WO2019227356A1 - Signal pre-processing - Google Patents

Signal pre-processing Download PDF

Info

Publication number
WO2019227356A1
WO2019227356A1 PCT/CN2018/089093 CN2018089093W WO2019227356A1 WO 2019227356 A1 WO2019227356 A1 WO 2019227356A1 CN 2018089093 W CN2018089093 W CN 2018089093W WO 2019227356 A1 WO2019227356 A1 WO 2019227356A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
versions
bandwidth part
transmitter
domain baseband
Prior art date
Application number
PCT/CN2018/089093
Other languages
French (fr)
Inventor
Zhe LUO
Tao Tao
Jianguo Liu
Gang Shen
Jun Wang
Zhuo WU
Yan Meng
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN201880093995.7A priority Critical patent/CN112237038B/en
Priority to PCT/CN2018/089093 priority patent/WO2019227356A1/en
Publication of WO2019227356A1 publication Critical patent/WO2019227356A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/12Frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals

Definitions

  • Embodiments of the present disclosure generally relate to the field of signal processing, and in particular, to a method, a transmitter and a computer readable storage medium for signal pre-processing.
  • NR New Radio
  • NR New Radio
  • NR New Radio
  • NR New Radio
  • UE User equipment
  • UE may be configured to operate on one or more (contiguous or non-contiguous) BWPs.
  • the BWP configuration for the UE is not dynamic.
  • gNB gigabit NodeB
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • An unlicensed band has become a beneficial supplement for the licensed band to meet the increasing service requirements.
  • ETSI European Telecommunications Standards Institute
  • the unlicensed band is divided into multiple operating channels, and a device may occupy multiple contiguous/non-contiguous operating channels simultaneously.
  • the unlicensed spectrum 5150 MHz to 5350 MHz may be divided into 10 operating channels, that is, 20 MHz per channel.
  • Each operating channel can be considered as a BWP of a large bandwidth of the unlicensed band.
  • the UE and gNB can operate on the unlicensed band with the large bandwidth by using a single radio frequency (RF) transmit (Tx) /receiving (Rx) chain that switches between different operating channels.
  • RF radio frequency
  • dynamic BWP adaptation is proposed for the unlicensed NR.
  • the device performs transmission on idle BWPs and drop busy BWPs autonomously to increase the unlicensed spectrum efficiency. For example, the device may perform a Listen Before Talk (LBT) or Clear Channel Assessment (CCA) procedure to detect the idle BWPs for transmission.
  • LBT Listen Before Talk
  • CCA Clear Channel Assessment
  • example embodiments of the present disclosure provide a method, a transmitter and a computer readable storage medium for signal pre-processing.
  • a method is provided at a transmitter.
  • a plurality of versions of a first signal are generated for transmission on a plurality of bandwidth parts.
  • a bandwidth part is selected from the plurality of bandwidth parts, and a version of the first signal to be transmitted on the selected bandwidth part is selected from the plurality of versions of the first signal. Then, the selected version of the first signal is transmitted on the selected bandwidth part.
  • a transmitter comprising at least one processor and at least one memory including computer program code.
  • the at least one memory and the computer program code are configured to, with the at least one processor, cause the device to perform the method according to the first aspect.
  • a computer readable storage medium that stores a computer program thereon.
  • the computer program when executed by a processor, causes the processor to perform the method according to the first aspect.
  • FIG. 1 illustrates three example cases of dynamic BWP adaptation
  • FIG. 2 illustrates an example environment in which embodiments of the present disclosure can be implemented
  • FIG. 3 illustrates an example arrangement of the transmitter for generating the time-domain baseband versions of the first signal according to some embodiments of the present disclosure
  • FIG. 4 illustrates another example arrangement of the transmitter for generating the time-domain baseband versions of the first signal according to some other embodiments of the present disclosure
  • FIG. 5 illustrates an example process implemented at the transmitter according to some embodiments of the present disclosure
  • FIG. 6 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure.
  • FIG. 7 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • the term “transmitter” refers to a device capable of transmitting a signal.
  • the term “receiver” refers to a device capable of receiving a signal.
  • the transmitter or receiver may be implemented by or as a part of any suitable device, including, for example, a network device or a terminal device.
  • the term “network device” refers to any suitable device at a network side of a communication network.
  • the network device may include any suitable device in an access network of the communication network, for example, including a base station (BS) , a relay, an access point (AP) , a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a gigabit NodeB (gNB) , a Remote Radio Module (RRU) , a radio header (RH) , a remote radio head (RRH) , a low power node such as a femto, a pico, and the like.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB gigabit NodeB
  • RRU Remote Radio Module
  • RH radio header
  • RRH remote radio head
  • a low power node such as a
  • the term “terminal device” refers to a device capable of, configured for, arranged for, and/or operable for communications with a network device or a further terminal device in a communication network.
  • the communications may involve transmitting and/or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and/or other types of signals suitable for conveying information over air.
  • the terminal device may be configured to transmit and/or receive information without direct human interaction. For example, the terminal device may transmit information to the network device on predetermined schedules, when triggered by an internal or external event, or in response to requests from the network side.
  • terminal device examples include, but are not limited to, user equipment (UE) such as smart phones, wireless-enabled tablet computers, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , and/or wireless customer-premises equipment (CPE) .
  • UE user equipment
  • LME laptop-embedded equipment
  • CPE wireless customer-premises equipment
  • circuitry may refer to one or more or all of the following:
  • combinations of hardware circuits and software such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the dynamic BWP adaptation is needed to allow transmissions of a plurality of devices.
  • a device may first detect idle BWPs during the LBT or CCA procedure, for example.
  • FIG. 1 shows three example cases of dynamic BWP adaptation.
  • four continuous BWPs 105 are configured to a device.
  • the device detects that the first and fourth BWPs 110-1 and 125-1 are blocked due to occupying by other devices.
  • the second and third BWPs 115-1 and 120-1 are detected to be clear and available.
  • the device can use the second and third BWPs 115-1 and 120-1 for transmission.
  • the fourth BWP 125-2 is blocked.
  • the first, second and third BWPs 110-2, 115-2 and 120-2 are clear and available to the device.
  • the second and fourth BWPs 115-3 and 125-3 are blocked, and the first and third BWPs 110-3 and 120-3 are available.
  • Such dynamic BWP adaptation brings many challenges.
  • One challenge is directed to a time of generating a time-domain baseband signal.
  • a time gap between the completion of the CCA procedure and the transmission is proposed not to exceed 16 us.
