plate-like heat transfer surface of a once-through boiler is zero to two, the once-through boilers each comprising a lower pipe header of a boiler, an upward flow heat transfer pipe, an upper pipe header, a steam separator and a communication pipe.SELECTED DRAWING: Figure 5

Description

本発明は、廃棄物焼却炉に設置する、貫流ボイラーの放射伝熱面の構成、組合せ方に関するものである。  The present invention relates to the configuration and combination of radiant heat transfer surfaces of a once-through boiler installed in a waste incinerator.

ボイラーの放射伝熱面は、ガス量の多少に応じて、ある体積が必要になっている。特にこのボイラーが廃棄物焼却炉で代表される燃焼排ガス温度を1000℃付近とするボイラーは、化石燃料燃焼ボイラーの燃焼排ガス温度を2000℃付近にする場合に比べて、燃焼空気過剰率が増加し、排ガス流量が多くなる傾向にある。
このような状況においてボイラーを製作建設する場合、ボイラー製作を工場で完成させ、道路の輸送限界内寸法でボイラーを輸送することがしばしば困難な状況となる。ボイラーは現地組立ボイラーとなる。現地組立ボイラーは、現地での耐圧部分の溶接組立が必要になる。この場合、ボイラー建設には、熟練溶接技能者の確保、溶接品質の確保、建設工期確保と多くの検討事項があり、これらを軽減できる方策が望まれているという技術背景にあった。
The boiler's radiant heat transfer surface requires a certain volume depending on the amount of gas. In particular, the boiler in which the combustion exhaust gas temperature is about 1000 ° C, in which this boiler is represented by a waste incinerator, has an increased combustion air excess rate compared to the case where the combustion exhaust gas temperature of the fossil fuel combustion boiler is about 2000 ° C. The exhaust gas flow rate tends to increase.
When manufacturing and constructing a boiler in such a situation, it is often difficult to complete the boiler production at the factory and transport the boiler within the transport limit of the road. The boiler will be a locally assembled boiler. Local assembly boilers require welding assembly of pressure-resistant parts on site. In this case, boiler construction has many considerations such as securing skilled welding technicians, ensuring welding quality, and ensuring the construction period, and there was a technical background that measures to reduce these were desired.

放射伝熱面寸法が輸送限界を超えるボイラーは、放射伝熱面耐圧部の現地組立、建設工期の長期化、溶接技能者の適宜派遣、溶接品質の確保において、安全性を確保しつつ、経済性を追求しなければならないという課題を有していた。  Boilers whose radiant heat transfer surface dimensions exceed the transport limit are economical, while ensuring safety in on-site assembly of the radiant heat transfer surface pressure-resistant part, lengthening the construction period, dispatching welding technicians as appropriate, and ensuring welding quality. He had the problem of having to pursue sex.

本発明は、ボイラーの下部管寄せ、上昇流伝熱管、上部管寄せ、気水分離器および連絡管よりなる貫流ボイラーの板状である伝熱面の折り曲げ数を零ないしは2個まで有する、貫流板状ボイラーを複数個以上組み合わせ、連結し、ボイラーのガス通路を形成するボイラーとすることによって、前述課題を解決するものである。  The present invention relates to a once-through plate having a number of bent heat transfer surfaces of zero or two, which is a plate of a once-through boiler comprising a lower header of a boiler, an upflow heat transfer tube, an upper header, a steam separator and a connecting tube. The above-described problems are solved by combining and connecting a plurality of boilers to form a boiler gas passage.

ボイラーの耐圧部溶接を現地工事で行う場合、しばしば天候や溶接姿勢の選択が制限され、溶接の信頼性確保が困難となる場合がある。しかしながら、本発明によれば、ボイラー耐圧部の溶接は工場内でなされるため、作業環境は良く、溶接姿勢は、物品を反転し下向き姿勢で溶接可能になることから、溶接品質が確保され、安全性向上に効果がある。  When the pressure-resistant part welding of a boiler is performed in the field work, selection of the weather and the welding posture is often limited, and it may be difficult to ensure the reliability of the welding. However, according to the present invention, since the boiler pressure-resistant part is welded in the factory, the working environment is good, and the welding posture can be welded in a downward posture by inverting the article. Effective in improving safety.

