JP2019198125A - 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置 - Google Patents

非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置 Download PDF

Info

Publication number
JP2019198125A
JP2019198125A JP2019151649A JP2019151649A JP2019198125A JP 2019198125 A JP2019198125 A JP 2019198125A JP 2019151649 A JP2019151649 A JP 2019151649A JP 2019151649 A JP2019151649 A JP 2019151649A JP 2019198125 A JP2019198125 A JP 2019198125A
Authority
JP
Japan
Prior art keywords
drs
cell
transmitted
sss
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019151649A
Other languages
English (en)
Other versions
JP6945602B2 (ja
Inventor
キム,ソンウク
Seonwook Kim
アン,ジョンクイ
Joonkui Ahn
ソ,ハンビョル
Hanbyul Seo
リー,スンミン
Seungmin Lee
パク,ジョンヒョン
Jonghyun Park
パク,ハンジュン
Hanjun Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Publication of JP2019198125A publication Critical patent/JP2019198125A/ja
Application granted granted Critical
Publication of JP6945602B2 publication Critical patent/JP6945602B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2211/00Orthogonal indexing scheme relating to orthogonal multiplex systems
    • H04J2211/003Orthogonal indexing scheme relating to orthogonal multiplex systems within particular systems or standards
    • H04J2211/005Long term evolution [LTE]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26132Structure of the reference signals using repetition

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】 本発明は非免許帯域を支援する無線接続システムに関し、特に、DRSを構成する方法、そのためのサブフレーム再設定方法、DRSを送信する方法及びこれを支援する装置を提供する。【解決手段】本発明の一実施例であって、非免許帯域を支援する無線接続システムにおいて基地局がディスカバリ参照信号(DRS)を送信する方法は、非免許帯域に構成される非免許帯域セル(Uセル)で送信されるDRSを構成するステップと、構成したDRSをDRS機会で送信するステップとを含み、DRSは、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)及びセル特定参照信号(CRS)を含み、DRS機会が発生したサブフレーム(SF)のSF番号に基づいてSSSを生成し、SF番号がSF番号0〜4である場合、SSSは、SF番号0に該当するシーケンスに基づいて生成され、SF番号がSF番号5〜9である場合、SSSは、SF番号5に該当するシーケンスに基づいて生成され得る。【選択図】 図34

