JP2019201202A - Heater block, thermal treatment equipment, and its thermal processing method - Google Patents

Heater block, thermal treatment equipment, and its thermal processing method Download PDF

Info

Publication number
JP2019201202A
JP2019201202A JP2019074072A JP2019074072A JP2019201202A JP 2019201202 A JP2019201202 A JP 2019201202A JP 2019074072 A JP2019074072 A JP 2019074072A JP 2019074072 A JP2019074072 A JP 2019074072A JP 2019201202 A JP2019201202 A JP 2019201202A
Authority
JP
Japan
Prior art keywords
lamp
guide member
gas
heater block
concave surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019074072A
Other languages
Japanese (ja)
Inventor
サンヒョン チ
Sang Hyun Ji
サンヒョン チ
チャンギョ キム
Chang Kyo Kim
チャンギョ キム
チュンチョル チャン
Jun Cheol Jang
チュンチョル チャン
ムビョン チェ
Moo Byeong Choi
ムビョン チェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AP Systems Inc
Original Assignee
AP Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AP Systems Inc filed Critical AP Systems Inc
Publication of JP2019201202A publication Critical patent/JP2019201202A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0047Heating devices using lamps for industrial applications for semiconductor manufacture
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Furnace Details (AREA)

Abstract

To provide a heater block capable of suppressing dirt of a reflection mirror due to a foreign matter as much as possible, and thermal treatment equipment, and its thermal processing method.SOLUTION: The present invention is a heater block comprising: a lamp extended to one direction; a housing formed so as to house the lamp; and an antifouling part that is attached to one surface of the housing, and distributed in a housing part in the housing having a concave part so as to house the lamp and a space between the lamp and the housing part so as to generate a gas flow, thermal treatment equipment with the same, and a thermal processing method applied for the same device, the heater block capable of suppressing dirt in the housing part due to a foreign matter as much as possible by using the gas flow.SELECTED DRAWING: Figure 7

Description

本発明は、ヒータブロック、熱処理装置及びその熱処理方法に関し、更に詳しくは、異物による反射鏡の汚れを極力抑えることができるヒータブロック、熱処理装置及びその熱処理方法に関する。   The present invention relates to a heater block, a heat treatment apparatus, and a heat treatment method thereof, and more particularly, to a heater block, a heat treatment apparatus, and a heat treatment method thereof that can suppress contamination of a reflecting mirror due to foreign matter as much as possible.

半導体及びディスプレイ装置は、基板に対して薄膜の積層、イオンの注入及び熱処理等の各種の単位工程を繰り返し行って、基板に所望の回路の動作特性を有する素子を形成する方式により製造される。なかでも、基板の熱処理工程は、一般に、急速熱処理装置において行われる。通常、急速熱処理装置は、チャンバと、該チャンバの内部に配置される基板支持台と、該基板支持台と対向してチャンバの上側に配置され、基板支持台と平行な所定の平面上においてリニア状(linear)の配列を形成する複数の反射鏡と、複数の反射鏡にそれぞれ収容され、リニア状の配列を形成する複数のランプとを備える。このとき、ランプは、光を赤外線及び紫外線等で発し、反射鏡は、ランプから発せられる光を基板に集束させる。   Semiconductors and display devices are manufactured by a method in which various unit processes such as thin film stacking, ion implantation, and heat treatment are repeatedly performed on a substrate to form elements having desired circuit operating characteristics on the substrate. In particular, the substrate heat treatment step is generally performed in a rapid heat treatment apparatus. Usually, the rapid thermal processing apparatus is arranged on a predetermined plane parallel to the substrate support base, the chamber, the substrate support base disposed in the chamber, the top side of the chamber facing the substrate support base. A plurality of reflecting mirrors that form a linear array, and a plurality of lamps that are respectively housed in the plurality of reflecting mirrors and form a linear array. At this time, the lamp emits light using infrared rays, ultraviolet rays, or the like, and the reflecting mirror focuses the light emitted from the lamp onto the substrate.

反射鏡は、その構造上、異物に弱い。このため、熱処理工程を行う間に異物がランプと反射鏡との間に流入して反射鏡に付着し易い。異物により反射鏡が汚れてしまうと、基板の温度を正確に制御し難く、反射鏡による効率が低下する。これに伴い、熱処理工程の熱効率が落ちてしまい、これを補うためのさらなる電力を供給することを余儀なくされる。また、異物が熱処理工程の間に脱落することにより、基板やチャンバを汚してしまうという事態も生じる。   The reflector is vulnerable to foreign matter due to its structure. For this reason, during the heat treatment process, foreign matter tends to flow between the lamp and the reflecting mirror and adhere to the reflecting mirror. If the reflecting mirror is contaminated by foreign matter, it is difficult to accurately control the temperature of the substrate, and the efficiency of the reflecting mirror is reduced. Along with this, the thermal efficiency of the heat treatment process is reduced, and it is necessary to supply further electric power to make up for this. In addition, a situation occurs in which the foreign substances fall off during the heat treatment process, thereby contaminating the substrate and the chamber.

本発明の背景となる技術は、下記の特許文献に掲載されている。   The technology as the background of the present invention is published in the following patent documents.

大韓民国公開特許公報第10−2015−0138496号Korean Published Patent Publication No. 10-2015-0138496

本発明は、ガスを用いて、異物による反射鏡の汚れを極力抑えることができるヒータブロック、熱処理装置及びその熱処理方法を提供する。   The present invention provides a heater block, a heat treatment apparatus, and a heat treatment method thereof that can suppress contamination of a reflecting mirror due to foreign substances as much as possible by using gas.

本発明は、ガスを用いて、異物が反射鏡とランプとの間に流入することを防ぐことができるヒータブロック、熱処理装置及びその熱処理方法を提供する。   The present invention provides a heater block, a heat treatment apparatus, and a heat treatment method thereof that can prevent a foreign substance from flowing between a reflecting mirror and a lamp using a gas.

本発明は、ガスがランプ及び基板に直接的に噴射されることを防ぐことができるヒータブロック、熱処理装置及びその熱処理方法を提供する。   The present invention provides a heater block, a heat treatment apparatus, and a heat treatment method thereof that can prevent gas from being directly injected onto a lamp and a substrate.

本発明は、反射鏡と基板との間のガスの流れ及び伝熱の流れを均一に形成することができるヒータブロック、熱処理装置及びその熱処理方法を提供する。   The present invention provides a heater block, a heat treatment apparatus, and a heat treatment method thereof that can uniformly form a gas flow and a heat transfer flow between a reflecting mirror and a substrate.

本発明の実施の形態に係るヒータブロックは、一方向に延びるランプと、ランプを収容可能に形成されるハウジングと、ハウジングの一方の面に取り付けられ、ランプを収容可能なように凹部を備える収納部と、ランプと収納部との間の空間にガスの流れを生成可能なように収納部に配設される防汚部とを備える。   A heater block according to an embodiment of the present invention includes a lamp extending in one direction, a housing formed so as to be capable of accommodating the lamp, and a housing that is attached to one surface of the housing and includes a recess so as to accommodate the lamp. And an antifouling part disposed in the storage part so that a gas flow can be generated in a space between the lamp and the storage part.

防汚部は、少なくとも一部がランプと収納部との間に位置し、一方向にガスを移動可能に形成される案内部材と、ランプと対向する凹部にガスを噴射可能なように案内部材に連結される噴射手段と、案内部材に連結されるガス供給源とを備えていてもよい。   The antifouling part is at least partially located between the lamp and the storage part, and is formed so that the gas can be moved in one direction, and the guide member so that the gas can be injected into the recess facing the lamp. And a gas supply source connected to the guide member.

案内部材は、一方向に延び、ガスを通過させ得る流路が内部に形成されてもよい。   The guide member may extend in one direction and may have a flow path that allows gas to pass therethrough.

案内部材は、ランプの外側を包むように形成され、ランプの外周面に沿って一方向に延び、外周面から離間して外周面との間にガスを通過させ得る流路を形成してもよい。   The guide member may be formed so as to wrap around the outside of the lamp, may extend in one direction along the outer peripheral surface of the lamp, and may form a flow path that allows gas to pass between the outer peripheral surface and the outer peripheral surface. .

案内部材は、光を透過させ得る材料により形成されてもよい。   The guide member may be formed of a material that can transmit light.

噴射手段は、案内部材を貫通し、流路と連通され、一方向に配列する噴射孔を備えていてもよい。   The injection means may include injection holes that penetrate the guide member, communicate with the flow path, and are arranged in one direction.

噴射孔は、凹部の中心部に対向してもよい。   The injection hole may face the central portion of the recess.

噴射孔は、複数の配列を形成するように一方向に交差する他方向に離間し、複数の配列は、ランプの一方向の中心軸の両側に等距離で離間してもよい。   The injection holes may be spaced apart in the other direction intersecting in one direction so as to form a plurality of arrays, and the plurality of arrays may be spaced equidistant on both sides of the central axis in one direction of the lamp.

案内部材の横断面上において、案内部材の中心点と噴射孔とをそれぞれ結ぶ連結線同士の内角は、180°以内であってもよい。   On the cross section of the guide member, the inner angle of the connecting lines connecting the center point of the guide member and the injection hole may be within 180 °.

噴射孔は、一方向に等間隔で離間し、流路の上流からの距離に応じて直径が異なっていてもよい。   The injection holes may be equally spaced in one direction and may have different diameters depending on the distance from the upstream of the flow path.

噴射孔は、互いに同一の直径に形成され、流路の上流からの距離に応じて相互間の間隔が異なっていてもよい。   The injection holes are formed to have the same diameter, and the interval between them may be different depending on the distance from the upstream of the flow path.

ランプは、複数配備され、他方向に配列されて板状の熱源を形成し、収納部は、複数配備されてそれぞれのランプを収容し、案内部材は、複数配備されてそれぞれの収納部に対向し、噴射手段は、それぞれの案内部材に配備されてもよい。   A plurality of lamps are arranged and arranged in the other direction to form a plate-like heat source. A plurality of storage units are arranged to accommodate the respective lamps, and a plurality of guide members are arranged to face the respective storage units. However, the injection means may be provided in each guide member.