本発明によるボイラーは、耐圧部が工場完成された個別ボイラーの組合せによって大型のボイラーへと組合せ組立てが可能となるので、ある一部分の耐圧部破損がボイラー全体の飽和水漏洩などの事故につながらず、事故を最小限に食い止めることが可能となり、危険分散の対策としての安全性向上に効果がある。  The boiler according to the present invention can be assembled and assembled into a large boiler by combining individual boilers whose pressure-resistant parts have been completed at the factory. Therefore, damage to a part of the pressure-resistant parts does not lead to accidents such as saturated water leakage of the entire boiler. As a result, it is possible to prevent accidents to a minimum, and it is effective in improving safety as a countermeasure for risk dispersion.

従来の放射伝熱面寸法が大きい廃棄物燃焼炉に設備するボイラーは、気水分離ドラムを有する自然循環形ボイラーとする例が多いが、このボイラーは気水分離ドラムの保有水量を増加させ、気水分離ドラムからの飽和水循環流量が蒸気蒸発量の数倍から数十倍になることから、ボイラー伝熱管内の蒸気量に対する飽和水量の割合が大きくなり、保有飽和水量も増加することとなる。本発明によるボイラーは、ボイラー形式を貫流形に限定することによりボイラー全体の保有水量が少なくなり、耐圧部破損に対してより安全なボイラーを提供することに効果がある。  Conventional boilers installed in waste combustion furnaces with large radiant heat transfer surface dimensions are often natural circulation boilers having a steam separator drum, but this boiler increases the amount of water held by the steam separator drum, Since the saturated water circulation flow rate from the steam-water separation drum will be several to several tens of times the amount of steam evaporation, the ratio of the amount of saturated water to the amount of steam in the boiler heat transfer pipe will increase, and the amount of retained water will also increase. . The boiler according to the present invention is effective in providing a boiler that is safer against breakage of the pressure-resistant portion because the amount of water held by the entire boiler is reduced by limiting the boiler type to the once-through type.

自然循環ボイラーの蒸発量に対する飽和水の再循環量比は、数倍から数十倍になる。一方、貫流ボイラーの蒸気量に対する飽和水の再循環量比は、1対1程度である。このことから、貫流ボイラーの気水分離器は、自然循環ボイラーの気水分離ドラムより、小さい寸法で済むことになり、貫流ボイラーの気水分離器は小形となる。本発明におけるボイラーの気水分離器は、分離性能を確保しながら経済性を達成できることとなる。  The ratio of the amount of recirculation of saturated water to the amount of evaporation of the natural circulation boiler is several to several tens of times. On the other hand, the ratio of the recirculation amount of saturated water to the steam amount of the once-through boiler is about 1: 1. For this reason, the steam-water separator of the once-through boiler has a smaller size than the steam-water separation drum of the natural circulation boiler, and the steam-water separator of the once-through boiler becomes smaller. The steam-water separator of the boiler in the present invention can achieve economic efficiency while ensuring separation performance.

本発明によるボイラーは、輸送限界内の複数個のボイラーに分割されることから、輸送費用の低減につながる経済効果を有している。  Since the boiler according to the present invention is divided into a plurality of boilers within the transport limit, it has an economic effect that leads to a reduction in transport costs.

本発明によるボイラーは、現地における組立は、非耐圧部の結合になるため、耐圧部溶接のような熟練高技能溶接者に依存しなくても良い。品質管理が容易になる効果がある。  The boiler according to the present invention does not have to depend on a skilled and highly skilled welder such as pressure-resistant part welding because the assembly in the field is a combination of non-pressure-resistant parts. There is an effect that quality control becomes easy.

本発明を構成する工場内完成の個別のボイラーは、形状を統一し、板状折り曲げ数が無いもの、板状折り曲げ数が1個のもの、板状折り曲げ数が2個のもの、これらを標準化し工場生産にすることにより、これらの組合せ組立て方により種々のボイラー形状に対応することが可能になり、経済的効果のあるボイラーとすることができる。  The individual boilers in the factory that constitute the present invention have the same shape, those with no plate folding number, those with one plate folding number, those with two plate folding numbers, and standardized these. However, by producing in a factory, it becomes possible to cope with various boiler shapes depending on how these are assembled and assembled, and a boiler having an economic effect can be obtained.