Description

本発明は、非免許帯域を支援する無線接続システムに関し、特に、ディスカバリ参照信号(DRS:Discovery Reference Signal)を構成する方法、そのためのサブフレーム再設定方法、DRSを送信する方法及びこれを支援する装置に関する。
無線接続システムが音声やデータなどのような種々の通信サービスを提供するために広範囲に展開されている。一般に、無線接続システムは、可用のシステムリソース(帯域幅、送信電力など)を共有して多重ユーザとの通信を支援できる多元接続(multiple access)システムである。多元接続システムの例には、CDMA(code division multiple access)システム、FDMA(frequency division multiple access)システム、TDMA(time division multiple access)システム、OFDMA(orthogonal frequency division multiple access)システム、SC−FDMA(single carrier frequency division multiple access)システムなどがある。
本発明の目的は、非免許帯域を支援する無線接続システムにおいて効率的にデータを送受信する方法を提供することにある。
本発明の他の目的は、LAA(Licensed Assisted Access)システムで用いられるDRSを構成して送信する方法を提供することにある。
本発明の更に他の目的は、LAAシステムにおいてDRSを構成する信号を生成するためにUセル(Unlicensed Cell)のサブフレーム番号を再設定する方法を提供することにある。
本発明の更に他の目的は、LAAシステムにおいてDRS機会がいつ発生するかに関する情報を提供することにある。
本発明の更に他の目的は、これらの方法を支援する装置を提供することにある。
本発明で達成しようとする技術的目的は以上で言及した事項に制限されず、言及しなかった他の技術的課題は以下で説明する本発明の実施例から本発明が属する技術分野で通常の知識を有する者によって考慮可能である。
本発明は、非免許帯域を支援する無線接続システムに関し、特に、DRSを構成する方法、そのためのサブフレーム再設定方法、DRSを送信する方法及びこれを支援する装置を提供する。
本発明の一態様であって、非免許帯域を支援する無線接続システムにおいて基地局がディスカバリ参照信号(DRS)を送信する方法は、非免許帯域に構成される非免許帯域セ
ル(Uセル)で送信されるDRSを構成するステップと、構成したDRSをDRS機会で送信するステップとを含むことができ、DRSは、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)及びセル特定参照信号(CRS)を含み、DRS機会が発生したサブフレーム(SF)のSF番号に基づいてSSSを生成し、SF番号がSF番号0〜4である場合、SSSは、SF番号0に該当するシーケンスに基づいて生成され、SF番号がSF番号5〜9である場合、SSSは、SF番号5に該当するシーケンスに基づいて生成されてもよい。
上記方法は、DRSを送信する前に、Uセルが遊休状態であるか否かを確認するためのチャネルセンシング過程を行うステップをさらに含んでもよい。
本発明の他の態様であって、非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号(DRS)を送信する基地局は、送信器と、DRSを構成するためのプロセッサとを備えることができる。ここで、プロセッサは、非免許帯域に構成される非免許帯域セル(Uセル)で送信されるDRSを構成し;構成したDRSをDRS機会で送信器を制御して送信するように構成されてもよい。ここで、DRSはプライマリ同期信号(PSS)、セカンダリ同期信号(SSS)及びセル特定参照信号(CRS)を含み、DRS機会が発生したサブフレーム(SF)のSF番号に基づいてSSSを生成するが、SF番号がSF番号0〜4である場合、SSSは、SF番号0に該当するシーケンスに基づいて生成され、SF番号がSF番号5〜9である場合、SSSは、SF番号5に該当するシーケンスに基づいて生成されてもよい。
上記プロセッサはさらに、DRSを送信する前に、Uセルが遊休状態であるか否かを確認するためのチャネルセンシング過程を行うように構成されてもよい。
上記態様において、CRSが送信されるSFのSF番号がSF番号0〜4である場合、CRSは、SF番号0に該当するシーケンスに基づいて生成され、CRSが送信されるSFのSF番号がSF番号5〜9である場合、CSRは、SF番号5に該当するシーケンスに基づいて生成されてもよい。
DRSはSF番号0又は5でのみ物理下りリンク共有チャネル(PDSCH)と共に送信されてもよい。
DRSはチャネル状態情報−参照信号(CSI−RS)をさらに含んで構成されてもよい。
上述した本発明の態様は本発明の好適な実施例の一部に過ぎなく、本発明の技術的特徴が反映された様々な実施例が、当該技術の分野における通常の知識を有する者によって、以下で詳述する本発明の詳細な説明から導出されて理解されるであろう。
本発明の実施例によれば次のような効果がある。
第一に、非免許帯域を支援する無線接続システムにおいて効率的にデータを送受信することができる。
第二に、競合ベースのLAAシステムの特性に合わせてDRSを構成して送信することができる。
第三に、LAAシステムのUセルでサブフレームを再設定することによって、レガシー
システムである免許帯域で用いられるDRSをLAAシステムで活用することができる。
第四に、DRS機会がいつ発生するかを端末に明示的又は暗黙的に知らせることによって、端末がDRS機会にDRSを落とす(drop)確率を減らすことができる。
本発明の実施例で得られる効果は以上で言及した効果に制限されず、言及しなかった他の効果は以下の本発明の実施例についての記載から本発明が属する技術分野で通常の知識を有する者に明らかに導出されて理解できる。すなわち、本発明を実施することによる意図しない効果も本発明の実施例から当該技術分野の通常の知識を有する者によって導出できる。
本発明の理解を助けるために詳細な説明の一部として含まれる添付図面は、本発明に関する様々な実施例を提供する。また、添付図面は詳細な説明と共に本発明の実施形態を説明するために用いられる。
物理チャネル及びこれらを用いた信号送信方法を説明するための図である。 無線フレームの構造の一例を示す図である。 下りリンクスロットに対するリソースグリッド(resource grid)を例示する図である。 上りリンクサブフレームの構造の一例を示す図である。 下りリンクサブフレームの構造の一例を示す図である。 一般循環前置の場合のPUCCHフォーマット1a及び1bを示す図である。 拡張循環前置の場合のPUCCHフォーマット1a及び1bを示す図である。 一般循環前置の場合のPUCCHフォーマット2/2a/2bを示す図である。 拡張循環前置の場合のPUCCHフォーマット2/2a/2bを示す図である。 PUCCHフォーマット1a及び1bに対するACK/NACKチャネル化(channelization)を説明する図である。 同じPRB内でPUCCHフォーマット1a/1bとフォーマット2/2a/2bの混合された構造に対するチャネル化を示す図である。 PRB割当て方法を説明するための図である。 本発明の実施例で使われるコンポーネントキャリア(CC)及びLTE_Aシステムで使われるキャリア併合の一例を示す図である。 本発明の実施例で使われるクロスキャリアスケジューリングによるLTE−Aシステムのサブフレーム構造を示す図である。 本発明の実施例で使われるクロスキャリアスケジューリングによるサービングセル構成の一例を示す図である。 ブロック拡散に基づく新PUCCHフォーマットの一例を示す図である。 時間−周波数単位のリソースブロックが構成される一例を示す図である。 非同期式HARQ方式のリソース割当て及び再送信方式の一例を示す図である。 CA環境に基づいて動作するCoMPシステムの概念図である。 本発明の実施例で使用可能なUE−特定参照信号(UE−RS)が割り当てられたサブフレームの一例を示す図である。 LTE/LTE−Aシステムで使われるレガシーPDCCH(Legacy PDCCH)、PDSCH及びE−PDCCHが多重化する一例を示す図である。 LTE−Uシステムで支援するCA環境の一例を示す図である。 LBT過程の一つであるFBE動作の一例を示す図である。 FBE動作をブロック図で示した図である。 LBT過程の一つであるLBE動作の一例を示す図である。 LAAシステムで支援するDRS伝送方法を説明するための図である。 CAP(Channel Access Procedure)及びCWA(Contention Window Adjustment)を説明するための図である。 LAAシステムでDRSを送信する方法を説明するための図である。 DRS伝送パターンの一例を説明するための図である。 LAAシステムに適用可能なDRS伝送パターンを説明するための図である。 LAAシステムに適用可能なDRS伝送パターンを説明するための他の図である。 LAAシステムに適用可能なDRS伝送パターンを説明するための他の図である。 LAAシステムに適用可能なDRS伝送パターンをCRS位置に関係なく設定する方法を説明するための図である。 LAAシステムに適用可能なDRS伝送のためのサブフレーム番号を設定する方法を説明するための図である。 LAAシステムに適用可能なDRS伝送方法の一例を示す図である。 図1〜図35で説明した方法を具現できる装置を示す図である。
以下に詳しく説明する本発明の実施例は、非免許帯域を支援する無線接続システムに関し、特に、DRSを構成する方法、そのためのサブフレーム再設定方法、DRSを送信する方法及びこれを支援する装置を提供する。
以下の実施例は、本発明の構成要素と特徴を所定の形態で結合したものである。各構成要素又は特徴は、別の明示的な言及がない限り、選択的なものとして考慮することができる。各構成要素又は特徴は、他の構成要素や特徴と結合しない形態で実施することができる。また、一部の構成要素及び/又は特徴を結合して本発明の実施例を構成することもできる。本発明の実施例で説明する動作の順序は変更してもよい。ある実施例の一部の構成や特徴は他の実施例に含まれてもよく、又は他の実施例の対応する構成又は特徴に取り替えられてもよい。
図面に関する説明において、本発明の要旨を曖昧にさせうる手順又は段階などは記述を省略し、当業者のレベルで理解できるような手順又は段階も記述を省略した。
明細書全般にわたり、ある部分がある構成要素を“含む(comprising又はincluding)”というとき、これは特に反対する記載がない限り他の構成要素を排除するものではなくて他の構成要素をさらに含むことができることを意味する。また、明細書に記載した“…部”、“…機”、“モジュール”などの用語は少なくとも一つの機能又は動作を処理する単位を意味し、これはハードウェア又はソフトウェア或いはハードウェア及びソフトウェアの結合で具現されることができる。また、“一(a又はan)”、“一つ(one)”、“その(the)”及び類似関連語は本発明を記述する文脈において(特に、以下の請求項の文脈で)本明細書に他に指示されるか文脈によって明らかに反駁されることがない限り、単数及び複数のいずれも含む意味として使われることができる。
本明細書で、本発明の実施例は、基地局と移動局との間のデータ送受信関係を中心に説明した。ここで、基地局は移動局と直接通信を行うネットワークの終端ノード(terminalnode)としての意味を有する。本文書で基地局によって行われるとした特定動作は、場合によっては、基地局の上位ノード(upper node)によって行われてもよい。
すなわち、基地局を含む複数のネットワークノード(network nodes)からなるネットワークで移動局との通信のために行われる様々な動作は、基地局又は基地局以外の他のネットワークノードによって行われてもよい。ここで、「基地局」は、固定局(fixed station)、Node B、eNode B(eNB)、発展した基地局(ABS:Advanced Base Station)又はアクセスポイント(access point)などの用語に代えてもよい。
また、本発明の実施例でいう「端末(Terminal)」は、ユーザ機器(UE:User Equipment)、移動局(MS:Mobile Station)、加入者端末(SS:Subscriber Station)、移動加入者端末(MSS:Mobile Subscriber Station)、移動端末(Mobile Terminal)、又は発展した移動端末(AMS:Advanced Mobile Station)などの用語に代えてもよい。
また、送信端は、データサービス又は音声サービスを提供する固定及び/又は移動ノードを意味し、受信端は、データサービス又は音声サービスを受信する固定及び/又は移動ノードを意味する。そのため、上りリンクでは、移動局を送信端とし、基地局を受信端とすることができる。同様に、下りリンクでは、移動局を受信端とし、基地局を送信端とすることができる。
本発明の実施例は、無線接続システムであるIEEE 802.xxシステム、3GPP(3rd Generation Partnership Project)システム、3GPP LTEシステム及び3GPP2システムのうち少なくとも一つに開示された標準文書によって裏付けることができ、特に、本発明の実施例は、3GPP TS 36.211、3GPP TS 36.212、3GPP TS 36.213、3GPP
TS 36.321及び3GPP TS 36.331の文書によって裏付けることができる。すなわち、本発明の実施例において説明していない自明な段階又は部分は、上記の文書を参照して説明することができる。また、本文書で開示している用語はいずれも上記の標準文書によって説明することができる。
以下、本発明に係る好適な実施の形態を、添付の図面を参照して詳細に説明する。添付の図面と共に以下に開示される詳細な説明は、本発明の例示的な実施の形態を説明するためのもので、本発明が実施されうる唯一の実施の形態を示すためのものではない。
また、本発明の実施例で使われる特定用語は、本発明の理解を助けるために提供されたもので、このような特定用語の使用は、本発明の技術的思想を逸脱しない範囲で他の形態に変更してもよい。
例えば、送信機会区間(TxOP:Transmission Opportunity Period)という用語は送信区間又はRRP(Reserved Resource Period)という用語と等しい意味として使われることができる。また、LBT(Listen Before Talk)過程はチャネル状態が遊休であるかを判断するためのキャリアセンシング過程と同一の目的で遂行することができる。
以下では本発明の実施形態を使える無線接続システムの一例として3GPP LTE/LTE−Aシステムについて説明する。
以下の技術は、CDMA(code division multiple access)、FDMA(frequency division multiple access)、TDMA(time division multiple access)、OFDMA(orthogonal frequency division multiple access)、SC−FDMA(single carrier frequency division multiple access)などのような様々な無線接続システムに適用することができる。
CDMAは、UTRA(Universal Terrestrial Radio Access)やCDMA2000のような無線技術(radio technology)によって具現することができる。TDMAは、GSM(登録商標)(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)のような無線技術によって具現することができる。OFDMAは、IEEE 802.11(Wi−Fi)、IEEE 802.16(WiMAX)、IEEE 802−20、E−UTRA(Evolved UTRA)などのような無線技術によって具現することができる。
UTRAは、UMTS(Universal Mobile Telecommunications System)の一部である。3GPP LTE(Long Term
Evolution)は、E−UTRAを用いるE−UMTS(Evolved UMTS)の一部であって、下りリンクでOFDMAを採用し、上りリンクでSC−FDMAを採用する。LTE−A(Advanced)システムは、3GPP LTEシステムの改良されたシステムである。本発明の技術的特徴に関する説明を明確にするために、本発明の実施例を3GPP LTE/LTE−Aシステムを中心に説明するが、IEEE 802.16e/mシステムなどに適用してもよい。
1. 3GPP LTE/LTE_Aシステム
無線接続システムにおいて、端末は下りリンク(DL:Downlink)を介して基地局から情報を受信し、上りリンク(UL:Uplink)を介して基地局に情報を送信する。基地局と端末が送受信する情報は、一般データ情報及び様々な制御情報を含み、これらが送受信する情報の種類/用途によって様々な物理チャネルが存在する。
1.1 システム一般
図1は、本発明の実施例で使用できる物理チャネル及びこれらを用いた信号送信方法を説明するための図である。
電源が消えた状態で再び電源がついたり、新しくセルに進入したりした端末は、S11段階で基地局と同期を取るなどの初期セル探索(Initial cell search)作業を行う。そのために、端末は基地局から1次同期チャネル(P−SCH:Primary Synchronization Channel)及び2次同期チャネル(S−SCH:Secondary Synchronization Channel)を受信して基地局と同期を取り、セルIDなどの情報を取得する。
その後、端末は、基地局から物理放送チャネル(PBCH:Physical Bro
adcast Channel)信号を受信してセル内放送情報を取得することができる。
一方、端末は、初期セル探索段階で下りリンク参照信号(DL RS:Downlink Reference Signal)を受信して下りリンクチャネル状態を確認することができる。
初期セル探索を終えた端末は、S12段階で、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)、及び物理下りリンク制御チャネル情報に基づく物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)を受信し、より具体的なシステム情報を取得することができる。
その後、端末は、基地局への接続を完了するために、段階S13乃至段階S16のようなランダムアクセス過程(Random Access Procedure)を行うことができる。そのために、端末は、物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)を介してプリアンブル(preamble)を送信し(S13)、物理下りリンク制御チャネル及びこれに対応する物理下りリンク共有チャネルを介してプリアンブルに対する応答メッセージを受信することができる(S14)。競合ベースのランダムアクセスでは、端末は、さらなる物理ランダムアクセスチャネル信号の送信(S15)、及び物理下りリンク制御チャネル信号及びこれに対応する物理下りリンク共有チャネル信号の受信(S16)のような衝突解決手順(Contention Resolution Procedure)を行うことができる。
上述したような手順を行った端末は、その後、一般的な上りリンク/下りリンク信号送信手順として、物理下りリンク制御チャネル信号及び/又は物理下りリンク共有チャネル信号の受信(S17)、及び物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)信号及び/又は物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)信号の送信(S18)を行うことができる。
端末が基地局に送信する制御情報を総称して、上りリンク制御情報(UCI:Uplink Control Information)という。UCIは、HARQ−ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative−ACK)、SR(Scheduling Request)、CQI(Channel Quality Indication)、PMI(Precoding Matrix Indication)、RI(Rank Indication)情報などを含む。
LTEシステムにおいて、UCIは、一般的にPUCCHを介して周期的に送信するが、制御情報とトラフィックデータが同時に送信されるべき場合にはPUSCHを介して送信してもよい。また、ネットワークの要求/指示に応じてPUSCHを介してUCIを非周期的に送信してもよい。
図2には、本発明の実施例で用いられる無線フレームの構造を示す。
図2(a)は、タイプ1フレーム構造(frame structure type 1)を示す。タイプ1フレーム構造は、全二重(full duplex)FDD(Frequency Division Duplex)システムと半二重(half du
plex)FDDシステムの両方に適用することができる。
1無線フレーム(radio frame)は、
の長さを有し、
の均等な長さを有し、0から19までのインデックスが与えられた20個のスロットで構成される。1サブフレームは、2個の連続したスロットと定義され、i番目のサブフレームは、2i及び2i+1に該当するスロットで構成される。すなわち、無線フレーム(radio frame)は、10個のサブフレーム(subframe)で構成される。1サブフレームを送信するのにかかる時間をTTI(transmission time interval)という。ここで、Tsはサンプリング時間を表し、Ts=1/(15kHz×2048)=3.2552×10−8(約33ns)と表示される。スロットは、時間領域で複数のOFDMシンボル又はSC−FDMAシンボルを含み、周波数領域で複数のリソースブロック(Resource Block)を含む。
1スロットは、時間領域で複数のOFDM(orthogonal frequency division multiplexing)シンボルを含む。3GPP LTEは、下りリンクでOFDMAを使うので、OFDMシンボルは1シンボル区間(symbol period)を表現するためのものである。OFDMシンボルは、1つのSC−FDMAシンボル又はシンボル区間ということができる。リソースブロック(resource block)は、リソース割当て単位であって、1スロットで複数の連続した副搬送波(subcarrier)を含む。
全二重FDDシステムでは、各10ms区間で10個のサブフレームを下りリンク送信と上りリンク送信のために同時に用いることができる。このとき、上りリンク送信と下りリンク送信は周波数領域で区別される。一方、半二重FDDシステムでは、端末は送信と受信を同時に行うことができない。
上述した無線フレームの構造は一つの例示に過ぎず、無線フレームに含まれるサブフレームの数、サブフレームに含まれるスロットの数、又はスロットに含まれるOFDMシンボルの数は様々に変更されてもよい。
図2(b)には、タイプ2フレーム構造(frame structure type
2)を示す。タイプ2フレーム構造はTDDシステムに適用される。1無線フレームは、
の長さを有し、
の長さを有する2個のハーフフレーム(half−frame)で構成される。各ハーフフレームは、
の長さを有する5個のサブフレームで構成される。i番目のサブフレームは、2i及び2i+1に該当する各
の長さを有する2個のスロットで構成される。ここで、Tsは、サンプリング時間を表し、Ts=1/(15kHz×2048)=3.2552×10−8(約33ns)で表示される。
タイプ2フレームは、DwPTS(Downlink Pilot Time Slot)、保護区間(GP:Guard Period)、UpPTS(Uplink Pilot Time Slot)の3つのフィールドで構成される特別サブフレームを含む。ここで、DwPTSは、端末での初期セル探索、同期化又はチャネル推定に用いられる。UpPTSは、基地局でのチャネル推定と端末の上り送信同期を取るために用いられる。保護区間は、上りリンクと下りリンクとの間において下りリンク信号の多重経路遅延によって上りリンクで生じる干渉を除去するための区間である。
下記の表1に、特別フレームの構成(DwPTS/GP/UpPTSの長さ)を示す。
図3は、本発明の実施例で使用できる下りリンクスロットのリソースグリッド(resource grid)を例示する図である。
図3を参照すると、1つの下りリンクスロットは、時間領域で複数のOFDMシンボルを含む。ここで、1つの下りリンクスロットは、7個のOFDMシンボルを含み、1つのリソースブロックは周波数領域で12個の副搬送波を含むとするが、これに限定されるものではない。
リソースグリッド上で各要素(element)をリソース要素(resource element)とし、1つのリソースブロックは12×7個のリソース要素を含む。下りリンクスロットに含まれるリソースブロックの数NDLは、下りリンク送信帯域幅(bandwidth)に依存する。上りリンクスロットの構造は、下りリンクスロットの構造と同一であってもよい。
図4は、本発明の実施例で使用できる上りリンクサブフレームの構造を示す。
図4を参照すると、上りリンクサブフレームは、周波数領域で制御領域とデータ領域とに区別される。制御領域には、上りリンク制御情報を運ぶPUCCHが割り当てられる。データ領域には、ユーザデータを運ぶPUSCHが割り当てられる。単一搬送波特性を維持するために、一つの端末はPUCCHとPUSCHを同時に送信しない。一つの端末に対するPUCCHにはサブフレーム内にRB対が割り当てられる。RB対に属するRBは、2個のスロットのそれぞれで異なる副搬送波を占める。これを、PUCCHに割り当てられたRB対はスロットの境界(slot boundary)で周波数跳躍(frequency hopping)するという。
図5には、本発明の実施例で使用できる下りリンクサブフレームの構造を示す。
図5を参照すると、サブフレームにおける第1スロットでOFDMシンボルインデックス0から最大3個のOFDMシンボルが、制御チャネルが割り当てられる制御領域(control region)であり、残りのOFDMシンボルが、PDSCHが割り当てられるデータ領域(data region)である。3GPP LTEで用いられる下りリンク制御チャネルの例には、PCFICH(Physical Control Format Indicator Channel)、PDCCH、PHICH(Physical Hybrid−ARQ Indicator Channel)などがある。
PCFICHは、サブフレームにおける最初のOFDMシンボルで送信され、サブフレーム内に制御チャネルの送信のために使われるOFDMシンボルの数(すなわち、制御領域のサイズ)に関する情報を運ぶ。PHICHは、上りリンクに対する応答チャネルであって、HARQ(Hybrid Automatic Repeat Request)に対するACK(Acknowledgement)/NACK(Negative−Acknowledgement)信号を運ぶ。PDCCHを介して送信される制御情報を下りリンク制御情報(DCI:downlink control information)という。下りリンク制御情報は、上りリンクリソース割当て情報、下りリンクリソース割当て情報、又は任意の端末グループに対する上りリンク送信(Tx)電力制御命令を含む。
1.2 PDCCH(Physical Downlink Control Channel)
1.2.1 PDCCH一般
PDCCHは、DL−SCH(Downlink Shared Channel)のリソース割当て及び送信フォーマット(すなわち、下りリンクグラント(DL−Grant))、UL−SCH(Uplink Shared Channel)のリソース割当て情報(すなわち、上りリンクグラント(UL−Grant))、PCH(Paging
Channel)におけるページング(paging)情報、DL−SCHにおけるシステム情報、PDSCHで送信されるランダムアクセス応答(random access response)のような上位レイヤ(upper−layer)制御メッセージに対するリソース割当て、任意の端末グループ内の個別端末に対する送信電力制御命令の集合、VoIP(Voice over IP)活性化の有無に関する情報などを運ぶことができる。
複数のPDCCHが制御領域内で送信されてもよく、端末は複数のPDCCHをモニタ
することができる。PDCCHは、1つ又は複数の連続したCCE(control channel elements)の集合(aggregation)で構成される。1つ又は複数の連続したCCEの集合で構成されたPDCCHは、サブブロックインターリービング(subblock interleaving)を経た後、制御領域を通して送信することができる。CCEは、無線チャネルの状態による符号化率をPDCCHに提供するために使われる論理的割当て単位である。CCEは、複数のリソース要素グループ(REG:resource element group)に対応する。CCEの数とCCEによって提供される符号化率との関係によってPDCCHのフォーマット及び可能なPDCCHのビット数が決定される。
1.2.2 PDCCH構造
複数の端末に対する多重化された複数のPDCCHが制御領域内で送信されてもよい。PDCCHは1つ又は2つ以上の連続したCCEの集合(CCE aggregation)で構成される。CCEは、4個のリソース要素で構成されたREGの9個のセットに対応する単位のことを指す。各REGには4個のQPSK(Quadrature Phase Shift Keying)シンボルがマップされる。参照信号(RS:Reference Signal)によって占有されたリソース要素はREGに含まれない。すなわち、OFDMシンボル内でのREGの総個数は、セル特定参照信号が存在するか否かによって異なってくることがあり得る。4個のリソース要素を1つのグループにマップするREGの概念は、他の下りリンク制御チャネル(例えば、PCFICH又はPHICH)にも適用することができる。PCFICH又はPHICHに割り当てられないREGを
とすれば、システムで利用可能なCCEの個数は
であり、各CCEは0から
までのインデックスを有する。
端末のデコーティングプロセスを単純化するために、n個のCCEを含むPDCCHフォーマットは、nの倍数と同じインデックスを有するCCEから始まってもよい。すなわち、CCEインデックスがiである場合、
を満たすCCEから始まってもよい。
基地局は1つのPDCCH信号を構成するために{1,2,4,8}個のCCEを使うことができ、ここで、{1,2,4,8}をCCE集合レベル(aggregation
level)と呼ぶ。特定PDCCHの送信のために使われるCCEの個数はチャネル状態によって基地局で決定される。例えば、良子な下りリンクチャネル状態(基地局に近接している場合)を有する端末のためのPDCCHは、1つのCCEだけで十分でありうる。一方、よくないチャネル状態(セル境界にある場合)を有する端末の場合は、8個の
CCEが十分な堅牢さ(robustness)のために要求されることがあり得る。しかも、PDCCHの電力レベルも、チャネル状態にマッチして調節されてもよい。
下記の表2にPDCCHフォーマットを示す。CCE集合レベルによって、表2のように4つのPDCCHフォーマットが支援される。
端末ごとにCCE集合レベルが異なる理由は、PDCCHに載せられる制御情報のフォーマット又はMCS(Modulation and Coding Scheme)レベルが異なるためである。MCSレベルは、データコーディングに用いられるコードレート(code rate)と変調序列(modulation order)を意味する。適応的なMCSレベルはリンク適応(link adaptation)のために用いられる。一般に、制御情報を送信する制御チャネルでは3〜4個程度のMCSレベルを考慮することができる。
制御情報のフォーマットを説明すると、PDCCHを介して送信される制御情報を下りリンク制御情報(DCI)という。DCIフォーマットによってPDCCHペイロード(payload)に載せられる情報の構成が異なることがあり得る。PDCCHペイロードは、情報ビット(information bit)を意味する。下記の表3は、DCIフォーマットによるDCIを示すものである。
表3を参照すると、DCIフォーマットには、PUSCHスケジューリングのためのフ
ォーマット0、1つのPDSCHコードワードのスケジューリングのためのフォーマット1、1つのPDSCHコードワードの簡単な(compact)スケジューリングのためのフォーマット1A、DL−SCHの非常に簡単なスケジューリングのためのフォーマット1C、閉ループ(Closed−loop)空間多重化(spatial multiplexing)モードでのPDSCHスケジューリングのためのフォーマット2、開ループ(Open−loop)空間多重化モードでのPDSCHスケジューリングのためのフォーマット2A、上りリンクチャネルのためのTPC(Transmission Power Control)命令の送信のためのフォーマット3及び3Aがある。DCIフォーマット1Aは、端末にいずれの送信モードが設定されてもPDSCHスケジューリングのために用いることができる。
DCIフォーマットによってPDCCHペイロード長が変わることがあり得る。また、PDCCHペイロードの種類とそれによる長さは、簡単な(compact)スケジューリングであるか否か、又は端末に設定された送信モード(transmission mode)などによって異なってもよい。
送信モードは、端末がPDSCHを介した下りリンクデータを受信するように設定(configuration)することができる。例えば、PDSCHを介した下りリンクデータには、端末にスケジュールされたデータ(scheduled data)、ページング、ランダムアクセス応答、又はBCCHを介したブロードキャスト情報などがある。PDSCHを介した下りリンクデータは、PDCCHを介してシグナルされるDCIフォーマットと関係がある。送信モードは、上位層シグナリング(例えば、RRC(Radio Resource Control)シグナリング)によって端末に半静的に(semi−statically)設定することができる。送信モードは、シングルアンテナ送信(Single antenna transmission)又はマルチアンテナ(Multi−antenna)送信に区別できる。
端末は、上位層シグナリングによって半静的(semi−static)に送信モードが設定される。例えば、マルチアンテナ送信には、送信ダイバーシティ(Transmit diversity)、開ループ(Open−loop)又は閉ループ(Closed−loop)空間多重化(Spatial multiplexing)、MU−MIMO(Multi−user−Multiple Input Multiple Output)、及びビーム形成(Beamforming)などがある。送信ダイバーシティは、多重送信アンテナで同一のデータを送信して送信信頼度を高める技術である。空間多重化は、多重送信アンテナで互いに異なるデータを同時に送信し、システムの帯域幅を増加させることなく高速のデータを送信できる技術である。ビーム形成は、多重アンテナでチャネル状態による加重値を与えて信号のSINR(Signal to Interference plus Noise Ratio)を増加させる技術である。
DCIフォーマットは、端末に設定された送信モードに依存する。端末が自身に設定された送信モードによってモニタする参照(Reference)DCIフォーマットがある。次の通り、端末に設定される送信モードは10個の送信モードを有することができる。
(1)送信モード1:単一アンテナポート;ポート0
(2)送信モード2:送信ダイバーシティ(Transmit Diversity)
(3)送信モード3:開ループ空間多重化(Open−loop Spatial Multiplexing)
(4)送信モード4:閉ループ空間多重化(Closed−loop Spatial
Multiplexing)
(5)送信モード5:多重ユーザMIMO
(6)送信モード6:閉ループランク=1プリコーディング
(7)送信モード7:コードブックに基づかない、単一レイヤ送信を支援するプリコーディング
(8)送信モード8:コードブックに基づかない、2個までのレイヤを支援するプリコーディング
(9)送信モード9:コードブックに基づかない、8個までのレイヤを支援するプリコーディング
(10)送信モード10:コードブックに基づかない、CoMPのために用いられる、8個までのレイヤを支援するプリコーディング
1.2.3 PDCCH送信
基地局は、端末に送信しようとするDCIによってPDCCHフォーマットを決定し、制御情報にCRC(Cyclic Redundancy Check)を付加する。CRCにはPDCCHの所有者(owner)や用途によって固有の識別子(例えば、RNTI(Radio Network Temporary Identifier))をマスクする。特定の端末のためのPDCCHであれば、端末固有の識別子(例えば、C−RNTI(Cell−RNTI))をCRCにマスクすることができる。又は、ページングメッセージのためのPDCCHであれば、ページング指示識別子(例えば、P−RNTI(Paging−RNTI))をCRCにマスクすることができる。システム情報、より具体的にシステム情報ブロック(system information block、SIB)のためのPDCCHであれば、システム情報識別子(例えば、SI−RNTI(system information RNTI))をCRCにマスクすることができる。端末のランダムアクセスプリアンブルの送信に対する応答であるランダムアクセス応答を示すために、RA−RNTI(random access−RNTI)をCRCにマスクすることができる。
続いて、基地局は、CRCの付加された制御情報にチャネルコーディングを行って符号化されたデータ(coded data)を生成する。このとき、MCSレベルによるコードレートでチャネルコーディングを行うことができる。基地局は、PDCCHフォーマットに割り当てられたCCE集合レベルによる送信率マッチング(rate matching)を行い、符号化されたデータを変調して変調シンボルを生成する。ここで、MCSレベルによる変調序列を用いることができる。1つのPDCCHを構成する変調シンボルは、CCE集合レベルが1、2、4、8のいずれか一つであってもよい。その後、基地局は、変調シンボルを物理的なリソース要素にマップ(CCE to RE mapping)する。
1.2.4 ブラインドデコーディング(BS:Blind Decoding)
一つのサブフレーム内で複数のPDCCHが送信されてもよい。すなわち、一つのサブ
フレームの制御領域は、インデックス0〜
を有する複数のCCEで構成される。ここで、
は、k番目のサブフレームの制御領域内における総CCEの個数を意味する。端末は、毎サブフレームごとに複数のPDCCHをモニタする。ここで、モニタリングとは、端末がモニタされるPDCCHフォーマットによってPDCCHのそれぞれのデコーディングを試みることをいう。
基地局は、端末にサブフレーム内に割り当てられた制御領域で該当PDCCHがどこに位置するのかに関する情報を提供しない。端末は基地局から送信された制御チャネルを受信するために自身のPDCCHがどの位置でどのCCE集合レベルやDCIフォーマットで送信されるのかを把握できず、端末は、サブフレーム内でPDCCH候補(candidate)の集合をモニタして自身のPDCCHを探す。これをブラインドデコーディング(BD)という。ブラインドデコーディングとは、端末がCRC部分に自身の端末識別子(UE ID)をデマスク(De−Masking)した後、CRC誤りを検討し、当該PDCCHが自身の制御チャネルであるか否かを確認する方法をいう。
活性モード(active mode)で、端末は自身に送信されるデータを受信するために毎サブフレームのPDCCHをモニタする。DRXモードで、端末は毎DRX周期のモニタリング区間で起床(wake up)し、モニタリング区間に該当するサブフレームでPDCCHをモニタする。PDCCHのモニタリングが行われるサブフレームをnon−DRXサブフレームという。
端末は、自身に送信されるPDCCHを受信するためには、non−DRXサブフレームの制御領域に存在する全てのCCEに対してブラインドデコーディングを行わなければならない。端末は、いずれのPDCCHフォーマットが送信されるのかを把握できないことから、毎non−DRXサブフレーム内でPDCCHのブラインドデコーディングに成功するまで、可能なCCE集団レベルでPDCCHを全てデコードしなければならない。端末は、自身のためのPDCCHがいくつのCCEを用いるのかを把握できず、PDCCHのブラインドデコーディングに成功するまで、可能な全てのCCE集団レベルで検出を試みなければならない。
LTEシステムでは端末のブラインドデコーディングのためにサーチスペース(SS:Search Space)概念を定義する。サーチスペースは、端末がモニタするためのPDCCH候補セットを意味し、各PDCCHフォーマットによって異なるサイズを有することができる。サーチスペースは、共用サーチスペース(CSS:Common Search Space)及び端末特定サーチスペース(USS:UE−specific/Dedicated Search Space)を含むことができる。
共用サーチスペースの場合、全ての端末が共用サーチスペースのサイズを認知できるが、端末特定サーチスペースは、各端末ごとに個別に設定することができる。したがって、端末は、PDCCHをデコードするために、端末特定サーチスペース及び共用サーチスペースを全てモニタしなければならなく、したがって、1サブフレームで最大44回のブラインドデコーディング(BD)を行うことになる。ここには、異なるCRC値(例えば、C−RNTI、P−RNTI、SI−RNTI、RA−RNTI)によって行うブライン
ドデコーディングは含まれない。
サーチスペースの制約によって、基地局が、与えられたサブフレーム内でPDCCHを送信しようとする端末の全てにPDCCHを送信するためのCCEリソースが確保されない場合が発生しうる。なぜなら、CCE位置が割り当てられて残ったリソースは、特定端末のサーチスペース内に含まれないことがあり得るためである。次のサブフレームでも続き得るこのような障壁を最小化するために、端末特定跳躍(hopping)シーケンスを端末特定サーチスペースの始点に適用することができる。
表4は、共用サーチスペースと端末特定サーチスペースのサイズを示す。
ブラインドデコーディングを試みる回数による端末の負荷を軽減するために、端末は、定義された全てのDCIフォーマットによるサーチを同時に行うわけではない。具体的に、端末は、端末特定サーチスペースで常にDCIフォーマット0及び1Aに対するサーチを行う。ここで、DCIフォーマット0と1Aは同じサイズを有するが、端末は、PDCCHに含まれたDCIフォーマット0と1Aを区別するために用いられるフラグ(flag for format 0/format 1A differentiation)を用いてDCIフォーマットを区別することができる。また、端末にDCIフォーマット0とDCIフォーマット1Aに加えて他のDCIフォーマットが要求されてもよいが、その一例としてDCIフォーマット1、1B、2がある。
共用サーチスペースで、端末はDCIフォーマット1Aと1Cをサーチすることができる。また、端末はDCIフォーマット3又は3Aをサーチするように設定されてもよく、DCIフォーマット3と3Aは、DCIフォーマット0と1Aと同じサイズを有するが、端末は、端末特定識別子以外の識別子によってスクランブルされたCRCを用いてDCIフォーマットを区別することができる。
サーチスペース
は、集合レベル
によるPDCCH候補セットを意味する。サーチスペースのPDCCH候補セット
によるCCEは、次式1によって決定することができる。
ここで、
は、サーチスペースでモニタするためのCCE集合レベルLによるPDCCH候補の個数を表し、
である。
は、PDCCHにおいて各PDCCH候補で個別CCEを指定するインデックスであり、
である。
であり、
は、無線フレーム内でのスロットインデックスを表す。
上述したように、端末は、PDCCHをデコードするために端末特定サーチスペース及び共用サーチスペースの両方をモニタする。ここで、共用サーチスペース(CSS)は、{4,8}の集合レベルを有するPDCCHを支援し、端末特定サーチスペース(USS)は、{1,2,4,8}の集合レベルを有するPDCCHを支援する。表5は、端末によってモニタされるPDCCH候補を表す。
式1を参照すると、共用サーチスペースの場合、2個の集合レベル、L=4及びL=8に対して
は0に設定される。一方、端末特定サーチスペースの場合、集合レベルLに対して
は式2のように定義される。
ここで、
であり、
はRNTI値を表す。また、
であり、
である。
1.3 PUCCH(Physical Uplink Control Channel)
PUCCHは、制御情報を送信するために次のフォーマットを含む。
(1)フォーマット1:オン−オフキーイング(OOK:On−Off keying)変調、スケジューリング要求(SR:Scheduling Request)に用いる。
(2)フォーマット1aとフォーマット1b:ACK/NACK送信に用いる。
1)フォーマット1a:1個のコードワードに対するBPSK ACK/NACK
2)フォーマット1b:2個のコードワードに対するQPSK ACK/NACK
(3)フォーマット2:QPSK変調、CQI送信に用いる。
(4)フォーマット2aとフォーマット2b:CQI及びACK/NACKの同時送信に用いる。
(5)フォーマット3:CA環境で複数のACK/NACK送信のために用いる。
表6には、PUCCHフォーマットによる変調方式とサブフレーム当たりビット数を示す。表7には、PUCCHフォーマットによるスロット当たり参照信号の数を示す。表8には、PUCCHフォーマットによる参照信号のSC−FDMAシンボル位置を示す。表6で、PUCCHフォーマット2aと2bは一般CP(Cyclic Prefix)の場合に該当する。
図6は、一般CPの場合におけるPUCCHフォーマット1a及び1bを示し、図7は、拡張CPの場合におけるPUCCHフォーマット1a及び1bを示す図である。
PUCCHフォーマット1a及び1bは、同じ内容の制御情報がサブフレーム内でスロット単位に反復される。各端末でACK/NACK信号は、CG−CAZAC(Computer−Generated Constant Amplitude Zero Auto Correlation)シーケンスの異なる循環シフト(CS:cyclic
shift)(周波数ドメインコード)と直交カバーコード(OC/OCC:orthogonal cover/orthogonal cover code)(時間ドメイン拡散コード)とで構成された異なるリソースで送信される。OCは、例えば、ウォルシュ(Walsh)/DFT直交コードを含む。CSの数が6個、OCの数が3個なら、単一アンテナを基準に、総18個の端末を1つのPRB(Physical Resou
rce Block)内で多重化できる。直交シーケンスw0,w1,w2,w3は、(FFT変調後に)任意の時間ドメインで、又は(FFT変調前に)任意の周波数ドメインで適用することができる。
SRと持続的スケジューリング(persistent scheduling)のために、CS、OC及びPRB(Physical Resource Block)で構成されたACK/NACKリソースを、RRC(Radio Resource Control)を用いて端末に与えることができる。動的ACK/NACKと非持続的スケジューリング(non−persistent scheduling)のために、ACK/NACKリソースは、PDSCHに対応するPDCCHの最も小さい(lowest)CCEインデックスによって暗黙的に(implicitly)端末に与えられてもよい。
表9には、PUCCHフォーマット1/1a/1bのための長さ4の直交シーケンス(OC)を示す。表10には、PUCCHフォーマット1/1a/1bのための長さ3の直交シーケンス(OC)を示す。
表11には、PUCCHフォーマット1a/1bでRSのための直交シーケンス(OC)
を示す。
図8は、一般CPの場合におけるPUCCHフォーマット2/2a/2bを示し、図9は、拡張CPの場合におけるPUCCHフォーマット2/2a/2bを示す。
図8及び図9を参照すると、一般CPの場合に、1つのサブフレームは、RSシンボルの他、10個のQPSKデータシンボルで構成される。それぞれのQPSKシンボルはCSによって周波数ドメインで拡散された後、該当SC−FDMAシンボルにマップされる。SC−FDMAシンボルレベルCSホッピングは、インターセル干渉をランダム化するために適用することができる。RSは、循環シフトを用いてCDMによって多重化することができる。例えば、可用のCSの数を12又は6と仮定すれば、同一PRB内にそれぞれ12又は6個の端末を多重化することができる。要するに、PUCCHフォーマット1/1a/1bと2/2a/2bにおいて複数の端末をCS+OC+PRBとCS+PRBによってそれぞれ多重化することができる。
図10は、PUCCHフォーマット1a及び1bに対するACK/NACKチャネル化(channelization)を説明する図である。図10は、
の場合に該当する。
図11は、同一PRBにおいてPUCCHフォーマット1a/1bとフォーマット2/2a/2bとが混合された構造に対するチャネル化を示す図である。
循環シフト(CS:Cyclic Shift)ホッピング(hopping)と直交カバー(OC:Orthogonal Cover)再マッピング(remapping)を、次のように適用することができる。
(1)インターセル干渉(inter−cell interference)のランダム化のためのシンボルベースセル特定CSホッピング
(2)スロットレベルCS/OC再マッピング
1)インターセル干渉ランダム化のために
2)ACK/NACKチャネルとリソース(k)との間のマッピングのためのスロットベース接近
一方、PUCCHフォーマット1a/1bのためのリソース(nr)は次の組合せを含
む。
(1)CS(=シンボルレベルでDFT直交コードと同一)(ncs)
(2)OC(スロットレベルで直交カバー)(noc)
(3)周波数RB(Resource Block)(nrb)
CS、OC、RBを示すインデックスをそれぞれncs、noc、nrbとすれば、代表インデックス(representative index)nrはncs、noc、nrbを含む。nrは、nr=(ncs、noc、nrb)を満たす。
CQI、PMI、RI、及びCQIとACK/NACKとの組合せは、PUCCHフォーマット2/2a/2bで伝達することができる。リードマラー(RM:Reed Muller)チャネルコーディングを適用することができる。
例えば、LTEシステムにおいてUL CQIのためのチャネルコーディングは、次のように記述される。ビットストリーム(bit stream)
は、(20,A)RMコードを用いてチャネルコードされる。ここで、

