JP2019197630A - Fuel cell system for vehicle and control method for fuel cell system for vehicle - Google Patents

Fuel cell system for vehicle and control method for fuel cell system for vehicle Download PDF

Info

Publication number
JP2019197630A
JP2019197630A JP2018090082A JP2018090082A JP2019197630A JP 2019197630 A JP2019197630 A JP 2019197630A JP 2018090082 A JP2018090082 A JP 2018090082A JP 2018090082 A JP2018090082 A JP 2018090082A JP 2019197630 A JP2019197630 A JP 2019197630A
Authority
JP
Japan
Prior art keywords
fuel cell
radiator
air
vehicle
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018090082A
Other languages
Japanese (ja)
Inventor
孝也 飯嶌
Takaya Ijima
孝也 飯嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Subaru Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp filed Critical Subaru Corp
Priority to JP2018090082A priority Critical patent/JP2019197630A/en
Publication of JP2019197630A publication Critical patent/JP2019197630A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

To improve cooling efficiency of a fuel cell even under a high-temperature environment such as in summer.SOLUTION: A fuel cell system 1000 for vehicle is provided. The fuel cell system for vehicle comprises: a radiator 160 for heater in which cooling water of a fuel cell 100 flows; and a fan 310 by which air at a raised temperature is blown into a passenger compartment 400 by blowing air to the radiator 160 for heater during forward rotation, and the radiator 160 for heater is cooled by blowing air inside of the passenger compartment 400 to the radiator 160 for heater during backward rotation. Thus, cooling efficiency of the fuel cell is improved even under a high-temperature environment such as in summer.SELECTED DRAWING: Figure 2

Description

本発明は、車両の燃料電池システム及び車両の燃料電池システムの制御方法に関する。   The present invention relates to a vehicle fuel cell system and a vehicle fuel cell system control method.

従来、例えば下記の特許文献1には、燃料電池装置の燃料電池スタックを冷却させて昇温した冷却水をヒータ(熱交換器)に流通し、車室内に暖気を供給することが記載されている。   Conventionally, for example, the following Patent Document 1 describes that cooling water heated by cooling a fuel cell stack of a fuel cell device is circulated to a heater (heat exchanger) to supply warm air into the vehicle interior. Yes.

特開2002−283836号公報Japanese Patent Laid-Open No. 2002-28383

例えば夏場などの車外気温が高い環境下では、燃料電池を冷却するための条件が非常に厳しくなり、燃料電池を十分に放熱することができず、燃料電池がオーバーヒートする可能性がある。上記特許文献には、燃料電池装置の燃料電池スタックを冷却させて昇温した冷却水を用いて車室内に暖気を供給することについて記載されているが、夏場などの高温の環境下において、燃料電池の冷却効率を高めることは想定していなかった。   For example, in an environment where the temperature outside the vehicle is high, such as in summer, the conditions for cooling the fuel cell become very strict, and the fuel cell cannot sufficiently dissipate heat, and the fuel cell may overheat. The above-mentioned patent document describes that warm air is supplied into the vehicle interior using cooling water that has been heated by cooling the fuel cell stack of the fuel cell device. It was not assumed that the cooling efficiency of the battery was increased.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、夏場などの高温の環境下においても、燃料電池の冷却効率を高めることが可能な、新規かつ改良された車両の燃料電池システム及び車両の燃料電池システムの制御方法を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is a novel and capable of increasing the cooling efficiency of a fuel cell even in a high temperature environment such as summer. It is an object of the present invention to provide an improved vehicle fuel cell system and a method for controlling the vehicle fuel cell system.

上記課題を解決するために、本発明のある観点によれば、燃料電池の冷却水が流れるラジエターと、正回転時に前記ラジエターに空気を当てて温度を上昇させた空気を車室内に送風し、逆回転時に前記車室内の空気を前記ラジエターに当てて前記ラジエターを冷却する第1送風ファンと、を備える、車両の燃料電池システムが提供される。   In order to solve the above problems, according to an aspect of the present invention, a radiator through which cooling water of a fuel cell flows, and air that has been heated to increase the temperature by applying air to the radiator during forward rotation are blown into the vehicle interior, There is provided a fuel cell system for a vehicle, comprising: a first blower fan that cools the radiator by applying air in the vehicle interior to the radiator during reverse rotation.