従来の自然循環ボイラーの水循環系統図Water circulation system diagram of conventional natural circulation boiler 従来の自然循環ボイラーの放射伝熱部外形図Radiation heat transfer part outline drawing of conventional natural circulation boiler 従来の自然循環ボイラーの現地結合部図Field connection diagram of a conventional natural circulation boiler 本発明の貫流形板状ボイラーの水循環系統図Water circulation system diagram of once-through plate boiler of the present invention 本発明の貫流形板状ボイラーの放射伝熱部外形図Radiation heat transfer part outline drawing of once-through type plate boiler of the present invention 本発明の貫流形板状ボイラーの現地結合図Field connection diagram of once-through plate boiler of the present invention

本発明の実施するための形態として、図面を用いて説明する。  A mode for carrying out the present invention will be described with reference to the drawings.

従来の自然循環ボイラーは以下のようになっている。
図1は従来の自然循環ボイラーの系統図を示している。図2は従来の自然循環ボイラーの放射伝熱部の外形図を示す。図3は従来の自然循環ボイラーの現地結合部を示す。
The conventional natural circulation boiler is as follows.
FIG. 1 shows a system diagram of a conventional natural circulation boiler. FIG. 2 shows an external view of a radiant heat transfer section of a conventional natural circulation boiler. FIG. 3 shows an on-site joint of a conventional natural circulation boiler.

図1において、ボイラー給水の連絡管101は気水分離ドラム107に入り、降水管102を通じてボイラーの下部管寄せ103に流入し、上昇伝熱管104において排ガスより熱を受け比重の軽い気水混合流体となって上部管寄せ105に流れ込み、その気水混合体は連絡管106を通じて気水分離ドラム107に導入される。気水分離ドラム107では、蒸気と飽和水に分離され、蒸気は連絡管108を経て、ボイラー外へ送気され、飽和水は連絡管101を経て流入された給水と気水分離ドラム内で混合して、再び降水管102を通じて再循環される。このボイラーの再循環流量は、上昇伝熱管104と降水管102の内部流体の比重差によって、自然に決まることから自然循環ボイラーと称している。  In FIG. 1, a boiler feed water communication pipe 101 enters a steam-water separation drum 107, flows into a lower header 103 of the boiler through a precipitation pipe 102, receives heat from exhaust gas in a rising heat transfer pipe 104, and has a light specific gravity mixed fluid. And flows into the upper header 105, and the air-water mixture is introduced into the air-water separation drum 107 through the connecting pipe 106. In the steam / water separation drum 107, steam and saturated water are separated, the steam is sent to the outside of the boiler through the connecting pipe 108, and the saturated water is mixed in the feed water and the steam / water separating drum which is introduced through the connecting pipe 101. Then, it is recirculated through the downcomer 102 again. The recirculation flow rate of the boiler is called a natural circulation boiler because it is naturally determined by the specific gravity difference between the internal fluids of the rising heat transfer tube 104 and the downcomer tube 102.