は、MSB(Most Significant Bit)とLSB(Least Significant Bit)を表す。拡張CPの場合、CQIとACK/NACKが同時送信される場合を除いては最大情報ビットは、11ビットである。RMコードを用いて20ビットにコードした後、QPSK変調を適用することができる。QPSK変調前に、コードされたビットはスクランブルされてもよい。
表12には、(20,A)コードのための基本シーケンスを示す。
チャネルコーディングビット
は、下記の式3によって生成することができる。
ここで、i=0,1,2,…,B−1を満たす。
広帯域報告(wideband reports)の場合、CQI/PMIのためのUCI(Uplink Control Information)フィールドの帯域幅は、下記の表13乃至表15のとおりである。
表13には、広帯域報告(単一アンテナポート、送信ダイバーシティ(transmit diversity)又は開ループ空間多重化(open loop spatial multiplexing)PDSCH送信)の場合に、CQIフィードバックのためのUCIフィールドを示す。
表14には、広帯域報告(閉ループ空間多重化(closed loop spatial multiplexing)PDSCH送信)の場合に、CQI及びPMIフィードバックのためのUCIフィールドを示す。
表15には、広帯域報告の場合、RIフィードバックのためのUCIフィールドを示す。
図12は、PRB割り当てを示す図である。図12に示すように、PRBは、スロットnsでPUCCH送信のために用いることができる。
2. キャリア併合(CA:Carrier Aggregation)環境
2.1 CA一般
3GPP LTE(3rd Generation Partnership Project Long Term Evolution;Rel−8又はRel−9)システム(以下、LTEシステム)は、単一コンポーネントキャリア(CC:Component Carrier)を複数の帯域に分割して使用する多重搬送波変調(MCM:Multi−Carrier Modulation)方式を用いる。しかし、3GPP LTE−Advancedシステム(以下、LTE−Aシステム)では、LTEシステムに比べて広帯域のシステム帯域幅をサポートするために、一つ以上のコンポーネントキャリアを結合して使用するキャリア併合(CA:Carrier Aggregation)のような方法を用いることができる。キャリア併合は、搬送波集成、搬送波整合、マルチコンポーネントキャリア環境(Multi−CC)、又はマルチキャリア環境と呼ぶこともできる。
本発明でマルチキャリアはキャリアの併合(又は、搬送波集成)を意味し、この場合、キャリアの併合は、隣接した(contiguous)キャリア間の併合だけでなく、非隣接した(non−contiguous)キャリア間の併合も意味する。また、下りリンクと上りリンクにおいて集成されるコンポーネントキャリアの数を異なるように設定してもよい。下りリンクコンポーネントキャリア(以下、‘DL CC’という。)数と上りリンクコンポーネントキャリア(以下、‘UL CC’という。)数とが一致する場合を対称的(symmetric)併合といい、両者の数が異なる場合を非対称的(asy
mmetric)併合という。このようなキャリア併合は、搬送波集成、帯域幅集成(bandwidth aggregation)、スペクトラム集成(spectrum aggregation)などのような用語に言い換えてもよい。
2つ以上のコンポーネントキャリアが結合して構成されるキャリア併合は、LTE−Aシステムでは100MHz帯域幅までサポートすることを目標とする。目標帯域よりも小さい帯域幅を有する1個以上のキャリアを結合するとき、結合するキャリアの帯域幅は、既存IMTシステムとの互換性(backward compatibility)維持のために、既存システムで使用する帯域幅に制限することができる。
例えば、既存の3GPP LTEシステムでは、{1.4、3、5、10、15、20}MHz帯域幅をサポートし、3GPP LTE−advancedシステム(すなわち、LTE−A)では、既存システムとの互換のために、それらの帯域幅のみを用いて20MHzよりも大きい帯域幅をサポートするようにすることができる。また、本発明で用いられるキャリア併合システムは、既存システムで用いる帯域幅にかかわらず、新しい帯域幅を定義してキャリア併合をサポートするようにすることもできる。
また、このようなキャリア併合は、イントラ−バンドCA(Intra−band CA)とインター−バンドCA(Inter−band CA)とに区別できる。イントラ−バンドキャリア併合とは、複数のDL CC及び/又はUL CCが周波数上で隣接したり近接して位置することを意味する。言い換えると、DL CC及び/又はUL CCのキャリア周波数が同じバンド内に位置することを意味できる。一方、周波数領域において遠く離れている環境をインター−バンドCA(Inter−Band CA)と呼ぶことができる。言い換えると、複数のDL CC及び/又はUL CCのキャリア周波数が、互いに異なるバンドに位置することを意味できる。この場合、端末は、キャリア併合環境における通信を行うために、複数のRF(radio frequency)端を使用することができる。
LTE−Aシステムは、無線リソースを管理するためにセル(cell)の概念を用いる。上述したキャリア併合環境は、多重セル(multiple cells)環境と呼ぶことができる。セルは、下りリンクリソース(DL CC)及び上りリンクリソース(UL CC)の組合せと定義されるが、上りリンクリソースは必須要素ではない。このため、セルは、下りリンクリソース単独、又は下りリンクリソース及び上りリンクリソースの両者で構成することができる。
例えば、特定端末が、1個の設定されたサービングセル(configured serving cell)を有する場合、1個のDL CCと1個のUL CCを有することができる。しかし、特定端末が2個以上の設定されたサービングセルを有する場合には、セルの数だけのDL CCを有し、UL CCの数はそれと同数又は小さい数であってもよい。又は、これと逆にDL CCとUL CCが構成されてもよい。すなわち、特定端末が複数の設定されたサービングセルを有する場合、DL CCの数よりもUL CCが多いキャリア併合環境がサポートされてもよい。
また、キャリア結合(CA)は、それぞれのキャリア周波数(セルの中心周波数)が異なる2つ以上のセルの併合と理解されてもよい。キャリア結合でいう‘セル(Cell)’は、周波数の観点で説明されるものであり、一般的に使われる、基地局のカバーする地理的領域としての‘セル’とは区別されなければならない。以下、上述したイントラ−バンドキャリア併合をイントラ−バンド多重セルといい、インター−バンドキャリア併合をインター−バンド多重セルという。
LTE−Aシステムで用いられるセルは、プライマリセル(PCell:Primary Cell)及びセカンダリセル(SCell:Secondary Cell)を含む。PセルとSセルはサービングセル(Serving Cell)として用いることができる。RRC_CONNECTED状態にあるが、キャリア併合が設定されていないか又はキャリア併合をサポートしない端末の場合、Pセルのみで構成されたサービングセルが1つのみ存在する。一方、RRC_CONNECTED状態であるとともに、キャリア併合が設定されている端末の場合、一つ以上のサービングセルが存在してもよく、全体サービングセルにはPセルと一つ以上のSセルが含まれる。
サービングセル(PセルとSセル)は、RRCパラメータを用いて設定することができる。PhysCellIdは、セルの物理層識別子であって、0から503までの整数値を有する。SCellIndexは、Sセルを識別するために使われる簡略な(short)識別子であって、1から7までの整数値を有する。ServCellIndexは、サービングセル(Pセル又はSセル)を識別するために使われる簡略な(short)識別子であって、0から7までの整数値を有する。0値はPセルに適用され、SCellIndexはSセルに適用するためにあらかじめ与えられる。すなわち、ServCellIndexにおいて最も小さいセルID(又はセルインデックス)を有するセルがPセルとなる。
Pセルはプライマリ周波数(又は、primary CC)上で動作するセルを意味する。端末が初期接続設定(initial connection establishment)過程を行ったり、接続再−設定過程を行うために用いられてもよく、ハンドオーバー過程で指示されたセルのことを指してもよい。また、Pセルは、キャリア併合環境で設定されたサービングセルのうち、制御関連通信の中心となるセルを意味する。すなわち、端末は、自身のPセルでのみPUCCH割り当てを受けて送信することができ、システム情報を取得したり、モニタリング手順を変更する時にPセルのみを用いることができる。E−UTRAN(Evolved Universal Terrestrial Radio Access)は、キャリア併合環境をサポートする端末に対して、移動性制御情報(mobilityControlInfo)を含む上位層のRRC接続再設定(RRCConnectionReconfigutaion)メッセージを用いてハンドオーバー手順のためにPセルのみを変更することもできる。
Sセルはセカンダリ周波数(又は、Secondary CC)上で動作するセルを意味できる。特定端末にPセルは1一つのみ割り当てられ、Sセルは1つ以上割り当てられてもよい。Sセルは、RRC接続設定がなされた後に構成可能であり、追加の無線リソースを提供するために用いることができる。キャリア併合環境で設定されたサービングセルにおいてPセル以外のセル、すなわち、SセルにはPUCCHが存在しない。
E−UTRANは、Sセルをキャリア併合環境をサポートする端末に追加するとき、RRC_CONNECTED状態にある関連したセルの動作に関する全てのシステム情報を特定シグナル(dedicated signal)を用いて提供することができる。システム情報の変更は、関連したSセルの解除及び追加によって制御することができ、このとき、上位層のRRC接続再設定(RRCConnectionReconfigutaion)メッセージを用いることができる。E−UTRANは、関連したSセル内でブロードキャストするよりは、端末別に異なるパラメータを有する特定シグナリング(dedicated signaling)をすればよい。
初期保安活性化過程が始まった後に、E−UTRANは、接続設定過程で初期に構成されるPセルに加えて一つ以上のSセルを含むネットワークを構成することができる。キャリア併合環境でPセル及びSセルはそれぞれのコンポーネントキャリアとして動作するこ
とができる。以下の実施例では、プライマリコンポーネントキャリア(PCC)はPセルと同じ意味で使われ、セカンダリコンポーネントキャリア(SCC)はSセルと同じ意味で使われてもよい。
図13は、本発明の実施例で用いられるコンポーネントキャリア(CC)、及びLTE_Aシステムで用いられるキャリア併合の一例を示す図である。
図13(a)は、LTEシステムで用いられる単一キャリア構造を示す。コンポーネントキャリアにはDL CCとUL CCがある。一つのコンポーネントキャリアは20MHzの周波数範囲を有することができる。
図13(b)は、LTE_Aシステムで用いられるキャリア併合構造を示す。図12(b)では、20MHzの周波数サイズを有する3個のコンポーネントキャリアが結合した場合を示している。DL CCとUL CCがそれぞれ3個ずつあるが、DL CCとUL CCの数に制限があるわけではない。キャリア併合の場合、端末は3個のCCを同時にモニタすることができ、下りリンク信号/データを受信することができ、上りリンク信号/データを送信することができる。
仮に、特定セルでN個のDL CCが管理される場合には、ネットワークは、端末にM(M≦N)個のDL CCを割り当てることができる。ここで、端末はM個の制限されたDL CCのみをモニタしてDL信号を受信することができる。また、ネットワークはL(L≦M≦N)個のDL CCに優先順位を与えて主なDL CCを端末に割り当てることもでき、この場合、UEはL個のDL CCは必ずモニタしなければならない。この方式は上りリンク送信にも同一に適用されてもよい。
下りリンクリソースの搬送波周波数(又はDL CC)と上りリンクリソースの搬送波周波数(又は、UL CC)とのリンケージ(linkage)は、RRCメッセージのような上位層メッセージやシステム情報で示すことができる。例えば、SIB2(System Information Block Type2)によって定義されるリンケージによってDLリソースとULリソースとの組合せを構成することができる。具体的に、リンケージは、ULグラントを運ぶPDCCHが送信されるDL CCと該ULグラントを用いるUL CCとのマッピング関係を意味することができ、HARQのためのデータが送信されるDL CC(又はUL CC)とHARQ ACK/NACK信号が送信されるUL CC(又はDL CC)とのマッピング関係を意味することもできる。
2.2 クロスキャリアスケジューリング(Cross Carrier Scheduling)
キャリア併合システムには、キャリア(又は搬送波)又はサービングセル(Serving Cell)に対するスケジューリング観点で、自己スケジューリング(Self−Scheduling)方法及びクロスキャリアスケジューリング(Cross Carrier Scheduling)方法がある。クロスキャリアスケジューリングは、クロスコンポーネントキャリアスケジューリング(Cross Component Carrier Scheduling)又はクロスセルスケジューリング(Cross Cell Scheduling)と呼ぶこともできる。
自己スケジューリングは、PDCCH(DLグラント)とPDSCHが同一DL CCで送信されたり、又はDL CCで送信されたPDCCH(ULグラント)によって送信されるPUSCHが、ULグラントを受信したDL CCとリンクされているUL CCで送信されることを意味する。
クロスキャリアスケジューリングは、PDCCH(DLグラント)とPDSCHがそれぞれ異なるDL CCで送信されたり、又はDL CCで送信されたPDCCH(ULグラント)によって送信されるPUSCHが、ULグラントを受信したDL CCとリンクされているUL CC以外のUL CCで送信されることを意味する。
クロスキャリアスケジューリングは、端末特定(UE−specific)に活性化又は非活性化することができ、上位層シグナリング(例えば、RRCシグナリング)用いて半静的(semi−static)に各端末に対して知らせることができる。
クロスキャリアスケジューリングが活性化された場合、PDCCHには、該PDCCHが示すPDSCH/PUSCHがどのDL/UL CCで送信されるかを知らせるキャリア指示子フィールド(CIF:Carrier Indicator Field)が必要である。例えば、PDCCHは、PDSCHリソース又はPUSCHリソースをCIFを用いて複数のコンポーネントキャリアのうちの一つに割り当てることができる。すなわち、DL CC上のPDCCHが多重集成されたDL/UL CCのうちの一つにPDSCH又はPUSCHリソースを割り当てる場合にCIFが設定される。この場合、LTE
Release−8のDCIフォーマットはCIFによって拡張されてもよい。このとき、設定されたCIFは、3ビットフィールドに固定されてもよく、設定されたCIFの位置はDCIフォーマットサイズに関係なく固定されてもよい。また、LTE Release−8のPDCCH構造(同一のコーディング及び同一のCCEベースのリソースマッピング)を再使用してもよい。
一方、DL CC上のPDCCHが同DL CC上のPDSCHリソースを割り当てたり、単一リンクされたUL CC上のPUSCHリソースを割り当てる場合には、CIFが設定されない。この場合、LTE Release−8と同じPDCCH構造(同一のコーディング及び同一のCCEベースのリソースマッピング)とDCIフォーマットが用いられてもよい。
クロスキャリアスケジューリングが可能な場合、端末はCC別送信モード及び/又は帯域幅によってモニタリングCCの制御領域で複数のDCIに対するPDCCHをモニタする必要がある。このため、これをサポートできる検索空間の構成とPDCCHモニタリングが必要である。
キャリア併合システムにおいて、端末DL CC集合は、端末がPDSCHを受信するようにスケジュールされたDL CCの集合を指し、端末UL CC集合は、端末がPUSCHを送信するようにスケジュールされたUL CCの集合を指す。また、PDCCHモニタリング集合(monitoring set)は、PDCCHモニタリングを行う少なくとも一つのDL CCの集合を意味する。PDCCHモニタリング集合は、端末DL CC集合と同一であってもよく、端末DL CC集合の副集合(subset)であってもよい。PDCCHモニタリング集合は、端末DL CC集合におけるDL CCの少なくとも一つを含むことができる。又は、PDCCHモニタリング集合は、端末DL CC集合とは別個に定義されてもよい。PDCCHモニタリング集合に含まれるDL CCは、リンクされたUL CCに対する自己スケジューリング(self−scheduling)は常に可能なように設定することができる。このような、端末DL CC集合、端末UL CC集合及びPDCCHモニタリング集合は、端末特定(UE−specific)、端末グループ特定(UE group−specific)又はセル特定(Cell−specific)に設定することができる。
クロスキャリアスケジューリングが非活性化された場合には、PDCCHモニタリング
集合が常に端末DL CC集合と同一であるということを意味し、このような場合にはPDCCHモニタリング集合に対する別のシグナリングのような指示が必要でない。しかし、クロスキャリアスケジューリングが活性化された場合には、PDCCHモニタリング集合が端末DL CC集合内で定義されることが好ましい。すなわち、端末に対してPDSCH又はPUSCHをスケジュールするために、基地局はPDCCHモニタリング集合のみを介してPDCCHを送信する。
図14は、本発明の実施例で用いられるクロスキャリアスケジューリングによるLTE−Aシステムのサブフレーム構造を示す図である。
図14を参照すると、LTE−A端末のためのDLサブフレームは、3個の下りリンクコンポーネントキャリア(DL CC)が結合されており、DL CC ‘A’はPDCCHモニタリングDL CCとして設定された場合を示す。CIFが使用されない場合、各DL CCはCIF無しで自身のPDSCHをスケジュールするPDCCHを送信することができる。一方、CIFが上位層シグナリングによって使用される場合には、一つのDL CC ‘A’のみがCIFを用いて自身のPDSCH又は他のCCのPDSCHをスケジュールするPDCCHを送信することができる。ここで、PDCCHモニタリングDL CCとして設定されていないDL CC ‘B’及び‘C’はPDCCHを送信しない。
図15は、本発明の実施例で用いられるクロスキャリアスケジューリングによるサービングセル構成の一例を示す図である。
キャリア結合(CA)をサポートする無線接続システムでは基地局及び/又は端末を一つ以上のサービングセルで構成することができる。図15で、基地局は、Aセル、Bセル、Cセル及びDセルの総4個のサービングセルをサポートすることができ、端末AはAセル、Bセル及びCセルで構成され、端末BはBセル、Cセル及びDセルで構成され、端末CはBセルで構成された場合を仮定する。ここで、各端末に構成されたセルのうち少なくとも一つをPセルとして設定することができる。ここで、Pセルは常に活性化された状態であり、Sセルは基地局及び/又は端末によって活性化又は非活性化されてもよい。
図15で、構成されたセルは、基地局のセルのうち、端末からの測定報告(measurement report)メッセージに基づいてCAにセル追加が可能なセルであって、端末別に設定可能である。構成されたセルは、PDSCH信号送信に対するACK/NACKメッセージの送信のためのリソースをあらかじめ予約しておく。活性化されたセル(Activated cell)は、構成されたセルのうち、実際にPDSCH信号及び/又はPUSCH信号を送信するように設定されたセルであり、CSI報告及びSRS(Sounding Reference Signal)送信を行う。非活性化されたセル(De−Activated cell)は、基地局の命令又はタイマー動作によってPDSCH/PUSCH信号の送受信を行わないように構成されるセルであって、CSI報告及びSRS送信も中断される。
2.3 PUCCHを用いたCSI(Channel State Information)のフィードバック
まず、3GPP LTEシステムでは、下りリンク受信主体(例えば、端末)が下りリンク送信主体(例えば、基地局)に接続している時に、下りリンクで送信される参照信号の受信強度(RSRP:reference signal received power)、参照信号の品質(RSRQ:reference signal received quality)などに対する測定を任意の時間に行い、測定結果を基地局に周期
的(periodic)に或いはイベントベース(event triggered)に報告することができる。
それぞれの端末は、下りリンクチャネル状況による下りリンクチャネル情報を上りリンクで報告し、基地局はそれぞれの端末から受信した下りリンクチャネル情報を用いて、それぞれの端末別にデータ送信のために適切な時間/周波数リソースと変調及びコーディング技法(MCS:Modulation and Coding Scheme)などを定めることができる。
このようなチャネル状態情報(CSI:Channel State Information)は、CQI(Channel Quality Indication)、PMI(Precoding Matrix Indicator)、PTI(Precoder Type Indication)及び/又はRI(Rank Indication)で構成することができる。また、それぞれの端末の送信モードによって、CSIは全て送信されてもよく、一部のみ送信されてもよい。CQIは、端末の受信信号品質(received signal quality)によって定められるが、これは一般に、下りリンク参照信号の測定に基づいて決定することができる。このとき、実際に基地局に伝達されるCQI値は、端末の測定した受信信号品質でブロックエラー率(BLER:Block Error Rate)を10%以下に維持しながら最大の性能を奏するMCSに該当する。
また、このようなチャネル情報の報告方式は、周期的に送信される周期的報告(periodic reporting)と、基地局の要求に応じて送信される非周期的報告(aperiodic reporting)とに区別される。
非周期的報告の場合、基地局が端末に送信する上りリンクスケジューリング情報に含まれた1ビットの要求ビット(CQI request bit)によってそれぞれの端末に設定され、それぞれの端末は、この情報を受けると、自身の送信モードを考慮したチャネル情報をPUSCHで基地局に伝達することができる。同じPUSCH上でRI及びCQI/PMIが送信されないように設定することができる。
周期的報告の場合、上位層信号を用いて、チャネル情報の送信される周期、及び当該周期におけるオフセット(offset)などをサブフレーム単位にそれぞれの端末にシグナルし、定められた周期にしたがって、それぞれの端末の送信モードを考慮したチャネル情報をPUCCHで基地局に伝達することができる。定められた周期にしたがってチャネル情報が送信されるサブフレームに、上りリンクで送信されるデータが同時に存在する場合には、当該チャネル情報をPUCCHではなくPUSCHでデータと併せて送信することができる。PUCCHを用いる周期的報告の場合には、PUSCHに比べて制限されたビット(例えば、11ビット)が用いられてもよい。同じPUSCH上でRI及びCQI/PMIが送信されてもよい。
周期的報告と非周期的報告とが同一のサブフレーム内で衝突する場合には、非周期的報告のみを行うことができる。
広帯域(Wideband)CQI/PMIの計算において、最も最近に送信されたRIを用いることができる。PUCCH CSI報告モード(reporting mode)におけるRIは、PUSCH CSI報告モードにおけるRIとは独立しており(independent)、PUSCH CSI報告モードにおけるRIは、当該PUSCH CSI報告モードにおけるCQI/PMIにのみ有効(valid)である。
表16は、PUCCHで送信されるCSIフィードバックタイプ及びPUCCH CSI報告モードを説明する表である。
表16を参照すると、チャネル状態情報の周期的報告(periodic reporting)においてCQIとPMIフィードバックタイプによって、モード1−0、1−1、2−0及び2−1の4つの報告モード(reporting mode)に区別することができる。
CQIフィードバックタイプによって広帯域CQI(WB CQI:wideband
CQI)とサブバンド(SB CQI:subband CQI)とに分けられ、PMI送信の有無によってNo PMIと単一(single)PMIとに分けられる。表16では、No PMIが開−ループ(OL:open−loop)、送信ダイバーシティ(TD:Transmit Diversity)及び単一−アンテナ(single−antenna)の場合に該当し、単一PMIは閉−ループ(CL:closed−loop)に該当する。
モード1−0は、PMI送信はなく、WB CQIが送信される場合である。この場合、RIは、開−ループ(OL)空間多重化(SM:Spatial Multiplexing)の場合にのみ送信され、4ビットで表現される一つのWB CQIが送信される。RIが1を超える場合には、第1コードワードに対するCQIが送信されてもよい。
モード1−1は、単一PMI及びWB CQIが送信される場合である。この場合、RI送信と併せて、4ビットのWB CQI及び4ビットのWB PMIが送信されてもよい。さらに、RIが1超える場合には、3ビットのWB空間差分CQI(Wideband Spatial Differential CQI)が送信されてもよい。2コードワードの送信において、WB空間差分CQIは、コードワード1に対するWB CQIインデックスとコードワード2に対するWB CQIインデックスとの差値を表してもよい。これらの差値は、集合{−4,−3,−2,−1,0,1,2,3}のいずれか一つ
の値を有し、3ビットで表現されてもよい。
モード2−0は、PMI送信はなく、端末が選択した(UE selected)帯域のCQIが送信される場合である。この場合、RIは、開−ループ空間多重化(OL SM)の場合にのみ送信され、4ビットで表現されるWB CQIが送信されてもよい。また、それぞれの帯域幅部分(BP:Bandwidth Part)で最適(Best−1)のCQIが送信され、Best−1 CQIは4ビットで表現されてもよい。また、Best−1を指示するLビットの指示子(indicator)が併せて送信されてもよい。RIが1を超える場合には、第1コードワードに対するCQIが送信されてもよい。
モード2−1は、単一PMI及び端末が選択した(UE selected)帯域のCQIが送信される場合である。この場合、RI送信と併せて、4ビットのWB CQI、3ビットのWB空間差分CQI及び4ビットのWB PMIが送信されてもよい。さらに、それぞれの帯域幅部分(BP)で4ビットのBest−1 CQIが送信され、LビットのBest−1指示子が併せて送信されてもよい。さらに、RIが1超える場合には、3ビットのBest−1空間差分CQIが送信されてもよい。これは、2コードワード送信において、コードワード1のBest−1 CQIインデックスとコードワード2のBest−1 CQIインデックスとの差値を表すことができる。
各送信モード(transmission mode)に対して次のように周期的なPUCCH CSI報告モードがサポートされる。
1)送信モード1:モード1−0及び2−0
2)送信モード2:モード1−0及び2−0
3)送信モード3:モード1−0及び2−0
4)送信モード4:モード1−1及び2−1
5)送信モード5:モード1−1及び2−1
6)送信モード6:モード1−1及び2−1
7)送信モード7:モード1−0及び2−0
8)送信モード8:端末がPMI/RIを報告するように設定される場合にはモード1−1及び2−1、端末がPMI/RI報告をしないように設定される場合にはモード1−0及び2−0
9)送信モード9:端末がPMI/RIを報告するように設定され、CSI−RSポートの数>1の場合にモード1−1及び2−1、端末がPMI/RI報告をしないように設定されたりCSI−RSポートの数=1の場合にモード1−0及び2−0
各サービングセルで周期的なPUCCH CSI報告モードは、上位層シグナリングによって設定される。モード1−1は、‘PUCCH_format1−1_CSI_reporting_mode’パラメータを使用する上位層シグナリングによってサブモード(submode)1又はサブモード2のいずれか一つに設定される。
端末の選択したSB CQIにおいて特定サービングセルの特定サブフレームでCQI報告は、サービングセルの帯域幅の一部分である帯域幅部分(BP:Bandwidth
Part)の一つ以上のチャネル状態の測定を意味する。帯域幅部分は、最も低い周波数から始まって周波数が増加する順序で帯域幅サイズの増加無しでインデックスが与えられる。
2.4 PUCCHを用いたACK/NACK送信方法
2.4.1 LTEシステムにおけるACK/NACK送信
端末が基地局から受信した多重データユニットに相応する複数のACK/NACK信号を同時に送信しなければならない状況で、ACK/NACK信号の単一キャリア特性を維持させるとともに総ACK/NACK送信電力を減少させるために、PUCCHリソース選択に基づくACK/NACK多重化方法を考慮することができる。ACK/NACK多重化と共に、多重データユニットに対するACK/NACK信号のコンテンツは、実際にACK/NACK送信に用いられるPUCCHリソースとQPSK変調シンボルのうちの一つとの組合せによって識別することができる。例えば、仮に一つのPUCCHリソースが4ビットを搬送し、最大4データユニットが送信されるとすれば(ここで、各データユニットに対するHARQ動作は、単一ACK/NACKビットによって管理されると仮定する。)、送信ノード(Tx node)は、PUCCH信号の送信位置及びACK/NACK信号のビットに基づいてACK/NACK結果を次の表17のように識別することができる。
表17で、HARQ−ACK(i)は、データユニットiに対するACK/NACK結果を表す。例えば、最大4個のデータユニットが送信される場合、i=0,1,2,3である。表17で、DTXは、相応するHARQ−ACK(i)に対して送信されたデータユニットがないことを意味したり、又は受信ノード(Rx node)がHARQ−ACK(i)に相応するデータユニットの検出に失敗したことを意味する。
また、
は、実際にACK/NACK送信に用いられるPUCCHリソースを表す。このとき、4個のデータユニットが存在する状況で、最大4個のPUCCHリソースである