  • a time-domain baseband signal to be transmitted on the BWPs needs to be generated within 16 us.
  • the generation of the time-domain baseband signal may include the processing of Inverse Fast Fourier Transform (IFFT) and filtering.
  • IFFT Inverse Fast Fourier Transform
  • DSP Digital Signal Processing
  • ICs Integrated Circuits
  • LTE long term evolution
  • LAA Licensed Assisted Access
  • some preamble transmission schemes provide transmission of a preamble upon the completion of the CCA procedure.
  • the transmission of the preamble is used to reserve the channel before transmission of data.
  • these schemes cannot deal with the latency issue of the signal generation in the dynamic BWP adaptation.
  • Embodiments of the present disclosure provide a signal pre-processing scheme for dynamic BWP adaptation.
  • a pre-processing scheme for dynamic BWP adaptation.
  • a plurality of versions of a signal is prepared in advance for transmission on a plurality of BWPs.
  • Each of the versions corresponds to one of the BWPs.
  • the corresponding version of the signal is selected and then transmitted on the selected BWP.
  • This preparation of the plurality of versions of the signal significantly reduces the time delay between the selection of the BWP and the transmission of the signal.
  • FIG. 2 shows an example environment 200 in which embodiments of the present disclosure can be implemented.
  • the environment 200 which is a part of a communication network, includes a transmitter 210 and a receiver 220. It is to be understood that one transmitter and one receiver are shown only for the purpose of illustration without suggesting any limitation to the scope of the present disclosure.
  • the environment 200 may include any suitable number of transmitters and receivers adapted for implementing embodiments of the present disclosure.
  • the transmitter 210 and the receiver 220 can be implemented by or as a part of any suitable device.
  • the transmitter 210 may be implemented at a network device, and the receiver 220 may be implemented at a terminal device, and vice versa.
  • the environment 200 is a part of a relay communication network.
  • the transmitter 210 may be implemented at a network device, and the receiver 220 may be at a relay, and vice versa.
  • the transmitter 210 and the receiver 220 may be both implemented at terminal devices in device-to-device (D2D) communications, which may be alternatively referred to as sidelink, or vehicle to everything (V2X) .
  • D2D device-to-device
  • V2X vehicle to everything
  • the transmitter 210 can communicate with the receiver 220.
  • the communication may follow any suitable communication standards or protocols such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) NR, Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) and ultra-reliable low latency communication (uRLLC) technologies.
  • UMTS Universal Mobile Telecommunications System
  • LTE long term evolution
  • LTE-A LTE
  • the transmitter 210 can transmit signals to the receiver 220 on a plurality of BWPs, for example, configured by the network.
  • the BWPs may be parts of a licensed band or an unlicensed band. For the purpose of discussion, some embodiments are discussed in the case of the unlicensed BWPs.
  • the transmitter 210 Before the transmission of a signal (referred to as a first signal) , the transmitter 210 generates a plurality of versions of the first signal for transmission on the plurality of BWPs.
  • the plurality of versions is a plurality of time-domain baseband versions.
  • the plurality of time-domain baseband versions may be generated from a plurality of frequency-domain baseband versions of the first signal
  • FIG. 3 shows an example arrangement 300 of the transmitter 210 for generating the time-domain baseband versions of the first signal according to some embodiments of the present disclosure.
  • the first signal is a preamble based on a Zadoff-Chu (ZC) sequence, as shown.
  • ZC Zadoff-Chu
  • Other implementations of the first signal are also possible.
  • the first signal may be a part of a data burst.
  • the arrangement 300 comprises a ZC sequence generator 305 for generating a ZC sequence based on a root and a cyclic shift.
  • the generated ZC sequence may have a length of 599, for example.
  • the ZC sequence is inputted into a serial-to-parallel converter 310 for converting the serial-in sequence into parallel-out sequences.
  • the parallel sequences are inputted into a Fast Fourier Transformer (FFT) 315 for discrete Fourier transform (DFT) spread in a frequency domain.
  • FFT Fast Fourier Transformer
  • the DFT-spread sequence of the ZC sequence may be mapped to multiple BWPs to form a plurality of frequency-domain baseband versions of the first signal.
  • BWP #0, 1, 2, or 3 four contiguous BWPs (BWP #0, 1, 2, or 3) are configured, and each BWP corresponds to an operating channel of 20 MHz with subcarrier spacing (SCS) of 30 kHz.
  • the arrangement 300 comprises four switches 320-1, 320-2, 320-3 and 320-4 for enabling the respective BWPs #0, 1, 2, and 3 by controlling the input sequences into an Inverse Fast Fourier Transformer (IFFT) 325.
  • IFFT Inverse Fast Fourier Transformer
  • the switches 320-1 and 320-2 for the BWPs #0 and 1 are turned on, and the switches 320-3 and 320-4 for BWPs #2 and 3 are turned off.
  • the inputs of the IFFT 325 are fed by zeroes for the disabled BWPs #2 and 3.
  • Multiple versions may be generated by turning on/off the switches for the respective BWPs in combination and repeatedly.
  • the outputs of the IFFT 325 are inputted into a parallel-to-serial converter 330 for converting the parallel sequences into a serial sequence.
  • the outputted serial sequence of the parallel-to-serial converter 330 is filtered by a filter 335 to generate a time-domain baseband version of the first signal.
  • the time-domain baseband version occupies one OFDM symbol. Any number of OFDM symbols may be occupied by the time-domain baseband version depending on the widths of a subcarrier and a BWP.
  • FIG. 4 shows another example arrangement 400 of the transmitter 210 for generating the time-domain baseband versions of the first signal according to some other embodiments of the present disclosure.
  • the first signal is a preamble based on a pseudo-random sequence, for example, a length-31 Gold sequence.
  • a pseudo-random sequence generator 405 generates a pseudo-random sequence after initialization.
  • the pseudo-random sequence is inputted into a serial-to-parallel converter 410 for converting the serial-in sequence into parallel-out sequences.
  • the parallel-out sequences are mapped to all four continuous BWPs #0, 1, 2, and 3, consecutively.
  • the switches 415-1, 415-2, 415-3 and 415-4 enable the respective BWPs by puncturing Resource Elements (REs) of the BWPs.
  • REs Resource Elements
  • the outputs of the switches 415-1, 415-2, 415-3 and 415-4 are coupled to the inputs of an IFFT 420.
  • the outputs of the switch for the BWP are set to zeroes.
  • the parallel sequences outputted by the IFFT 420 are converted by a parallel-to-serial converter 425 into a serial sequence, and then the serial sequence is filtered by a filter 430 to generate a time-domain baseband version of the first signal, which occupies one OFDM symbol.
  • the transmitter 210 selects a BWP from the plurality of BWPs for transmission.
  • the BWP may be selected by detecting an idle BWP from the plurality of BWPs, for example, during the CCA procedure for the unlicensed band.
  • the version of the first signal corresponding to the selected BWP is selected from the generated versions and then is transmitted on the selected BWP.
  • the generation of the plurality of versions of the first signal in advance reduces the time delay between the selection of the BWP and the transmission of the first signal.