図2は、図1で示した系統を、鳥瞰的に示した図である。図2において、上昇伝熱管104に熱を与える入口排ガス121は下方から導入され、出口排ガス122となって上昇伝熱管104を離れることになる。この上昇伝熱管104と同様の上昇伝熱管は多数あり、上昇伝熱管どうしはヒレ板111によって代表的に示される多数のヒレ板を介して溶接連結されているので、多数の上昇伝熱管および多数のヒレ板は、板状のガス気密性のある放射伝熱面を形成し、排ガスは矩形のガス通路を通って下方から上方へ抜けていく状況になる。ここで、ボイラーの長手寸法134および縦高さ寸法131は陸上輸送限界寸法内で、横巾寸法132が陸上輸送限界寸法以上である場合、このボイラーを工場内製作し、一体で現地輸送することは困難になる。この場合、ボイラーは輸送限界内寸法133で伝熱面積を分割し、現地で溶接にて分割部分を結合する方法を取らざるを得ないことになる。この分割は輸送限界内寸法133の対面にある伝熱面でも同様に分割しなければならない。このことによって、従来の自然循環ボイラーで放射伝熱面積が大きくならざるを得ないボイラーは、現地耐圧部溶接接合は避けられない建設条件になっている。  FIG. 2 is a bird's-eye view of the system shown in FIG. In FIG. 2, an inlet exhaust gas 121 that gives heat to the rising heat transfer tube 104 is introduced from below, and becomes an outlet exhaust gas 122 that leaves the rising heat transfer tube 104. There are many ascending heat transfer tubes similar to the ascending heat transfer tube 104, and the ascending heat transfer tubes are welded together via a number of fin plates typically represented by the fin plate 111. This fin plate forms a plate-like gas-tight radiant heat transfer surface, and the exhaust gas passes through a rectangular gas passage and goes upward from below. Here, when the longitudinal dimension 134 and the vertical height dimension 131 of the boiler are within the land transport limit dimension and the width dimension 132 is equal to or greater than the land transport limit dimension, the boiler is manufactured in the factory and transported on-site as a whole. Becomes difficult. In this case, the boiler has to take a method of dividing the heat transfer area by the transport limit size 133 and joining the divided parts by welding on site. This division must be performed in the same manner on the heat transfer surface facing the dimension 133 within the transport limit. As a result, a conventional natural circulation boiler, which has a large radiant heat transfer area, has a construction condition in which on-site pressure welded joints cannot be avoided.

図3は、図2におけるA部分を拡大した、分割結合部分である。図3において上部管寄せ105には上昇伝熱管104が結合され、上昇伝熱管104にはヒレ板111及び112が結合されている。同様に上部管寄せ109には上昇伝熱管110が結合され、上昇伝熱管110にはヒレ板113及び114結合されている。ここで輸送の都合により管寄せおよびヒレ板は接合溶接線161で分割され、現地で溶接接合されることになる。図2では、A部分に該当する溶接は下部管寄せ103および上部管寄せ105さらに対面の上下管寄せに合計8か所ある。この現地接合で管寄せ105と管寄せ109の接合は、耐圧部溶接接合となり、品質管理、熟練資格技能者による施工、管寄せ肉厚が厚い場合は、溶接後部分焼鈍等高度の施工管理が必要になる。またそのための工期確保が必要となる。  FIG. 3 is a split coupling portion in which the portion A in FIG. 2 is enlarged. In FIG. 3, the ascending heat transfer tube 104 is coupled to the upper header 105, and the fin plates 111 and 112 are coupled to the ascending heat transfer tube 104. Similarly, the riser heat transfer tube 110 is coupled to the upper header 109, and the fin plates 113 and 114 are coupled to the riser heat transfer tube 110. Here, for the convenience of transportation, the header and the fin plate are divided at the welding line 161 and welded and joined at the site. In FIG. 2, there are a total of eight welds corresponding to the portion A in the lower header 103 and the upper header 105 and the upper and lower headers facing each other. In this on-site joining, the header 105 and the header 109 are joined by pressure-resistant welds, and quality control, construction by skilled qualification technicians, and when the thickness of the header is thick, advanced construction management such as partial annealing after welding is performed. I need it. In addition, it is necessary to secure a construction period for that purpose.