が端末に割り当てられてもよい。
また、
は、選択されたPUCCHリソースで搬送される2ビットを意味する。PUCCHリソースで送信される変調シンボルは、当該ビットによって決定される。例えば、仮に受信ノードが4個のデータユニットを成功的に受信すると、受信ノードはPUCCHリソース
を用いて2ビット(1,1)を送信しなければならない。又は、仮に受信ノードが4個のデータユニットを受信したが、第1及び第3データユニット(すなわち、HARQ−ACK(0)及びHARQ−ACK(2))のデコーディングに失敗すると、受信ノードは、PUCCHリソース
を用いて2ビット(1,0)を送信ノードに送信しなければならない。
このように、実際ACK/NACKコンテンツを、PUCCHリソース選択及びPUCCHリソースで送信される実際ビットコンテンツと連係(linking)することによって、多重データユニットに対するACK/NACKを単一のPUCCHリソースを用いて送信することができる。
基本的に、全てのデータユニットに対する少なくとも一つのACKが存在すると、ACK/NACK多重化方法(表17参照)においてNACK及びDTXはNACK/DTXのように連結される。なぜなら、PUCCHリソースとQPSKシンボルとの組合せはあらゆるACK,NACK及びDTX状況をカバーするには足りないからである。一方、いずれのデータユニットに対してもACKが存在しない場合には(すなわち、NACK又はDTXのみが存在する場合)、DTXとデカップルされた単一NACKが、一つのHARQ−ACK(i)と定義される。このような場合、単一NACKに相応するデータユニットに連結されたPUCCHリソースは、多重ACK/NACK信号の送信のために留保されてもよい。
2.4.2 LTE−AシステムにおけるACK/NACK送信
LTE−Aシステム(例えば、Rel−10、11、12など)では、複数のDL CCで送信された複数のPDSCH信号に対する複数のACK/NACK信号を、特定UL
CCで送信することを考慮している。そのために、LTEシステムのPUCCHフォーマット1a/1bを用いたACK/NACK送信とは違い、複数のACK/NACK信号をチャネルコード(例、Reed−Muller code、Tail−biting convolutional codeなど)した後、PUCCHフォーマット2、又は次のようなブロック拡散(Block−spreading)ベースの変形された形態の新しいPUCCHフォーマット(例えば、E−PUCCH format)を用いて、複数のACK/NACK情報/信号を送信することができる。
図16は、ブロック拡散ベースの新しいPUCCHフォーマットの一例を示す図である。
ブロック拡散技法は、制御情報/信号(例、ACK/NACKなど)の送信を、LTEシステムにおけるPUCCHフォーマット1又は2系列とは違い、SC−FDMA方式を用いて変調する方法である。ブロック拡散技法は、図16に示すように、シンボルシーケンスを直交カバーコード(OCC:Orthogonal Cover Code)に基づいて時間領域上で拡散(time−domain spreading)して送信する方式である。すなわち、OCCを用いてシンボルシーケンスを拡散することによって、同じRBに複数の端末に対する制御信号を多重化することができる。
前述した、PUCCHフォーマット2では、一つのシンボルシーケンスが時間領域にわたって送信され、CAZACシーケンスの循環遷移(すなわち、CCS:Cyclic Shift)によって端末多重化が行われる。しかし、ブロック拡散ベースの新しいPUCCHフォーマットの場合、一つのシンボルシーケンスが周波数領域にわたって送信され、OCCベースの時間領域拡散によって端末多重化が行われる。
例えば、図16に示すように、一つのシンボルシーケンスを、長さ−5(すなわち、SF=5)のOCCによって5個のSC−FDMAシンボルとして生成することができる。図16では、1スロットにおいて総2個のRSシンボルが用いられているが、3個のRSシンボルが用いられ、SF=4のOCCを用いる方式などの様々な方式が可能である。このとき、RSシンボルは、特定循環遷移を有するCAZACシーケンスによって生成されてもよく、また、時間領域の複数RSシンボルに特定OCCが適用された(掛けられた)形態で送信されてもよい。
本発明の実施例では、説明の便宜のために、PUCCHフォーマット2又は新しいPUCCHフォーマット(例えば、E−PUCCH format)を使用するチャネルコーディングベースの複数ACK/NACK送信方式を、“マルチビットACK/NACKコーディング(multi−bit ACK/NACK coding)送信方法”と定義する。
マルチビットACK/NACKコーディング方法は、複数DL CC上で送信されるPDSCH信号に対するACK/NACK又はDTX情報(PDCCHの受信/検出に失敗したことを意味する。)をチャネルコードして生成されたACK/NACKコードブロックを送信する方法を意味する。
例えば、端末があるDL CCでSU−MIMOモードで動作し、2個のコードワード(CW:Codeword)を受信すると、当該DL CCに対してCW別にACK/ACK、ACK/NACK,NACK/ACK、NACK/NACKの総4個のフィードバック状態、又はDTXをさらに含んで最大5個のフィードバック状態を有することができる。また、仮に、端末が単一CWを受信すると、ACK、NACK及び/又はDTXの最大3個の状態を有することができる。仮に、NACKをDTXと同一に処理すると、ACK、NACK/DTXの総2個の状態を有することができる。
したがって、端末に最大5個のDL CCが構成され、端末が全てのDL CCでSU−MIMOモードで動作すると、最大55個の送信可能なフィードバック状態を有することができる。ここで、55個のフィードバック状態を表現するためのACK/NACKペイロードのサイズとしては、総12ビットが必要である。仮に、DTXをNACKと同一に処理すると、フィードバック状態数は45個となり、これを表現するためのACK/N
ACKペイロードサイズとしては、総10ビットが必要である。
LTE TDDシステムに適用されるACK/NACK多重化(すなわち、ACK/NACK選択)方法では、基本的に、各UEに対するPUCCHリソース確保のために、各PDSCHをスケジュールするPDCCHに対応する(すなわち、最小CCEインデックスとリンクされている)暗黙的PUCCHリソースをACK/NACK送信に使用する暗黙的ACK/NACK選択方式が用いられている。
一方、LTE−A FDDシステムでは、UE特定(UE−specific)に設定される一つの特定UL CCで、複数のDL CCで送信される複数のPDSCH信号に対する複数ACK/NACK信号を送信することを考慮している。そのために、特定、一部又は全てのDL CCをスケジュールするPDCCHにリンクされている(すなわち、最小CCEインデックスnCCEにリンクされている、又はnCCEとnCCE+1にリンクされている)暗黙的PUCCHリソース、或いは当該暗黙的PUCCHリソースとRRCシグナリングを介して各UEにあらかじめ割り当てられた明示的PUCCHリソースとの組合せを使用する“ACK/NACK選択(ACK/NACK選択)”方式を考慮している。
一方、LTE−A TDDシステムでも複数のCCが結合した状況を考慮している。例えば、複数のCCが結合される場合、端末が、複数のDLサブフレームと複数のCCで送信される複数のPDSCH信号に対する複数のACK/NACK情報/信号は、PDSCH信号が送信される複数のDLサブフレームに対応するULサブフレームで特定CC(すなわち、A/N CC)を用いて送信することを考慮している。
このとき、LTE−A FDDとは違い、UEに割り当てられた全てのCCで送信可能な最大CW数に対応する複数のACK/NACK信号を、複数のDLサブフレームの全てに対して送信する方式(すなわち、full ACK/NACK)を考慮したり、又はCW、CC及び/又はサブフレーム領域に対してACK/NACKバンドリング(bundling)を適用し、全体送信ACK/NACK数を減らして送信する方式(すなわち、bundled ACK/NACK)を考慮することができる。
ここで、CWバンドリングとは、各DLサブフレームに対してCC別にCWに対するACK/NACKバンドリングを適用することを意味し、CCバンドリングとは、各DLサブフレームに対して全て又は一部のCCに対するACK/NACKバンドリングを適用することを意味する。また、サブフレームバンドリングとは、各CCに対して全て又は一部のDLサブフレームに対するACK/NACKバンドリングを適用することを意味する。
サブフレームバンドリング方法として、DL CCのそれぞれに対して受信された全てのPDSCH信号又はDLグラントPDCCHに対して、CC別総ACK個数(又は、一部のACK個数)を知らせるACKカウンター(ACK−counter)方式を考慮することができる。このとき、UE別ACK/NACKペイロード、すなわち、各端末別に設定された全ての又はバンドルされたACK/NACK送信のためのACK/NACKペイロードのサイズによって、多重ビットACK/NACKコーディング方式又はACK/NACK選択方式ベースのACK/NACK送信技法を変更可能に(configurable)適用することができる。
2.5 物理上りリンク制御チャネル送受信過程
移動通信システムは、一つのセル/セクターで一つの基地局が多数の端末機と無線チャネル環境を介してデータを送受信する。多重搬送波及びこれと類似する形態で運営される
システムにおいて、基地局は、有線インターネット網からパケットトラフィックを受信し、受信されたパケットトラフィックを定められた通信方式を用いて各端末機に送信する。このとき、基地局がどのタイミングにどの周波数領域を使用してどの端末機にデータを送信するのかを決定することが下りリンクスケジューリングである。また、定められた形態の通信方式を使用して端末機から送信されたデータを受信及び復調し、有線インターネット網にパケットトラフィックを送信する。基地局がどのタイミングにどの周波数帯域を用いてどの端末機に上りリンクデータを送信できるようにするのかを決定することが上りリンクスケジューリングである。一般に、チャネル状態の良い端末が、より多くの時間と多くの周波数リソースを用いてデータを送受信することができる。
多重搬送波及びこれと類似する形態で運営されるシステムにおけるリソースは、時間領域と周波数領域に大きく分けることができる。また、このリソースは、再びリソースブロック(RB:Resource Block)と定義できるが、これは、任意のN個の副搬送波と任意のM個のサブフレーム又は定められた時間単位で構成される。このとき、NとMは1になり得る。図17は、時間−周波数単位のリソースブロックが構成される一例を示す図である。
図17において、一つの四角形は一つのリソースブロックを意味し、一つのリソースブロックは、多数の副搬送波を一軸とし、定められた時間単位(例えば、スロット又はサブフレーム)を他の軸として構成される。
下りリンクにおいて、基地局は、定められたスケジューリング規則に従って選択された端末に1個以上のリソースブロックをスケジュールし、基地局は、この端末に割り当てられたリソースブロックを用いてデータを送信する。上りリンクでは、基地局が定められたスケジューリング規則に従って選択された端末に1個以上のリソースブロックをスケジュールし、端末機は、割り当てられたリソースを用いて上りリンクでデータを送信するようになる。
スケジュールし、データが送受信された後、データが送受信される(サブ)フレームが失われたか損傷した場合の誤り制御方法としては、自動再送信要求(ARQ:Automatic Repeat request)方式と、より発展した形態のハイブリッド自動再送信要求(HARQ:Hybrid ARQ)方式とがある。
ARQ方式は、基本的に一つの(サブ)フレーム送信後に確認メッセージ(ACK)が来ることを待機し、受信側では、確実に受ける場合のみに確認メッセージ(ACK)を送り、上記(サブ)フレームに誤りが生じた場合はNAK(negative−ACK)メッセージを送り、誤りが生じた受信フレームは、受信端バッファからその情報を削除する。送信側でACK信号を受けたときは、その後に(サブ)フレームを送信するが、NAKメッセージを受けたときは該当(サブ)フレームを再送信するようになる。ARQ方式とは違い、HARQ方式は、受信されたフレームを復調できない場合、受信端では送信端にNAKメッセージを送信するが、既に受信したフレームは一定時間の間バッファに格納し、そのフレームが再送信されたときに既に受信したフレームとコンバインして受信成功率を高める方式である。
最近は、基本的なARQ方式より効率的なHARQ方式がより広く使用されている。このようなHARQ方式でも様々な種類がある。例えば、再送信するタイミングによって同期式(synchronous)HARQ方式と非同期式(asynchronous)HARQとに分けることができ、再送信時に使用するリソースの量に対してチャネル状態を反映するか否かによってチャネル適応的(channel−adaptive)HARQ方式とチャネル非適応的(channel−non−adaptive)HARQ方式
とに分けることができる。
同期式HARQ方式は、初期送信に失敗した場合、以後の再送信がシステムによって定められたタイミングに行われる方式である。例えば、再送信が行われるタイミングが、初期送信の失敗後の毎4番目の時間単位であると仮定すると、これは、基地局と端末機との間に既に約束がなされているので、追加的にこのタイミングに対して知らせる必要はない。但し、データ送信側でNAKメッセージを受けた場合、ACKメッセージを受けるまで毎4番目の時間単位でフレームを再送信するようになる。
その一方、非同期式HARQ方式は、再送信タイミングの新たなスケジューリング又は追加的なシグナリングを介して行うことができる。以前に失敗したフレームに対する再送信が行われるタイミングは、チャネル状態などの多くの要因によって可変し得る。
チャネル非適応的HARQ方式は、再送信時、スケジューリング情報(例えば、フレームの変調方式や用いるリソースブロックの数、AMC(Adaptive Modulation and Coding)など)が初期送信時に定められた通りである方式である。これとは異なり、チャネル適応的HARQ方式は、このようなスケジューリング情報がチャネルの状態によって可変する方式である。
例えば、送信側で初期送信時に6個のリソースブロックを用いてデータを送信し、以後の再送信時にも同様に6個のリソースブロックを用いて再送信することがチャネル非適応的HARQ方式である。その一方、初期には6個を用いて送信が行われたとしても、以後にチャネル状態によっては6個より大きいか小さい数のリソースブロックを用いて再送信する方式がチャネル適応的HARQ方式である。
このような分類によってそれぞれ4個のHARQの組合せが可能であるが、主に使用されるHARQ方式としては、非同期式及びチャネル適応的HARQ方式と、同期式及びチャネル非適応的HARQ方式とがある。非同期式及びチャネル適応的HARQ方式は、再送信タイミングと使用するリソースの量をチャネルの状態によって適応的に異ならせることによって再送信効率を極大化できるが、オーバーヘッドが大きくなるという短所を有し、上りリンクのためには一般的に考慮されない。一方、同期式及びチャネル非適応的HARQ方式は、再送信のためのタイミングとリソース割り当てがシステム内で約束されているので、このためのオーバーヘッドがほとんどないという長所を有するが、変化が激しいチャネル状態で使用される場合、再送信効率が非常に低くなるという短所を有する。
このような点を考慮した上で、現在、3GPP LTE/LTE−Aシステムにおいて、下りリンクの場合は非同期式HARQ方式が使用されており、上りリンクの場合は同期式HARQ方式が使用されている。
図18は、非同期式HARQ方式のリソース割り当て及び再送信方式の一例を示す図である。
基地局において、下りリンクでスケジューリング情報を送信し、端末からのACK/NAKの情報が受信された後、再び次のデータが送信されるまでは、図18のように時間遅延が発生する。これは、チャネル伝播遅延(Channel propagation delay)とデータデコーディング及びデータエンコーディングにかかる時間によって発生する遅延である。
このような遅延区間の間の空白のないデータ送信のために、独立的なHARQプロセスを使用して送信する方法が使用されている。例えば、最初のデータ送信と次のデータ送信
までの最短周期が7サブフレームである場合、7個の独立的なHARQプロセスを設定することによって空白なしでデータを送信することができる。LTE/LTE−Aシステムでは、MIMOで動作しない場合、一つの端末に最大8個のHARQプロセスを割り当てることができる。
2.6 CA環境に基づくCoMP動作
以下では本発明の実施形態に適用可能な協力的多重ポイント(CoMP:Cooperative Multi−Point)送信動作について説明する。
LTE−AシステムにおいてLTEでのCA(carrier aggregation)機能を用いてCoMP送信を具現することができる。図19はCA環境で動作するCoMPシステムの概念図である。
図19で、Pセルとして動作するキャリアとSセルとして動作するキャリアは周波数軸に同じ周波数帯域を使うことができ、地理的に離れた二つのeNBにそれぞれ割り当てられた場合を仮定する。この際、UE1のサービングeNBをPセルとして割り当て、多くの干渉を与える隣接セルをSセルとして割り当てることができる。すなわち、一つの端末に対してPセルの基地局とSセルの基地局が互いにJT(Joint Transmission)、CS/CB及び動的セル選択(Dynamic cell selection)などの多様なDL/UL CoMP動作を遂行することができる。
図19は一つの端末(例えば、UE1)に対して二つのeNBが管理するセルをそれぞれPセルとSセルとして結合する場合に対する例示を示す。ただ、他の例として3個以上のセルが結合することができる。例えば、三つ以上のセルの一部セルは同じ一周波数帯域で一つの端末に対してCoMP動作を遂行し、他のセルは他の周波数帯域で単純CA動作を遂行するように構成されることも可能である。この際、Pセルは必ずしもCoMP動作に参加する必要はない。
2.7 参照信号(RS:Reference Signal)
以下では本発明の実施形態で使える参照信号について説明する。
図20は本発明の実施形態で使えるUE−特定参照信号(UE−RS)が割り当てられたサブフレームの一例を示す図である。
図20を参照すると、該当サブフレームは正規CPを有する正規下りリンクサブフレームのリソースブロック対内のREの中でUE−RSによって占有されるREを例示したものである。
UE−RSはPDSCH信号の送信のために支援され、アンテナポート(等)はp=5、p=7、p=8或いはp=7、8、...、υ+6(ここで、υは上記PDSCHの送信のために使われるレイヤの数)となることができる。UE−RSはPDSCH送信が該当アンテナポートに関連すれば存在し、PDSCH信号の復調(demodulation)のためにのみ有効な(valid)参照信号である。
UE−RSは該当PDSCH信号がマッピングされたRB上でのみ送信される。すなわち、UE−RSはPDSCHの存在有無にかかわらず、サブフレームごとに送信されるように設定されたCRS(Cell specific Reference Signal)とは違い、PDSCHがスケジュールされたサブフレームでPDSCHがマッピング
されたRB(等)でのみ送信されるように設定される。また、UE−RSはPDSCHのレイヤの数にかかわらず、全てのアンテナポート(等)を介して送信されるCRSとは違い、PDSCHのレイヤ(等)にそれぞれ対応するアンテナポート(等)を介して送信される。したがって、UE−RSを使えば、CRSに比べてRSのオーバーヘッドが減少することができる。CRS及びUE−RSなどに対する詳細な説明は3GPP LTE−AシステムのTS36.211及び36.213規格を参照することができる。
3GPP LTE−Aシステムにおいて、UE−RSはPRB対で定義される。図19を参照すると、p=7、p=8或いはp=7、8、...、υ+6に対し、該当PDSCH送信のために割り当てられた(assign)周波数−ドメインインデックスnPRBを有するPRBにおいて、UE−RSシーケンスの一部が特定のサブフレームで複素変調シンボルにマッピングされる。
UE−RSはPDSCHのレイヤ(等)にそれぞれ対応するアンテナポート(等)を介して送信される。すなわち、UE−RSポートの個数はPDSCHの送信ランクに比例することが分かる。一方、レイヤの数が1又は2の場合にはRB対別に12個のREがUE−RS送信に使われ、レイヤの数が2より多い場合にはRB対別に24個のREがUE−RS送信に用いられる。また、UE或いはセルにかかわらずRB対でUE−RSによって占有されたRE(すなわち、UE−RS RE)の位置はUE−RSポート別に同一である。
結局、特定のサブフレームで特定のUEのためのPDSCHがマッピングされたRBでのDM−RS REの個数は同一である。ただ、同じサブフレームで相異なるUEに割り当てられたRBでは送信されるレイヤの数によって該当RBに含まれたDM−RS REの個数は変わることができる。
本発明の実施形態において、UE−RSはDM−RSと同一の意味として使われることができる。
2.8 Enhanced PDCCH(EPDCCH)
3GPP LTE/LTE−Aシステムにおいて複数のコンポーネントキャリア(CC:Component Carrier=(serving)cell)に対する結合状況でのクロスキャリアスケジューリング(CCS:Cross Carrier Scheduling)動作を定義すると、一つのスケジュールされるCC(すなわち、scheduled CC)は他の一つのスケジューリングCC(すなわち、scheduling CC)からのみDL/ULスケジューリングを受けることができるように(すなわち、該当scheduled CCに対するDL/UL grant PDCCHを受信することができるように)前もって設定できる。この際、スケジューリングCCは基本的に自分に対するDL/ULスケジューリングを遂行することができる。言い換えれば、上記CCS関係にあるスケジューリング/スケジュールされるCCをスケジュールするPDCCHに対するサーチスペース(SS:Search Space)は全てのスケジューリングCCの制御チャネル領域に存在することができる。
一方、LTEシステムにおいて、FDD DLキャリア又はTDD DLサブフレームは各サブフレームの最初n個(n<=4)のOFDMシンボルを各種制御情報送信のための物理チャネルであるPDCCH、PHICH及びPCFICHなどの送信に使い、残りのOFDMシンボルをPDSCH送信に使うように構成される。この際、各サブフレームで制御チャネル送信に使うOFDMシンボルの個数はPCFICHなどの物理チャネルを介して動的に或いはRRCシグナリングを介した半静的な方式で端末に伝達されることが
できる。
一方、LTE/LTE−Aシステムにおいては、DL/ULスケジューリング及び各種制御情報を送信するための物理チャネルであるPDCCHは制限されたOFDMシンボルを介して送信されるなどの限界があるので、OFDMシンボルを介して送信されてPDSCHから分離されたPDCCHのような制御チャネルの代わりにFDM/TDM方式でPDSCHともっと自由に多重化する拡張されたPDCCH(すなわち、E−PDCCH)を導入することができる。図11はLTE/LTE−Aシステムで使われるレガシーPDCCH(Legacy PDCCH)、PDSCH及びE−PDCCHが多重化する一例を示す図である。
3. LTE−Uシステム
3.1 LTE−Uシステム構成
以下では免許帯域(Licensed Band)であるLTE−A帯域と非免許帯域(Unlicensed Band)の搬送波結合環境でデータを送受信する方法について説明する。本発明の実施形態において、LTE−Uシステムはこのような免許帯域と非免許帯域のCA状況を支援するLTEシステムを意味する。非免許帯域はワイファイ(WiFi)帯域又はブルートゥース(登録商標)(BT)帯域などを用いることができる。
図22はLTE−Uシステムで支援するCA環境の一例を示す図である。
以下では、説明の便宜のために、UEが二つの要素搬送波(CC:Component
Carrier)を用いて免許帯域と非免許帯域のそれぞれで無線通信を行うように設定された状況を仮定する。もちろん、UEに三つ以上のCCが構成された場合にも以下で説明する方法を適用することができる。
本発明の実施形態において、免許帯域の搬送波(LCC:Licensed CC)は主要素搬送波(Primary CC:PCC又はPセルと呼ぶことができる)であり、非免許帯域の搬送波(Unlicensed CC:UCC)は副要素搬送波(Secondary CC:SCC又はSセルと呼ぶことができる)の場合を仮定する。ただ、本発明の実施形態は多数の免許帯域と多数の非免許帯域がキャリア結合方式で用いられる状況にも拡張して適用することができる。また、本発明の提案方式は3GPP LTEシステムだけでなく他の特性のシステムにも拡張して適用可能である。
図22は一つの基地局で免許帯域と非免許帯域を共に支援する場合を示した。すなわち、端末は免許帯域であるPCCを介して制御情報及びデータを送受信することができ、また非免許帯域であるSCCを介して制御情報及びデータを送受信することができる。しかし、図22に示した状況は一例であり、一つの端末が多数の基地局と接続するCA環境にも本発明の実施形態を適用することができる。
例えば、端末はマクロ基地局(M−eNB:Macro eNB)とPセルを構成し、スモール基地局(S−eNB:Small eNB)とSセルを構成することができる。この際、マクロ基地局とスモール基地局はバックホール網を介して連結されてもよい。
本発明の実施形態において、非免許帯域は競合に基づく任意接続方式で動作することができる。この際、非免許帯域を支援するeNBはデータ送受信前にまずキャリアセンシング(CS:Carrier Sensing)過程を遂行することができる。CS過程は該当帯域が他の個体によって占有されているかを判断する過程である。
例えば、Sセルの基地局(eNB)は現在チャネルを使っているビジー(busy)状態であるか或いは使っていない遊休(idle)状態であるかをチェックする。仮に、該当帯域が遊休状態であると判断されれば、基地局は、クロスキャリアスケジューリング方式の場合、Pセルの(E)PDCCHを介して、又はセルフスケジューリング方式の場合、SセルのPDCCHを介してスケジューリンググラント(scheduling grant)を端末に送信してリソースを割り当て、データ送受信を試みることができる。
この際、基地局はM個の連続したサブフレームで構成された送信機会(TxOP:Transmission OPportunity)区間を設定することができる。ここで、M値及びM個のサブフレームの用途を前もって基地局が端末にPセルを介した上位階層シグナリングを介して、或いは物理制御チャネル又は物理データチャネルを介して知らせることができる。M個のサブフレームで構成されたTxOP区間は予約されたリソース区間(RRP:Reserved Resource Period)と呼ぶことができる。
3.2 キャリアセンシング過程
本発明の実施形態において、CS過程はCCA(Clear Channel Assessment)過程と呼ぶことができ、既に設定されるか或いは上位階層信号を介して設定されたCCA閾値に基づいて該当チャネルがビジー(busy)又は遊休(idle)状態であるかを判断することができる。例えば、非免許帯域であるSセルでCCA閾値より高いエネルギーが検出されれば、ビジーではなければ遊休であると判断することができる。この際、チャネル状態が遊休であると判断されれば、基地局はSセルで信号送信を開始することができる。このような一連の過程はLBT(Listen−Before−Talk)と命名することができる。
図23はLBT過程中の一つであるFBE動作の一例を示す図である。
ヨーロッパのETSI規定(regulation;EN 301 893 V1.7.1)ではFBE(Frame Based Equipment)とLBE(Load
Based Equipment)と命名される2種のLBT動作を例示している。FBEは、通信ノードがチャネル接続(channel access)に成功したとき、送信を持続することができる時間を意味するチャネル占有時間(Channel Occupancy Time;例えば、1〜10ms)とチャネル占有時間の最小5%に相当する遊休期間(Idle Period)が一つの固定フレーム(Fixed Frame)を構成し、CCAは遊休期間内の終部にCCAスロット(最小20μs)の間にチャネルを観測する動作に定義される。
この際、通信ノードは固定フレーム単位で周期的にCCAを遂行する。仮に、チャネル非占有(Unoccupied)状態の場合、通信ノードはチャネル占有時間の間にデータを送信し、チャネル占有状態の場合には、送信を保留し、次の周期のCCAスロットまで待つ。
図24はFBE動作をブロックダイアグラムで示した図である。
図24を参照すると、Sセルを管理する通信ノード(すなわち、基地局)はCCAスロットの間にCCA過程を遂行する。仮に、チャネル遊休状態であれば、通信ノードはデータ送信(Tx)を遂行し、チャネルビジー状態であれば、固定フレーム期間からCCAスロットを差し引いた時間だけ待機した後、再びCCA過程を遂行する。
通信ノードは、チャネル占有時間の間にデータ送信を遂行し、データ送信が終われば、遊休期間からCCAスロットを差し引いた時間だけ待機した後、再びCCA過程を遂行する。仮に、通信ノードは、チャネルが遊休状態であるか或いは送信すべきデータがない場合には、固定フレーム期間からCCAスロットを差し引いた時間だけ待機した後、再びCCA過程を遂行する。
図25はLBT過程中の一つであるLBE動作の一例を示す図である。
図25(a)を参照すると、通信ノードは、LBE動作を遂行するために、まずq∈{4、5、…、32}の値を設定した後、一つのCCAスロットに対するCCAを遂行する。
図25(b)はLBE動作をブロックダイアグラムで示した図である。図15(b)を参照してLBE動作について説明する。
通信ノードはCCAスロットでCCA過程を遂行することができる。仮に、第1CCAスロットでチャネルが非占有状態であれば、通信ノードは最大(13/32)q ms長さの時間を確保してデータを送信することができる。
しかし、第1CCAスロットでチャネルが占有状態であれば、通信ノードは任意に(すなわち、randomly)N∈{1、2、…、q}の値を選び、カウント値を初期値に設定及び保存し、以後にCCAスロット単位でチャネル状態をセンシングしながら、特定のCCAスロットでチャネルが非占有状態であれば、先に設定したカウント値を一つずつ減らして行く。カウント値が0となれば、通信ノードは最大(13/32)q ms長さの時間を確保してデータを送信することができる。
3.3 下りリンクで不連続伝送