  • the plurality of versions of the first signal may be prepared only once and reused in the following transmissions, regardless of the CCA results. In this way, the complexity of the transmitter 210 may be further reduced.
  • FIG. 5 shows an example process 500 implemented at the transmitter 210 according to some embodiments of the present disclosure.
  • four continuous BWPs 505-1, 505-2, 505-3 and 505-4 are configured. This configuration is known by both the transmitter 210 and the receiver 220.
  • the transmitter 210 prepares (510) multiple time-domain baseband versions of the first signal (for example, the preamble) for different CCA results.
  • the time-domain baseband version occupies one OFDM symbol.
  • the transmitter 210 detects that the BWPs 505-1 and 505-2 are available, and the BWPs 505-3 and 505-4 are blocked. The transmitter 210 selects (520) the versions corresponding to the BWPs 505-1 and 505-2 based on the CCA result, for example, within 16 us. The selected versions of the first signal are transmitted (525) on the BWPs 505-1 and 505-2.
  • a subsequent signal (referred to as a second signal) is transmitted (530) on the BWPs 505-1 and 505-2.
  • the second signal may be any suitable signal that is transmitted subsequent to the first signal.
  • the first signal is a preamble
  • the second signal may be a data burst.
  • the transmitter 210 may generate (528) the second signal to be transmitted on the selected BWPs 505-1 and 505-2 to further reduce the processing delay.
  • the BWPs used by the transmitter 210 can be determined by detecting the first signal from the transmitter 210.
  • the first signal may include an indication for the second signal to facilitate the reception of the second signal at the receiver 220.
  • the indication may include an indication of a length of the second signal.
  • the length of the second signal may be indicated by the first signal in any suitable way.
  • the cyclic shift of the ZC sequence may be associated with the length of the subsequent data burst. For example, the cyclic shift is equal to 0 for indicating the burst length of 1 slot, the cyclic shift it is equal to 1 for indicating the burst length of 2 slots, and so on.
  • the receiver 220 may detect the second signal in the proper timing. In addition, other receivers may know the length of the second signal and can sleep during the transmission of the second signal for power efficiency.
  • the first signal may include demodulation reference information for channel estimations at the receiver 220. Based on the measurement of the first signal, the receiver 220 may estimate the transmission channel for demodulation, instead of or supplementary to a demodulation reference signal (DMRS) of the NR.
  • DMRS demodulation reference signal
  • FIG. 6 shows a flowchart of an example method 600 in accordance with some embodiments of the present disclosure.
  • the method 600 can be implemented at the transmitter 210 as shown in FIG. 2.
  • a plurality of versions of a first signal are generated for transmission on a plurality of bandwidth parts.
  • a bandwidth part is selected from the plurality of bandwidth parts.
  • a version of the first signal to be transmitted on the selected bandwidth part is selected from the plurality of versions of the first signal.
  • the selected version of the first signal is transmitted on the selected bandwidth part.
  • the plurality of versions may be a plurality of time-domain baseband versions.
  • a plurality of frequency-domain baseband versions of the first signal may be generated first, and the plurality of time-domain baseband versions may be then generated from the plurality of frequency-domain baseband versions.
  • an idle bandwidth part from the plurality of bandwidth parts is detected as the selected bandwidth part.
  • a second signal may be generated to be transmitted subsequent to the first signal on the selected bandwidth part.
  • the plurality of versions of the first signal may be associated with different lengths of a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
  • the first signal comprises a preamble
  • the second signal comprises a data burst
  • the first signal comprises demodulation reference information.
  • an apparatus capable of performing the method 600 may comprise means for performing the respective steps of the method 600.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus capable of performing the method 600 comprises: means for generating, at a transmitter, a plurality of versions of a first signal for transmission on a plurality of bandwidth parts; means for selecting a bandwidth part from the plurality of bandwidth parts; means for selecting, from the plurality of versions of the first signal, a version of the first signal to be transmitted on the selected bandwidth part; and means for transmitting the selected version of the first signal on the selected bandwidth part.
  • the plurality of versions is a plurality of time-domain baseband versions.
  • the means for generating the plurality of versions of the first signal may comprise: means for generating a plurality of frequency-domain baseband versions of the first signal; and means for generating the plurality of time-domain baseband versions from the plurality of frequency-domain baseband versions.
  • the means for selecting the bandwidth part may comprise: means for selecting the bandwidth part by detecting an idle bandwidth part from the plurality of bandwidth parts as the selected bandwidth part.
  • the apparatus may comprise means for during the transmission of the selected version of the first signal, generating a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
  • the plurality of versions of the first signal may be associated with different lengths of a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
  • the first signal comprises a preamble
  • the second signal comprises a data burst
  • the first signal comprises demodulation reference information.
  • FIG. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure.
  • the device 700 can be implemented at or as at least a part of the transmitter 210 as shown in FIG. 2.
  • the device 700 includes a processor 710, a memory 720 coupled to the processor 710, a communication module 730 coupled to the processor 710, and a communication interface (not shown) coupled to the communication module 730.
  • the memory 720 stores at least a program 740.
  • the communication module 730 is for bidirectional communications.
  • the communication interface may represent any interface that is necessary for communication.
  • the program 740 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 2-6.
  • the embodiments herein may be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware.
  • the processor 710 may be configured to implement various embodiments of the present disclosure.
  • the memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 720 is shown in the device 700, there may be several physically distinct memory modules in the device 700.
  • the processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 600 as described above with reference to FIGS. 2-6.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relate to a method, a transmitter and a computer readable storage medium for signal pre-processing. In example embodiments, the transmitter generates a plurality of versions of a signal for transmission on a plurality of bandwidth parts. The transmitter selects a bandwidth part from the plurality of bandwidth parts and then selects, from the plurality of versions of the signal, a version to be transmitted on the selected bandwidth part. The transmitter transmits the selected version of the signal on the selected bandwidth part. In this way, the time delay between the selection of the BWP and the transmission of the signal may be reduced.