本発明の実施の形態に係る熱処理装置は、基板を処理し得る空間が内部に形成されるチャンバと、該チャンバの内部に配置される基板支持部と、基板支持部と対向し、チャンバの一方の側に取り付けられるヒータブロックとを備え、ヒータブロックは、基板支持部と対向する一方の面に、一方向に延びるランプ、該ランプを収容する収納部、及び収納部のランプと対向する面の汚れを防ぐ防汚部を備える。   A heat treatment apparatus according to an embodiment of the present invention includes a chamber in which a space capable of processing a substrate is formed, a substrate support portion disposed in the chamber, a substrate support portion, and one of the chambers. A heater block mounted on the side of the substrate, the heater block having a lamp extending in one direction on one surface facing the substrate support portion, a housing portion for housing the lamp, and a surface of the housing portion facing the lamp. Antifouling part is provided to prevent dirt.

収納部は、ランプを収容可能なように凹部を備え、凹部は、チャンバの内部に露出され、防汚部は、ランプと、該ランプと対向する凹部の凹面との間の空間にガスの流れを生成可能に形成されてもよい。   The storage unit includes a recess so that the lamp can be accommodated, the recess is exposed to the inside of the chamber, and the antifouling unit flows gas into a space between the lamp and the concave surface of the recess facing the lamp. May be formed.

防汚部は、一方向に延び、内部にランプを収容し、内周面がランプの外周面から離間する中空管構造の案内部材と、凹面にガスを噴射可能に案内部材を貫通し、案内部材の上に一方向に配列する噴射孔と、案内部材に連結されるガス供給源とを備え、案内部材は、光を透過させ得る材料により形成されてもよい。   The antifouling part extends in one direction, accommodates the lamp inside, and has a hollow tube structure guide member whose inner peripheral surface is separated from the outer peripheral surface of the lamp, and penetrates the guide member so that gas can be injected into the concave surface, The guide member may include an injection hole arranged in one direction on the guide member and a gas supply source connected to the guide member, and the guide member may be formed of a material that can transmit light.

噴射孔は、凹面の中心部に対向するか、又は案内部材上において複数の配列を形成するように一方向に交差する他方向に離間し、案内部材の一方向の中心軸に対称となり案内部材の背面側に位置してもよい。   The injection hole is opposed to the central portion of the concave surface or is spaced apart in the other direction intersecting in one direction so as to form a plurality of arrays on the guide member, and is symmetric with respect to the central axis in one direction of the guide member. You may be located in the back side.

噴射孔は、一方向に等間隔で離間して、互いに異なる直径に形成されるか、又は互いに同一の直径に形成され、一方向に相互間の間隔が異なっていてもよい。   The injection holes may be formed in different diameters at equal intervals in one direction, or may be formed in the same diameter and may have different intervals in one direction.

本発明の実施の形態に係る熱処理方法は、基板と対向するように配置されたランプを用いて基板を熱処理する方法であって、ランプを用いて光を生成する過程と、ランプの背面に配置された凹面を用いて、基板に光を集束させる過程と、ランプと凹面との間の空間にガスの流れを生成して、凹面の汚れを防ぐ過程とを含む。   A heat treatment method according to an embodiment of the present invention is a method of heat-treating a substrate using a lamp disposed so as to face the substrate, the process of generating light using the lamp, and the rear surface of the lamp. The process includes focusing the light on the substrate using the concave surface, and generating a gas flow in the space between the lamp and the concave surface to prevent the concave surface from being contaminated.

凹面の汚れを防ぐ過程は、ランプの外側に配置された案内部材を介して、ランプの外周面に沿ってランプが延びる方向にガスを移動させる過程と、ランプが延びる方向に案内部材の上に配列された噴射孔を用いて、凹面にガスを噴射する過程と、ガスで凹面を保護する過程とを含む。   The process of preventing the dirt on the concave surface includes the process of moving the gas in the direction in which the lamp extends along the outer peripheral surface of the lamp through the guide member disposed outside the lamp, and the process of preventing the concave surface from being stained on the guide member in the direction in which the lamp extends. A process of injecting gas to the concave surface using the arranged injection holes and a process of protecting the concave surface with gas are included.

凹面の汚れを防ぐ過程は、凹面を用いて、ガスの流れを基板に向かって屈折させ、基板にガスを供給する過程を含んでいてもよい。   The process of preventing the dirt on the concave surface may include a process of using the concave surface to refract the gas flow toward the substrate and supplying the gas to the substrate.

光は、案内部材を透過して基板及び凹面に発せられ、噴射孔は、凹面に均一にガスを噴射し、ガスは、不活性ガスを含み、ランプが延びる方向に移動する間にランプと接触し且つ熱交換をして昇温してもよい。   Light passes through the guide member and is emitted to the substrate and the concave surface, and the injection holes uniformly inject gas into the concave surface, and the gas contains an inert gas and contacts the lamp while moving in the direction in which the lamp extends. However, the temperature may be raised by heat exchange.

本発明の実施の形態によれば、ランプの外周面に沿ってランプが延びる方向にガスを移動させながら、ランプの外周面の複数の位置から反射鏡へとガスを噴射してランプと反射鏡との間の空間にガスの保護膜層を形成することができる。これにより、異物が反射鏡とランプとの間に流入することを防ぎ、異物による反射鏡の汚れを極力抑えることができる。   According to the embodiment of the present invention, a gas is ejected from a plurality of positions on the outer peripheral surface of the lamp to the reflecting mirror while moving the gas in the direction in which the lamp extends along the outer peripheral surface of the lamp. A gas protective film layer can be formed in the space between the two. Thereby, it can prevent that a foreign material flows in between a reflector and a lamp | ramp, and can suppress the stain | pollution | contamination of a reflective mirror by a foreign material as much as possible.

また、本発明の実施の形態によれば、ガスを移動させる間にランプに接触させてガスを昇温させた後、反射鏡にガスを噴射して保護膜層を形成し且つ保持しながら、反射鏡を用いてガスの流れを基板に向かって屈折させて基板にガスを供給することができる。これにより、ガスがランプ及び基板に直接的に噴射されることを防ぎ、反射鏡と基板との間にガスの流れを均一に形成し、ガスを介した伝熱の流れを均一に形成することができる。   In addition, according to the embodiment of the present invention, the temperature of the gas is increased by bringing it into contact with the lamp while moving the gas, and then the protective film layer is formed and held by injecting the gas to the reflecting mirror, A gas can be supplied to the substrate by refracting the gas flow toward the substrate using a reflecting mirror. This prevents gas from being directly jetted onto the lamp and the substrate, forms a uniform gas flow between the reflector and the substrate, and creates a uniform heat transfer flow through the gas. Can do.

従って、基板の熱処理工程に際して、熱効率が落ちることを防ぎ、温度の制御を正確に行うことができる。これにより、熱処理の施された基板の不良を低減させることができ、品質を向上させることができるので、基板の熱処理工程の信頼性を向上させることができる。   Accordingly, it is possible to prevent the thermal efficiency from being lowered and accurately control the temperature during the heat treatment process of the substrate. Thereby, defects of the substrate subjected to the heat treatment can be reduced and the quality can be improved, so that the reliability of the heat treatment step of the substrate can be improved.

本発明の実施の形態に係る熱処理装置の概略図である。It is the schematic of the heat processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係るヒータブロックの模式図である。It is a schematic diagram of the heater block which concerns on embodiment of this invention. 本発明の実施の形態に係るヒータブロックの正断面図である。It is a front sectional view of a heater block according to an embodiment of the present invention. 本発明の実施の形態に係るヒータブロックの側断面図である。It is a sectional side view of the heater block concerning an embodiment of the invention. 本発明の実施の形態に係る防汚部の部分拡大図である。It is the elements on larger scale of the antifouling part which concerns on embodiment of this invention. 本発明の変形例に係る防汚部の部分拡大図である。It is the elements on larger scale of the antifouling part concerning the modification of the present invention. 本発明の実施の形態に係る熱処理装置の工程手順図である。It is a process procedure figure of the heat processing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る基板の熱処理工程時のランプと反射鏡との間のガスの流れを説明するためのグラフである。It is a graph for demonstrating the flow of the gas between the lamp | ramp and reflective mirror at the time of the heat processing process of the board | substrate which concerns on embodiment of this invention. 本発明の変形例に係る防汚部のガス供給流量別のガスの噴射流速を示すグラフである。It is a graph which shows the injection flow velocity of the gas according to the gas supply flow rate of the antifouling part which concerns on the modification of this invention. 本発明の実施の形態に係る防汚部のガス供給流量別のガスの噴射流速を示すグラフである。It is a graph which shows the injection velocity of the gas according to the gas supply flow rate of the antifouling part which concerns on embodiment of this invention.

以下、添付図面に基づいて、本発明の実施の形態について詳しく説明する。しかしながら、本発明は以下に開示される実施形態に何ら限定されるものではなく、異なる様々な形態に具体化され、単にこれらの実施形態は本発明の開示を完全たるものにし、通常の知識を有する者に発明の範囲を完全に知らせるために提供されるものである。なお、本発明の実施の形態を説明するために図面は誇張されてもよく、図中、同じ符号は、同じ構成要素を指し示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and may be embodied in various different forms. These embodiments merely complete the disclosure of the present invention and provide ordinary knowledge. It is provided to fully inform those who have the scope of the invention. Note that the drawings may be exaggerated in order to describe the embodiments of the present invention, and the same reference numerals denote the same components in the drawings.

図1は本発明の実施の形態に係る熱処理装置の概略図であり、図2は本発明の実施の形態に係るヒータブロックの模式図である。図1及び図2に基づいて、本発明の実施の形態に係る熱処理装置について詳しく説明する。   FIG. 1 is a schematic view of a heat treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of a heater block according to an embodiment of the present invention. Based on FIG.1 and FIG.2, the heat processing apparatus which concerns on embodiment of this invention is demonstrated in detail.