制限された最大伝送区間を有する非免許キャリア上で不連続伝送はLTEシステムの動作に必要ないくつかの機能に影響を与えることがある。このようないくつかの機能は不連続LAA下りリンク伝送の開始部分で送信される一つ以上の信号によって支援され得る。このような信号によって支援される機能はAGC(Automatic Gain Control)設定、チャネル予約などの機能を含む。
LAAノードによる信号伝送においてチャネル予約は、成功的なLBT動作によるチャネル接続後に他のノードに信号を送信するために取得されたチャネルを介して信号を送信することを意味する。
不連続下りリンク伝送を含むLAA動作のための一つ以上の信号によって支援される機能は、端末によるLAA下りリンク伝送の検出及び端末の時間及び周波数同期化機能を含む。このとき、このような機能の要求が他の可能な機能を除外することを意味するのではなく、このような機能は他の方法によって支援されてもよい。
3.3.1 時間及び周波数同期
LAAシステムに対して推薦される設計目標は、RRM測定のためのディスカバリ信号及びDL伝送バースト内に含まれた参照信号のそれぞれ又はそれらの組合せを用いて端末が時間及び周波数同期を取得することを支援することである。サービングセルで送信されるRRM測定のためのディスカバリ信号は少なくとも概略的な(coarse)時間又は
周波数同期を取得するために用いられる。
3.3.2 下りリンク伝送タイミング
DL LAA設計において、サブフレーム境界調整は、LTE−Aシステム(Rel−12以下)で定義するCAによって結合されるサービングセル間のCAタイミング関係に従うことができる。ただし、これは、基地局が単にサブフレーム境界でのみDL伝送を始めることを意味するものではない。LAAシステムは、LBT過程の結果によって一つのサブフレーム内で全てのOFDMシンボルが可用でない場合にもPDSCH伝送を支援することができる。このとき、PDSCH伝送のための必要な制御情報の伝送が支援される必要がある。
3.4 RRM測定及び報告
LTE−Aシステムは、セル検出を含むRRM機能を支援するための開始時点でディスカバリ信号(Discovery Signal)を送信することができる。このとき、ディスカバリ信号をディスカバリ参照信号(DRS:Discovery Reference Signal)と呼ぶことができる。LAAのためのRRM機能を支援するために、LTE−Aシステムのディスカバリ信号及びディスカバリ信号の送受信機能は変更して適用されてもよい。
3.4.1 ディスカバリ参照信号(DRS)
LTE−AシステムのDRSはスモールセルのオンオフ動作を支援するために設計された。このとき、オフされたスモールセルは、周期的なDRSの伝送以外の大部分の機能がオフしている状態を意味する。DRSは40、80又は160msの周期でDRS伝送機会(occasion)において送信される。ディスカバリ測定タイミング構成(DMTC:Discovery Measurement Timing Configuration)は、端末がDRSを受信することを予想できる時間区間を意味する。DRS伝送機会はDMTC内のどこでも発生することができ、端末は、割り当てられたセルから該当の周期で連続してDRSが送信されることを予想することができる。
LTE−AシステムのDRSをLAAシステムで用いることは、新規の制限事項をもたらし得る。例えば、いくつかの地域で、LBTのない非常に短い制御伝送のように、DRSの伝送を許容することができるが、LBTのない短い制御伝送は他のいくつかの地域では許容しない。したがって、LAAシステムにおいてDRS伝送はLBTの対象になり得る。
仮に、DRS伝送においてLBTが適用される場合には、LTE−AシステムのDRS伝送の場合とは違い、周期的な方式で送信されなくてもよい。したがって、次のような2つの方式をLAAシステムのためのDRS伝送のために考慮することができる。
第一に、LBTを条件とし、構成されたDMTC内で固定した時間位置でのみDRSが送信される方式である。
第二に、LBTを条件とし、構成されたDMTC内で少なくとも一つの異なる時間位置でDRSの伝送が許容される方式である。
第二の方式の他の側面として、時間位置の個数は1つのサブフレーム内で1つの時間位置に制限されてもよい。仮に、より有益であれば、DMTC内でDRSの伝送以外に、構
成されたDMTC外でのDRS伝送が許容されてもよい。
図26は、LAAシステムで支援するDRS伝送方法を説明するための図である。
図26を参照すると、図26の上図は、第一のDRS伝送方法を示し、下図は、第二のDRS伝送方法を示す図である。すなわち、第一の方式の場合、端末はDMTC区間内で定められた位置でのみDRSを受信することができるが、第二の方式の場合、端末はDMTC区間内で任意の位置でDRSを受信することができる。
LTE−Aシステムにおいて端末がDRS伝送に基づくRRM測定を行う場合に、端末は、複数のDRS機会(DRS occasion)に基づいて1つのRRM測定を行うことができる。LAAシステムにおいてDRSが用いられる場合に、LBTによる制約によって、DRSが特定位置で送信されることを保障することができない。仮に、端末が、DRSが実際に基地局から送信されない場合にDRSが存在すると仮定すると、端末によって報告されるRRM測定結果に対する品質が低下し得る。したがって、LAA DRS設計は、一つのDRS機会でDRSの存在を検出できるように許容しなければならず、これは、UEに成功的に検出されたDRS機会のみを行うRRM測定に結合し得るように保障することができる。
DRSを含む信号は時間上で隣接したDRS伝送を保障しない。すなわち、DRSを搬送するサブフレームでデータ伝送がないと、物理信号が送信されないOFDMシンボルがあり得る。非免許帯域で動作する間に、他のノードは、DRS伝送間のこのような沈黙区間において該当のチャネルが遊休状態であるとセンシングすることができる。このような問題を避けるために、DRS信号を含む伝送バーストは、いくつかの信号が送信される隣接したOFDMシンボルで構成されることを保障することが好ましい。
3.5 チャネル接続過程及び競合ウィンドウ調整過程
以下では上述したチャネル接続過程(CAP:Channel Access Procedure)及び競合ウィンドウ調整過程(CWA:Contention Window Adjustment)について送信ノードの観点で説明する。
図27はCAP及びCWAを説明するための図である。
下りリンク送信に対し、LTE送信ノード(例えば、基地局)が非免許帯域セルであるLAA Sセル(等)で動作するためにチャネル接続過程(CAP)を開始することができる(S2710)。
基地局は競合ウィンドウ(CW)内でバックオフカウンターNを任意に選択することができる。ここで、N値は初期値Ninitに設定される(S2720)。
基地局はLAA Sセル(等)のチャネルが遊休状態であるかを確認し、遊休状態であればバックオフカウンター値を1ずつ減らす(S2730、S2740)。
図27でS2730段階とS2740段階の順序は変わることができる。例えば、基地局がバックオフカウンターNを先に減少させた後に遊休状態であるかを確認することができる。
S2730段階でチャネルが遊休状態ではなければ、つまりチャネルがビジー状態であれば、スロット時間(例えば、9μsec)より長い留保期間(defer durat
ion;25μsec以上)の間に該当チャネルが遊休状態であるかを確認することができる。留保期間にチャネルが遊休状態であれば、基地局は再びCAPを行うことができる。例えば、バックオフカウンター値Ninitが10であり、バックオフカウンター値が5まで減少した後、チャネルがビジー状態であると判断されれば、基地局は留保期間の間にチャネルをセンシングして遊休状態であるかを判断する。ここで、留保期間の間にチャネルが遊休状態であれば、基地局はバックオフカウンター値Ninitを設定するものではなく、バックオフカウンター値5から(又は、バックオフカウンター値を1だけ減少させた後4から)再びCAP過程を行うことができる。
再び図27を参照すると、基地局はバックオフカウンター値(N)が0となるかを判断し(S2750)、バックオフカウンター値が0となればCAP過程を終了し、PDSCHを含むTxバースト送信を行うことができる(S2760)。
基地局は端末からTxバーストについてのHARQ−ACK情報を受信することができる(S2770)。
基地局は受信したHARQ−ACK情報に基づいてCWSを調整することができる(S2780)。
S2780段階でCWSを調整する方法は4.1.1節〜4.1.10節で説明した方法が適用可能である。例えば、基地局は最近に送信したTxバーストの第1SF(すなわち、Txバーストの最初SF)についてのHARQ−ACK情報に基づいてCWSを調整することができる。
ここで、基地局は、CWPを行う前、各優先順位クラスに対して初期CWを設定することができる。その後、参照サブフレームで送信されたPDSCHに対応するHARQ−ACK値がNACKに決定される確率が少なくとも80%の場合には、基地局は各優先順位クラスに対して設定されたCW値をそれぞれ許容された次の上順位に増加させる。
S2760段階で、PDSCHはセルフキャリアスケジューリング又はクロスキャリアスケジューリング方式で割り当てられることができる。セルフキャリアスケジューリング方式でPDSCHが割り当てられた場合、基地局はフィードバックされたHARQ−ACK情報のDTX、NACK/DTX又はANY状態をNACKとしてカウントする。仮に、クロスキャリアスケジューリング方式でPDSCHが割り当てられた場合、基地局はフィードバックされたHARQ−ACK情報のうちNACK/DTX及びANYはNACKとしてカウントし、DTX状態はNACKとしてカウントしない。
仮に、Mサブフレーム(M>=2)にわたってバンドルされ、バンドルされたHARQ−ACK情報が受信される場合、基地局は該当バンドルされたHARQ−ACK情報に対してM個のHARQ−ACK応答と見なすことができる。ここで、バンドルされたM個のSFには参照サブフレームが含まれることが好ましい。
4. LAAシステムにおいてディスカバリ参照信号構成及び送受信方法
以下、非免許帯域において同期信号(SS:Synchronization Signal)及び参照信号(RS:Reference Signal)で構成されたディスカバリ参照信号(DRS:Discovery Reference Signal)を構成する方法及び送受信する方法などについて詳しく説明する。本発明の実施例においてDRSをディスカバリ信号と呼ぶこともできる。
LTE−AシステムにおいてDRSは、トラフィックがないことから非活性化(deactivation)されたスモールセルのためのRRM測定のために考案された。DRSは、数十ms程度(例えば、40、80、160msなど)の単位時間に一回ずつ周期的に送信されるように設定することができる。eNBはUEに、6ms単位のDMTCを周期的に設定することができる。該当のDMTC区間内でUEはDRSを受信し、概略的な同期取得、セル識別(cell identification)及びRRM測定などに活用することができる。
非免許帯域で動作するLTEシステム(すなわち、LAAシステム)において、DRSは、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal)及びCRS(Cell−specific Reference Signal)の信号で構成することができる。また、選択的に、DRSはPSS/SSS、CRSとCSI−RS(Channel Status Information Reference Signal)で構成されてもよい。LAAシステム上で、DRSはLTE−Aシステムと同様に、概略的な同期取得、セル識別及びRRM測定の用途に活用され得る。
しかし、LAAシステムのDRSとLTE−AシステムのDRSとの差異は、非免許帯域の特性上、DRS伝送のためにLBT動作が必要であり得るという点である。例えば、基地局がDRS伝送のためのLBT動作を行う上で他の伝送ノードによってチャネルが占有されていることを発見すれば、基地局はDRS伝送をあきらめたり、DMTC区間内の他の時点でDRS伝送を再び試みることができる。
図28は、LAAシステムにおいてDRSを送信する方法を説明するための図である。
LAAシステムでは次の2つの方式でDRSを送信することができる。
(1)第1のDRS伝送方式
図28(a)を参照すると、DMTC区間内にDRSを送信できる時点は1個のみ存在するように設定することができる。したがって、基地局がDRSを送信する時点でLBT失敗などによってDRSを送信できないと、DRS伝送をあきらめる。
(2)第2のDRS伝送方式
図28(b)を参照すると、DMTC区間内にDRSを送信できる時点が複数個(例えば、毎SF境界)存在してもよい。したがって、基地局がLBTに失敗しても、複数時点のいすれか他の一つでLBTを行ってDRSを送信することができる。
一方、LBT失敗によって一つのDMTC区間内でDRSが送信されないと、端末は次のDMTCまで数十msを待たなければならない。このようなDRS伝送の特性を考慮するとき、DLデータ(例えば、PDSCH)が含まれていないDRSのためのLBTは、DLデータのためのLBTに比べてチャネル占有確率が大きいことが好ましい。
例えば、基地局が特定センシング区間(sensing interval)においてのみチャネルが遊休であると判断さえすれば、すなわち、任意バックオフ無しで、DRSを含むDL TXバースト伝送を許容することができる。この時、DL TXバーストは連続した信号伝送単位を意味する。また、基地局は伝送確率をより高めるために、複数のセンシング区間で構成された総センシング区間のうちの1つのセンシング区間のみが遊休状態であると判断すれば、DRSを含むDL TXバースト伝送を許容することができる
図28(a)を参照すると、基地局がSF#NでDRSを送信しようとし、総センシング区間は3個のセンシング区間で構成されると仮定する。基地局は、一番目のセンシング区間でチャネルがビジー状態であるといっても、二番目のセンシング区間でチャネルが遊休状態であるので、DRSを送信することができる。ただし、SF#Nの開始境界前にLBTが終わったため、基地局は、残った区間で予約信号(reservation signal)を送信することができる。
図28(b)を参照すると、基地局は、SF#N開始直前の総センシング区間においてチャネルがビジー状態であると判断されると、次のSFであるSF#N+1開始直前にLBT(又は、CCA)を再び行うことができる。図28(b)のように、二番目のセンシング区間でチャネルが遊休状態であるので、基地局は三番目のセンシング区間で予約信号を送信した後、SF#N+1でDRSを送信することができる。
図29は、DRS伝送パターンの一例を説明するための図である。
図29で、DRSはPSS/SSS/CRSで構成された場合を仮定する。図29に示すように、DRSがDLデータ無しでPSS/SSS/CRSだけで構成される場合を仮定するとき、DRSが割り当てられる区間には、いずれの信号も含まれていないOFDMシンボルが存在し得る。図29で、LAAシステムのためのDRSの場合、一つのサブフレーム内の12 OFDMシンボル区間で送信され、該当のSFの前又は後の2 OFDMシンボルが空になり得る。本発明の実施例において、DRSはDMTC区間内の一つ以上のDRS機会(DRS occasion)で送信され得る。一つのDRS機会は、Uセルに構成される一つのサブフレーム内の12 OFDMシンボル区間で構成され得る。
非免許帯域で信号を送信するためにLBTを行わなければならない場合、基地局はシンボル番号0(sym0)でCRS伝送のためのLBTを行った後、sym4でCRS伝送のために再びLBTを行わなければならないことがあり得る。言い換えると、基地局が非免許帯域のsym0のためのLBTに成功してsym0でCRSを送信したとしても、基地局はsym4で始めるPSS/SSS/CRS伝送のためのLBTの成功は保障できない。
このような非効率的なDRS伝送を防止するために、DRSの含まれたサブフレーム(SF:SubFrame)は空のOFDMシンボル無しで連続して送信することが好ましく、最も単純な方法は、基地局が空のOFDMシンボル(例えば、sym1、sym2、sym3、sym8、...など)にダミー信号(dummy signal)を送信することである。しかし、単純にダミー信号を送信することは無線リソースを浪費することにつながるため、より効率的な方法でDRS SFを構成することが好ましい。
以下に説明する本発明の実施例では、説明の便宜上、PSS/SSS/CRSだけで構成されたDRSを仮定したが、既存DRSと同様に、CSI−RSが選択的にDRSの構成に含まれてもよい。
4.1 DRS伝送パターン構成方法
以下では、上述した第1及び第2のDRS伝送方式及びLBT動作を考慮してDRS伝送に適した伝送パターンについて説明する。
図30は、LAAシステムに適用可能なDRS伝送パターンを説明するための図である
既存のLTE/LTE−Aシステムにおいてフレーム構造2(frame structure 2、すなわち、TDD)の場合、SSSはSF番号0又は5(すなわち、SF
#0又はSF #5)の最後のOFDMシンボルに割り当てられ、PSSはSF番号1又は6((すなわち、SF #1又はSF #6)の三番目のOFDMシンボル上に割り当てられ得る。
以下に説明する実施例(特に、図30〜図32)で、実線は、DRSに含まれるPSS/SSS/CRSなどが実際に割り当てられたことを表し、点線は、CRSなどが割り当てられ得る候補位置を表す。
4.1.1 TDDフレーム構造に対するDRS伝送パターン
図30(a)は、TDDフレーム構造上でDRS伝送パターンを説明するための図である。図30(a)でSSSはSF #0又はSF #5にのみ送信され、PSSはSF #1又はSF #6にのみ送信されると限定しなくてもよい。例えば、SSSは任意のSF #Nで送信され、SF #N+1でPSSが送信され得ると仮定する。
DRSを構成する信号は少なくともPSS/SSS/CRSを含まなければならないと仮定する。この場合、図30(a)のように、DRSは少なくともSF#Nのsym13に位置するSSS、SF#N+1のsym0に位置するCRS、及びSF#N+1のsym2に位置するPSSを含むように設定され得る。
DRSを構成する時に必要な最小のCRSのOFDMシンボル個数又はDRS伝送LBTを考慮して、CRSをさらに含めてDRSを構成することができる。例えば、端末がRRM測定又はDRS伝送機会(occasion)を検出するために、少なくともCRSは4個のOFDMシンボルで送信されなければならず、第1のDRS伝送方式でDRSが送信される固定位置をSF#Nのsym11と仮定することができる。
この場合、基地局は、SF#Nのsym11の直前に総センシング区間(total sensing period)でLBTを行って、LBTに成功した場合、SF#Nのsym11に割り当てられたCRSだけでなく、SF#N+1のsym4に割り当てられたCRS及びSF#N+1のsym7に割り当てられたCRSを含めてDRSを構成することができる。
他の例として、DRSのためにCRSは少なくとも3個のOFDMシンボル上で送信され、第2のDRS伝送方式においてSF#Nのsym7及びsym11でDRS伝送が許容されると仮定するとき、基地局は、SF#Nのsym7の直前にLBTに成功すると、SF#Nのsym7及びsym11にCRSを割り当ててDRSを構成することができる。または、基地局がSF#Nのsym11の直前にLBTに成功した場合、基地局は、SF#Nのsym11に割り当てられたCRSだけでなく、SF#N+1のsym4に割り当てられるCRSを含めてDRSを構成することができる。
図30(a)で説明したDRS伝送パターンの場合、DRS構成のための最小のOFDMシンボルが2つ以上のサブフレームにわたっている。したがって、PDSCH伝送が最大で2 SFにおいて不可能であり得るという短所がある。SSS受信前にAGC設定のために少なくとも一つのOFDMシンボルが必要であれば、SF#N内のsym11に割り当てられたCRS又はSF#Nのsym10に割り当てられる信号もDRS構成に必須となり得る。
4.1.2 FDDフレーム構造に対するDRS伝送パターン
既存のLTEシステムにおいてフレーム構造1(すなわち、FDD構造)上、SSSはSF#0又はSF#5の六番目のOFDMシンボルに割り当てられ、PSSはSF#0又はSF#5の七番目のOFDMシンボルに位置し得る。
図30(b)で、PSS/SSSはSF#0又はSF#5にのみ送信されると限定しなくてもよい。例えば、PSS/SSSは任意のSF#Nで送信され得ると仮定する。
DRSを構成する信号は少なくともPSS/SSS/CRSを含まなければならないと仮定する。この場合、図30(b)に示すように、DRSは少なくともSF#Nのsym5に位置するSSS、SF#Nのsym6に位置するPSS、SF#Nのsym4及びsym7に位置するCRS(又は、SF#Nのsym4に位置するCRSのみを含む。)を含むように構成され得る。
基地局はDRSを構成する時に必要な最小のCRSのOFDMシンボル個数又はDRS伝送のためのLBTに基づいて、図30(b)のDRS構成にCRSをさらに含めることができる。
例えば、DRSを構成するために、少なくとも3個のCRSが割り当てられるOFDMシンボルが必要であり、第1のDRS伝送方式においてDRSが送信される固定位置がSF#Nのsym0である場合を仮定する。この時、基地局はSF#Nのsym0の直前の総センシング区間においてLBTを行い、LBTに成功した場合、SF#N内のsym0にCRSを割り当ててDRSを構成することができる。
他の例として、DRSを構成するために、CRSは少なくとも3個のOFDMシンボルに割り当てられ、第2のDRS伝送方式においてDRSはsym0又はsym4で伝送が許容される場合を仮定する。この時、基地局はSF#Nのsym0の直前にLBTに成功すると、SF#Nのsym0でCRSを割り当ててDRSを構成し、SF#Nのsym4の直前にLBTに成功した場合、SF#N内のsym11にCRSを含めてDRSを構成することができる。
4.1.1節で説明したDRS伝送パターンと比較するとき、DRS構成のための最小OFDMシンボルが一つのSFで構成され得るという長所がある。
4.1.3 TDD及びFDD方式を組み合わせるDRS伝送パターン
以下に説明する実施例は、4.1.1節及び4.1.2節で説明した実施例を組み合わせるものであり、図30(c)を参照して説明する。
図30(c)を参照すると、基地局は、DRSを構成する2つのOFDMシンボル集合を用意し、状況によって一つを選択するように設定され得る。さらにいうと、基地局は、DRSのためのLBTの成功位置によって2つのDRSシンボル集合のうち一つを選択することができる。
例えば、第1のDRS伝送方式において、Sセル#1でDRS伝送のための固定位置がSF#N内のsym0であり、Sセル#2でDRS伝送のための固定位置がSF#N sym11である場合を仮定する。基地局はSF#Nのsym0の直前にLBTに成功した基地局は、Sセル#1で4.1.2節のようにDRSを送信し、SF#Nのsym11の
直前にLBTに成功した基地局は、Sセル#2で4.1.1節のようにDRSを送信することができる。
他の例として、第2のDRS伝送方式において、DRS伝送のためのOFDMシンボルがsym0又はsym11である場合を仮定する。このとき、基地局がSF#Nのsym0の直前にLBTに成功した場合、4.1.2節で説明したようにDRSを送信することができ、SF#Nのsym11の直前にLBTに成功した場合、基地局は4.1.1節で説明したようにDRSを送信することができる。
図31は、LAAシステムに適用可能なDRS伝送パターンを説明するための他の図である。
PSS/SSSの割り当て位置をLTE−Aシステムで定義した位置に限定しなくてもよい。例えば、図31に示すように、PSS/SSの位置がサブフレームによって反復されるように設定することができる。このとき、基地局はDRSのためのLBTの成功位置によって実際に送信するPSS/SSS/CRSを決定することができる。例えば、第2のDRS伝送方式においてsym4又はsym11でDRS伝送が許容される場合を仮定する。このとき、基地局がSF#Nのsym4の直前にLBTに成功した場合、基地局は4.1.2節で説明した方法のようにDRSを送信することができる。仮に、基地局がSF#Nのsym11の直前にLBTに成功した場合、第1のDRS伝送方式のようにDRSを送信することができる。
このような方法は、4.1.1節及び4.1.2節で説明した方法に比べてDRS開始位置を様々に設定することによってDRS伝送確率を高めることができるという長所がある。
4.1.4 LTEシステムのPSS/SSS位置を考慮しないDRS伝送パターン
4.1.4.1 CRS位置と重複しないようにPSS/SSSの位置を設定
図32は、LAAシステムに適用可能なDRS伝送パターンの更に他の例を説明するための図である。
図32は、SF #NでDRSが構成される場合に、PSS/SSSがそれぞれ一つの集合を構成する場合を仮定する。LAAシステムでは、図32に示すように、CRSポート0、1、2及び3の位置と重複しないOFDMシンボルでPSS/SSSを構成することができる。
このとき、図32で、基地局は一部の集合でのみPSS/SSSが送信されるように設定することができる。また、設定された一部又は全ての集合においてPSSとSSSの位置は相互変わってもよい。また、一部又は全ての集合はSSS又はPSSのみで構成されてもよい。
仮に、CRSポート2/3が用いられないと、CRSポート2/3で送信されるOFDMシンボルでもPSS及び/又はSSSが送信されてもよい。例えば、sym1ではPSSがさらに送信され、sym8ではSSSがさらに送信されてもよい。
図32で、集合1及び集合3のみが送信されるように許容される場合に、基地局はDRS LBTの結果によって、集合1又は集合3とCRSを含むDRSを送信することができる。すなわち、SF#Nのsym0の直前にDRSのためのLBTに成功したとともに
、DRSのために3個のCRSが必要であれば、基地局はSF#Nのsym0、4及び7で、CRS及び集合1のPSS/SSSでDRSを構成して送信することができる。
図32でPSS/SSSの集合を構成する方法は次のとおりである。
(1)PSS/SSS(set 1)、SSS/PSS(set 2)、[PSS/SSS(set 3)]
(2)PSS/SSS(set 1)、SSS/PSS(set 2)、[SSS/PSS(set 3)]
(3)PSS/PSS(set 1)、SSS/PSS(set 2)、SSS/SSS(set 3)
(4)SSS/SSS(set 1)、SSS/PSS(set 2)、PSS/PSS(set 3)
(5)PSS/PSS(set 1)、PSS/SSS(set 2)、[SSS/SSS(set 3)]
勿論、上記に述べていない例示の構成も可能である。ただし、PSSをSSSより優先して時間処理(time processing)できることを考慮して、PSSがSSSより先にあるデザインが好まれてもよい。また、PSSとSSSとして用いられるOFDMシンボルの個数が異なる場合、PSSが優先して処理される点を考慮して、PSSの反復回数がSSSの反復回数より大きく設定されてもよい。また、サブフレーム番号によってPSS/SSSの構成方法が異なるように設定されてもよい。
4.1.4.2 CRS位置と重複可能なPSS/SSSの位置を設定する方法
図33は、LAAシステムに適用可能なDRS伝送パターンをCRS位置に関係なく設定する方法を説明するための図である。
本発明の実施例において、LTE−Aシステムで設定されるCRSの割り当て位置を考慮せずにPSS/SSSの位置を設定することができる。このとき、図33に示すように、あるOFDMシンボル上のCRSとPSS/SSSとが重なるREに対しては、CRSをパンクチャーすることができる。
すなわち、DRSを構成するPSS、SSS及びCRSがそれぞれ異なるOFDMシンボルで送信されず、同じOFDMシンボルで構成されることがある。
4.1.4.1節及び4.1.4.2節で説明したように、DMTC区間外でも適用される又は事前に定義された初期(default)PSS/SSS構成以外の追加PSS/SSS伝送が許容される場合には、基地局は、追加送信されるPSS/SSS構成方法について上位層シグナリング(例えば、RRCなど)でUEに知らせることができる。
例えば、4.1.4.1節においてPSS/SSS集合別PSS/SSSの構成方法及びCRSポート2/3の追加伝送の有無は構成可能(configurable)である。仮に、集合2のSSS/PSS構成が初期PSS/SSS構成であると仮定すれば、基地局は2ビットの指示子を用いて、集合1及び集合3が存在するか否かをRRC信号で端末に通知することができる。例えば、当該2ビット指示子が‘00’に設定されると、P
SS/SSS集合1及び集合3が存在しないことを示し、‘01’に設定されると、PSS/SSS集合3だけが存在し、‘10’に設定されると、PSS/SSS集合1だけが存在することを意味できる。
このとき、集合2(又は、DMTC区間外でも適用される初期PSS/SSS構成又は事前に定義された初期PSS/SSS構成)以外のPSS/SSS集合及びCRSポート2/3のために割り当てられるOFDMシンボルにおいてPSS/SSSの追加伝送は、設定されたDMTC区間内でのみ有効である。
また、初期PSS/SSS構成以外の追加PSS/SSSは、DMTC区間内のSF #0又はSF #5を除くSFでのみ適用されるように設定することができる。SF#0及び/又はSF#5でのみDRSとPDSCHの多重化が許容されると、UEは、SF#0又はSF#5ではDMTC区間外か内かにかかわらずに同じPDSCHレートマッチングを仮定してDRS及び/又はDLデータを受信することができるという長所がある。
仮に、当該SFを構成するPSS/SSSが初期PSS/SSSと異なることを知らせる必要があれば、基地局は、当該SFがスケジュールされるUEに、DCI情報を用いてそれを知らせることができる。例えば、UE1に設定されたDMTC区間内のSF#0で初期PSS/SSSとは異なるPSS/SSSが送信され、当該SF#0でUE2がPDSCH受信を試みる場合、基地局はUE2のPDSCHレートマッチングのために、PSS/SSSが初期PSS/SSSと異なることをスケジューリンググラントで知らせることができる。
4.1.4.1節及び4.1.4.2節で説明した実施例のように、既存PSS/SSSの割り当て位置の他にもPSS/SSSを追加送信することが許容されると、CSI−RS位置とPSS/SSS割り当て位置とが重複する問題が発生し得る。
このような問題を解決するために、PSS/SSSの送信されるSF内では、CSI−RSが送信されないか、当該SFにCSI−RSが割り当てられなくてもよい。
または、CSI−RSとPSS/SSSとが衝突するSF内でのみCSI−RSを送信せず、PSS/SSSのみを送信するように設定されてもよい。または、CSI−RSとPSS/SSSとが衝突する時、基地局は、衝突するCSI−RSポートのみをドロップし、残りのCSI−RSポートは依然として送信することができる。
または、基地局は、最初からCSI−RSとPSS/SSSとが衝突しないようにCSI−RSを割り当てることができる。
端末がDRS受信前にAGC設定のために少なくとも一つのOFDMシンボルを必要とし得る。そのために、上述した4.1.1節〜4.1.4節で説明したDRS伝送よりも1つのOFDMシンボルの先にCRS、PSS、及びSSS(又は、CSI−RSなどのその他の信号)の伝送を開始し、該当のOFDMシンボルはAGC設定用途にのみ用いることができる。