Description

SIGNAL PRE-PROCESSING FIELD
Embodiments of the present disclosure generally relate to the field of signal processing, and in particular, to a method, a transmitter and a computer readable storage medium for signal pre-processing.
BACKGROUND
For New Radio (NR) , it’s agreed that the maximum channel bandwidth per NR carrier is up to 400MHz. This bandwidth can be divided into multiple bandwidth parts (BWPs) . User equipment (UE) may be configured to operate on one or more (contiguous or non-contiguous) BWPs. Conventionally, on a licensed band in the NR, the BWP configuration for the UE is not dynamic. For example, a gigabit NodeB (gNB) may configure uplink and downlink BWPs specific to each UE by activating or deactivating BWPs in Radio Resource Control (RRC) signalling or Downlink Control Information (DCI) . In order to enable switching between different BWPs in the licensed band, several slots are defined for generation of a signal to be transmitted.
An unlicensed band has become a beneficial supplement for the licensed band to meet the increasing service requirements. In the standardization of the European Telecommunications Standards Institute (ETSI) for the unlicensed band, it is proposed that the unlicensed band is divided into multiple operating channels, and a device may occupy multiple contiguous/non-contiguous operating channels simultaneously. For example, the unlicensed spectrum 5150 MHz to 5350 MHz may be divided into 10 operating channels, that is, 20 MHz per channel. Each operating channel can be considered as a BWP of a large bandwidth of the unlicensed band. The UE and gNB can operate on the unlicensed band with the large bandwidth by using a single radio frequency (RF) transmit (Tx) /receiving (Rx) chain that switches between different operating channels.
On the unlicensed band, some operating channels may have already been occupied by some devices, and one device cannot occupy the whole unlicensed band. Considering that the available operating channels are varying over time, dynamic BWP adaptation is proposed for the unlicensed NR. In the dynamic BWP adaptation, the device performs transmission on idle BWPs and drop busy BWPs autonomously to increase the unlicensed  spectrum efficiency. For example, the device may perform a Listen Before Talk (LBT) or Clear Channel Assessment (CCA) procedure to detect the idle BWPs for transmission.
However, such dynamic BWP adaptation on the unlicensed bandwidth requires high processing performance of a transmitter in terms of processing time, processing speed, and the like.
SUMMARY
In general, example embodiments of the present disclosure provide a method, a transmitter and a computer readable storage medium for signal pre-processing.
In a first aspect, a method is provided at a transmitter. A plurality of versions of a first signal are generated for transmission on a plurality of bandwidth parts. A bandwidth part is selected from the plurality of bandwidth parts, and a version of the first signal to be transmitted on the selected bandwidth part is selected from the plurality of versions of the first signal. Then, the selected version of the first signal is transmitted on the selected bandwidth part.
In a second aspect, there is provided a transmitter comprising at least one processor and at least one memory including computer program code. The at least one memory and the computer program code are configured to, with the at least one processor, cause the device to perform the method according to the first aspect.
In a third aspect, there is provided a computer readable storage medium that stores a computer program thereon. The computer program, when executed by a processor, causes the processor to perform the method according to the first aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
FIG. 1 illustrates three example cases of dynamic BWP adaptation;
FIG. 2 illustrates an example environment in which embodiments of the present disclosure can be implemented;
FIG. 3 illustrates an example arrangement of the transmitter for generating the time-domain baseband versions of the first signal according to some embodiments of the present disclosure;
FIG. 4 illustrates another example arrangement of the transmitter for generating the time-domain baseband versions of the first signal according to some other embodiments of the present disclosure;
FIG. 5 illustrates an example process implemented at the transmitter according to some embodiments of the present disclosure;
FIG. 6 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure; and
FIG. 7 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term “transmitter” refers to a device capable of transmitting a signal. As used herein, the term “receiver” refers to a device capable of receiving a signal. The transmitter or receiver may be implemented by or as a part of any suitable device, including, for example, a network device or a terminal device.
As used herein, the term “network device” refers to any suitable device at a network side of a communication network. The network device may include any suitable device in an access network of the communication network, for example, including a base station (BS) , a relay, an access point (AP) , a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a gigabit NodeB (gNB) , a Remote Radio Module (RRU) , a radio header (RH) , a remote radio head (RRH) , a low power node such as a femto, a pico, and the like.
As used herein, the term “terminal device” refers to a device capable of, configured for, arranged for, and/or operable for communications with a network device or a further terminal device in a communication network. The communications may involve transmitting and/or receiving wireless signals using electromagnetic signals, radio waves, infrared signals, and/or other types of signals suitable for conveying information over air. In some embodiments, the terminal device may be configured to transmit and/or receive information without direct human interaction. For example, the terminal device may transmit information to the network device on predetermined schedules, when triggered by an internal or external event, or in response to requests from the network side.
Examples of the terminal device include, but are not limited to, user equipment (UE) such as smart phones, wireless-enabled tablet computers, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , and/or wireless customer-premises equipment (CPE) . For the purpose of discussion, some embodiments will be described with reference to UEs as examples of the terminal devices, and the terms “terminal device” and “user equipment” (UE) may be used interchangeably in the context of the present disclosure.
As used herein, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) : (i) a combination of analog and/or digital hardware circuit (s) with software/firmware and (ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a  microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the singular forms “a” , “an” , and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to” . The term “based on” is to be read as “based at least in part on” . The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment” . The term “another embodiment” is to be read as “at least one other embodiment” . Other definitions, explicit and implicit, may be included below.
On the unlicensed band, the dynamic BWP adaptation is needed to allow transmissions of a plurality of devices. Before transmission, a device may first detect idle BWPs during the LBT or CCA procedure, for example.
FIG. 1 shows three example cases of dynamic BWP adaptation. In these cases (for example,  case  1, 2, or 3) , four continuous BWPs 105 are configured to a device. In case 1, during the CCA procedure, the device detects that the first and fourth BWPs 110-1 and 125-1 are blocked due to occupying by other devices. The second and third BWPs 115-1 and 120-1 are detected to be clear and available. In this case, the device can use the second and third BWPs 115-1 and 120-1 for transmission.
In case 2, the fourth BWP 125-2 is blocked. The first, second and third BWPs 110-2, 115-2 and 120-2 are clear and available to the device. In case 3, the second and fourth BWPs 115-3 and 125-3 are blocked, and the first and third BWPs 110-3 and 120-3 are available.
Such dynamic BWP adaptation brings many challenges. One challenge is directed to a time of generating a time-domain baseband signal. Conventionally, a time  gap between the completion of the CCA procedure and the transmission is proposed not to exceed 16 us. In this case, since the actually usable BWPs are obtained based on the CCA procedure, a time-domain baseband signal to be transmitted on the BWPs needs to be generated within 16 us. The generation of the time-domain baseband signal may include the processing of Inverse Fast Fourier Transform (IFFT) and filtering. However, the processing performance of current Digital Signal Processing (DSP) Integrated Circuits (ICs) cannot meet the requirement of dynamically generating the time-domain baseband signal within 16 us.