本発明の実施の形態に係る熱処理装置は、基板Sを処理し得る空間が内部に形成されるチャンバ200と、チャンバ200の内部に配置される基板支持部300と、基板支持部300と対向し、チャンバ200の一方の側に取り付けられるヒータブロック100とを備える。   The heat treatment apparatus according to the embodiment of the present invention opposes the chamber 200 in which a space capable of processing the substrate S is formed, the substrate support unit 300 disposed in the chamber 200, and the substrate support unit 300. And a heater block 100 attached to one side of the chamber 200.

基板Sとしては、例えば、ディスプレイ装置の製造に使用可能な大面積のガラス基板が挙げられ、平面四角形状であってもよい。いうまでもなく、基板Sとしては、大面積のガラス基板の他にも、半導体チップと太陽電池等の各種の電子装置を製造する工程に適用される基板をはじめとして種々のものが挙げられ、その形状もまた、四角い形状の他に種々に変形可能である。   Examples of the substrate S include a large-area glass substrate that can be used for manufacturing a display device, and may have a planar rectangular shape. Needless to say, as the substrate S, in addition to a large-area glass substrate, various substrates including a substrate applied to a process for manufacturing various electronic devices such as a semiconductor chip and a solar cell can be cited. The shape can also be variously modified in addition to the square shape.

チャンバ200は、四角筒状に形成されてもよく、基板Sを処理し得る空間が内部に形成されてもよい。いうまでもなく、チャンバ200の形状は、基板Sの形状に応じて種々に変形可能である。例えば、チャンバ200は、円筒状であってもよい。チャンバ200は、上部に開口が形成されてもよい。開口は、基板Sの形状に応じて、例えば、四角い形状であってもよい。チャンバ200は、ゲート(図示せず)及び真空ポンプ(図示せず)等を更に備えていてもよい。   The chamber 200 may be formed in a rectangular tube shape, and a space in which the substrate S can be processed may be formed inside. Needless to say, the shape of the chamber 200 can be variously modified according to the shape of the substrate S. For example, the chamber 200 may be cylindrical. The chamber 200 may have an opening at the top. Depending on the shape of the substrate S, the opening may have a square shape, for example. The chamber 200 may further include a gate (not shown) and a vacuum pump (not shown).

基板支持部300は、基板Sを支持可能に形成され、チャンバ200の内部の底面に配置されてもよい。例えば、チャンバ200の下部に基板支持部300が位置してもよい。基板支持部300は、上面にリフトピンが配備されてもよい。リフトピンに基板Sが載置されてもよい。基板支持部300は、エッジリング(図示せず)を備えていてもよく、ここに基板Sを載置してもよい。   The substrate support unit 300 may be formed to support the substrate S and may be disposed on the bottom surface inside the chamber 200. For example, the substrate support unit 300 may be located in the lower part of the chamber 200. The substrate support unit 300 may be provided with lift pins on the upper surface. The substrate S may be placed on the lift pins. The substrate support unit 300 may include an edge ring (not shown), and the substrate S may be placed thereon.

ヒータブロック100は、チャンバ200の開口を密封して配設されてもよい。これにより、基板支持部300とヒータブロック300とは、上下方向Zに対向配置されてもよい。このとき、向かい合って配置されることを対向配置と呼ぶ。   The heater block 100 may be disposed with the opening of the chamber 200 sealed. Thereby, the board | substrate support part 300 and the heater block 300 may be opposingly arranged by the up-down direction Z. At this time, facing each other is referred to as facing placement.

ヒータブロック100は、光を生成してこれを基板Sに与えてもよく、光を用いて基板Sを熱処理してもよい。例えば、ヒータブロック100は、基板Sを熱処理する工程を行うための急速熱処理装置の熱供給源として使用可能である。   The heater block 100 may generate light and give it to the substrate S, or may heat the substrate S using light. For example, the heater block 100 can be used as a heat supply source of a rapid thermal processing apparatus for performing a process of thermal processing the substrate S.

ヒータブロック100は、一方の面が基板支持部300と対向してもよい。ここで、ヒータブロック100の一方の面は、例えば、下面であってもよい。ヒータブロック100は、一方の面に、一方向Xに延びるランプLと、ランプLを収容する収納部120と、収納部120のランプLと対向する面の汚れを防ぐ防汚部とを備えていてもよい。   One side of the heater block 100 may face the substrate support unit 300. Here, one surface of the heater block 100 may be a lower surface, for example. The heater block 100 includes, on one surface, a lamp L that extends in one direction X, a storage unit 120 that stores the lamp L, and an antifouling unit that prevents contamination of the surface of the storage unit 120 facing the lamp L. May be.

一方向Xを前後方向と呼び、上下方向Zを高さ方向と呼び、一方向Xと上下方向Zの両方に交差する方向である他方向Yを左右方向と呼ぶ。   One direction X is referred to as the front-rear direction, the up-down direction Z is referred to as the height direction, and the other direction Y that intersects both the one direction X and the up-down direction Z is referred to as the left-right direction.

収納部120は、ランプLを収容可能なように凹部を備えていてもよい。凹部は、ランプLを収容可能なようにヒータブロック100の一方の面を基準として凹状に形成されてもよい。凹部は、凹溝121と凹面122とを備えていてもよい。凹溝121は、収納部120の下部に形成され、上側に凹状に形成されてもよい。凹溝121にランプLが位置してもよい。凹部の内面である凹面122がランプLと対向してもよい。   The storage unit 120 may include a recess so that the lamp L can be stored. The concave portion may be formed in a concave shape with reference to one surface of the heater block 100 so that the lamp L can be accommodated. The concave portion may include a concave groove 121 and a concave surface 122. The concave groove 121 may be formed in the lower part of the storage unit 120 and may be formed in a concave shape on the upper side. The lamp L may be positioned in the concave groove 121. The concave surface 122 that is the inner surface of the concave portion may face the lamp L.

ランプLは、少なくとも一つ配備されてもよい。ランプLが複数である場合、ランプLは、他方向Yに配列されてもよく、板状の熱源を形成してもよい。なお、ランプLが複数である場合、収納部120もまた複数配備され、それぞれのランプLはそれぞれの収納部120に収容されてもよい。   At least one lamp L may be provided. When there are a plurality of lamps L, the lamps L may be arranged in the other direction Y, and may form a plate-like heat source. When there are a plurality of lamps L, a plurality of storage units 120 may also be provided, and each lamp L may be stored in each storage unit 120.

いうまでもなく、ランプLの数と収納部120の数とは、特に限定されない。ランプLの数と収納部120の数は、様々であってもよい。例えば、ヒータブロック100は、一つのランプLと一つの収納部120とを備えていてもよい。   Needless to say, the number of lamps L and the number of storage units 120 are not particularly limited. The number of lamps L and the number of storage units 120 may vary. For example, the heater block 100 may include one lamp L and one storage unit 120.

ヒータブロック100は、一方の面がチャンバ200の内部に露出し、凹溝121及び凹面122もまたチャンバ200の内部に露出し、ランプLもまたチャンバ200の内部に露出してもよい。   One surface of the heater block 100 may be exposed inside the chamber 200, the concave groove 121 and the concave surface 122 may also be exposed inside the chamber 200, and the lamp L may also be exposed inside the chamber 200.

従って、ヒータブロック100は、凹溝121の内周面である凹面122が異物により汚れることを防ぐために、ランプLと収納部120との間の空間にガスの流れを生成するように収納部120に配設される防汚部を備えていてもよい。   Therefore, the heater block 100 is configured to generate a gas flow in the space between the lamp L and the storage unit 120 in order to prevent the concave surface 122, which is the inner peripheral surface of the concave groove 121, from being contaminated by foreign matter. An antifouling part may be provided.

すなわち、防汚部は、ランプLと凹面122との間の空間にガスの流れを生成することができ、これを用いて、凹面122の汚れを防ぐことができる。   That is, the antifouling part can generate a gas flow in the space between the lamp L and the concave surface 122, and this can be used to prevent the concave surface 122 from being contaminated.

防汚部は、一方向Xに延び、内部にランプLを収容し、内周面がランプLの外周面から離間し、透光性材質により形成された中空管構造の案内部材130と、凹面122にガスを噴射可能なように案内部材130を貫通し、案内部材130の上に一方向Xに配列する噴射孔、及び案内部材130に連結されるガス供給源160を備えていてもよい。   The antifouling portion extends in one direction X, accommodates the lamp L therein, has an inner peripheral surface separated from the outer peripheral surface of the lamp L, and has a hollow tube structure guide member 130 formed of a translucent material; A gas supply source 160 connected to the guide member 130 and an injection hole that penetrates the guide member 130 so as to be able to inject gas into the concave surface 122 and is arranged in one direction X on the guide member 130 may be provided. .

図3は本発明の実施の形態に係るヒータブロックの正断面図であり、図4は本発明の実施の形態に係るヒータブロックの側断面図である。図5は本発明の実施の形態に係る防汚部の部分拡大図であり、図6は本発明の変形例に係る防汚部の部分拡大図である。図7は本発明の実施の形態に係る熱処理装置の工程手順図である。   FIG. 3 is a front sectional view of a heater block according to the embodiment of the present invention, and FIG. 4 is a side sectional view of the heater block according to the embodiment of the present invention. FIG. 5 is a partially enlarged view of the antifouling part according to the embodiment of the present invention, and FIG. 6 is a partially enlarged view of the antifouling part according to a modification of the present invention. FIG. 7 is a process procedure diagram of the heat treatment apparatus according to the embodiment of the present invention.