4.2 DRS伝送のためのサブフレーム番号設定方法
以下では、上述した4.1.1節〜4.1.3節においてDRS伝送のためのPSS/SSS/CRSが送信されるSF番号がLTE/LTE−Aシステムと異なる場合、当該サブフレーム番号を設定する方法について説明する。
図34は、LAAシステムに適用可能なDRS伝送のためのサブフレーム番号を設定する方法を説明するための図である。
以下では、TDDシステム及びFDDシステムにおいてSSSは常にSF #0及びSF #5で送信されるので、便宜上、SSSを基準に説明するが、これらの方法は、PSS、CRS及び/又はCSI−RSを生成する場合にも同一に適用することができる。また、図34で、基本的に、免許帯域のPセルと非免許帯域のUセル(すなわち、Sセル)のSF番号が同一に設定される状況を仮定した。ただし、サブフレーム境界はPセル及びUセルで同期化された状態でサブフレーム番号をセル別に異なるように設定してもよい。
図34で最上図はPセルのサブキャリア番号をフレーム単位で示すものである。例えば、フレーム#N及びフレーム#N+1などに含まれるSF#0〜SF#9をそれぞれ示している。また、残りの図は、LAAシステムのサービングセルであるUセルで再設定されるSF番号を説明するためのものである。
4.2.1 SF番号再設定方法1
図34(a)を参照すると、PセルのSF#3でUセル上のSSSが送信されると、基地局はUセルのSF番号をSF#0に再設定し、再設定されたSF番号を(SF#0又はSF#5で継続してSSSが送信される限り)維持する。
例えば、各SFで送信されるCRS及び/又はCSI−RSなどのシーケンスは、再設定されたSF番号に基づいて生成される。しかし、仮にPセルのSF #3で送信されたUセル上のSSSを受信することに失敗したUEがあれば、当該UEは以降のSFでCRS及びCSI−RSなどを正確に受信できなくなり、DLデータ受信性能が低下し得る。
4.2.2 SF番号再設定方法2
図34(b)を参照すると、PセルのSF #3でUセル上のSSSが送信されると、基地局は当該SFのSF番号をSF#0に再設定し、再設定されたSF番号を1つの無線フレーム内でのみ維持するように設定することができる。
さらにいうと、Uセルで各SFに送信されるCRS/CSI−RSなどのシーケンスは、再設定されたSF番号に基づいて生成される。4.2.1節の実施例と比較するとき、PセルのSF #3で送信されたUセル上のSSSの受信に失敗したUEがあっても、最大1無線フレームにおいてのみDL信号受信に問題になるだけで、次の無線フレームからは正常に動作することができる。この時、DRSを構成するCSI−RS及び/又はCSI−IMと既存に設定されたCSI−RS及び/又はCSI−IMも、再設定されたSF
#0を基準に構成されてもよい。しかし、このために全DMTC区間でPSS/SSSをブラインド検出(BD:Blind Detection)すべきことが、端末具現において複雑度を増加させることにつながり得る。
4.2.3 SF番号再設定方法3
図34(c)を参照すると、Uセル上のSSSがいずれのSFに送信されても、SF番号は変化させなくてもよい。具体的には、各SFに送信されるCRS/CSI−RSなどのシーケンスは、PSS/SSSの伝送位置にかかわらず、Pセルのサブフレーム番号(又は、あらかじめ設定されたSF番号)に基づいて生成される。LTE−AシステムにおいてDRSに含まれるSSSはSF #0で送信されるか又はSF #5で送信されるかによって異なるシーケンスで構成及び送信される。
上述した実施例においてSSSがSF #0又はSF #5以外のSFで送信される場合には、常にSF #0又はSF #5で送信されるシーケンス(又は、当該シーケンスの変形)を送信するように設定することができる。
または、SF #0〜4でSSSはSF #0で送信されるシーケンス(又は、当該シーケンスの変形)を、SF #5〜9上のSSSはSF #5で送信されるシーケンス(又は、当該シーケンスの変形)に基づいて生成及び送信されるように設定することができる。例えば、UセルのSF#0〜4でSSSが送信される場合、SF#0〜4では第1シーケンスをSSSを生成するために用いることができる。また、SF#5〜9でSSSが送信される場合、SF#5〜9では第2シーケンスをSSSを生成するために用いることができる。この時、第1シーケンスは、Pセル、Sセル又はUセルのSF#0でSSSを生成するためのシーケンスを意味し、第2シーケンスは、Pセル、Sセル又はUセルのSF#5でSSSを生成するためのシーケンスを意味する。
しかし、該当のSセルに対してセル検出(cell detection)を行おうというUEに既存のPSS/SSSが5ms周期で送信されないと、セル検出を正しく行えないことがある。したがって、LAAシステムでPSS/SSSが送信されるSF番号がLTE−Aシステムと異なる場合に限って、LTE−AシステムのPSS/SSSと異なるように送信される必要がある。
例えば、基地局がPSS/SSSを送信する場合に、システム帯域幅の中心6PRBでない他の周波数リソースを活用することができる。これは、非免許帯域で動作するLTEシステムの帯域幅は最小で5MHzであることを考慮するとき、PSS/SSSが中心6PRBに限定される必要がないためである。
また、PSS及び/又はSSSが実際に送信されるSF番号によって周波数リソースがあらかじめ設定されていてもよい。
または、同じ周波数帯域のセル間干渉を考慮して、セル間調整(coordination)を用いて、基地局がセル別に異なる周波数を活用してPSS及び/又はSSSを送信するように設定されてもよい。
4.2.4 SF番号再設定方法4
基地局は、Uセル上のSSSが送信されるSFのSF番号をSF #0に再設定し、再設定されたSF番号をDRS機会(occasion)内でのみ適用させることができる。
図34(d)は、DMTC1区間内のDRS機会は2サブフレーム、DMTC2区間内のDRS機会は3サブフレームである場合のサブフレーム構造を示す。DMTC1区間及びDMTC2区間内でSSSが送信されるSFから始まるDRS機会内で送信されるSSS/CRS/CSI−RSのシーケンスは、PセルのSF番号にかかわらず、Uセル上に再設定されたSF番号に基づいて生成される。
4.2.5 SF番号再設定方法5
基地局は、Uセル上のSSSが送信されるSFのSF番号をSF #0又はSF #5に再設定し、再設定されたSF番号をDRS機会内でのみ適用させることができる。この時、DRS機会がPセルのSF番号0〜4である場合、Uセル上のSSSが送信されるS
FのS番号をSF #0、DRS機会がPセルのSF番号5〜9である場合、Uセル上SSSが送信されるSFのSF番号を5に設定することができる。
図34(e)は、DMTC1区間内のDRS機会は2サブフレーム区間であり、DMTC2区間内のDRS機会は3サブフレーム区間である例示である。DMTC1区間及びDMTC2区間内でSSSが送信されるSFから始まるDRS機会内で送信されるSSS/CRS/CSI−RSのシーケンスは、PセルのSF番号にかかわらず、Uセルで再設定されたSF番号に基づいて生成される。
例えば、図34(e)を参照すると、DMTC1でPセルのSF #3に対応するUセルのSF #3がDRS機会であり、UセルのSF#3でDRSを構成するSSSを送信することができる。この時、UセルのSF#3はSF#0に再設定され、DRS機会においてUセルのSF#3及びSF#4はSF#0及びSF#1に再設定される。また、DMTC2でPセルのSF#7に対応するUセルのSF #7がDRS機会であってもよい。したがって、UセルのSF#7〜SF#9はSF #5〜SF #7に再設定される。この場合、DMTC1及び2で送信されるDRSに含まれるPSS/SSS/CRSなどは、Uセルで再設定されたサブフレーム番号に基づいて生成することができる。
4.2.6 SF番号再設定方法6
基地局は、Uセル上のSSSが送信されるSFのSF番号をSF #0に再設定し、再設定されたSF番号をDRS機会内で維持させることができる。
図34(f)は、DMTC1区間内のDRS機会は2サブフレームであり、DMTC2区間内のDRS機会は3サブフレームである場合の例示である。DMTC1区間及びDMTC2区間内でSSSが送信されるSFから始まるDRS機会内で送信されるSSS/CRS/CSI−RSのシーケンスは、PセルのSF番号にかかわらず、Uセル上で再設定されたSF番号に基づいて生成される。
4.2.7 SF番号再設定方法7
基地局は、Uセル上のSSSが送信されるSFのSF番号をSF#0又はSF#5に再設定し、再設定されたSF番号をDRS機会内で維持させることができる。この時、DRS機会がPセルのSF番号0〜4である場合、Uセル上のSSSが送信されるSFから始まってDRS機会におけるSF番号は、SF#0に再設定することができる。また、DRS機会がPセルのSF番号5〜9である場合、Uセル上のSSSが送信されるSFから始まってDRS機会におけるSF番号は、SF #5に再設定することができる。
図34(g)は、DMTC1区間内のDRS機会は2サブフレームであり、DMTC2区間内のDRS機会は3SFである例示である。DMTC1区間及びDMTC2区間内でSSSが送信されるSFから始まるDRS機会内で送信されるSSS/CRS/CSI−RSのシーケンスは、PセルのSF番号にかかわらず、再設定されたSF番号に基づいて生成することができる。
4.2.8 SF番号再設定方法8
基地局は、Uセル上のSSSが送信されるSFがPセルのSF番号0である場合には、当該SF番号を0に再設定し、PセルのSF番号5である場合は当該SF番号を5に再設定する。
DRS機会がPセルのSF番号1〜4に該当する場合、基地局はUセル上のSSSが送信されるSFから始まってDRS機会におけるSF番号をSF#A(例えば、A=1)に再設定することができる。また、DRS機会がPセルのSF番号6〜9である場合、基地局はUセル上のSSSが送信されるSFから始まってDRS機会におけるSF番号をSF#B(例えば、B=6又はAと同じ値)に設定することができる。
図34(h)は、DMTC1区間内のDRS機会とDMTC2区間内のDRS機会がそれぞれ2及び3サブフレームである例示である。または、図34(h)で、DMTC1及び2区間内のDRS機会はいずれも1サブフレームに設定されてもよい。
基地局は、DMTC1区間及びDMTC2区間内でSSSが送信されるサブフレームから始まるDRS機会内で送信されるSSS/CRS/CSI−RSを生成するためのシーケンスを、Pセルのサブフレーム番号にかかわらず、再設定されたSF番号に基づいて生成することができる。
4.2.9 SF番号再設定方法9
基地局はDMTC区間内でDRS機会にかかわらずにUセルのSF番号をPセルのSF番号に関係なく設定することができる。例えば、DMTC区間内のSSS/CRS/CSI−RSを生成するためのシーケンスをSF番号X(例えば、X=0)を仮定して生成することができる。
または、DMTC区間内のSFインデックスがSF#0〜4である場合、SSS/CRS/CSI−RSを生成するためのシーケンスをSF #Y(例えば、Y=0)を仮定して生成することができる。また、DMTC区間内のSFインデックスがSF#5〜9である場合、SSS/CRS/CSI−RSを生成するためのシーケンスをSF #Z(例えば、Z=5)を仮定して生成することができる。
上述した4.2.1節〜4.2.9節で制限したUセルのSF番号を再設定し、再設定されたSF番号に基づいてSSS/CRS/CSI−RSのシーケンスを生成する方法は、SSS、CRS又はCSI−RSの各場合に対して異なる方法が適用されてもよい。例えば、SSS及びCSI−RSは4.1.5節で説明した実施例によって生成され、CRSは4.1.3節で説明した実施例によって生成されてもよい。
4.3 DRS構成方法
本発明の実施例において、DRSを送信する区間(例えば、DRS機会など)で空のOFDMシンボルが含まれることがある。このとき、空のOFDMシンボルにはダミー信号を送信したり、CSI−RSを割り当て及び送信することができる。また、CRSがLTE−Aシステムで定義されていない位置で送信されることを許容することができる。
この場合にも、上述した実施例を拡張適用することができる。例えば、4.1.2節及び図30(b)を参照すると、非免許帯域で端末のRRM測定性能を向上させるために、sym2にもCRSが送信されるように設定することができる。この場合、CRSのために少なくとも4個のOFDMシンボルが必要であり、第1のDRS伝送方式において固定位置のSF#Nのsym0であれば、基地局はSF#N内のsym0の直前に総センシング周期においてLBTを行い、LBTに成功した場合にSF#Nのsym0及び2のCRSを含めてDRSを構成することができる。
DRS機会内の空のOFDMシンボルをCSI−RS及び/又はCRSで埋める場合に
、当該CSI−RS或いはCRSなどをUEがセル識別、CSI測定又はRRM測定などの用途に活用できるかに関する問題(issue)が起こり得る。すなわち、空のOFDMシンボルを活用するか否かによって次のような2つのオプションが可能である。
4.3.1 オプション1
eNB観点では、DRS伝送SFでPDSCHとDRSを多重化する場合に、eNBは空のOFDMシンボルを追加RS(例えば、CRS/CSI−RS)で埋めなくてもよい。ただし、eNBは、PDSCHと多重化せずにDRSのみを送信するSFでは、空のOFDMシンボルをあらかじめ規定されたCSI−RS及び/又はCRSで埋めて送信することができる。すなわち、基地局はDRSとPDSCHを多重化する場合には空のOFDMシンボルが発生せず、CSI−RS/CRSを追加する必要がないが、DRSとPDSCHが多重化されない場合には空のOFDMシンボルが発生するので、CSI−RS/CRSを空のOFDMシンボルにさらに割り当てることができる。
UE観点では、構成されたDMTC区間内でDRSを受信する場合、該当のSFにスケジュールされるか否かにかかわらず、空のOFDMシンボルに追加送信されるCSI−RS或いはCRSなどはないと仮定することができる。例えば、設定されたDMTC区間内のSFにスケジューリングされたUEにとっては、当該SFにDRSとPDSCHが多重化されるとしても、DRSが送信されない空のOFDMシンボルに追加のCSI−RS及び/又はCRSに対するレートマッチングは行わない。
他の例として、設定されたDMTC区間内で(PDSCHでない)DRSのみを受信するUEは、基本的に、空のOFDMシンボルにおいて追加のCSI−RS及び/又はCRSは仮定しなくてもよい。しかし、BDによって、空のOFDMシンボルに追加送信され得るCSI−RS及び/又はCRSの有無が分かるUEに限って、追加されるCSI−RS及び/又はCRSが発見されると、セル識別、CSI測定、又はRRM測定などに活用することができる。
4.3.2 オプション2
eNB観点では、DRS伝送SFでPDSCHとDRSを多重化する場合は、空のOFDMシンボルを追加RSで埋めなくてもよい。eNBは、PDSCHと多重化されず、DRSのみを送信するSFでは、少なくともあらかじめ定められたSF(一例として、SF
#0/5以外のSF)では、空のOFDMシンボルをあらかじめ規定されたCSI−RS及び/又はCRSで埋めて送信することができる。
UE観点では、構成されたDMTC区間内でDRSを受信する場合、該当のSFにDRSとPDSCHが多重化されると、UEは、DRSが送信されない空のOFDMシンボルで追加のCSI−RS及び/又はCRSに対するレートマッチングは行わない。
これに対し、設定されたDMTC区間内で(PDSCHでない)DRSのみを受信するUEは、基本的に、少なくともあらかじめ定められたSF(一例として、SF #0/5以外のSF)で空のOFDMシンボルに追加のCSI−RS及び/又はCRSは常に存在すると仮定し、セル識別、CSI測定又はRRM測定などに活用することができる。
しかし、BDによって、空のOFDMシンボルに送信され得るCSI−RS及び/又はCRSの有無が分かるUEに限って、少なくともあらかじめ定められたSF(一例として、SF #0/5以外のSF)以外のSFで当該CSI−RS及び/又はCRSが発見されると、セル識別、CSI測定又はRRM測定などに活用することができる。
上述した方法によって設定されたPSS/SSS/CRS伝送パターンは、設定されたDMTC区間内で可能であると限定しなくてもよい。例えば、特定UEに設定されたDMTC区間でないSFである場合にも、基地局は、UEの時間及び周波数同期などの目的で、PSS/SSS/CRS(或いは、CSI−RS)で構成されたDRSを送信することができる。
また、上述した方法を用いたPSS/SSS/CRS伝送パターンは、DRSのみ含まれたDL TXバーストの他、DLデータが含まれたDL TXバーストにも同一に適用可能である。このとき、DRSのみ含まれたDL TXバーストのためのLBT方法は、DMTC区間内のDRS伝送時のLBT方法と同一に設定することができる。
4.2.1節〜4.2.9節で説明したシーケンス生成方法が、端末に設定されたDMTC区間以外にも同一に適用されてもよい。例えば、4.2.9節のように、(DMTC区間とは無関係に)全SFでSSS/CRS/CSI−RSを、SF #X(例えば、X=0)を仮定して生成することができる。
または、4.2.9節のように、(DMTC区間とは無関係に)全SFに対して、SFインデックスがSF #0〜4である場合、SSS/CRS/CSI−RSを、SF #Y(例えば、Y=0)を仮定して生成し、SFインデックスがSF#5〜9である場合、SSS/CRS/CSI−RSを、SF #Z(例えば、Z=5)を仮定して生成することができる。
4.4 DRS伝送時点通知方法
以下では、端末のDRS受信確率を高めるために、DRSが送信される時点を端末に通知する方法について説明する。
基地局は、DMTC区間内で実際にDRS伝送がいつ始まったか、又はDMTC区間外でDRSが送信されたか否かを、DCIを用いて端末に知らせることができる。この時、基地局は別の共用DCIを用いてDRS伝送の有無をシグナルしたり、CSI−RS/CSI−IM存在の有無を知らせるDCI情報を用いて端末に知らせることができる。
仮に、UEが当該DCI情報を逃がす(missing)と、端末は、DRSが送信されなかったと見なすことができる。しかし、基地局側ではDRS(すなわち、PSS/SSS/CRS)伝送が要求事項を満たすに十分であると判断されても、UE側では要求事項を満たせないことがある。したがって、UEが当該DCI情報を逃したにもかかわらず、DRS受信を試みるように設定されてもよい。
eNBがDRSを送信する際に、LBT完了時点などの影響によって、一部のOFDMシンボルを除いたままDRSを送信することがある。特徴的に、一部のOFDMシンボルを除いたままDRSを送信するとしても、最小限に含まれるべきOFDMシンボルはあらかじめ定められていてもよい。例えば、図30(b)のSym4、Sym5、Sym6及びSym7には少なくともCRS/SSS/PSS/CRSが割り当てられて送信されるように規定することができる。
仮にeNBがあるSFに対してSym0〜Sym12まで定義されたDRSの代わりに、Sym4、Sym5、Sym6及びSym7に割り当てられたCRS/SSS/PSS/CRSだけを送信したと仮定する。この時、当該SFがDMTC区間として設定されたUEにとっては、当該SFを有効なDRSが送信されたものと見なし難い。一方、当該S
FがDMTC区間として設定されていないUEにとっては、当該SFのPSS/SSS/CRS/CSI−RSなどを時間/周波数同期、CSI測定又はRRM測定などの用途に活用することができる。
上述した実施例は、部分TTI(partial TTI)導入の有無に関わらない。また、eNBが予約信号、初期信号又はプリアンブルをSym4〜Sym7で送信する場合(特に、SF#0及び5である場合)、基地局はDRS(PSS/SSS/CRS/CSI−RS)を送信することができる。当該SFがDMTC区間として設定されたUEにとっては、設定されたDMTC区間内に有効のDRSが依然として受信されなかったため、このようなUEのためにeNBは次のSFでも(Sym0〜Sym12まで定義された)DRSを送信することができる。
4.5 DRS受信方法
上述した実施例において、CRS/CSI−RSに対するシーケンス生成が、Pセル上のSFインデックスとは無関係に決定され得る(すなわち、UセルのSF番号によって生成される)場合、UEがDRSの送信されるSFに対して(E)PDCCH/PDSCH復調(demodulation)又はCSI測定を行う際に曖昧さ(ambiguity)が発生し得る。このような問題を解決するために、次のような方法を考慮することができる。
4.5.1 DRS受信方法1
UEが自身に設定されたDMTC区間外でPSS及び/又はSSSが発見されるSFに限って、あらかじめ設定された規則にしたがってCRS/CSI−RSのシーケンスを異なるように仮定することができる。
例えば、4.2.5節で説明した方法のようにDRS機会がSFインデックスSF#0〜4である場合、基地局はSSS/CRS/CSI−RSのシーケンスをSF#0を仮定して生成することができる。また、DRS機会がSF #5〜9である場合、基地局はSSS/CRS/CSI−RSのシーケンスをSF #5を仮定して生成することができる。この時、UEがあるSFでPSS及び/又はSSSを発見すると、発見されたSSSのシーケンスによってCRS/CSI−RSのシーケンスを仮定してデコードすることができる。
4.5.2 DRS受信方法2
eNBがRRCシグナリングなどを用いてあらかじめ知らせたSF又は物理層信号を用いて動的に知らせたSFに対してのみ、端末は特定SFインデックスのCRS/CSI−RSシーケンスを仮定してデコードすることができる。
4.5.3 DRS受信方法3
本実施例を4.5.1節及び4.5.2節の組合せで実行することができる。例えば、eNBが、PセルのSFインデックスにかかわらずにCRS/CSI−RSが送信され得るSFの集合を知らせると、UEは、当該集合に属するSFに対してのみPSS及び/又はSSS検出を試みることができる。UEは、当該SFでPSS/SSSなどを検出すると、あらかじめ定められた規則にしたがって或いはシグナリングを用いて設定されたSFインデックスを仮定してCRS/CSI−RSシーケンスが分かる。
この時、UE自身に設定されたDMTC区間内と区間外に対して異なる動作が定義されてもよい。例えば、UEは、自身に設定されたDMTC区間内では既存のLTE−A(Rel−12)システムのCSI−RSと同一にCSI−RSシーケンスを仮定してCSI−RSなどのDRSを受信し、自身に設定されたDMTC区間外では、上述した4.5.1〜4.5.3節で説明した実施例を適用することができる。
4.6 DRS伝送方法
図35は、LAAシステムに適用可能なDRS伝送方法の一例を示す図である。
図35で説明する実施例には、上述した1節〜4節で説明した本発明の実施例を組み合わせて適用することができる。図35を参照すると、基地局はDRSを送信する必要があるとき、DMTC区間内のDRS機会(DRS occasion)又はDRS機会の直前で該当のチャネル(又は、Uセル)が遊休状態であるか否かを判断する(S3510)。
S3510段階でチャネルが遊休であるか否かは、基地局が所定の時間にチャネルをセンシングして遊休状態か否かを判断したり、LBTを行って遊休状態か否かを判断することができる(3節参照)。
該当のチャネルが遊休状態であれば、基地局はDRSを生成し(S3520)、それを端末に送信することができる(S3530)。
S3520段階でDRSはPSS、SSS及びCRSで構成され、選択的にCSI−RSを含んでもよい。PSS、SSS、CRS及びCSI−RSを生成する場合、DRSが送信されるUセルのサブフレームインデックス(又は、サブフレーム番号)に基づいて生成される。
例えば、PSSは、DRS機会の一番目のスロットの最後のOFDMシンボルで送信され、SSSは、PSSが送信されるスロットで送信され得る。この時、DRS機会は、Uセルの再設定されたサブフレームで送信され、サブフレームを再送信する方法は4.2節を参照されたい。
例えば、SSSを生成するために必要なシーケンスは、再設定されたUセルのサブフレーム番号に基づいて決定される。さらにいうと、UセルのSF#0〜4でSSSが送信される場合、SSSはSF#0で用いられる第1シーケンスに基づいて生成される。また、UセルのSF#5〜9でSSSが送信される場合、SF#5で用いられる第2シーケンスに基づいてSSSが生成される。
また、CRSがUセルのSF#0〜4で送信される場合、CRSは、SF#0で用いられるシーケンスに基づいて生成される。また、CRSがUセルのSF#5〜9で送信される場合、CRSは、SF#5で用いられるシーケンスに基づいて生成される。
すなわち、DRS機会が発生した再設定されたUセルのSF番号に基づいて、DRSを構成するPSS/SSS/CRS/CSI−RSのシーケンスを生成することができる。
また、端末は、DRS機会が発生するサブフレーム番号に基づいて、DRSを構成するPSS、SSS、CRS及び/又はCSI−RSの生成シーケンスを推定及び把握することができる。したがって、生成シーケンスに基づいて、受信したDRSをデコードすることができる。
また、図35を参照すると、端末はDMTC区間内のDRS機会でDRSを受信することができる。端末は、受信したDRSに基づいて時間/周波数同期を取ったり、CSIを測定及び報告したり、RRMを測定及び報告することができる(S3540)。
本発明の実施例においてサブフレーム番号は0以上の整数と表現される。
5. 具現装置
図36で説明する装置は、図1〜図35で説明した方法を具現できる手段である。
端末(UE:User Equipment)は上りリンクでは送信端として動作し、
下りリンクでは受信端として動作することができる。また、基地局(eNB:e−NodeB)は上りリンクでは受信端として動作し、下りリンクでは送信端として動作することができる。
すなわち、端末及び基地局は、情報、データ及び/又はメッセージの送信及び受信を制御するために、それぞれ送信器(Transmitter)3640、3650及び受信器(Receiver)3650、3670を含むことができ、情報、データ及び/又はメッセージを送受信するためのアンテナ3600、3610などを含むことができる。
また、端末及び基地局は、上述した本発明の実施例を実行するためのプロセッサ(Processor)3620、3630とプロセッサの処理過程を臨時に又は持続的に保存することができるメモリ3680、3690をそれぞれ含むことができる。
上述した端末及び基地局装置の構成成分及び機能を用いて本願発明の実施例を実行することができる。例えば、基地局のプロセッサは、送信器及び受信器を制御して、LAAセルが遊休状態か否かを判断するためのCAP(又は、CS、CAA過程など)を行うことができる。また、基地局のプロセッサは、DRS機会で又はその前にチャネルが遊休状態か否かを判断し、遊休状態であれば、DRSを生成して端末に送信することができる。DRSを生成する詳細な方法は1節〜4節を参照されたい。
端末及び基地局に含まれた送信モジュール及び受信モジュールは、データ送信のためのパケット変復調機能、高速パケットチャネルコーディング機能、直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)パケットスケジューリング、時分割デュプレックス(TDD:Time Division Duplex)パケットスケジューリング及び/又はチャネル多重化機能を実行することができる。また、図36の端末及び基地局は、低電力RF(Radio Frequency)/IF(Intermediate Frequency)モジュールをさらに備えることができる。
一方、本発明で端末として、個人携帯端末機(PDA:Personal Digital Assistant)、セルラーフォン、個人通信サービス(PCS:Personal Communication Service)フォン、GSM(Global
System for Mobile)フォン、WCDMA(登録商標)(Wideband CDMA)フォン、MBS(Mobile Broadband System)フォン、ハンドヘルドPC(Hand−Held PC)、ノートパソコン、スマート(Smart)フォン、又はマルチモードマルチバンド(MM−MB:Multi Mode−Multi Band)端末機などを用いることができる。
ここで、スマートフォンは、移動通信器末機と個人携帯端末機の長所を組み合わせた端末機であって、移動通信器末機に、個人携帯端末機の機能である日程管理、ファックス送受信及びインターネット接続などのデータ通信機能を統合した端末機を意味できる。また、マルチモードマルチバンド端末機は、マルチモデムチップを内蔵し、携帯インターネットシステムでも、その他の移動通信システム(例えば、CDMA2000システム、WCDMAシステムなど)でも作動できる端末機のことを指す。
本発明の実施例は、様々な手段によって具現することができる。例えば、本発明の実施例は、ハードウェア、ファームウェア(firmware)、ソフトウェア又はそれらの結合などによって具現することができる。
ハードウェアによる具現の場合、本発明の実施例に係る方法は、1つ又はそれ以上のASIC(application specific integrated circuit)、DSP(digital signal processor)、DSPD(digital signal processing device)、PLD(programmable logic device)、FPGA(field programmable gate array)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサなどによって具現することができる。
ファームウェアやソフトウェアによる具現の場合、本発明の実施例に係る方法は、以上で説明された機能又は動作を実行するモジュール、手順又は関数などの形態として具現することもできる。例えば、ソフトウェアコードは、メモリユニット3680、3690に記憶され、プロセッサ3620、3630によって駆動されてもよい。メモリユニットは、プロセッサの内部又は外部に設けられ、公知の種々の手段によってプロセッサとデータを交換することができる。
本発明は、本発明の精神及び必須特徴から逸脱しない範囲で他の特定の形態として具体化されてもよい。したがって、上記の詳細な説明は、いずれの面においても制約的に解釈されてはならず、例示的なものとして考慮されなければならない。本発明の範囲は、添付した請求項の合理的解釈によって決定されなければならず、本発明の等価的範囲における変更はいずれも本発明の範囲に含まれる。また、特許請求の範囲で明示的な引用関係にない請求項を結合して実施例を構成してもよく、出願後の補正によって新しい請求項として含めてもよい。
本発明の実施例は多様な無線接続システムに適用可能である。多様な無線接続システムの一例として、3GPP(3rd Generation Partnership Project)又は3GPP2システムなどがある。本発明の実施例は上記多様な無線接続システムだけではなく、上記多様な無線接続システムを応用した全ての技術分野に適用可能である。