In long term evolution (LTE) Licensed Assisted Access (LAA) , some preamble transmission schemes provide transmission of a preamble upon the completion of the CCA procedure. The transmission of the preamble is used to reserve the channel before transmission of data. However, these schemes cannot deal with the latency issue of the signal generation in the dynamic BWP adaptation.
Embodiments of the present disclosure provide a signal pre-processing scheme for dynamic BWP adaptation. With this pre-processing scheme, a plurality of versions of a signal is prepared in advance for transmission on a plurality of BWPs. Each of the versions corresponds to one of the BWPs. Upon the selection of the BWP for transmission, the corresponding version of the signal is selected and then transmitted on the selected BWP. This preparation of the plurality of versions of the signal significantly reduces the time delay between the selection of the BWP and the transmission of the signal.
FIG. 2 shows an example environment 200 in which embodiments of the present disclosure can be implemented. The environment 200, which is a part of a communication network, includes a transmitter 210 and a receiver 220. It is to be understood that one transmitter and one receiver are shown only for the purpose of illustration without suggesting any limitation to the scope of the present disclosure. The environment 200 may include any suitable number of transmitters and receivers adapted for implementing embodiments of the present disclosure.
The transmitter 210 and the receiver 220 can be implemented by or as a part of any suitable device. In some embodiments, the transmitter 210 may be implemented at a network device, and the receiver 220 may be implemented at a terminal device, and vice versa. In the embodiments where the environment 200 is a part of a relay communication network. In this example, the transmitter 210 may be implemented at a network device,  and the receiver 220 may be at a relay, and vice versa. In some other embodiments, the transmitter 210 and the receiver 220 may be both implemented at terminal devices in device-to-device (D2D) communications, which may be alternatively referred to as sidelink, or vehicle to everything (V2X) .
The transmitter 210 can communicate with the receiver 220. The communication may follow any suitable communication standards or protocols such as Universal Mobile Telecommunications System (UMTS) , long term evolution (LTE) , LTE-Advanced (LTE-A) , the fifth generation (5G) NR, Wireless Fidelity (Wi-Fi) and Worldwide Interoperability for Microwave Access (WiMAX) standards, and employs any suitable communication technologies, including, for example, Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Division Multiplexing (OFDM) , time division multiplexing (TDM) , frequency division multiplexing (FDM) , code division multiplexing (CDM) , Bluetooth, ZigBee, and machine type communication (MTC) , enhanced mobile broadband (eMBB) , massive machine type communication (mMTC) and ultra-reliable low latency communication (uRLLC) technologies.
The transmitter 210 can transmit signals to the receiver 220 on a plurality of BWPs, for example, configured by the network. The BWPs may be parts of a licensed band or an unlicensed band. For the purpose of discussion, some embodiments are discussed in the case of the unlicensed BWPs.
Before the transmission of a signal (referred to as a first signal) , the transmitter 210 generates a plurality of versions of the first signal for transmission on the plurality of BWPs. In some embodiments, the plurality of versions is a plurality of time-domain baseband versions. The plurality of time-domain baseband versions may be generated from a plurality of frequency-domain baseband versions of the first signal
FIG. 3 shows an example arrangement 300 of the transmitter 210 for generating the time-domain baseband versions of the first signal according to some embodiments of the present disclosure. In this example, the first signal is a preamble based on a Zadoff-Chu (ZC) sequence, as shown. Other implementations of the first signal are also possible. For example, the first signal may be a part of a data burst.
The arrangement 300 comprises a ZC sequence generator 305 for generating a ZC sequence based on a root and a cyclic shift. The generated ZC sequence may have a length of 599, for example. The ZC sequence is inputted into a serial-to-parallel converter  310 for converting the serial-in sequence into parallel-out sequences. The parallel sequences are inputted into a Fast Fourier Transformer (FFT) 315 for discrete Fourier transform (DFT) spread in a frequency domain.
The DFT-spread sequence of the ZC sequence may be mapped to multiple BWPs to form a plurality of frequency-domain baseband versions of the first signal. In this example, four contiguous BWPs ( BWP # 0, 1, 2, or 3) are configured, and each BWP corresponds to an operating channel of 20 MHz with subcarrier spacing (SCS) of 30 kHz. The arrangement 300 comprises four switches 320-1, 320-2, 320-3 and 320-4 for enabling the  respective BWPs # 0, 1, 2, and 3 by controlling the input sequences into an Inverse Fast Fourier Transformer (IFFT) 325.
For example, in order to generate the version to be transmitted on the BWPs #0 and 1, the switches 320-1 and 320-2 for the BWPs #0 and 1 are turned on, and the switches 320-3 and 320-4 for  BWPs # 2 and 3 are turned off. The inputs of the IFFT 325 are fed by zeroes for the  disabled BWPs # 2 and 3. Multiple versions may be generated by turning on/off the switches for the respective BWPs in combination and repeatedly.
The outputs of the IFFT 325 are inputted into a parallel-to-serial converter 330 for converting the parallel sequences into a serial sequence. The outputted serial sequence of the parallel-to-serial converter 330 is filtered by a filter 335 to generate a time-domain baseband version of the first signal. In this example, the time-domain baseband version occupies one OFDM symbol. Any number of OFDM symbols may be occupied by the time-domain baseband version depending on the widths of a subcarrier and a BWP.
FIG. 4 shows another example arrangement 400 of the transmitter 210 for generating the time-domain baseband versions of the first signal according to some other embodiments of the present disclosure. In this example, as shown, the first signal is a preamble based on a pseudo-random sequence, for example, a length-31 Gold sequence.
In the arrangement 400, a pseudo-random sequence generator 405 generates a pseudo-random sequence after initialization. The pseudo-random sequence is inputted into a serial-to-parallel converter 410 for converting the serial-in sequence into parallel-out sequences. The parallel-out sequences are mapped to all four  continuous BWPs # 0, 1, 2, and 3, consecutively. Then, the switches 415-1, 415-2, 415-3 and 415-4 enable the respective BWPs by puncturing Resource Elements (REs) of the BWPs.
The outputs of the switches 415-1, 415-2, 415-3 and 415-4 are coupled to the  inputs of an IFFT 420. When a BWP is off, the outputs of the switch for the BWP are set to zeroes. The parallel sequences outputted by the IFFT 420 are converted by a parallel-to-serial converter 425 into a serial sequence, and then the serial sequence is filtered by a filter 430 to generate a time-domain baseband version of the first signal, which occupies one OFDM symbol.
In various embodiments of the present disclosure, after the plurality of versions of the first signal is generated, the transmitter 210 selects a BWP from the plurality of BWPs for transmission. In some embodiments, the BWP may be selected by detecting an idle BWP from the plurality of BWPs, for example, during the CCA procedure for the unlicensed band.
The version of the first signal corresponding to the selected BWP is selected from the generated versions and then is transmitted on the selected BWP. The generation of the plurality of versions of the first signal in advance reduces the time delay between the selection of the BWP and the transmission of the first signal.
In some embodiments, the plurality of versions of the first signal may be prepared only once and reused in the following transmissions, regardless of the CCA results. In this way, the complexity of the transmitter 210 may be further reduced.