以下、図1から図7に基づいて、本発明の実施の形態に係るヒータブロック100を説明する。本発明の実施の形態に係るヒータブロック100は、一方向Xに延びるランプLと、ランプLを収容可能に形成されるハウジング110と、ハウジング110の一方の面に取り付けられ、ランプLを収容可能なように凹部を備える収納部120と、ランプLと収納部120との間の空間にガスの流れを生成可能なように収納部120に配設される防汚部とを備える。   Hereinafter, a heater block 100 according to an embodiment of the present invention will be described with reference to FIGS. 1 to 7. The heater block 100 according to the embodiment of the present invention includes a lamp L extending in one direction X, a housing 110 formed so as to be able to accommodate the lamp L, and attached to one surface of the housing 110 so as to accommodate the lamp L. Thus, the storage unit 120 having a recess and the antifouling unit disposed in the storage unit 120 so as to generate a gas flow in the space between the lamp L and the storage unit 120 are provided.

ランプLは、チューブ状に形成されたリニアランプを備えていてもよい。ランプLは、クォーツ(quartz)材により形成されてもよい。ランプLは、内部に発光体が配置され、両端部が電極により密封されてもよい。発光体は、様々な波長の電磁波を生成するための各種の構成要素を備え、例えば、フィラメントを備えていてもよい。発光体は、電極と接続され、光を赤外線、可視光及び紫外線のうちの少なくとも一つで発して基板Sに輻射熱を与えてもよい。ランプLは、収納部120に収容されてもよく、一方向Xに配置されてもよく、ハウジング110の一方の面の外側、例えば、下側に露出してもよい。   The lamp L may include a linear lamp formed in a tube shape. The lamp L may be formed of a quartz material. The lamp L may have a light emitter disposed therein, and both ends may be sealed with electrodes. The light emitter includes various components for generating electromagnetic waves having various wavelengths, and may include, for example, a filament. The light emitter may be connected to the electrode and emit light with at least one of infrared light, visible light, and ultraviolet light to give radiant heat to the substrate S. The lamp L may be housed in the housing portion 120, may be disposed in one direction X, or may be exposed to the outside, for example, the lower side of one surface of the housing 110.

ハウジング110は、ランプLを収容し得る面積に形成される。ハウジング110は、本体111とリッド112とを備えていてもよい。本体111は、例えば、四角筒状に形成されてもよく、上部に開口が配備されてもよく、開口を介して内部が開放されてもよい。リッド112は、例えば、四角板状に形成されてもよく、本体111の開口に取り付けられてもよく、本体111の開口を密封してもよい。本体111とリッド112との形状は、チャンバ200の形状による。   The housing 110 is formed in an area that can accommodate the lamp L. The housing 110 may include a main body 111 and a lid 112. The main body 111 may be formed in, for example, a rectangular tube shape, an opening may be provided in the upper portion, and the inside may be opened through the opening. For example, the lid 112 may be formed in a square plate shape, may be attached to the opening of the main body 111, and may seal the opening of the main body 111. The shapes of the main body 111 and the lid 112 depend on the shape of the chamber 200.

ランプLを支持可能なように、本体111を一方向Xに貫通してランプソケット140が取り付けられてもよい。ランプソケット140は、ランプLの両端部にそれぞれ位置し、それぞれの位置においてランプLの両端部の電極にそれぞれ接続されてもよく、ランプLを支持してもよい。外部電源150は、ランプソケット140を介してランプLの両端部の電極に電気的に接続されてもよい。   The lamp socket 140 may be attached so as to penetrate the main body 111 in one direction X so that the lamp L can be supported. The lamp sockets 140 are located at both ends of the lamp L, and may be connected to the electrodes at both ends of the lamp L at the respective positions, or may support the lamp L. The external power supply 150 may be electrically connected to the electrodes at both ends of the lamp L via the lamp socket 140.

収納部120は、ハウジング110の内部に配置されてもよく、ハウジング110の一方の面に取り付けられてもよい。収納部120は、ランプLを収容可能に一方向Xに延びてもよい。また、収納部120は、ランプLを収容可能なようにハウジング110の一方の面を基準として上側、例えば、ハウジング110の内側に凹状に形成されてもよく、その横断面がアーチ状を呈してもよい。すなわち、収納部120は、下部にランプLを収容するために上側に窪んだ凹溝121が形成されてもよい。凹溝121は、ランプLを収容してもよく、凹溝121の内周面である凹面122がランプLの背面と対向してもよい。ここで、ランプLの外周面の全領域において基板支持部300を向く外周面の下部領域をランプLの正面と呼び、これを除く外周面の残りである上部領域をランプLの背面と呼ぶ。   The storage unit 120 may be disposed inside the housing 110 or may be attached to one surface of the housing 110. The storage unit 120 may extend in one direction X so that the lamp L can be stored. In addition, the storage unit 120 may be formed in a concave shape on the upper side of the housing 110 so that the lamp L can be stored, for example, the inner side of the housing 110, and the cross section thereof has an arch shape. Also good. That is, the storage part 120 may be formed with a concave groove 121 that is recessed upward to accommodate the lamp L in the lower part. The concave groove 121 may accommodate the lamp L, and the concave surface 122 that is the inner peripheral surface of the concave groove 121 may face the back surface of the lamp L. Here, in the entire region of the outer peripheral surface of the lamp L, the lower region of the outer peripheral surface facing the substrate support unit 300 is referred to as the front surface of the lamp L, and the upper region that is the remaining outer peripheral surface is referred to as the rear surface of the lamp L.

凹面122は、反射鏡を備えていてもよい。反射鏡は、光を基板支持台300に向かって屈折させてもよく、基板支持台300に載置された基板Sに光を集束させてもよい。反射鏡は、凹面122と一体形に形成されるか、又は別途の部材として配備され、凹面122に着脱されてもよい。光の屈折及び集束のための反射鏡の具体的な曲面の形状及び材料は、特に限定されない。   The concave surface 122 may include a reflecting mirror. The reflecting mirror may refract the light toward the substrate support base 300 or focus the light on the substrate S placed on the substrate support base 300. The reflecting mirror may be formed integrally with the concave surface 122 or may be provided as a separate member and attached to or detached from the concave surface 122. The shape and material of the specific curved surface of the reflecting mirror for refraction and focusing of light are not particularly limited.

収納部120は、上部に上側に突き出た突起が形成されてもよく、突起は、一方向Xに延びてもよい。突起は、リッド112に支持されてもよい。   The storage unit 120 may be formed with a protrusion protruding upward at the top, and the protrusion may extend in one direction X. The protrusion may be supported by the lid 112.

一方、本体111、リッド112及び収納部120の間の空間に冷媒路が形成されてもよい。冷媒路は、冷媒配管(図示せず)と連結されてもよい。冷媒配管は、冷媒路に冷媒を供給し、冷媒路から冷媒を回収してもよい。冷媒は、冷媒路に沿って流れ、収納部120と接触し、収納部120の温度を収納部120の耐熱特性未満の温度に冷却させてもよい。冷媒としては、例えば、水が挙げられる。   Meanwhile, a refrigerant path may be formed in a space between the main body 111, the lid 112, and the storage unit 120. The refrigerant path may be connected to a refrigerant pipe (not shown). The refrigerant pipe may supply the refrigerant to the refrigerant path and collect the refrigerant from the refrigerant path. The refrigerant may flow along the refrigerant path, come into contact with the storage unit 120, and cool the temperature of the storage unit 120 to a temperature lower than the heat resistance characteristic of the storage unit 120. An example of the refrigerant is water.

防汚部は、ランプLと収納部120との間の空間にガスの流れを生成可能なように収納部120に配設されてもよい。防汚部は、少なくとも一部がランプLと収納部120との間に位置し、一方向Xにガスを移動可能に形成される案内部材130と、ランプLと対向する収納部120の凹面122にガスを噴射可能なように案内部材130に連結される噴射手段、及び案内部材130に連結されるガス供給源160を備えていてもよい。   The antifouling part may be disposed in the storage part 120 so that a gas flow can be generated in the space between the lamp L and the storage part 120. The antifouling part is at least partially located between the lamp L and the storage part 120, and is formed so as to be able to move gas in one direction X, and the concave surface 122 of the storage part 120 facing the lamp L. In addition, an injection unit connected to the guide member 130 and a gas supply source 160 connected to the guide member 130 may be provided.

案内部材130は、その少なくとも一部がランプLと凹面122のとの間に位置してもよく、一方向Xにガスを移動可能に形成されてもよい。案内部材130は、凹溝121に配置され、一方向Xに延び、ガスを通過可能なように流路が内部に形成されてもよい。なお、案内部材130は、光を透過させ得る材料により形成されてもよい。例えば、案内部材130は、クォーツ(quartz)材により形成されてもよい。   At least a part of the guide member 130 may be positioned between the lamp L and the concave surface 122, and may be formed so that gas can move in one direction X. The guide member 130 may be disposed in the concave groove 121, may extend in one direction X, and may have a flow path formed therein so that gas can pass therethrough. The guide member 130 may be formed of a material that can transmit light. For example, the guide member 130 may be formed of a quartz material.

案内部材130は、ランプLの形状に対応し、例えば、チューブ状に形成されたリニア部材を備えていてもよい。案内部材130は、クォーツ材のガスチューブとも呼ばれる。   The guide member 130 corresponds to the shape of the lamp L, and may include, for example, a linear member formed in a tube shape. The guide member 130 is also called a quartz gas tube.

特に、案内部材130は、ランプLの外側を包むように形成され、ランプLの外周面に沿って一方向Xに延び、ランプLの外周面から離間し、ランプLの外周面との間にガスを通過させ得る流路を形成してもよい。   In particular, the guide member 130 is formed so as to wrap around the outside of the lamp L, extends in one direction X along the outer peripheral surface of the lamp L, is separated from the outer peripheral surface of the lamp L, and has a gas between the outer peripheral surface of the lamp L. You may form the flow path which can let pass.