前記第1送風ファンは、車外の気温が第1の所定値以上であり、且つ前記冷却水の温度が第2の所定値以上の場合に前記逆回転を行うものであっても良い。   The first blower fan may perform the reverse rotation when the temperature outside the vehicle is equal to or higher than a first predetermined value and the temperature of the cooling water is equal to or higher than a second predetermined value.

また、前記第1送風ファンの前記逆回転時に前記ラジエターを通過した前記車室内の空気を冷却して前記車室内に戻す冷却用エバポレータを更に備えるものであっても良い。   Further, a cooling evaporator may be further provided that cools the air in the vehicle interior that has passed through the radiator during the reverse rotation of the first blower fan and returns the air to the vehicle interior.

また、車室外の空気が導入されて冷却する冷却用エバポレータと、前記第1送風ファンの前記逆回転時に、前記冷却用エバポレータが冷却した空気を前記車室内に送る第2送風ファンと、を更に備えるものであっても良い。   A cooling evaporator that cools by introducing air outside the passenger compartment; and a second blower fan that sends the air cooled by the cooling evaporator to the passenger compartment when the first blower fan rotates in the reverse direction. It may be provided.

また、前記冷却水の主経路から前記冷却水を分岐させて前記ラジエターに送る3ウェイバルブを備えるものであっても良い。   Further, a three-way valve may be provided that branches the cooling water from the main path of the cooling water and sends it to the radiator.

また、上記課題を解決するために、本発明の別の観点によれば、送風ファンを正回転させた場合に、燃料電池の冷却水が流れるラジエターに空気を当てて温度を上昇させた空気を車室内に送風するステップと、前記送風ファンを逆回転させた場合に、前記車室内の空気を前記ラジエターに当てて前記ラジエターを冷却するステップと、を備える、車両の燃料電池システムの制御方法が提供される。   In order to solve the above-mentioned problem, according to another aspect of the present invention, when the blower fan is rotated forward, air that has been heated by applying air to the radiator through which the cooling water of the fuel cell flows is used. A control method for a fuel cell system of a vehicle, comprising: blowing air into a vehicle interior; and cooling the radiator by applying air in the vehicle interior to the radiator when the air blowing fan is rotated in reverse. Provided.

以上説明したように本発明によれば、夏場などの高温の環境下においても、燃料電池の冷却効率を高めることが可能となる。   As described above, according to the present invention, the cooling efficiency of the fuel cell can be enhanced even in a high temperature environment such as summer.

本発明の第1の実施形態に係る燃料電池冷却システムの概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a fuel cell cooling system concerning a 1st embodiment of the present invention. 車室内の冷気を利用して燃料電池の冷却を行う例を示す模式図である。It is a schematic diagram which shows the example which cools a fuel cell using the cool air of a vehicle interior. 図2の構成により車室内の空気を利用してヒータ用ラジエターを冷却する場合の処理を示すフローチャートである。It is a flowchart which shows the process in the case of cooling the heater radiator using the air of a vehicle interior by the structure of FIG. 第2の実施形態に係る燃料電池冷却システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the fuel cell cooling system which concerns on 2nd Embodiment. 図4の構成により車室内の空気を利用してヒータ用ラジエターを冷却する場合の処理を示すフローチャートである。It is a flowchart which shows the process in the case of cooling the radiator for heaters using the air of a vehicle interior by the structure of FIG.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

まず、図1を参照して、本発明の第1の実施形態に係る燃料電池冷却システム1000の概略構成について説明する。図1に示すように、燃料電池冷却システム1000は、燃料電池100、水温センサ110、3ウェイバルブ120、FCラジエター130、水温センサ140、FCクーリングポンプ150、ヒータ用ラジエター160、冷却水配管170、制御装置200、クーラー用エバポレータ300、送風ファン310、を有して構成されている。   First, a schematic configuration of a fuel cell cooling system 1000 according to the first embodiment of the present invention will be described with reference to FIG. As shown in FIG. 1, the fuel cell cooling system 1000 includes a fuel cell 100, a water temperature sensor 110, a three-way valve 120, an FC radiator 130, a water temperature sensor 140, an FC cooling pump 150, a heater radiator 160, a cooling water pipe 170, It has the control apparatus 200, the evaporator 300 for coolers, and the ventilation fan 310.