FIG. 5 shows an example process 500 implemented at the transmitter 210 according to some embodiments of the present disclosure. In this example, four continuous BWPs 505-1, 505-2, 505-3 and 505-4 are configured. This configuration is known by both the transmitter 210 and the receiver 220.
The transmitter 210 prepares (510) multiple time-domain baseband versions of the first signal (for example, the preamble) for different CCA results. The time-domain baseband version occupies one OFDM symbol.
During the CCA procedure (515) , the transmitter 210 detects that the BWPs 505-1 and 505-2 are available, and the BWPs 505-3 and 505-4 are blocked. The transmitter 210 selects (520) the versions corresponding to the BWPs 505-1 and 505-2 based on the CCA result, for example, within 16 us. The selected versions of the first signal are transmitted (525) on the BWPs 505-1 and 505-2.
Upon the completion of the transmission of the first signal, a subsequent signal (referred to as a second signal) is transmitted (530) on the BWPs 505-1 and 505-2. The second signal may be any suitable signal that is transmitted subsequent to the first signal.  In the embodiments where the first signal is a preamble, the second signal may be a data burst. In some embodiments, as shown, during the transmission of the first signal, the transmitter 210 may generate (528) the second signal to be transmitted on the selected BWPs 505-1 and 505-2 to further reduce the processing delay.
At the receiver 220, the BWPs used by the transmitter 210 can be determined by detecting the first signal from the transmitter 210. In some embodiments, the first signal may include an indication for the second signal to facilitate the reception of the second signal at the receiver 220. For example, the indication may include an indication of a length of the second signal.
The length of the second signal may be indicated by the first signal in any suitable way. In the embodiments where the first signal is a preamble based on the ZC sequence and the second signal is a data burst, the cyclic shift of the ZC sequence may be associated with the length of the subsequent data burst. For example, the cyclic shift is equal to 0 for indicating the burst length of 1 slot, the cyclic shift it is equal to 1 for indicating the burst length of 2 slots, and so on.
In the embodiments where the first signal is a preamble based on the Gold sequence and the second signal is a data burst, the initialization of the second m-sequence of the Gold sequence, c init, may be related to the index of CCA results, n CCA, and the length of the data burst, n burst-length: c init = n CCA ·2 15 + n burst-length.
Based on the indication of the length of the second signal, the receiver 220 may detect the second signal in the proper timing. In addition, other receivers may know the length of the second signal and can sleep during the transmission of the second signal for power efficiency.
In some embodiments, the first signal may include demodulation reference information for channel estimations at the receiver 220. Based on the measurement of the first signal, the receiver 220 may estimate the transmission channel for demodulation, instead of or supplementary to a demodulation reference signal (DMRS) of the NR.
FIG. 6 shows a flowchart of an example method 600 in accordance with some embodiments of the present disclosure. The method 600 can be implemented at the transmitter 210 as shown in FIG. 2.
At block 605, a plurality of versions of a first signal are generated for transmission  on a plurality of bandwidth parts. At block 610, a bandwidth part is selected from the plurality of bandwidth parts. At block 615, a version of the first signal to be transmitted on the selected bandwidth part is selected from the plurality of versions of the first signal. At block 620, the selected version of the first signal is transmitted on the selected bandwidth part.
In some embodiments, the plurality of versions may be a plurality of time-domain baseband versions. A plurality of frequency-domain baseband versions of the first signal may be generated first, and the plurality of time-domain baseband versions may be then generated from the plurality of frequency-domain baseband versions.
In some embodiments, an idle bandwidth part from the plurality of bandwidth parts is detected as the selected bandwidth part.
In some embodiments, during the transmission of the selected version of the first signal, a second signal may be generated to be transmitted subsequent to the first signal on the selected bandwidth part.
In some embodiments, the plurality of versions of the first signal may be associated with different lengths of a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
In some embodiments, the first signal comprises a preamble, and the second signal comprises a data burst.
In some embodiments, the first signal comprises demodulation reference information.
It is to be understood that all operations and features related to the transmitter 210 as described above with reference to FIGS. 2-5 are likewise applicable to the method 600 and have similar effects. For the purpose of simplification, the details will be omitted.
In some embodiments, an apparatus capable of performing the method 600 may comprise means for performing the respective steps of the method 600. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus capable of performing the method 600 comprises: means for generating, at a transmitter, a plurality of versions of a first signal for transmission on a plurality of bandwidth parts; means for selecting a bandwidth part from  the plurality of bandwidth parts; means for selecting, from the plurality of versions of the first signal, a version of the first signal to be transmitted on the selected bandwidth part; and means for transmitting the selected version of the first signal on the selected bandwidth part.
In some embodiments, the plurality of versions is a plurality of time-domain baseband versions. The means for generating the plurality of versions of the first signal may comprise: means for generating a plurality of frequency-domain baseband versions of the first signal; and means for generating the plurality of time-domain baseband versions from the plurality of frequency-domain baseband versions.
In some embodiments, the means for selecting the bandwidth part may comprise: means for selecting the bandwidth part by detecting an idle bandwidth part from the plurality of bandwidth parts as the selected bandwidth part.
In some embodiments, the apparatus may comprise means for during the transmission of the selected version of the first signal, generating a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
In some embodiments, the plurality of versions of the first signal may be associated with different lengths of a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
In some embodiments, the first signal comprises a preamble, and the second signal comprises a data burst.
In some embodiments, the first signal comprises demodulation reference information.
FIG. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure. The device 700 can be implemented at or as at least a part of the transmitter 210 as shown in FIG. 2.
As shown, the device 700 includes a processor 710, a memory 720 coupled to the processor 710, a communication module 730 coupled to the processor 710, and a communication interface (not shown) coupled to the communication module 730. The memory 720 stores at least a program 740. The communication module 730 is for bidirectional communications. The communication interface may represent any interface that is necessary for communication.
The program 740 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGS. 2-6. The embodiments herein may be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware. The processor 710 may be configured to implement various embodiments of the present disclosure.
The memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 720 is shown in the device 700, there may be several physically distinct memory modules in the device 700. The processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
All operations and features related to the transmitter 210 as described above with reference to FIGS. 2-6 are likewise applicable to the device 700 and have similar effects. For the purpose of simplification, the details will be omitted.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 600 as described above with reference to FIGS. 2-6. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable media.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
Various embodiments of the techniques have been described. In addition to or as an alternative to the above, the following examples are described. The features described in any of the following examples may be utilized with any of the other examples described herein.