Claims (10)

  1. 非免許帯域を支援する無線接続システムにおいて基地局がディスカバリ参照信号(DRS)を送信する方法であって、
    上記非免許帯域に構成される非免許帯域セル(Uセル)で送信される上記DRSを構成するステップと、
    上記構成したDRSをDRS機会で送信するステップと、
    を含み、
    上記DRSは、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)及びセル特定参照信号(CRS)を含み、
    上記DRS機会が発生したサブフレーム(SF)のSF番号に基づいて上記SSSを生成し、
    上記SF番号がSF番号0〜4である場合、上記SSSは、SF番号0に該当するシーケンスに基づいて生成され、
    上記SF番号がSF番号5〜9である場合、上記SSSは、SF番号5に該当するシーケンスに基づいて生成される、DRS伝送方法。
  2. 上記DRSを送信する前に、上記Uセルが遊休状態であるか否かを確認するためのチャネルセンシング過程を行うステップをさらに含む、請求項1に記載のDRS伝送方法。
  3. 上記CRSが送信されるSFのSF番号がSF番号0〜4である場合、上記CRSは、SF番号0に該当するシーケンスに基づいて生成され、
    上記CRSが送信されるSFのSF番号がSF番号5〜9である場合、上記CSRは、SF番号5に該当するシーケンスに基づいて生成される、請求項1に記載のDRS伝送方法。
  4. 上記DRSは、SF番号0又は5でのみ物理下りリンク共有チャネル(PDSCH)と共に送信される、請求項1に記載のDRS伝送方法。
  5. 上記DRSは、チャネル状態情報−参照信号(CSI−RS)をさらに含んで構成される、請求項1に記載のDRS伝送方法。
  6. 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号(DRS)を送信する基地局は、
    送信器と、
    上記DRSを構成するためのプロセッサと、
    を含み、
    上記プロセッサは、
    上記非免許帯域に構成される非免許帯域セル(Uセル)で送信される上記DRSを構成し、
    上記構成したDRSをDRS機会で上記送信器を制御して送信するように構成され、
    上記DRSは、プライマリ同期信号(PSS)、セカンダリ同期信号(SSS)及びセル特定参照信号(CRS)を含み、
    上記DRS機会が発生したサブフレーム(SF)のSF番号に基づいて上記SSSを生成し、
    上記SF番号がSF番号0〜4である場合、上記SSSは、SF番号0に該当するシーケンスに基づいて生成され、
    上記SF番号がSF番号5〜9である場合、上記SSSは、SF番号5に該当するシーケンスに基づいて生成される、基地局。
  7. 上記プロセッサは、さらに、上記DRSを送信する前に上記Uセルが遊休状態であるか否かを確認するためのチャネルセンシング過程を行うように構成される、請求項6に記載の基地局。
  8. 上記CRSが送信されるSFのSF番号がSF番号0〜4である場合、上記CRSは、SF番号0に該当するシーケンスに基づいて生成され、
    上記CRSが送信されるSFのSF番号がSF番号5〜9である場合、上記CSRは、SF番号5に該当するシーケンスに基づいて生成される、請求項6に記載の基地局。
  9. 上記DRSは、SF番号0又は5でのみ物理下りリンク共有チャネル(PDSCH)と共に送信される、請求項6に記載の基地局。
  10. 上記DRSは、チャネル状態情報−参照信号(CSI−RS)をさらに含んで構成される、請求項6に記載の基地局。
JP2019151649A 2015-07-10 2019-08-22 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置 Active JP6945602B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201562190738P 2015-07-10 2015-07-10
US62/190,738 2015-07-10
US201562222180P 2015-09-22 2015-09-22
US62/222,180 2015-09-22
US201562236148P 2015-10-02 2015-10-02
US62/236,148 2015-10-02
US201562238759P 2015-10-08 2015-10-08
US62/238,759 2015-10-08
JP2018500650A JP2018520601A (ja) 2015-07-10 2016-07-11 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018500650A Division JP2018520601A (ja) 2015-07-10 2016-07-11 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置