図1に示す燃料電池冷却システム1000では、FCクーリングポンプ150の駆動により、冷却水配管170内を図1中に矢印で示す方向に冷却水が循環する。これにより、燃料電池100が冷却水により冷却される。燃料電池100の冷却により暖められた冷却水は、FCラジエター130により冷却される。   In the fuel cell cooling system 1000 shown in FIG. 1, the cooling water circulates in the cooling water pipe 170 in the direction indicated by the arrow in FIG. 1 by driving the FC cooling pump 150. Thereby, the fuel cell 100 is cooled by the cooling water. The cooling water heated by the cooling of the fuel cell 100 is cooled by the FC radiator 130.

また、3ウェイバルブ120が開かれると、ヒータ用ラジエター160にも冷却水が循環する。例えば冬場などに車室400内を温める場合には、図1に示すように、送風ファン310を正回転させることで外気をヒータ用ラジエター160に当て、ヒータ用ラジエター160で暖められた空気を車室400内に導入する。これにより、車室400内が暖められる。ヒータ用ラジエター160に当てる空気として、車室400外の空気と車室400内の空気を切り換えることができる。なお、この場合、クーラー用エバポレータ300によるクーラーの作動は行われない。このように、燃料電池100の発熱で暖められた冷却水をヒータに利用して、車内を暖めることができる。   When the three-way valve 120 is opened, the cooling water is also circulated through the heater radiator 160. For example, when the interior of the passenger compartment 400 is warmed in winter or the like, as shown in FIG. 1, the blower fan 310 is rotated forward to apply outside air to the heater radiator 160, and the air warmed by the heater radiator 160 is supplied to the vehicle. It is introduced into the chamber 400. As a result, the interior of the passenger compartment 400 is warmed. As the air applied to the heater radiator 160, the air outside the passenger compartment 400 and the air inside the passenger compartment 400 can be switched. In this case, the operation of the cooler by the evaporator 300 for cooler is not performed. In this way, the interior of the vehicle can be warmed using the cooling water warmed by the heat generated by the fuel cell 100 as a heater.

次に、図2に基づいて、夏場など車外の気温が高い場合に、車室400内の冷気を利用して燃料電池100の冷却を行う場合について説明する。図2に示す燃料電池冷却システム1000の構成は、基本的に図1と同様である。図2では、図1の構成に加えて、車室外気温センサ180が追加されている。   Next, the case where the fuel cell 100 is cooled using the cool air in the passenger compartment 400 when the temperature outside the vehicle is high, such as in summer, will be described with reference to FIG. The configuration of the fuel cell cooling system 1000 shown in FIG. 2 is basically the same as that shown in FIG. In FIG. 2, a passenger compartment outside temperature sensor 180 is added to the configuration of FIG. 1.

例えば、夏場など車外が高温の場合、FCラジエター130のみでは燃料電池100の冷却性能が足りなくなることが想定される。このような場合に、本実施形態では、図2に示すように送風ファン310を逆回転させ、車室400内の空気を外部に放出し、ヒータ用ラジエター160に車室400内の空気を当てる。   For example, when the outside of the vehicle is hot such as in summer, it is assumed that the cooling performance of the fuel cell 100 is insufficient with only the FC radiator 130. In such a case, in the present embodiment, as shown in FIG. 2, the blower fan 310 is reversely rotated to release the air in the passenger compartment 400 to the outside, and the air in the passenger compartment 400 is applied to the heater radiator 160. .

夏場など車外の気温が高い場合は、通常、車室400内はクーラーにより冷やされているため、車室400の空気をヒータ用ラジエター160に当てることで、ヒータ用ラジエター160内を循環する冷却水を冷却することができる。これにより、FCラジエター130とヒータ用ラジエター160の双方を用いて燃料電池100を冷却することができるため、夏場など車外が高温の場合や冷却水温が高い場合等においても、冷却水を確実に冷却することができ、燃料電池100を確実に冷却することが可能となる。   When the temperature outside the vehicle is high, such as in summer, the interior of the passenger compartment 400 is usually cooled by a cooler. Therefore, the cooling water circulating in the heater radiator 160 can be obtained by applying the air in the passenger compartment 400 to the heater radiator 160. Can be cooled. As a result, the fuel cell 100 can be cooled using both the FC radiator 130 and the heater radiator 160, so that the cooling water can be reliably cooled even when the outside of the vehicle is hot or when the cooling water temperature is high, such as in summer. Thus, the fuel cell 100 can be reliably cooled.