Claims (21)

  1. A method comprising:
    generating, at a transmitter, a plurality of versions of a first signal for transmission on a plurality of bandwidth parts;
    selecting a bandwidth part from the plurality of bandwidth parts;
    selecting, from the plurality of versions of the first signal, a version of the first signal to be transmitted on the selected bandwidth part; and
    transmitting the selected version of the first signal on the selected bandwidth part.
  2. The method of claim 1, wherein the plurality of versions is a plurality of time-domain baseband versions, and generating the plurality of versions of the first signal comprises:
    generating a plurality of frequency-domain baseband versions of the first signal; and
    generating the plurality of time-domain baseband versions from the plurality of frequency-domain baseband versions.
  3. The method of claim 1 or 2, wherein selecting the bandwidth part comprises:
    selecting the bandwidth part by detecting an idle bandwidth part from the plurality of bandwidth parts as the selected bandwidth part.
  4. The method of any of claims 1-3, further comprising:
    during the transmission of the selected version of the first signal, generating a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
  5. The method of any of claims 1-3, wherein the plurality of versions of the first signal are associated with different lengths of a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
  6. The method of claim 4 or 5, wherein the first signal comprises a preamble, and the second signal comprises a data burst.
  7. The method of any of claims 1-6, wherein the first signal comprises  demodulation reference information.
  8. A transmitter comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the transmitter to:
    generate a plurality of versions of a first signal for transmission on a plurality of bandwidth parts;
    select a bandwidth part from the plurality of bandwidth parts;
    select, from the plurality of versions of the first signal, a version of the first signal to be transmitted on the selected bandwidth part; and
    transmit the selected version of the first signal on the selected bandwidth part.
  9. The transmitter of claim 8, wherein the plurality of versions is a plurality of time-domain baseband versions, and the at least one memory and the computer program code are configured to, with the at least one processor, cause the transmitter to:
    generate a plurality of frequency-domain baseband versions of the first signal; and
    generate the plurality of time-domain baseband versions from the plurality of frequency-domain baseband versions.
  10. The transmitter of claim 8 or 9, wherein the at least one memory and the computer program code are configured to, with the at least one processor, cause the transmitter to:
    select the bandwidth part by detecting an idle bandwidth part from the plurality of bandwidth parts as the selected bandwidth part.
  11. The transmitter of any of claims 8-10, the at least one memory and the computer program code are further configured to, with the at least one processor, cause the transmitter to:
    during the transmission of the selected version of the first signal, generate a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
  12. The transmitter of any of claims 8-10, wherein the plurality of versions of the  first signal are associated with different lengths of a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
  13. The transmitter of claim 11 or 12, wherein the first signal comprises a preamble, and the second signal comprises a data burst.
  14. The transmitter of any of claims 8-13, wherein the first signal comprises demodulation reference information.
  15. A computer readable storage medium storing a computer program thereon, the computer program, when executed by a processor, causing the processor to perform actions comprising:
    generating, at a transmitter, a plurality of versions of a first signal for transmission on a plurality of bandwidth parts;
    selecting a bandwidth part from the plurality of bandwidth parts;
    selecting, from the plurality of versions of the first signal, a version of the first signal to be transmitted on the selected bandwidth part; and
    transmitting the selected version of the first signal on the selected bandwidth part.
  16. The computer readable storage medium of claim 15, wherein the plurality of versions is a plurality of time-domain baseband versions, and generating the plurality of versions of the first signal comprises:
    generating a plurality of frequency-domain baseband versions of the first signal; and
    generating the plurality of time-domain baseband versions from the plurality of frequency-domain baseband versions.
  17. The computer readable storage medium of claim 15 or 16, wherein selecting the bandwidth part comprises:
    selecting the bandwidth part by detecting an idle bandwidth part from the plurality of bandwidth parts as the selected bandwidth part.
  18. The computer readable storage medium of any of claims 15-17, wherein the actions further comprise:
    during the transmission of the selected version of the first signal, generating a  second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
  19. The computer readable storage medium of any of claims 15-17, wherein the plurality of versions of the first signal are associated with different lengths of a second signal to be transmitted subsequent to the first signal on the selected bandwidth part.
  20. The computer readable storage medium of claim 18 or 19, wherein the first signal comprises a preamble, and the second signal comprises a data burst.
  21. The computer readable storage medium of any of claims 15-20, wherein the first signal comprises demodulation reference information.
PCT/CN2018/089093 2018-05-30 2018-05-30 Signal pre-processing WO2019227356A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880093995.7A CN112237038B (en) 2018-05-30 2018-05-30 Signal preprocessing
PCT/CN2018/089093 WO2019227356A1 (en) 2018-05-30 2018-05-30 Signal pre-processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/089093 WO2019227356A1 (en) 2018-05-30 2018-05-30 Signal pre-processing