このように、案内部材130は、中空管構造であってもよく、内部にランプLを収容してもよい。案内部材130の内周面は、ランプLの外周面から離間してもよい。これにより、収納部120内に案内部材130の配設のためのさらなる空間を確保する必要がなく、収納部120とランプLの構造的な変更なしに収納部120内において与えられた空間を活用して案内部材130を円滑に形成することができる。従って、光集積度及び粗さの分布度の低下を防ぐことができる。いうまでもなく、案内部材130は、ランプLと凹面122との間の空間に別設されてもよく、この場合、ランプLは、案内部材130の外側に配置されてもよい。   Thus, the guide member 130 may have a hollow tube structure, and the lamp L may be accommodated therein. The inner peripheral surface of the guide member 130 may be separated from the outer peripheral surface of the lamp L. Accordingly, it is not necessary to secure a further space for arranging the guide member 130 in the storage unit 120, and the space provided in the storage unit 120 is utilized without structural changes of the storage unit 120 and the lamp L. Thus, the guide member 130 can be formed smoothly. Therefore, it is possible to prevent a decrease in the degree of optical integration and roughness distribution. Needless to say, the guide member 130 may be provided separately in a space between the lamp L and the concave surface 122, and in this case, the lamp L may be disposed outside the guide member 130.

噴射手段は、凹面122にガスを噴射可能に案内部材130と連結されてもよい。例えば、噴射手段は、案内部材130を貫通し、流路と連通され、一方向Xに配列する噴射孔hを備えていてもよい。いうまでもなく、噴射手段は、別途のノズルや噴射管の形状に倣って形成され、案内部材130に取り付けられて流路に連結されてもよい。すなわち、噴射手段は、案内部材130内のガスを凹面122に直接的に噴射可能である限り、その形状を問わない。   The injection means may be connected to the guide member 130 so that gas can be injected into the concave surface 122. For example, the ejection unit may include ejection holes h that penetrate the guide member 130, communicate with the flow path, and are arranged in one direction X. Needless to say, the injection means may be formed following the shape of a separate nozzle or injection tube, attached to the guide member 130 and connected to the flow path. That is, the shape of the injection unit is not limited as long as the gas in the guide member 130 can be directly injected onto the concave surface 122.

図5を参照すると、噴射孔hは、複数の配列を形成するように他方向Yに離間してもよく、噴射孔hの複数の配列は、ランプLの一方向の中心軸(図示せず)の両側に等距離で離間してもよい。すなわち、噴射孔hは、案内部材130の背面に一方向Xへの配列を複数形成してもよく、各配列は、案内部材130の背面の中心部、例えば、背面の頂上領域から左右に等間隔で離間する。このとき、噴射孔hからなる配列は、偶数に形成されてもよい。一方、例えば、配列が奇数である場合、一つの配列は、案内部材130の背面の頂上領域に一方向Xに一列に形成されてもよい。このとき、案内部材130の横断面上において、案内部材130の中心点と他方向Yへの最外郭配列を形成する噴射孔hをそれぞれ結んだ連結線同士の内角θは、180°以内であってもよい。すなわち、噴射孔hは、案内部材130の前面から離間し、背面の上に配列されてもよい。   Referring to FIG. 5, the injection holes h may be spaced apart in the other direction Y so as to form a plurality of arrays, and the plurality of arrays of injection holes h is a central axis in one direction of the lamp L (not shown). ) May be equidistant from each other. In other words, the injection holes h may be formed in a plurality of arrangements in one direction X on the back surface of the guide member 130, and each array is centered on the back surface of the guide member 130, for example, left and right from the top area of the back surface. Separate at intervals. At this time, the array of the injection holes h may be formed in an even number. On the other hand, for example, when the arrangement is an odd number, one arrangement may be formed in a line in one direction X in the top area of the back surface of the guide member 130. At this time, on the cross section of the guide member 130, the inner angle θ between the connecting lines connecting the center point of the guide member 130 and the injection holes h forming the outermost array in the other direction Y is within 180 °. May be. That is, the injection holes h may be spaced apart from the front surface of the guide member 130 and arranged on the back surface.

また、図6を参照すると、噴射孔hは、一つの一方向の配列を形成し、凹面122の中心部に該凹面122と対向するように配列されてもよい。すなわち、噴射孔hは、凹面122の中心部と対向するように、案内部材130の背面の中心部である頂上領域に、一方向Xに一列に配列されてもよい。   Referring to FIG. 6, the injection holes h may form one unidirectional array, and may be arranged at the center of the concave surface 122 so as to face the concave surface 122. That is, the injection holes h may be arranged in a line in one direction X in the top region that is the central portion of the back surface of the guide member 130 so as to face the central portion of the concave surface 122.

これらの噴射孔hの配列により、凹面122において屈折されて、基板支持台300の方向を向くガスの流れが、他方向Yに均一に形成可能となる。すなわち、噴射孔hの上述した配列により、凹溝121内において、凹面122の下方に向かって基板支持台300に流れるガスの流れが他方向Yに均一となる。   Due to the arrangement of the injection holes h, a gas flow that is refracted on the concave surface 122 and faces the direction of the substrate support 300 can be uniformly formed in the other direction Y. That is, due to the above-described arrangement of the injection holes h, the flow of gas flowing in the substrate support base 300 toward the lower side of the concave surface 122 becomes uniform in the other direction Y in the concave groove 121.

また、これらの噴射孔hの配列によれば、ガスが直接的に基板支持台300に向かって流れることなく、ガスが凹面122に向かって先に噴射された後、凹面122において屈折されて基板支持台300に向かって導かれる。従って、ガスの噴射圧によってランプLと基板Sとが損なわれることを防ぐことができ、その結果、凹面122をガスで包んで異物から保護できる程度の十分な噴射圧により、ガスを円滑に噴射することができる。   Further, according to the arrangement of these injection holes h, the gas is not directly flowed toward the substrate support base 300, but after the gas is first jetted toward the concave surface 122, it is refracted at the concave surface 122 and is refracted. It is guided toward the support base 300. Therefore, it is possible to prevent the lamp L and the substrate S from being damaged by the gas injection pressure, and as a result, the gas is smoothly injected by a sufficient injection pressure that can wrap the concave surface 122 with the gas and protect it from foreign substances. can do.

噴射孔hは、凹面122に向かって噴射されるガスの流れを形成し、凹面122に噴射されるガスは、凹面122にガス保護膜層を形成して、該凹面122を清浄に保護することができる。次いで、ガスは、下方に下降しながらランプLと凹面122との間の狭い隙間を封止して、異物が凹面122の中心部に向かって流入することを、根源的に遮断することができる。特に、ガスの流れがランプLの下側に形成されるので、異物の流入を源泉的に遮断することができる。   The injection hole h forms a flow of gas injected toward the concave surface 122, and the gas injected to the concave surface 122 forms a gas protective film layer on the concave surface 122 to cleanly protect the concave surface 122. Can do. Next, the gas can be blocked fundamentally from flowing in toward the center of the concave surface 122 by sealing the narrow gap between the lamp L and the concave surface 122 while descending downward. . In particular, since the gas flow is formed on the lower side of the lamp L, the inflow of foreign matter can be blocked in a source manner.

案内部材130と噴射孔hとをまとめて、シャワーチューブと呼ぶ。   The guide member 130 and the injection hole h are collectively called a shower tube.

本発明の実施の形態によれば、凹溝121内にガスの流れを形成する構成要素としてシャワーチューブを採択するので、例えば、凹面122に噴射孔hを別設しなくても済む。従って、凹面122、例えば、反射鏡の放物面の形状をそのまま保つことができ、光の輻射、反射及び屈折のロス(loss)なく、基板支持台300に向かって光を均一に屈折させることができる。すなわち、シャワーチューブを用いて、反射鏡の構造的な変形及び損傷を発生することなく、凹溝121内にガスの流れを形成することができる。   According to the embodiment of the present invention, since a shower tube is adopted as a component that forms a gas flow in the concave groove 121, for example, it is not necessary to separately provide the injection hole h in the concave surface 122. Therefore, the shape of the concave surface 122, for example, the paraboloid of the reflecting mirror can be maintained as it is, and light can be refracted uniformly toward the substrate support base 300 without loss of light radiation, reflection, and refraction. Can do. That is, a gas flow can be formed in the concave groove 121 using the shower tube without causing structural deformation and damage of the reflecting mirror.

一方、本発明の実施の形態に係るヒータブロックは、基板の熱処理に用いられるので、一方向Xへのガスの分布もまた肝要である。   On the other hand, since the heater block according to the embodiment of the present invention is used for heat treatment of the substrate, the gas distribution in one direction X is also important.

図8は本発明の実施の形態に係る基板の熱処理工程時のランプと反射鏡との間のガスの流れを説明するためのグラフであり、図9は本発明の変形例に係る防汚部のガス供給流量別にガスの噴射流速を示すグラフであり、図10は本発明の実施の形態に係る防汚部のガス供給流量別にガスの噴射流速を示すグラフである。   FIG. 8 is a graph for explaining the gas flow between the lamp and the reflecting mirror during the heat treatment step of the substrate according to the embodiment of the present invention, and FIG. 9 is an antifouling part according to a modification of the present invention. 10 is a graph showing the gas injection flow rate for each gas supply flow rate, and FIG. 10 is a graph showing the gas injection flow rate for each gas supply flow rate of the antifouling part according to the embodiment of the present invention.

図8から図10に基づいて、噴射孔hの一方向Xの位置別の直径について説明する。   The diameter for each position in the one direction X of the injection hole h will be described with reference to FIGS.

流体の流れをシミュレーションできる商用プログラムを用いて、本発明の実施の形態に係るヒータブロックをモデリングし、噴射孔の直径、配列及び数を異ならせて、案内部材130にガスを種々の流量で注入し、噴射孔から噴射されるガスの流速をコンピュータによって解析した。   Using a commercial program capable of simulating the fluid flow, the heater block according to the embodiment of the present invention is modeled, and the diameter, arrangement and number of the injection holes are varied, and the gas is injected into the guide member 130 at various flow rates. The flow rate of the gas injected from the injection hole was analyzed by a computer.

以下に示す数値は、本発明の実施の形態を説明するための単なる例示に過ぎず、本発明の実施の形態を限定するためのものではない。   The numerical values shown below are merely examples for explaining the embodiments of the present invention, and are not intended to limit the embodiments of the present invention.