また、図2に示すように、ヒータ用ラジエター160を通過した後の空気は、クーラー用エバポレータ300を通過することで冷却され、車室400内に戻される。従って、車室400内の空気を冷却することができる、車室400の空気をヒータ用ラジエター160に当てたことによる室温の上昇が抑制される。   In addition, as shown in FIG. 2, the air that has passed through the heater radiator 160 is cooled by passing through the cooler evaporator 300 and returned to the vehicle interior 400. Therefore, an increase in room temperature due to the application of the air in the passenger compartment 400 to the heater radiator 160 that can cool the air in the passenger compartment 400 is suppressed.

以上のように、図2に示す構成によれば、車室400の空気をヒータ用ラジエター160に当てることで、ヒータ用ラジエター160を冷却することができる。また、ヒータ用ラジエター160を通過した後の空気は、クーラー用エバポレータ300を通過して車室400内に戻される。従って、FCラジエター130とヒータ用ラジエター160により冷却水を冷却して燃料電池100を冷却できるとともに、クーラー用エバポレータ300により車室400内の空気を冷却することができる。   As described above, according to the configuration shown in FIG. 2, the heater radiator 160 can be cooled by applying the air in the passenger compartment 400 to the heater radiator 160. Further, the air after passing through the heater radiator 160 passes through the cooler evaporator 300 and is returned to the vehicle interior 400. Therefore, the cooling water can be cooled by the FC radiator 130 and the heater radiator 160 to cool the fuel cell 100, and the air in the passenger compartment 400 can be cooled by the cooler evaporator 300.

図3は、図2の構成により車室400内の空気を利用してヒータ用ラジエター160を冷却する場合の処理を示すフローチャートである。図3の処理は、主として制御装置200にて行われ、所定の周期毎に行われる。先ず、ステップS10では、水温センサ110が検出した冷却水温を取得する。なお、ステップS10で水温センサ140が検出した冷却水温を検出することもできるが、水温センサ110は燃料電池100の下流側に位置するため、水温センサ110が検出した冷却水温の方がより的確に燃料電池100の温度を表すことになる。次のステップS12では、車室外気温センサ180が検出した車室外気温を取得する。   FIG. 3 is a flowchart showing processing when the heater radiator 160 is cooled using the air in the passenger compartment 400 with the configuration of FIG. The processing in FIG. 3 is mainly performed by the control device 200 and is performed at predetermined intervals. First, in step S10, the coolant temperature detected by the coolant temperature sensor 110 is acquired. Although the cooling water temperature detected by the water temperature sensor 140 in step S10 can be detected, since the water temperature sensor 110 is located on the downstream side of the fuel cell 100, the cooling water temperature detected by the water temperature sensor 110 is more accurate. This represents the temperature of the fuel cell 100. In the next step S12, the outside air temperature detected by the outside air temperature sensor 180 is acquired.

次のステップS14では、水温センサ110が検出した冷却水温が第1の所定温度以上であり、且つ車室外気温センサ180が検出した車室外気温が第2の所定温度以上であるか否かを判定する。そして、冷却水温が第1の所定温度以上であり、且つ車室外気温が第2の所定温度以上の場合はステップS16へ進む。ステップS16に進んだ場合は、夏場など冷却水温が上昇し易い状況であるため、3ウェイバルブ120を開く。これにより、ヒータ用ラジエター160にも冷却水が循環する。   In the next step S14, it is determined whether or not the cooling water temperature detected by the water temperature sensor 110 is equal to or higher than the first predetermined temperature and the vehicle outdoor temperature detected by the vehicle outdoor temperature sensor 180 is equal to or higher than the second predetermined temperature. To do. If the coolant temperature is equal to or higher than the first predetermined temperature and the outside air temperature is equal to or higher than the second predetermined temperature, the process proceeds to step S16. If the process proceeds to step S16, the three-way valve 120 is opened because the cooling water temperature is likely to rise, such as in summer. As a result, the cooling water also circulates in the heater radiator 160.

次のステップS18では、送風ファン310を逆回転させる。これにより、車室400内の冷気がヒータ用ラジエター160に当てられ、ヒータ用ラジエター160が冷却される。また、ヒータ用ラジエター160を通過した後の空気は、クーラー用エバポレータ300を通過することで冷却され、車室400内に戻される。   In the next step S18, the blower fan 310 is reversely rotated. Thereby, the cool air in the passenger compartment 400 is applied to the heater radiator 160, and the heater radiator 160 is cooled. The air that has passed through the heater radiator 160 is cooled by passing through the cooler evaporator 300 and returned to the vehicle interior 400.