Publications (1)

Publication Number Publication Date
WO2019227356A1 true WO2019227356A1 (en) 2019-12-05

Family

ID=68697773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089093 WO2019227356A1 (en) 2018-05-30 2018-05-30 Signal pre-processing

Country Status (2)

Country Link
CN (1) CN112237038B (en)
WO (1) WO2019227356A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110222490A1 (en) * 2010-03-09 2011-09-15 Broadcom Corporation Bandwidth mechanisms and successive channel reservation access within multiple user, multiple access, and/or MIMO wireless communications
CN106253916A (en) * 2015-06-12 2016-12-21 三星电子株式会社 For to sending the equipment and method being controlled
US9698947B2 (en) * 2014-07-16 2017-07-04 Newracom, Inc. Transmission method
CN107852299A (en) * 2015-07-10 2018-03-27 Lg电子株式会社 The method and apparatus that data burst is sent in the wireless access system of licensing free frequency band and carrier aggregation is supported

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010178129A (en) * 2009-01-30 2010-08-12 Sharp Corp Base station apparatus, mobile station apparatus, wireless communication system and reference signal transmission method of the same
US20110243075A1 (en) * 2009-06-16 2011-10-06 Qualcomm Incorporated Method and apparatus for access procedure in a wireless communication system
JP5264663B2 (en) * 2009-09-16 2013-08-14 Kddi株式会社 Signal allocation apparatus, signal allocation method and program
CN102098063A (en) * 2010-12-30 2011-06-15 中兴通讯股份有限公司 Method and device for processing transmission of different bandwidth signals in wireless communication system
RU2014108326A (en) * 2011-08-05 2015-09-10 Телефонактиеболагет Л М Эрикссон (Пабл) METHOD FOR GENERATING THE SIGNAL SIGNAL
CN107836129B (en) * 2015-07-06 2020-04-14 华为技术有限公司 Data transmission method, wireless network equipment and communication system
CN107925494B (en) * 2015-07-10 2019-11-29 Lg 电子株式会社 The method and apparatus of discovery reference signal is sent in the wireless access system for supporting unauthorized band
US10582524B2 (en) * 2015-08-21 2020-03-03 Lg Electronics Inc. Method for transmitting and receiving channel state information in wireless communication system and apparatus therefor
CN107370586B (en) * 2016-05-13 2021-02-05 电信科学技术研究院 Channel transmission method and device
KR20170134238A (en) * 2016-05-27 2017-12-06 주식회사 아이티엘 Method and apparatus for transmitting and receiving control channel and data channel for nr system
ES2965435T3 (en) * 2016-09-30 2024-04-15 Kt Corp Method and device to configure the synchronization signal for new radio access technology
CN107835516B (en) * 2017-09-30 2021-11-16 宇龙计算机通信科技(深圳)有限公司 Method and apparatus for shared spectrum communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110222490A1 (en) * 2010-03-09 2011-09-15 Broadcom Corporation Bandwidth mechanisms and successive channel reservation access within multiple user, multiple access, and/or MIMO wireless communications
US9698947B2 (en) * 2014-07-16 2017-07-04 Newracom, Inc. Transmission method
CN106253916A (en) * 2015-06-12 2016-12-21 三星电子株式会社 For to sending the equipment and method being controlled
CN107852299A (en) * 2015-07-10 2018-03-27 Lg电子株式会社 The method and apparatus that data burst is sent in the wireless access system of licensing free frequency band and carrier aggregation is supported

Also Published As

Publication number Publication date
CN112237038A (en) 2021-01-15
CN112237038B (en) 2024-03-22

Similar Documents

Publication Publication Date Title
KR102643632B1 (en) Method and apparatus for wideband opration in nr communication system
JP6441483B2 (en) Method and apparatus for cell detection, synchronization and measurement on unlicensed spectrum
US9942081B2 (en) System and method for guard band utilization for synchronous and asynchronous communications
JP5784697B2 (en) Uplink transmission timing in multi-carrier communication systems
US10555331B2 (en) Nested system operation
CN107113142B (en) Filling null symbols in cellular communication network transmissions in unlicensed spectrum
JP6960944B2 (en) Base station equipment, terminal equipment, and communication methods
EP3930250A1 (en) Uplink control channel configuration for unlicensed carriers
EP3713365A1 (en) Terminal device, base station device, communication method, and integrated circuit
EP3780807A1 (en) Base station device, terminal device, communication method, and integrated circuit
US10826743B2 (en) Wireless communication device and wireless communication method
JP7379475B2 (en) Downlink control of unlicensed subbands
CN110754043A (en) Frequency selective uplink precoding for new radios
EP3565296A1 (en) Terminal device, base station device, and communication method
KR20210042359A (en) Method implemented by user equipment and user equipment
WO2019215670A1 (en) Physical random access channel arrangement for new radio unlicensed
US20180103474A1 (en) Intelligent conditional scaling for unlicensed cells
CN110583059B (en) Power headroom reporting method and device and communication equipment
WO2018236276A1 (en) Adaptation of on/off mask for nr with different numerologies
WO2019227354A1 (en) Methods, devices and computer readable medium for configuring resource pools
WO2019227356A1 (en) Signal pre-processing
US20230336304A1 (en) Method, device and computer readable medium for communication
US20220078843A1 (en) Wideband communications based on availability assessment
WO2024077462A1 (en) Time domain resource allocation of demodulation reference signals
US20230015998A1 (en) Method, device and computer storage medium for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921114

Country of ref document: EP

Kind code of ref document: A1