図8は、案内部材130の一方向の長さを118.55cmとしてモデリングし、噴射孔hの一方向の数を17個としてモデリングして、案内部材130の一方向の位置別の流速を解析した結果である。図8の解析結果は、噴射孔の一方向の位置別の流速が均一になるように直径の変化が考慮されていない場合の結果である。   In FIG. 8, the length of one direction of the guide member 130 is modeled as 118.55 cm, the number of one direction of the injection hole h is modeled as 17, and the flow velocity according to the position of the guide member 130 in one direction is analyzed. It is the result. The analysis result of FIG. 8 is a result when the change of the diameter is not considered so that the flow velocity for each position in one direction of the injection hole is uniform.

次いで、図9(a)の解析結果を参照すると、噴射孔hを一つの配列として形成し、噴射孔hの数を17個とし、噴射孔同士の間隔を70mmとしてモデリングし、案内部材130に供給されるガスの流量をそれぞれ3l/min、5l/min、10l/min、20l/min、30l/min、40l/min、50l/min、60l/min、70l/min、80l/min、90l/min、及び100l/minに変えていきながら、噴射孔hにおいて測定された流速値をそれぞれA線〜L線で示す。このとき、噴射孔の直径は、1.1mmとしている。   Next, referring to the analysis result of FIG. 9A, the injection holes h are formed as one array, the number of the injection holes h is 17, and the interval between the injection holes is modeled as 70 mm. The flow rate of the supplied gas is 3 l / min, 5 l / min, 10 l / min, 20 l / min, 30 l / min, 40 l / min, 50 l / min, 60 l / min, 70 l / min, 80 l / min, 90 l / respectively. While changing to min and 100 l / min, the flow velocity value measured in the injection hole h is shown by A line-L line, respectively. At this time, the diameter of the injection hole is 1.1 mm.

図9(b)は、図9(a)の解析条件において、噴射孔の直径を1.0mmに変更し、噴射孔の個数を20個に変更し、ピッチ、すなわち、噴射孔同士の間隔を60mmに変更した後に、解析を行った結果である。   FIG. 9B shows the analysis conditions of FIG. 9A, the diameter of the injection holes is changed to 1.0 mm, the number of injection holes is changed to 20, and the pitch, that is, the interval between the injection holes is changed. It is the result of analyzing after changing to 60 mm.

図10(a)及び(b)は、図9(a)及び(b)の解析条件において、噴射孔hの配列を二列に変更した後、残りの条件を保持した状態でそれぞれ解析した結果である。このとき、二列分の配列のうち、一つの配列を形成する左側の噴射孔と、他の配列を形成する右側の噴射孔とを一方向Xへの位置ごとに、各流速を同様に解析した。   FIGS. 10 (a) and 10 (b) show results obtained by analyzing the analysis conditions in FIGS. 9 (a) and 9 (b) after changing the arrangement of the injection holes h into two rows and maintaining the remaining conditions. It is. At this time, among the two rows of arrangements, the left injection holes forming one arrangement and the right injection holes forming the other arrangement are similarly analyzed for each position in one direction X. did.

図9及び図10の解析結果から明らかなように、噴射孔hにおいて流速が均一に形成される。すなわち、案内部材130の長さと噴射孔hの直径との関係を上述した解析条件のように適宜調節すると、噴射孔hにおいて均一な速度でガスを噴射できるということが分かる。   As is clear from the analysis results of FIGS. 9 and 10, the flow velocity is uniformly formed in the injection hole h. That is, it can be seen that gas can be injected at a uniform speed in the injection hole h by appropriately adjusting the relationship between the length of the guide member 130 and the diameter of the injection hole h as in the analysis conditions described above.

いうまでもなく、上述した方式の他に、別の方式により噴射孔hから噴射されるガスの流速を一方向の位置別に均一に制御することができる。   Needless to say, in addition to the method described above, the flow rate of the gas injected from the injection hole h can be uniformly controlled for each position in one direction by another method.

以下、引き続き、図1から図7に基づいて、本発明の実施の形態に係るヒータブロック100について説明する。   Hereinafter, the heater block 100 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 7.

例えば、噴射孔hは、一方向Xに等間隔で離間し、流路の上流からのその距離に応じて直径を異ならせて、各噴射孔hから噴射されるガスの流速を一方向Xに均一に制御することができる。また、噴射孔hを互いに同一の直径に形成し、流路の上流からの距離に応じて各噴射孔hの相互間の間隔を異ならせて形成することにより、当該噴射孔hから噴射されるガスの流速を一方向Xに均一に制御することができる。これらに加えて、噴射孔hから噴射されるガスの流速を、一方向の位置別に均一に制御する方式は多岐に亘る。   For example, the injection holes h are spaced at equal intervals in one direction X, and the diameters thereof are varied according to the distance from the upstream of the flow path, so that the flow velocity of the gas injected from each injection hole h is changed to the one direction X. It can be controlled uniformly. In addition, the injection holes h are formed to have the same diameter, and the injection holes h are formed at different intervals according to the distance from the upstream of the flow path, so that the injection holes h are injected. The gas flow rate can be uniformly controlled in one direction X. In addition to these, there are various methods for uniformly controlling the flow velocity of the gas injected from the injection hole h for each position in one direction.

ここで、流路の上流とは、ガスが先に通過する部分であり、その下流とは、ガスが後で通過する部分である。   Here, the upstream of the flow path is a portion through which gas passes first, and the downstream thereof is a portion through which gas passes later.

ガス供給源160は、ランプソケット140を介して、案内部材130に連結されてもよい。ガス供給源160は、案内部材130の両端部に連結されてもよく、不活性ガス、例えば、アルゴンガス又は窒素ガスを案内部材130の一方の端部に供給し、案内部材130の他方の端部において不活性ガスを回収してもよい。これにより、ガスは、案内部材130の内部を一方向Xに流れることができる。各噴射孔hを介して凹面122に向かって噴射可能である。   The gas supply source 160 may be connected to the guide member 130 via the lamp socket 140. The gas supply source 160 may be connected to both ends of the guide member 130, supplies an inert gas such as argon gas or nitrogen gas to one end of the guide member 130, and the other end of the guide member 130. The inert gas may be recovered in the part. Thereby, the gas can flow in the one direction X inside the guide member 130. It is possible to inject toward the concave surface 122 through each injection hole h.

以上、一つのランプLを基準として、ヒータブロック100の構造について説明したが、ランプLは複数配備され、他方向Yに配列されて板状の熱源を形成してもよい。すなわち、ランプLの数は多種多様であってもよい。例えば、ランプLの数は少なくとも一つであってもよく、ヒータブロック100の一方の面の上にリニア状に配列されてもよい。   The structure of the heater block 100 has been described with reference to one lamp L. However, a plurality of lamps L may be provided and arranged in the other direction Y to form a plate-shaped heat source. That is, the number of lamps L may be various. For example, the number of lamps L may be at least one, and may be linearly arranged on one surface of the heater block 100.

ヒータブロック100に複数のランプLが配備されれば、収納部120は複数配備されてそれぞれのランプLを収容し、且つ、案内部材130は複数配備されてそれぞれの収納部120と対向し、内部にそれぞれのランプLを収容し、それぞれの内周面がそれぞれのランプLの外周面から離間してもよい。ガス供給源160は、案内部材130と並列に連結されてもよい。いうまでもなく、複数のガス供給源160が配備されて、それぞれの案内部材130と直列に連結されてもよい。   If a plurality of lamps L are provided in the heater block 100, a plurality of storage units 120 are provided to store the respective lamps L, and a plurality of guide members 130 are provided to face each of the storage units 120, The respective lamps L may be accommodated, and the inner peripheral surfaces thereof may be separated from the outer peripheral surfaces of the respective lamps L. The gas supply source 160 may be connected in parallel with the guide member 130. Needless to say, a plurality of gas supply sources 160 may be provided and connected to the respective guide members 130 in series.

また、噴射手段は、それぞれの案内部材130に配備されてもよい。すなわち、噴射孔hは、ランプLと対向する凹面122にガスを噴射可能なようにそれぞれの案内部材130を貫通し、それぞれの案内部材130の上に一方向Xに配列されてもよい。このとき、噴射孔hは、凹面122の中心部に対向するか、又は案内部材130の上において複数の配列を形成するように、他方向Yに離間して案内部材130の一方向の中心軸(図示せず)に対称となり、案内部材130の背面に位置してもよい。   Further, the ejection unit may be provided in each guide member 130. That is, the injection holes h may pass through the respective guide members 130 so that gas can be injected into the concave surface 122 facing the lamp L, and may be arranged in one direction X on the respective guide members 130. At this time, the injection hole h faces the central portion of the concave surface 122 or is spaced apart in the other direction Y so as to form a plurality of arrays on the guide member 130, and the central axis in one direction of the guide member 130. (Not shown) may be symmetrical and may be located on the back surface of the guide member 130.

更に、噴射孔hは、一方向Xに等間隔で離間して、それぞれ異なる直径に形成されるか、又は同一の直径に形成されて、一方向に相互間の間隔が異なっていてもよい。   Furthermore, the injection holes h may be spaced apart at equal intervals in one direction X and formed with different diameters, or may be formed with the same diameter, and may have different intervals in one direction.

以下、本発明の実施の形態に係る熱処理方法について説明する。このとき、上述した内容と重複する説明は省略する。本発明の実施の形態に係る熱処理方法は、基板と対向するように配置されたランプを用いて、基板を熱処理する方法であって、ランプLを用いて光を生成する過程と、ランプLの背面に配置された凹面122を用いて、基板Sに光を集束させる過程と、ランプLと凹面122との間の空間にガスの流れを生成して、凹面122の汚れを防ぐ過程とを含む。   Hereinafter, a heat treatment method according to an embodiment of the present invention will be described. At this time, the description which overlaps with the content mentioned above is abbreviate | omitted. A heat treatment method according to an embodiment of the present invention is a method of heat-treating a substrate using a lamp disposed so as to face the substrate, the process of generating light using the lamp L, The process includes focusing the light on the substrate S using the concave surface 122 disposed on the back surface, and generating a gas flow in the space between the lamp L and the concave surface 122 to prevent the concave surface 122 from being contaminated. .