次のステップS20では、水温センサ110が検出した冷却水温が所定温度以下であるか否かを判定し、冷却水温が所定温度以下の場合は、冷却水が十分に冷却されたため、ステップS22へ進む。ステップS22では、3ウェイバルブ120を閉じる。これにより、ヒータ用ラジエター160への冷却水の循環が停止し、冷却水はFCラジエター130のみで冷却される。一方、ステップS20で冷却水温が所定温度を超えている場合は、ステップS16へ戻る。   In the next step S20, it is determined whether or not the cooling water temperature detected by the water temperature sensor 110 is equal to or lower than a predetermined temperature. If the cooling water temperature is equal to or lower than the predetermined temperature, the cooling water is sufficiently cooled, and the process proceeds to step S22. . In step S22, the three-way valve 120 is closed. Thereby, the circulation of the cooling water to the heater radiator 160 is stopped, and the cooling water is cooled only by the FC radiator 130. On the other hand, when the cooling water temperature exceeds the predetermined temperature in step S20, the process returns to step S16.

ステップS22の後はステップS24へ進む。ステップS24では、ステップS18で送風ファン310を逆回転させる以前にクーラー用エバポレータ300によるクーラーを利用していたか否かを判定する。そして、クーラーを利用していた場合は、ステップS26へ進み、送風ファン310を正回転させる。一方、クーラーを利用していなかった場合は、ステップS28へ進み、送風ファン310を停止させる。ステップS26,S28の後は処理を終了する。   After step S22, the process proceeds to step S24. In step S24, it is determined whether the cooler by the evaporator 300 for coolers was utilized before rotating the ventilation fan 310 reversely by step S18. And when using the cooler, it progresses to step S26 and the ventilation fan 310 is rotated forward. On the other hand, if the cooler is not used, the process proceeds to step S28, and the blower fan 310 is stopped. After steps S26 and S28, the process ends.

次に、図4に基づいて、本発明の第2の実施形態について説明する。図4は、第2の実施形態に係る燃料電池冷却システム1000の概略構成を示す模式図である。第2の実施形態では、ヒータ用ラジエター160とクーラー用エバポレータ300が車室400に対して並列に配置されている。また、クーラー用エバポレータ300の送風ファン310に加えて、ヒータ用ラジエター160のための送風ファン320が設けられている。   Next, a second embodiment of the present invention will be described based on FIG. FIG. 4 is a schematic diagram showing a schematic configuration of a fuel cell cooling system 1000 according to the second embodiment. In the second embodiment, the heater radiator 160 and the cooler evaporator 300 are arranged in parallel to the passenger compartment 400. In addition to the blower fan 310 of the evaporator 300 for the cooler, a blower fan 320 for the heater radiator 160 is provided.

図4においても、例えば夏場など車外の気温が高い場合に、送風ファン320を逆回転させることで、車室400の空気をヒータ用ラジエター160に当てる。これにより、図2と同様に、ヒータ用ラジエター160内を循環する冷却水を冷却することができ、燃料電池100の放熱を行うことができる。ヒータ用ラジエター160に当てられてヒータ用ラジエター160を通過した空気は、車室400の外に排気される。   Also in FIG. 4, when the temperature outside the vehicle is high, such as in summer, the air in the passenger compartment 400 is applied to the heater radiator 160 by rotating the blower fan 320 in the reverse direction. Thereby, similarly to FIG. 2, the cooling water circulating in the heater radiator 160 can be cooled, and the fuel cell 100 can dissipate heat. The air that is applied to the heater radiator 160 and passes through the heater radiator 160 is exhausted out of the passenger compartment 400.

また、図4に示すように、ヒータ用ラジエター160を冷却して冷却水を冷却している間は、クーラー用エバポレータ300の送風ファン310を作動させ、クーラー用エバポレータ300を作動させることで、車室400内の冷房が行われる。従って、車室400の空気をヒータ用ラジエター160に当てたことによる室温の上昇が抑制される。   In addition, as shown in FIG. 4, while the heater radiator 160 is cooled and the cooling water is cooled, the blower fan 310 of the cooler evaporator 300 is operated, and the cooler evaporator 300 is operated, so that the vehicle Cooling of the chamber 400 is performed. Therefore, an increase in room temperature due to the air in the passenger compartment 400 being applied to the heater radiator 160 is suppressed.