図4は本発明による、ボイラー系統図を示す。ここで給水は、連絡管401、201、402、301を経て、下部管寄せ203、303に供給され、上昇伝熱管204、304では、排ガスより熱を受け比重の軽い気水混合流体となって上部管寄せ205,305に流れ込み、その気水混合体は連絡管206,306を通じて気水分離器207,307に導入される。気水分離器207、307では、蒸気と飽和水に分離され、蒸気は連絡管208、308、405、408を経て、ボイラー外へ送気され、飽和水は降水管202,302を経て流入される給水と混合して、再び連絡管201、301を通じて再循環される。このボイラーは気水分離器から降水管202、302を通じて再循環される量が給水流量、ないしはボイラー蒸発流量とほぼ同じ程度であることから、貫流ボイラーに分類される。本発明でボイラーの種類を貫流形に限定しているのは、貫流ボイラーは飽和水の再循環水量が少ないため、上昇伝熱管204,304および気水分離器207、307に保有される飽和水量が少なく、本発明の目的である安全により寄与することになるためである。  FIG. 4 shows a boiler system diagram according to the present invention. Here, the water supply is supplied to the lower headers 203 and 303 through the connecting pipes 401, 201, 402, and 301. The rising heat transfer pipes 204 and 304 receive heat from the exhaust gas and become an air-water mixed fluid having a low specific gravity. The air / water mixture flows into the upper headers 205 and 305 and is introduced into the steam / water separators 207 and 307 through the connecting pipes 206 and 306. In the steam separators 207 and 307, the steam and saturated water are separated, the steam is sent to the outside of the boiler through the connecting pipes 208, 308, 405, and 408, and the saturated water is introduced through the downcomer pipes 202 and 302. It is mixed with the feed water and recirculated through the connecting pipes 201 and 301 again. This boiler is classified as a once-through boiler because the amount recirculated from the steam separator through the downcomer pipes 202 and 302 is approximately the same as the feed water flow rate or the boiler evaporation flow rate. In the present invention, the type of boiler is limited to the once-through type, because the amount of saturated water held in the ascending heat transfer tubes 204 and 304 and the steam separators 207 and 307 is limited because the once-through boiler has a small amount of recirculated water of saturated water. This is because it contributes to the safety that is the object of the present invention.

図4の本発明の系統図において、符号200番台と符号300番台との2つに分割されているが、必ずしも複数に限定されることなく、複数以上であれば本発明の目的とするところを満足するものである。このことは上昇伝熱管204が破損し、上昇伝熱管304が健全であれば、上昇伝熱管204の被害がボイラーシステム全体に拡大せずに最小限で抑えられることになり、本発明の目的である安全に寄与することになる。  In the system diagram of the present invention in FIG. 4, it is divided into two parts, the reference number 200 series and the reference number 300 series. However, the present invention is not necessarily limited to a plurality. Satisfied. This means that if the rising heat transfer tube 204 is broken and the rising heat transfer tube 304 is healthy, the damage to the rising heat transfer tube 204 is minimized without spreading to the entire boiler system. It will contribute to a certain safety.

本発明の図5は、図4で示した系統を、鳥瞰的に示した図である。図5において、ボイラーへの入口排ガス221は下方から導入され、出口排ガス222となってボイラーから離れることになる。図5で排ガスは、下方から上方に抜けているが、必ずしも排ガス流れが下方から上方へ流れることを限定するものではない。排ガスの流れは、場合によっては上方から下方に流れる場合もある。排ガスの熱を受ける伝熱面は上昇伝熱管204と同様の伝熱管が多数あり、伝熱管どうしはヒレ板211によって代表的に示される多数のヒレ板を介して溶接連結されているので、多数の伝熱管および多数のヒレ板は、板状のガス気密性のある放射伝熱面を形成し、排ガスは矩形のガス通路を通って下方から上方へ抜けていく状況になる。ここで、ボイラー放射伝熱面寸法が輸送限界を超えるような寸法のボイラーである場合、長手寸法136および縦高さ寸法131は陸上輸送限界巾内で、横巾寸法135が陸上輸送限界巾以上である場合、非耐圧部接合溶接線262,263によってボイラーを符号200番台と符号300番台の二つのボイラーに分割する。このようにすると長手寸法136、縦高さ寸法131、横巾寸法137,138はそれぞれ陸上輸送限界寸法内にできるようになり、このボイラーは、耐圧部は全て工場内結合となり、輸送も陸上輸送限界寸法内に入るので、安全性の増加と経済性の増加の二つの目的を達成することになる。  FIG. 5 of the present invention is a bird's-eye view of the system shown in FIG. In FIG. 5, the inlet exhaust gas 221 to the boiler is introduced from below and becomes the outlet exhaust gas 222, which leaves the boiler. In FIG. 5, the exhaust gas is escaping from below to above, but it is not necessarily limited that the exhaust gas flow from below to above. In some cases, the flow of the exhaust gas may flow from above to below. The heat transfer surface that receives the heat of the exhaust gas has many heat transfer tubes similar to the rising heat transfer tube 204, and the heat transfer tubes are connected by welding via a number of fin plates typically represented by the fin plates 211. These heat transfer tubes and a large number of fin plates form a plate-like gas-tight radiant heat transfer surface, and the exhaust gas passes through a rectangular gas passage and flows upward from below. Here, when the boiler radiant heat transfer surface dimension exceeds the transport limit, the longitudinal dimension 136 and the vertical height dimension 131 are within the land transport limit width, and the lateral width dimension 135 is equal to or greater than the land transport limit width. In this case, the boiler is divided into two boilers having a reference number 200 and a reference number 300 by the non-pressure-resistant part welding lines 262 and 263. In this way, the longitudinal dimension 136, the longitudinal height dimension 131, and the lateral width dimensions 137, 138 can be set within the land transport limit dimensions. In this boiler, the pressure-resistant parts are all combined in the factory, and transportation is also performed by land transport. Because it falls within the critical dimensions, it achieves two objectives: increased safety and increased economy.