ランプLにおいて光を生成し、凹面122を用いて基板Sに光を集束させて該基板Sを熱処理する間に、凹面122が異物により汚れると、該凹面122の熱効率が落ちる虞がある。   If light is generated in the lamp L, the light is focused on the substrate S using the concave surface 122 and the substrate S is heat-treated, if the concave surface 122 is contaminated by foreign matter, the thermal efficiency of the concave surface 122 may be reduced.

従って、基板Sを熱処理する間に、防汚部を用いて、ランプLと凹面122との間の空間にガスの流れを生成して凹面122の汚れを防ぐ。   Therefore, during the heat treatment of the substrate S, the antifouling portion is used to generate a gas flow in the space between the lamp L and the concave surface 122 to prevent the concave surface 122 from being contaminated.

詳しくは、ランプLの外側に配置された案内部材130を介し、ランプLの外周面に沿って該ランプLが延びる方向にガスを移動させる。このとき、ガスは、不活性ガスを含んでいてもよい。なお、ガスは、ランプLが延びる方向に移動する間に、該ランプLと接触し且つ熱交換をして昇温してもよい。   Specifically, the gas is moved in the direction in which the lamp L extends along the outer peripheral surface of the lamp L via the guide member 130 disposed outside the lamp L. At this time, the gas may contain an inert gas. Note that the gas may be heated by contacting the lamp L and exchanging heat while moving in the direction in which the lamp L extends.

次いで、ランプLが延びる方向に案内部材130の上に配列された噴射孔hによって凹面122にガスを噴射し、噴射されたガスによって凹面122を保護する。このとき、一方向及び他方向に、凹面122に均一にガスを噴射する。なお、凹面122を用いて、ガスの流れを基板Sに向かって屈折させて、該基板Sに昇温したガスを供給する。   Next, gas is injected to the concave surface 122 by the injection holes h arranged on the guide member 130 in the direction in which the lamp L extends, and the concave surface 122 is protected by the injected gas. At this time, gas is uniformly injected onto the concave surface 122 in one direction and the other direction. Note that the concave surface 122 is used to refract the gas flow toward the substrate S, and the heated gas is supplied to the substrate S.

これらの過程は、同時に又は一緒に行われてもよく、また、任意の順序に従って順次に行われてもよい。一方、ガスを用いて凹面122の汚れを防ぐ間に、光は案内部材130を透過してもよく、基板Sと凹面122とに円滑に発せられてもよい。次いで、基板Sの熱処理が終わると、ガスの供給を中断し、基板Sを取り替えた後、次回の基板の熱処理を行う。   These processes may be performed simultaneously or together, and may be performed sequentially in any order. Meanwhile, while gas is used to prevent the concave surface 122 from being contaminated, light may pass through the guide member 130 or may be emitted smoothly to the substrate S and the concave surface 122. Next, when the heat treatment of the substrate S is completed, the gas supply is interrupted, the substrate S is replaced, and then the next heat treatment of the substrate is performed.

本発明の実施の形態によれば、凹面、すなわち、反射鏡の汚れを防ぐことができ、工程の熱効率を保つことができる。なお、ガスを用いて、基板Sの温度を更に均一に制御することができる。すなわち、防汚部は、ガスを反射鏡の防汚及び基板Sの温度の制御という二つの目的のために種々に活用することができる。   According to the embodiment of the present invention, it is possible to prevent the concave surface, that is, the contamination of the reflecting mirror, and to maintain the thermal efficiency of the process. Note that the temperature of the substrate S can be more uniformly controlled using the gas. That is, the antifouling part can use the gas variously for the two purposes of antifouling the reflecting mirror and controlling the temperature of the substrate S.

上述した本発明の実施の形態は、その説明のためのものであり、その制限のためのものではない。上述した本発明の実施の形態に開示された構成と方式とは、組み合わせたり交差したりして種々の形態に変形される筈であり、このような変形例もまた、本発明の範囲内であると見なされるということに留意すべきである。すなわち、本発明は、特許請求の範囲及びこれと均等な技術的思想の範囲内において異なる種々の形態に具体化され、本発明が属する技術分野における当業者であれば、本発明の技術的思想の範囲内において種々の実施の形態が採用可能であるということが理解できる筈である。   The above-described embodiment of the present invention is for explanation, not for limitation. The configurations and methods disclosed in the embodiments of the present invention described above should be combined and crossed to be modified into various forms, and such modifications are also within the scope of the present invention. It should be noted that it is considered to be. That is, the present invention is embodied in various different forms within the scope of the claims and the technical idea equivalent thereto, and those skilled in the art to which the present invention belongs will be able to implement the technical idea of the present invention. It should be understood that various embodiments can be employed within the scope of the above.

Claims (21)