図4の構成では、図2と比較すると、ヒータ用ラジエター160を通過して暖められた空気は、車室400の外に排気され、クーラー用エバポレータ300には導入されない。クーラー用エバポレータ300には、ヒータ用ラジエター160を通過した空気よりも低温の車室400外の空気が導入されるため、車室400内を冷却する際の冷却効率を高めることができる。   In the configuration of FIG. 4, compared with FIG. 2, the air heated through the heater radiator 160 is exhausted out of the passenger compartment 400 and is not introduced into the cooler evaporator 300. Since the air outside the passenger compartment 400 is introduced into the cooler evaporator 300 at a temperature lower than that of the air that has passed through the heater radiator 160, the cooling efficiency when cooling the passenger compartment 400 can be increased.

なお、図4に示す例において、矢印A1で示すように、クーラー用エバポレータ300から車室400内に送られる空気の一部または全部をヒータ用ラジエター160に当てても良い。この場合、クーラー用エバポレータ300からの空気の全てを車室400内に送る場合に比べて、車室400内の冷却効率は低下するものの、ヒータ用ラジエター160の冷却効率が高まるため、例えば夏の酷暑の場合などにおいても、ヒータ用ラジエター160を循環する冷却水の冷却効率をより高めることができ、燃料電池100を確実に冷却することができる。   In the example shown in FIG. 4, as indicated by an arrow A <b> 1, part or all of the air sent from the cooler evaporator 300 into the passenger compartment 400 may be applied to the heater radiator 160. In this case, compared with the case where all the air from the evaporator 300 for the cooler is sent into the passenger compartment 400, the cooling efficiency in the passenger compartment 400 is reduced, but the cooling efficiency of the heater radiator 160 is increased. Even in extreme heat, the cooling efficiency of the cooling water circulating through the heater radiator 160 can be further increased, and the fuel cell 100 can be reliably cooled.

図5は、図4の構成により車室400内の空気を利用してヒータ用ラジエター160を冷却する場合の処理を示すフローチャートである。図5の処理も、主として制御装置200にて所定の周期毎に行われる。図5では、ステップS30、ステップS32、ステップS36、ステップS38、ステップS40の処理が図3と異なり、その他のステップの処理は図3と同様である。以下では、図3と異なる処理を中心に説明する。   FIG. 5 is a flowchart showing a process when the heater radiator 160 is cooled using the air in the passenger compartment 400 with the configuration of FIG. The processing of FIG. 5 is also mainly performed by the control device 200 at predetermined intervals. In FIG. 5, the processing of step S30, step S32, step S36, step S38, and step S40 is different from that in FIG. 3, and the processing in other steps is the same as that in FIG. In the following, the processing different from that in FIG. 3 will be mainly described.

ステップS30,S32は、図3に対して追加された処理であり、ステップS30では、クーラー用エバポレータ300を使用しているか否か、すなわち、クーラー用エバポレータ300により車室400内を冷房しているか否かが判定される。クーラー用エバポレータ300を使用している場合はステップS16へ進む。一方、クーラー用エバポレータ300を使用していない場合は、ステップS32へ進み、クーラー用エバポレータ300を作動させる。   Steps S <b> 30 and S <b> 32 are processes added to FIG. 3. In step S <b> 30, whether or not the cooler evaporator 300 is used, that is, whether or not the interior of the passenger compartment 400 is cooled by the cooler evaporator 300. It is determined whether or not. When the evaporator 300 for coolers is used, it progresses to step S16. On the other hand, when the evaporator 300 for coolers is not used, it progresses to step S32 and operates the evaporator 300 for coolers.

また、ステップS22で3ウェイバルブ120を閉じた後、ステップS34では、ヒータ用ラジエター160の送風ファン320を停止させる。次のステップS36では、ステップS16で3ウェイバルブ120を開ける前にクーラーを使用していたか否かを判定する。そして、クーラーを使用していた場合はステップS38へ進み、クーラーを継続して作動させる。一方、クーラーを使用していなかった場合はステップS40へ進み、クーラーを停止させる。   In addition, after the three-way valve 120 is closed in step S22, the blower fan 320 of the heater radiator 160 is stopped in step S34. In the next step S36, it is determined whether or not the cooler has been used before the 3-way valve 120 is opened in step S16. If the cooler has been used, the process proceeds to step S38, and the cooler is continuously operated. On the other hand, when the cooler is not used, the process proceeds to step S40, and the cooler is stopped.