図6は、図5におけるB部分を拡大した、分割結合部分である。図6において上部管寄せ205には上昇伝熱管204が結合され、上昇伝熱管204にはヒレ板211及び212が結合されている。同様に上部管寄せ305には上昇伝熱管304が結合され、上昇伝熱管304にはヒレ板312及び311結合されている。ここで輸送の都合によりヒレ板は非耐圧接合溶接線262で分割され、現地で溶接接合されることになる。上部管寄せ205と上部管寄せ305は、もともと工場内で分割され独立しており内部流体も流通することは無く、現地ではこれら管寄せを直接溶接結合することは無い。符号200番台ボイラーと符号300番台ボイラーは現地で非耐圧溶接接合線262の溶接で接合されるが、これはヒレ板212とヒレ板312の非耐圧部の結合となる。図5におけるこのB部分の溶接は、従来技術の場合の図2におけるA部分に相当する8か所の現地耐圧部溶接が無くなり、ヒレ板同士の非耐圧部溶接になることを意味している。この結合は、溶接が容易であるため、現地工事による品質低減防止につながり、安全性の向上、経済的効果の結果につながっている。  FIG. 6 is a split coupling portion in which the portion B in FIG. 5 is enlarged. In FIG. 6, a rising heat transfer tube 204 is coupled to the upper header 205, and fin plates 211 and 212 are coupled to the rising heat transfer tube 204. Similarly, the riser heat transfer tube 304 is coupled to the upper header 305, and the fin plates 312 and 311 are coupled to the riser heat transfer tube 304. Here, for convenience of transportation, the fin plate is divided by the non-pressure-bonding weld line 262 and welded on site. The upper header 205 and the upper header 305 are originally divided and independent in the factory, and the internal fluid does not circulate, and these headers are not directly joined by welding. The boilers in the 200 series and the 300 series are joined on site by welding of the non-pressure-resistant welding joint line 262, which is a connection between the non-pressure-resistant portion of the fin plate 212 and the fin plate 312. This welding of the portion B in FIG. 5 means that there are no 8 on-site pressure part weldings corresponding to the part A in FIG. 2 in the case of the prior art, resulting in non-pressure part welding between the fin plates. . Since this connection is easy to weld, it leads to quality reduction prevention by on-site construction, resulting in improved safety and economic effects.