一方向に延びるランプと、
前記ランプを収容可能に形成されるハウジングと、
前記ハウジングの一方の面に取り付けられ、前記ランプを収容可能なように凹部を備える収納部と、
前記ランプと前記収納部との間の空間にガスの流れを生成可能なように前記収納部に配設される防汚部と、
を備えるヒータブロック。
A lamp extending in one direction;
A housing formed to accommodate the lamp;
A storage unit attached to one surface of the housing and provided with a recess so as to store the lamp;
An antifouling part disposed in the storage part so that a gas flow can be generated in a space between the lamp and the storage part;
A heater block comprising:
前記防汚部は、
少なくとも一部が前記ランプと前記収納部との間に位置し、一方向にガスを移動可能に形成される案内部材と、
前記ランプと対向する前記凹部に前記ガスを噴射可能なように前記案内部材に連結される噴射手段と、
前記案内部材に連結されるガス供給源と、
を備える請求項1に記載のヒータブロック。
The antifouling part is
A guide member that is at least partially located between the lamp and the storage portion and is formed to be able to move gas in one direction;
Injection means connected to the guide member so that the gas can be injected into the recess facing the lamp;
A gas supply source coupled to the guide member;
A heater block according to claim 1.
前記案内部材は、一方向に延び、前記ガスを通過させ得る流路が内部に形成される請求項2に記載のヒータブロック。   The heater block according to claim 2, wherein the guide member extends in one direction, and a flow path through which the gas can pass is formed. 前記案内部材は、前記ランプの外側を包むように形成され、前記ランプの外周面に沿って一方向に延び、前記外周面から離間して前記外周面との間に前記ガスを通過させ得る流路を形成する請求項2に記載のヒータブロック。   The guide member is formed so as to wrap the outside of the lamp, extends in one direction along the outer peripheral surface of the lamp, and is a flow path that allows the gas to pass between the outer peripheral surface and the outer peripheral surface. The heater block according to claim 2 which forms. 前記案内部材は、光を透過させ得る材質により形成される請求項2乃至請求項4のいずれか一項に記載のヒータブロック。   The heater block according to any one of claims 2 to 4, wherein the guide member is formed of a material capable of transmitting light. 前記噴射手段は、前記案内部材を貫通し、前記流路と連通され、一方向に配列する噴射孔を備える請求項3又は請求項4に記載のヒータブロック。   5. The heater block according to claim 3, wherein the ejection unit includes ejection holes that penetrate the guide member, communicate with the flow path, and are arranged in one direction. 前記噴射孔は、前記凹部の中心部に対向する請求項6に記載のヒータブロック。   The heater block according to claim 6, wherein the injection hole faces a central portion of the recess. 前記噴射孔は、複数の配列を形成するように一方向に交差する他方向に離間し、
前記複数の配列は、前記ランプの一方向の中心軸の両側に等距離で離間する請求項6に記載のヒータブロック。
The injection holes are spaced apart in the other direction intersecting in one direction so as to form a plurality of arrays,
The heater block according to claim 6, wherein the plurality of arrays are equidistantly spaced on both sides of a central axis in one direction of the lamp.
前記案内部材の横断面上において、前記案内部材の中心点と前記噴射孔とをそれぞれ結ぶ連結線同士の内角は、180°以内である請求項8に記載のヒータブロック。   9. The heater block according to claim 8, wherein an inner angle of connecting lines respectively connecting a center point of the guide member and the injection hole is within 180 ° on a cross section of the guide member. 前記噴射孔は、一方向に等間隔で離間し、前記流路の上流からの距離に応じて直径が異なる請求項6に記載のヒータブロック。   The heater block according to claim 6, wherein the injection holes are spaced apart at equal intervals in one direction and have different diameters according to a distance from the upstream of the flow path. 前記噴射孔は、互いに同一の直径に形成され、前記流路の上流からの距離に応じて相互間の間隔が異なる請求項6に記載のヒータブロック。   The heater block according to claim 6, wherein the injection holes are formed to have the same diameter, and a distance between the injection holes differs according to a distance from the upstream of the flow path. 前記ランプは、複数配備され、他方向に配列されて板状の熱源を形成し、
前記収納部は、複数配備されてそれぞれのランプを収容し、
前記案内部材は、複数配備されてそれぞれの収納部に対向し、
前記噴射手段は、それぞれの案内部材に配備される請求項2に記載のヒータブロック。
A plurality of the lamps are arranged and arranged in the other direction to form a plate-shaped heat source,
A plurality of the storage units are provided to store each lamp,
A plurality of the guide members are arranged to face the respective storage units,
The heater block according to claim 2, wherein the ejection unit is provided in each guide member.
基板を処理し得る空間が内部に形成されるチャンバと、
前記チャンバの内部に配置される基板支持部と、
前記基板支持部と対向し、前記チャンバの一方の側に取り付けられるヒータブロックと、
を備え、
前記ヒータブロックは、前記基板支持部と対向する一方の面に、
一方向に延びるランプ、前記ランプを収容する収納部、及び前記収納部の前記ランプと対向する面の汚れを防ぐ防汚部を備える熱処理装置。
A chamber in which a space capable of processing a substrate is formed;
A substrate support disposed within the chamber;
A heater block facing the substrate support and attached to one side of the chamber;
With
The heater block is on one surface facing the substrate support part,
The heat processing apparatus provided with the lamp | ramp extended in one direction, the storage part which accommodates the said lamp | ramp, and the antifouling part which prevents the surface of the said storage part facing the said lamp | ramp.
前記収納部は、前記ランプを収容可能なように凹部を備え、前記凹部は、前記チャンバの内部に露出され、
前記防汚部は、前記ランプと、該ランプと対向する前記凹部の凹面との間の空間にガスの流れを生成可能に形成される請求項13に記載の熱処理装置。
The storage unit includes a recess so that the lamp can be stored, and the recess is exposed to the inside of the chamber.
14. The heat treatment apparatus according to claim 13, wherein the antifouling part is formed so as to be capable of generating a gas flow in a space between the lamp and the concave surface of the concave part facing the lamp.
前記防汚部は、
一方向に延び、内部に前記ランプを収容し、内周面が前記ランプの外周面から離間する中空管構造の案内部材と、
前記凹面にガスを噴射可能に前記案内部材を貫通し、前記案内部材の上に一方向に配列する噴射孔と、
前記案内部材に連結されるガス供給源と、
を備え、
前記案内部材は、光を透過させ得る材料により形成される請求項14に記載の熱処理装置。
The antifouling part is
A hollow tube structure guide member extending in one direction, containing the lamp therein, and having an inner peripheral surface spaced from the outer peripheral surface of the lamp;
An injection hole that penetrates the guide member so that gas can be injected into the concave surface and is arranged in one direction on the guide member;
A gas supply source coupled to the guide member;
With
The heat treatment apparatus according to claim 14, wherein the guide member is formed of a material that can transmit light.
前記噴射孔は、前記凹面の中心部に対向するか、又は前記案内部材上において複数の配列を形成するように一方向に交差する他方向に離間し、案内部材の一方向の中心軸に対称となり、前記案内部材の背面側に位置する請求項15に記載の熱処理装置。   The injection hole is opposed to the central portion of the concave surface, or is spaced apart in the other direction intersecting in one direction so as to form a plurality of arrays on the guide member, and is symmetric with respect to the central axis in one direction of the guide member The heat treatment apparatus according to claim 15, which is located on a back side of the guide member. 前記噴射孔は、一方向に等間隔で離間して互いに異なる直径に形成されるか、又は互いに同一の直径に形成され、一方向に相互間の間隔が異なる請求項15に記載の熱処理装置。   The heat treatment apparatus according to claim 15, wherein the injection holes are spaced apart at equal intervals in one direction and are formed to have different diameters, or are formed to have the same diameter and have different intervals in one direction. 基板と対向するように配置されたランプを用いて基板を熱処理する方法であって、
前記ランプを用いて光を生成する過程と、
前記ランプの背面に配置された凹面を用いて、前記基板に前記光を集束させる過程と、
前記ランプと前記凹面との間の空間にガスの流れを生成して、前記凹面の汚れを防ぐ過程と、
を含む熱処理方法。
A method of heat-treating a substrate using a lamp arranged to face the substrate,
Generating light using the lamp;
Focusing the light onto the substrate using a concave surface disposed on the back of the lamp;
Generating a gas flow in a space between the lamp and the concave surface to prevent contamination of the concave surface;
A heat treatment method comprising:
前記凹面の汚れを防ぐ過程は、
前記ランプの外側に配置された案内部材を介して、前記ランプの外周面に沿って前記ランプが延びる方向にガスを移動させる過程と、
前記ランプが延びる方向に前記案内部材の上に配列された噴射孔を用いて、前記凹面に前記ガスを噴射する過程と、
前記ガスで前記凹面を保護する過程と、
を含む請求項18に記載の熱処理方法。
The process of preventing the concave surface from being soiled
A process of moving gas in a direction in which the lamp extends along an outer peripheral surface of the lamp via a guide member disposed outside the lamp;
Injecting the gas into the concave surface using injection holes arranged on the guide member in a direction in which the lamp extends;
Protecting the concave surface with the gas;
The heat processing method of Claim 18 containing.
前記凹面の汚れを防ぐ過程は、
前記凹面を用いて、前記ガスの流れを前記基板側に屈折させ、前記基板に前記ガスを供給する過程を含む請求項19に記載の熱処理方法。
The process of preventing the concave surface from being soiled
The heat treatment method according to claim 19, comprising a step of refracting the gas flow toward the substrate using the concave surface and supplying the gas to the substrate.
前記光は、前記案内部材を透過して前記基板及び凹面に発せられ、
前記噴射孔は、前記凹面に均一に前記ガスを噴射し、
前記ガスは、不活性ガスを含み、前記ランプが延びる方向に移動する間に前記ランプと接触し且つ熱交換をして昇温する請求項19に記載の熱処理方法。
The light is transmitted to the substrate and the concave surface through the guide member,
The injection hole uniformly injects the gas to the concave surface,
The heat treatment method according to claim 19, wherein the gas includes an inert gas, and the temperature is increased by contacting the lamp and exchanging heat while the lamp moves in the extending direction.
JP2019074072A 2018-05-18 2019-04-09 Heater block, thermal treatment equipment, and its thermal processing method Pending JP2019201202A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0056921 2018-05-18
KR1020180056921A KR102161165B1 (en) 2018-05-18 2018-05-18 Heater block, apparatus and method for heating processing

Publications (1)

Publication Number Publication Date
JP2019201202A true JP2019201202A (en) 2019-11-21

Family

ID=68585721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074072A Pending JP2019201202A (en) 2018-05-18 2019-04-09 Heater block, thermal treatment equipment, and its thermal processing method

Country Status (4)

Country Link
JP (1) JP2019201202A (en)
KR (1) KR102161165B1 (en)
CN (1) CN110504187A (en)
TW (1) TW202004951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112393593A (en) * 2020-11-26 2021-02-23 重庆观致科技有限公司 Heating rod and hearth structure for improving uniformity of furnace temperature
CN117418218A (en) * 2023-12-19 2024-01-19 北京北方华创微电子装备有限公司 Air inlet assembly, air inlet device and semiconductor process chamber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102584511B1 (en) * 2020-12-07 2023-10-06 세메스 주식회사 Supproting unit and substrate treating apparutus including the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860371A (en) * 1994-08-22 1996-03-05 Touyoko Kagaku Kk Cooler of lamp for heat treating device
JPH10233370A (en) * 1997-02-20 1998-09-02 Kokusai Electric Co Ltd Heat treatment apparatus for semiconductor substrate
JP3528734B2 (en) * 2000-01-06 2004-05-24 ウシオ電機株式会社 Lamp unit of light irradiation type heat treatment equipment
US6600138B2 (en) * 2001-04-17 2003-07-29 Mattson Technology, Inc. Rapid thermal processing system for integrated circuits
KR100377011B1 (en) * 2002-11-01 2003-03-19 코닉 시스템 주식회사 Heater module of rapid thermal process apparatus
KR20100028752A (en) * 2008-09-05 2010-03-15 주성엔지니어링(주) Heating device heating substrate uniformly and substrate processing apparatus including the same
KR101338183B1 (en) * 2012-02-17 2013-12-09 (주) 디바이스이엔지 Cleaner for wafer container
JP2015088749A (en) * 2013-10-28 2015-05-07 エーピー システムズ インコーポレイテッド Substrate treatment apparatus
KR101809141B1 (en) 2014-05-29 2018-01-19 에이피시스템 주식회사 Apparatus for heating substrate and heater block

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112393593A (en) * 2020-11-26 2021-02-23 重庆观致科技有限公司 Heating rod and hearth structure for improving uniformity of furnace temperature
CN117418218A (en) * 2023-12-19 2024-01-19 北京北方华创微电子装备有限公司 Air inlet assembly, air inlet device and semiconductor process chamber

Also Published As

Publication number Publication date
KR20190131916A (en) 2019-11-27
CN110504187A (en) 2019-11-26
KR102161165B1 (en) 2020-09-29
TW202004951A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP2019201202A (en) Heater block, thermal treatment equipment, and its thermal processing method
TWI679298B (en) Support assembly for substrate backside discoloration control
US10736182B2 (en) Apparatus, systems, and methods for temperature control of substrates using embedded fiber optics and epoxy optical diffusers
KR102163083B1 (en) Temperature control apparatus including groove-routed optical fiber heating, substrate temperature control systems, electronic device processing systems, and processing methods
KR100977886B1 (en) Heat treatment apparatus and storage medium
US6437290B1 (en) Heat treatment apparatus having a thin light-transmitting window
US6860634B2 (en) Temperature measuring method, heat treating device and method, computer program, and radiation thermometer
TWI575635B (en) Apparatus and methods for rapid thermal processing
TW201724320A (en) Diode laser for wafer heating for EPI processes
TWI737715B (en) Optically heated substrate support assembly with removable optical fibers
KR20200082699A (en) A laser chip module and a laser chip module array including a VCSEL
KR20070114441A (en) Substrate processing apparatus
JP2015088749A (en) Substrate treatment apparatus
JP2015018909A (en) Thermal treatment apparatus
JP6499432B2 (en) Substrate processing equipment
KR100628561B1 (en) Apparatus of Rapid Thermal Process for thermal equilibrium
JP2017088995A (en) Vapor deposition apparatus
JP2008166287A (en) Sealing system and sealing method of glass substrate
JP6814572B2 (en) Heat treatment equipment
KR20240077647A (en) Apparatus for Manufacturing of Semiconductor for Epitaxy Process
KR102562236B1 (en) Facility for treating substrate and method for treating substrate
KR102646732B1 (en) Apparatus for substrating treatment
KR100395661B1 (en) Rapid thermal processing apparatus
JP2015018941A (en) Thermal treatment apparatus
KR20240055977A (en) Substrate processing apparatus and substrate processing method