以上のように、図5の処理では、ヒータ用ラジエター160に車室400内の空気を当てる際に、クーラー用エバポレータ300により車室400内を冷房していない場合は、クーラー用エバポレータ300により車室400内の冷房が行われる。これにより、車室400内の冷房により冷やされた冷気がヒータ用ラジエター160に当たるため、冷却効率を高めることができる。   As described above, in the process of FIG. 5, when air in the passenger compartment 400 is applied to the heater radiator 160, if the interior of the passenger compartment 400 is not cooled by the cooler evaporator 300, Cooling of the chamber 400 is performed. Thereby, since the cool air cooled by the cooling in the passenger compartment 400 hits the heater radiator 160, the cooling efficiency can be improved.

以上説明したように本実施形態によれば、車室400内の空気をヒータ用ラジエター160に当てるようにしたため、車室400内の空気によりヒータ用ラジエター160内を循環する冷却水を冷却することができる。従って、特に夏場など燃料電池100の冷却に負担がかかる条件下において、車室400内の冷房により冷やされた冷気を利用して燃料電池100を冷却することができるため、燃料電池100の温度を最適に制御することが可能となる。これにより、例えば夏場など車外気温が高い場合に、燃料電池100のオーバーヒートを確実に抑制することが可能となる。   As described above, according to the present embodiment, since the air in the passenger compartment 400 is applied to the heater radiator 160, the cooling water circulating in the heater radiator 160 is cooled by the air in the passenger compartment 400. Can do. Therefore, the fuel cell 100 can be cooled by using the cool air cooled by the cooling in the passenger compartment 400 under conditions that impose a burden on the cooling of the fuel cell 100 such as in summer. It becomes possible to control optimally. This makes it possible to reliably suppress overheating of the fuel cell 100 when the outside air temperature is high, such as in summer.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

100 燃料電池
120 3ウェイバルブ
160 ヒータ用ラジエター
300 クーラー用エバポレータ
310,320 送風ファン
400 車室
1000 燃料電池システム
DESCRIPTION OF SYMBOLS 100 Fuel cell 120 3 way valve 160 Radiator for heater 300 Evaporator for cooler 310,320 Blower fan 400 Car compartment 1000 Fuel cell system

Claims (6)

燃料電池の冷却水が流れるラジエターと、
正回転時に前記ラジエターに空気を当てて温度を上昇させた空気を車室内に送風し、逆回転時に前記車室内の空気を前記ラジエターに当てて前記ラジエターを冷却する第1送風ファンと、
を備えることを特徴とする、車両の燃料電池システム。
A radiator through which the cooling water of the fuel cell flows,
A first blower fan for blowing air into the vehicle interior when air is applied to the radiator during normal rotation and cooling the radiator by applying air within the vehicle interior to the radiator during reverse rotation;
A vehicle fuel cell system comprising:
前記第1送風ファンは、車外の気温が第1の所定値以上であり、且つ前記冷却水の温度が第2の所定値以上の場合に前記逆回転を行うことを特徴とする、請求項1に記載の車両の燃料電池システム。   The said 1st ventilation fan performs the said reverse rotation when the temperature outside a vehicle is more than a 1st predetermined value, and the temperature of the said cooling water is more than a 2nd predetermined value, The said 1st ventilation fan performs the said reverse rotation. A vehicle fuel cell system according to claim 1. 前記第1送風ファンの前記逆回転時に前記ラジエターを通過した前記車室内の空気を冷却して前記車室内に戻す冷却用エバポレータを更に備えることを特徴とする、請求項1又は2に記載の車両の燃料電池システム。   The vehicle according to claim 1, further comprising a cooling evaporator that cools air in the vehicle interior that has passed through the radiator and returns the air to the vehicle interior when the first blower fan rotates in the reverse direction. Fuel cell system. 車室外の空気が導入されて冷却する冷却用エバポレータと、
前記第1送風ファンの前記逆回転時に、前記冷却用エバポレータが冷却した空気を前記車室内に送る第2送風ファンと、
を更に備える、請求項1に記載の車両の燃料電池システム。
An evaporator for cooling by introducing air outside the passenger compartment and cooling;
A second blower fan that sends the air cooled by the cooling evaporator into the vehicle compartment during the reverse rotation of the first blower fan;
The vehicle fuel cell system according to claim 1, further comprising:
前記冷却水の主経路から前記冷却水を分岐させて前記ラジエターに送る3ウェイバルブを備えることを特徴とする、請求項1〜4のいずれかに記載の車両の燃料電池システム。   The vehicle fuel cell system according to any one of claims 1 to 4, further comprising a three-way valve that branches the cooling water from a main path of the cooling water and sends the branched water to the radiator. 送風ファンを正回転させた場合に、燃料電池の冷却水が流れるラジエターに空気を当てて温度を上昇させた空気を車室内に送風するステップと、
前記送風ファンを逆回転させた場合に、前記車室内の空気を前記ラジエターに当てて前記ラジエターを冷却するステップと、
を備えることを特徴とする、車両の燃料電池システムの制御方法。
When the air blowing fan is rotated forward, the air is applied to the radiator through which the coolant of the fuel cell flows and the temperature is raised to blow into the vehicle interior; and
Cooling the radiator by applying air in the passenger compartment to the radiator when the blower fan is reversely rotated;
A control method for a fuel cell system of a vehicle.
JP2018090082A 2018-05-08 2018-05-08 Fuel cell system for vehicle and control method for fuel cell system for vehicle Pending JP2019197630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018090082A JP2019197630A (en) 2018-05-08 2018-05-08 Fuel cell system for vehicle and control method for fuel cell system for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018090082A JP2019197630A (en) 2018-05-08 2018-05-08 Fuel cell system for vehicle and control method for fuel cell system for vehicle