本発明の図5の符号200番台ボイラーを見ると、上昇伝熱管204と同様の多数の上昇流伝熱管がヒレ板271と同様の多数のヒレ板と接合されており、この上昇伝熱管とヒレ板が下部管寄せと上部管寄せに連結されている。これら部品は板状の放射伝熱面を形成することとなる。この放射伝熱面は上昇伝熱管で構成されおり、図5の符号200番台のボイラーでは、2本の垂直な折り曲げ線251および252によって、板状伝熱面が折り曲げられている。折り曲げているという事は、必ずしも一枚のヒレ板が折り曲げていることのみを意味していることではなく、折り曲げ部が溶接で接合されていても、円弧状に曲げられていても良いものとする。この折り曲げ線は、図5では符号200番台ボイラーでは、2本示されているがあるが、放射伝熱面の構成によっては、折り曲げ線は無くてもよく、1本でも2本でも良い。図5では符号200番ボイラーと符号300番台ボイラーを組み合わせることによってガス通路が形成され、入口排ガス221を受入れ、出口排ガス222を放出する放射伝熱面が形成されている。符号200番台のボイラーと符号300番台のボイラーを、同じ形状に作ると輸送容易、建設容易、標準化生産ができ、安全で経済的なボイラー提供しようとする本発明の目的に合致している。また、図5では、放射伝熱面の折れ線が垂直軸になっているが、伝熱面の構成によっては折れ線が水平軸でも本発明の目的を達成できる。  Looking at the boiler in the series 200 in FIG. 5 of the present invention, a large number of upward flow heat transfer tubes similar to the upward heat transfer tubes 204 are joined to a large number of fin plates similar to the fin plates 271. Are connected to the lower and upper headers. These parts form a plate-like radiation heat transfer surface. This radiant heat transfer surface is composed of an ascending heat transfer tube. In the boiler of the number 200 series in FIG. 5, the plate-shaped heat transfer surface is bent by two vertical fold lines 251 and 252. Bending does not necessarily mean that only one fin plate is bent, but the bent portion may be joined by welding or may be bent in an arc shape. To do. Although two fold lines are shown in FIG. 5 for the boilers in the order of number 200, depending on the configuration of the radiant heat transfer surface, there may be no fold lines, and one or two fold lines may be used. In FIG. 5, a gas passage is formed by combining a No. 200 boiler and a No. 300 series boiler, and a radiation heat transfer surface for receiving the inlet exhaust gas 221 and discharging the outlet exhaust gas 222 is formed. When the boilers of the number 200 series and the number 300 series are made in the same shape, they can be easily transported, easily constructed, and standardized, and meet the object of the present invention to provide a safe and economical boiler. In FIG. 5, the broken line of the radiation heat transfer surface is a vertical axis, but the object of the present invention can be achieved even if the broken line is a horizontal axis depending on the configuration of the heat transfer surface.

101. 連絡管
102. 降水管
103. 下部管寄せ
104. 上昇伝熱管
105. 上部管寄せ
106. 連絡管
107. 気水分離ドラム
108. 連絡管
109. 上部管寄せ
110. 上昇伝熱管
111. ヒレ板
112. ヒレ板
113. ヒレ板
114. ヒレ板
121. 入口排ガス
122. 出口排ガス
131. 縦高さ寸法
132. 横巾寸法
133. 輸送限界内寸法
134. 長手寸法
135. 横巾寸法
136. 長手寸法
137. 横巾寸法
138. 横巾寸法
161. 接合溶接線
201. 連絡管
202. 降水管
203. 下部管寄せ
204. 上昇伝熱管
205. 上部管寄せ
206. 連絡管
207. 気水分離器
208. 連絡管
211. ヒレ板
212. ヒレ板
251. 折り曲げ線
252. 折り曲げ線
262. 非耐圧部接合溶接線
263. 非耐圧部接合溶接線
271. ヒレ板
301. 連絡管
302. 降水管
303. 下部管寄せ
304. 上昇伝熱管
305. 上部管寄せ
306. 連絡管
307. 気水分離器
308. 連絡管
311. ヒレ板
312. ヒレ板
401. 連絡管
402. 連絡管
405. 連絡管
406. 連絡管
101. Connecting pipe 102. Downcomer 103. Lower header 104. Ascending heat transfer tube 105. Upper header 106. Connecting pipe 107. Air-water separation drum 108. Connecting pipe 109. Upper header 110. Ascending heat transfer tube 111. Fin plate 112. Fin plate 113. Fin plate 114. Fin plate 121. Inlet exhaust gas 122. Outlet exhaust gas 131. Vertical height dimension 132. Width dimensions 133. Dimensions within the transport limit 134. Longitudinal dimension 135. Width dimension 136. Longitudinal dimension 137. Width dimension 138. Width dimensions 161. Joining weld line 201. Connecting pipe 202. Downcomer 203. Lower header 204. Ascending heat transfer tube 205. Upper header 206. Connecting pipe 207. Steam separator 208. Connecting pipe 211. Fin plate 212. Fin plate 251. Bending line 252. Bending line 262. Non-pressure-resistant part welding line 263. Non-pressure-resistant part welding line 271. Fin plate 301. Connecting pipe 302. Downcomer 303. Lower header 304. Ascending heat transfer tube 305. Upper header 306. Connecting pipe 307. Steam separator 308. Connecting pipe 311. Fin plate 312. Fin plate 401. Connecting pipe 402. Connecting pipe 405. Connecting pipe 406. Connecting pipe