Publications (2)

Publication Number Publication Date
JP2019198125A true JP2019198125A (ja) 2019-11-14
JP6945602B2 JP6945602B2 (ja) 2021-10-06

Family

ID=57757947

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018500650A Pending JP2018520601A (ja) 2015-07-10 2016-07-11 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置
JP2019151649A Active JP6945602B2 (ja) 2015-07-10 2019-08-22 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018500650A Pending JP2018520601A (ja) 2015-07-10 2016-07-11 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置

Country Status (6)

Country Link
US (2) US10638407B2 (ja)
EP (1) EP3322113B1 (ja)
JP (2) JP2018520601A (ja)
KR (1) KR102214078B1 (ja)
CN (1) CN107925494B (ja)
WO (1) WO2017010773A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10256955B2 (en) * 2015-09-29 2019-04-09 Qualcomm Incorporated Synchronization signals for narrowband operation
US10958404B2 (en) * 2015-11-06 2021-03-23 Qualcomm Incorporated Discovery reference signal configuration and scrambling in licensed-assisted access
WO2017166254A1 (zh) * 2016-03-31 2017-10-05 华为技术有限公司 发送信号的方法、终端设备和网络设备
US10517021B2 (en) 2016-06-30 2019-12-24 Evolve Cellular Inc. Long term evolution-primary WiFi (LTE-PW)
EP3518579A4 (en) * 2016-09-21 2020-05-27 NTT DoCoMo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
CN110402609B (zh) * 2017-02-16 2022-12-30 Lg 电子株式会社 在基站和终端之间的信号传输/接收方法及其装置
US10484954B2 (en) * 2017-05-10 2019-11-19 Qualcomm Incorporated Synchronization for wideband coverage enhancement
US10609660B2 (en) * 2017-04-19 2020-03-31 Qualcomm Incorporated Synchronization for wideband coverage enhancement
CN109152015B (zh) * 2017-06-16 2021-12-31 华为技术有限公司 通信方法、基站和终端设备
KR102443452B1 (ko) 2017-07-17 2022-09-15 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어정보를 전송하는 방법 및 장치
US11457472B2 (en) * 2017-12-18 2022-09-27 Samsung Electronics Co., Ltd. Method and apparatus for initial access block on stand-alone NR unlicensed spectrum
CN113395154B (zh) 2018-04-04 2022-11-18 中兴通讯股份有限公司 发现参考信号的发送和接收方法、基站和终端
KR102488493B1 (ko) * 2018-04-06 2023-01-13 주식회사 아이티엘 비면허 대역을 위한 nr 시스템에서 발견 신호를 송수신하는 방법 및 그 장치
CN112106420B (zh) * 2018-05-11 2024-03-01 华为技术有限公司 通信方法、设备及系统
WO2019225901A1 (ko) * 2018-05-21 2019-11-28 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 이를 지원하는 장치
CN110519793B (zh) * 2018-05-22 2021-10-22 维沃移动通信有限公司 测量上报方法、测量配置方法、终端和网络侧设备
WO2019227356A1 (en) * 2018-05-30 2019-12-05 Nokia Shanghai Bell Co., Ltd. Signal pre-processing
CN110636538B (zh) * 2018-06-22 2021-07-20 维沃移动通信有限公司 波束测量方法、网络侧设备、终端设备及存储介质
KR102297101B1 (ko) * 2018-07-13 2021-09-03 주식회사 케이티 비면허 대역에서 무선 통신을 수행하는 방법 및 장치
US20200052865A1 (en) * 2018-08-10 2020-02-13 Asustek Computer Inc. Method and apparatus for slot format indication for an ending slot in unlicensed spectrum in a wireless communication system
JP2021534643A (ja) * 2018-08-10 2021-12-09 ウィルス インスティテュート オブ スタンダーズ アンド テクノロジー インコーポレイティド 無線通信システムの物理チャネル及び信号送受信方法及びそれを利用する装置
CN110891291A (zh) * 2018-09-07 2020-03-17 华为技术有限公司 发送和接收控制信息的方法以及装置
WO2020060360A1 (ko) * 2018-09-22 2020-03-26 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
EP3852439B1 (en) * 2018-10-29 2023-09-06 Samsung Electronics Co., Ltd. Operation of a terminal and a base station in an unlicensed frequency band wireless communication system in which listen-before-talk, lbt, failure occurs
CN111225388B (zh) * 2018-11-23 2022-03-29 大唐移动通信设备有限公司 一种载波聚合小区集优化方法及装置
US11109448B2 (en) 2018-12-11 2021-08-31 Samsung Electronics Co., Ltd. Method and apparatus for timing configuration of discovery signal and channel
WO2020165997A1 (ja) * 2019-02-14 2020-08-20 株式会社Nttドコモ ユーザ端末
CN114287140A (zh) * 2019-08-26 2022-04-05 奥罗佩法国有限责任公司 无线链路监控方法及设备
WO2022031692A1 (en) * 2020-08-04 2022-02-10 Intel Corporation Discovery reference signal beamforming randomization
KR20230074176A (ko) * 2020-10-12 2023-05-26 주식회사 윌러스표준기술연구소 무선 통신 시스템에서 물리 상향링크 제어채널의 전송 방법, 장치 및 시스템

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039559A1 (en) * 2014-09-08 2016-03-17 Samsung Electronics Co., Ltd. Cell detection, synchronization and measurement on unlicensed spectrum

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9014138B2 (en) * 2009-08-07 2015-04-21 Blackberry Limited System and method for a virtual carrier for multi-carrier and coordinated multi-point network operation
US20120282936A1 (en) * 2011-05-02 2012-11-08 Research In Motion Limited Methods of PDCCH Capacity Enhancement in LTE Systems
EP2785087B1 (en) * 2011-11-25 2019-09-04 Nec Corporation Cell identifier allocation method, base station, maintenance server, and mobile communication system
CN103391622B (zh) * 2012-05-11 2018-08-28 中兴通讯股份有限公司 同步跟踪参考信号的发送处理方法及装置
US9750044B2 (en) * 2013-05-10 2017-08-29 Qualcomm Incorporated Methods and apparatus for network synchronization
US9775134B2 (en) * 2013-09-20 2017-09-26 Samsung Electronics Co., Ltd. System and method for coverage enhancements of broadcast channels
US9893854B2 (en) 2013-09-20 2018-02-13 Qualcomm Incorporated Sequence mapping for LTE/LTE-A with unlicensed spectrum
CN105580297B (zh) 2013-09-27 2018-10-23 三星电子株式会社 用于先进lte的发现信号的方法和装置
US20150189574A1 (en) 2013-12-26 2015-07-02 Samsung Electronics Co., Ltd. Methods for dormant cell signaling for advanced cellular network
US9839049B2 (en) * 2014-02-24 2017-12-05 Intel IP Corporation Scheduling for an unlicensed carrier type
US10015662B2 (en) * 2014-03-12 2018-07-03 Lg Electronics Inc. Discovery signal receiving method and terminal
US10292091B2 (en) * 2014-04-17 2019-05-14 Lg Electronics Inc. Method and terminal for detecting discovery signal
CN104301273B (zh) * 2014-08-25 2020-03-10 中兴通讯股份有限公司 使用非授权载波发送及接收信号的方法、基站及用户设备
US10341034B2 (en) * 2014-11-03 2019-07-02 Avago Technologies International Sales Pte. Limited Dynamic LTE signal detection
US10009892B2 (en) * 2015-03-17 2018-06-26 Telefonaktiebolaget L M Ericsson (Publ) Listen-Before-Talk operation with freeze interval
US9680617B2 (en) * 2015-03-20 2017-06-13 Acer Incorporated Method of transmitting reference signal in unlicensed spectrum for LTE-LAA system and wireless device using the same
CN104717687B (zh) * 2015-04-09 2018-07-27 宇龙计算机通信科技(深圳)有限公司 信道占用概率的调整方法、调整系统和设备
US20160330678A1 (en) * 2015-05-07 2016-11-10 Electronics And Telecommunications Research Institute Method and device for transmitting and receiving discovery reference signal through channel of unlicensed frequency band
CN104968052B (zh) * 2015-05-15 2017-05-17 宇龙计算机通信科技(深圳)有限公司 配置方法、配置系统、设备、接收方法、接收系统和终端
WO2016186406A1 (ko) * 2015-05-16 2016-11-24 주식회사 윌러스표준기술연구소 비인가 대역에서 신호 전송 방법, 장치 및 시스템
CN107637003B (zh) * 2015-08-12 2021-07-06 韩国电子通信研究院 用于在通信网络中传送和接收信号的方法和设备
US10110428B2 (en) * 2015-09-24 2018-10-23 Electronics And Telecommunications Research Institute Method and apparatus for configuring frame of unlicensed band
US10548055B2 (en) * 2015-12-08 2020-01-28 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device, methods and computer programs

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039559A1 (en) * 2014-09-08 2016-03-17 Samsung Electronics Co., Ltd. Cell detection, synchronization and measurement on unlicensed spectrum
JP2017533679A (ja) * 2014-09-08 2017-11-09 サムスン エレクトロニクス カンパニー リミテッド 無認可スペクトル上におけるセル検出、同期化及び測定のための方法及び装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "DRS design in LAA", 3GPP TSG-RAN WG1#82B R1-155387, JPN6018051931, 25 September 2015 (2015-09-25), ISSN: 0004369731 *
NOKIA NETWORKS: "DRS Occasion Design for LTE LAA", 3GPP TSG-RAN WG1#82B R1-155586, JPN6018051929, 25 September 2015 (2015-09-25), ISSN: 0004369730 *
NTT DOCOMO, INC.: "Remaining details on DRS transmission and RRM measurement for LAA", 3GPP TSG-RAN WG1#83 R1-157221, JPN6018051934, 7 November 2015 (2015-11-07), ISSN: 0004369733 *
WILUS INC.: "Consideration on Multiplexing DRS and PDSCH for LAA", 3GPP TSG-RAN WG1#83 R1-157331, JPN6018051933, 7 November 2015 (2015-11-07), ISSN: 0004369732 *

Also Published As

Publication number Publication date
EP3322113A1 (en) 2018-05-16
KR20180024019A (ko) 2018-03-07
US11546195B2 (en) 2023-01-03
JP6945602B2 (ja) 2021-10-06
CN107925494A (zh) 2018-04-17
US20200229074A1 (en) 2020-07-16
JP2018520601A (ja) 2018-07-26
EP3322113B1 (en) 2022-11-09
WO2017010773A1 (ko) 2017-01-19
US10638407B2 (en) 2020-04-28
US20180192355A1 (en) 2018-07-05
KR102214078B1 (ko) 2021-02-09
EP3322113A4 (en) 2019-03-27
CN107925494B (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
JP6945602B2 (ja) 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置
US11405954B2 (en) Method for adjusting contention window size in wireless access system supporting unlicensed band, and device for supporting same
US11265928B2 (en) Method for adjusting contention window size on basis of HARQ-ACK information in wireless access system supporting unlicensed band, and device for supporting same
US11109410B2 (en) Method and device for performing LBT process on multiple carriers in wireless access system supporting unlicensed band
JP6608051B2 (ja) 非免許帯域及びキャリア結合を支援する無線接続システムにおいてデータバースト送信方法及び装置
US11172500B2 (en) Method and apparatus for controlling contention window size in radio access system supporting unlicensed band
JP6560445B2 (ja) 非免許帯域を支援する無線接続システムにおいて優先順位クラスを考慮して競合ウィンドウサイズを調節する方法及びこれを支援する装置
US10681527B2 (en) Method and device for transreceiving discovery reference signal in wireless access system supporting unlicensed band
US10581571B2 (en) Methods and devices for transmitting/receiving discovery signal in wireless access system supporting unlicensed band

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210701

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210701

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210709

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210914

R150 Certificate of patent or registration of utility model

Ref document number: 6945602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150