Publications (1)

Publication Number Publication Date
JP2019197630A true JP2019197630A (en) 2019-11-14

Family

ID=68538450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018090082A Pending JP2019197630A (en) 2018-05-08 2018-05-08 Fuel cell system for vehicle and control method for fuel cell system for vehicle

Country Status (1)

Country Link
JP (1) JP2019197630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038655A (en) * 2020-09-10 2020-12-04 广州云也科技有限公司 Fuel cell with bipolar plate sealing structure
CN114619840A (en) * 2022-03-25 2022-06-14 武汉格罗夫氢能汽车有限公司 Control method of axial flow fan hydrogen energy vehicle heat pump system, terminal equipment and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112038655A (en) * 2020-09-10 2020-12-04 广州云也科技有限公司 Fuel cell with bipolar plate sealing structure
CN112038655B (en) * 2020-09-10 2021-07-27 广州云也科技有限公司 Fuel cell with bipolar plate sealing structure
CN114619840A (en) * 2022-03-25 2022-06-14 武汉格罗夫氢能汽车有限公司 Control method of axial flow fan hydrogen energy vehicle heat pump system, terminal equipment and storage medium
CN114619840B (en) * 2022-03-25 2023-07-18 武汉格罗夫氢能汽车有限公司 Control method for heat pump system of hydrogen energy vehicle of axial flow fan, terminal equipment and storage medium

Similar Documents

Publication Publication Date Title
JP6358243B2 (en) Engine cooling device for vehicle
JP2018140720A5 (en)
JP6992659B2 (en) Vehicle heat management device
JP2017065653A (en) Vehicular heat utilization apparatus
US11541721B2 (en) Vehicular heat management system
JP6658713B2 (en) Control module
JP6578959B2 (en) Vehicle coolant heating apparatus and vehicle coolant heating program
JP2017065440A (en) Temperature adjusting device for vehicle
JP2019197630A (en) Fuel cell system for vehicle and control method for fuel cell system for vehicle
JP2006120334A (en) Device for controlling temperature of battery and car equipped with the same
JP2015161465A (en) CO2 water heater
JP5504958B2 (en) Internal combustion engine cooling control system
US11938781B2 (en) Vehicular heat management system
JP2011080450A (en) Control device for vehicle
JP2004346831A (en) Cooling system for vehicle
JP5347558B2 (en) In-vehicle battery heating device
JP5465935B2 (en) Vehicle cooling system
JP2020019337A (en) Air conditioner for vehicle
KR101186551B1 (en) A Car Air Conditioning System and controlling method of it
WO2018123325A1 (en) Control module
JP2010090863A (en) Air conditioner for vehicle
JP6648679B2 (en) Cooling system
US20230001763A1 (en) Air conditioning system for electric vehicle
US11555636B2 (en) Heat request arbitration device, heat request arbitration method, non-transitory storage medium, and vehicle
JP2017100674A (en) Vehicular heat utilization device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190403

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190404