Claims (1)

ボイラーの下部管寄せ、上昇流伝熱管、上部管寄せ、気水分離器および連絡管よりなる貫流ボイラーの板状である伝熱面の折り曲げ数を零ないしは2個まで有する、貫流板状ボイラーを複数個以上組み合わせ、連結することによって、ボイラーのガス通路を形成するボイラー。  A plurality of once-through plate-like boilers having a bend number of the heat transfer surface, which is a plate-like shape of a once-through boiler consisting of a lower header, an upflow heat transfer tube, an upper header, a steam separator and a connecting tube of the boiler, up to zero or two A boiler that forms a gas passage for a boiler by combining and connecting them.
JP2018108131A 2018-05-21 2018-05-21 Once-through tubular boiler Pending JP2019203679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018108131A JP2019203679A (en) 2018-05-21 2018-05-21 Once-through tubular boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018108131A JP2019203679A (en) 2018-05-21 2018-05-21 Once-through tubular boiler

Publications (1)

Publication Number Publication Date
JP2019203679A true JP2019203679A (en) 2019-11-28

Family

ID=68726583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018108131A Pending JP2019203679A (en) 2018-05-21 2018-05-21 Once-through tubular boiler

Country Status (1)

Country Link
JP (1) JP2019203679A (en)

Similar Documents

Publication Publication Date Title
US8281752B2 (en) Package boiler having steam generating units in tandem
CN105806109A (en) Counter-flow finned plate heat exchanger for gas-gas heat exchange
CN102414531A (en) Modular plate and shell heat exchanger
CN103884209A (en) Split combined type flue heat exchanger
CN100567813C (en) Steam generator, relevant manufacture method and continuous steam generator
WO2014064949A1 (en) Boiler system
JP2017219210A (en) Feedwater preheater
JP7038672B2 (en) How to assemble a heat exchanger or steam generator
JP2019203679A (en) Once-through tubular boiler
US5755188A (en) Variable pressure once-through steam generator furnace having all welded spiral to vertical tube transition with non-split flow circuitry
US9671105B2 (en) Continuous flow steam generator with a two-pass boiler design
US10253972B2 (en) Transition casting for boiler with steam cooled upper furnace
CN105737136B (en) A kind of U-tube superheater
CN107667271B (en) Header device for a heat exchanger system, heat exchanger system and method for heating a fluid
CN201611090U (en) Waste-heat boiler superheater
RU2317484C2 (en) Parallel current flow steam generator and method of manufacture of parallel current flow steam generator
CN204142054U (en) U-shaped tubular structure flue gas heat collector
CN105333761B (en) The integrated morphology of heat exchanger bobbin carriage
CN203980250U (en) Be built in the parallel finned tube steam superheater of multitubular boiler front smoke box
RU2249761C2 (en) Boiler plant with a cylindrical boiler and a water-heater, a water-tube countercurrent cylindrical boiler with a convective beam, a ring-shaped sectional finned collector
JP7492359B2 (en) Boiler and power plant equipped with same
US10234169B2 (en) Transition casting for boiler with steam cooled upper furnace
CN103052848A (en) Forced-flow steam generator
GB2087523A (en) Modular package boiler
CN117267706A (en) Through-flow type low-nitrogen gas boiler system