JP2006120334A - Device for controlling temperature of battery and car equipped with the same - Google Patents

Device for controlling temperature of battery and car equipped with the same Download PDF

Info

Publication number
JP2006120334A
JP2006120334A JP2004304077A JP2004304077A JP2006120334A JP 2006120334 A JP2006120334 A JP 2006120334A JP 2004304077 A JP2004304077 A JP 2004304077A JP 2004304077 A JP2004304077 A JP 2004304077A JP 2006120334 A JP2006120334 A JP 2006120334A
Authority
JP
Japan
Prior art keywords
battery
temperature
inverter
air
management device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004304077A
Other languages
Japanese (ja)
Inventor
Hiroaki Ebuchi
弘章 江渕
Shuji Nagano
周二 永野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004304077A priority Critical patent/JP2006120334A/en
Publication of JP2006120334A publication Critical patent/JP2006120334A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/02Supplying electric power to auxiliary equipment of vehicles to electric heating circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/34Cabin temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/66Ambient conditions
    • B60L2240/662Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/22Standstill, e.g. zero speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/26Transition between different drive modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/44Heat storages, e.g. for cabin heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/46Heat pumps, e.g. for cabin heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for controlling the temperature of a battery mounted on a car to utilize energy effectively, and to provide the car equipped with it. <P>SOLUTION: Since the temperatures of an inverter 3 and a motor generator 2 become about 80°C at running, it is possible to utilize them as heat sources serving as heaters heating the battery 1. Thus, the motor generator 2 and the inverter 3 are respectively equipped with heat exchangers 12 and 13, by which heat is ejected via air flowing via a ventilation flue 26. When the temperature of the battery has become low at the start under an environment, such as winter time, where the temperature of open air is -20°C to 0°C, a ventilation course can be changed, as necessary, using valves 9, 10 and 11, in such a way that on the upstream side of the ventilation course is set in the heat exchangers 12 and 13 which are placed on the upstream, in relation to the battery 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、バッテリ温度管理装置およびそれを備える自動車に関し、より特定的にはモータを駆動する大容量バッテリのバッテリ温度管理装置およびそれを備える自動車に関する。   The present invention relates to a battery temperature management device and an automobile including the same, and more particularly to a battery temperature management device for a large capacity battery that drives a motor and an automobile including the same.

近年、電気自動車やハイブリッド自動車等の車両を推進させるためのモータを備える自動車が身近なものになってきている。これらの自動車には、大容量バッテリとこの大容量バッテリから電力を受けモータを駆動させるインバータ装置とが搭載される。   In recent years, automobiles equipped with motors for propelling vehicles such as electric cars and hybrid cars have become familiar. These automobiles are equipped with a large-capacity battery and an inverter device that receives electric power from the large-capacity battery and drives the motor.

バッテリの最適温度は、25℃から35℃くらいであり、ハイブリッド自動車等ではバッテリは車室近辺に配置されたりしてあまり低温にならないように配慮されていた。   The optimum temperature of the battery is about 25 ° C. to 35 ° C., and in a hybrid vehicle or the like, the battery is arranged in the vicinity of the passenger compartment so that it does not become too low.

特開2004−1674号公報(特許文献1)には、車両後方側に搭載され、車室内に吹き出す空気の温度を調節する空気温度調節手段が収納されたリアエアコンユニットを有する車両について、車両に搭載されたバッテリの温度を管理するバッテリ温度管理装置が開示されている。この装置は、空気温度調節手段を通過した空気をバッテリに導くダクトを有し、このダクトにより導かれた空気をバッテリに供給することによりバッテリの温度を管理する。
特開2004−1674号公報 特開平6−24238号公報 特開平8−67129号公報 特開2003−289601号公報
Japanese Patent Laying-Open No. 2004-1674 (Patent Document 1) discloses a vehicle having a rear air conditioner unit that is mounted on the rear side of the vehicle and accommodates air temperature adjusting means for adjusting the temperature of air blown into the vehicle interior. A battery temperature management device that manages the temperature of an installed battery is disclosed. This device has a duct for guiding the air that has passed through the air temperature adjusting means to the battery, and manages the temperature of the battery by supplying the air guided by this duct to the battery.
Japanese Patent Laid-Open No. 2004-1674 JP-A-6-24238 JP-A-8-67129 JP 2003-289601 A

しかしながら、冬期間のごとく外気温度が低いときには、バッテリを加熱してすみやかに最適温度にする必要がある。バッテリを加熱する場合には、特開2004−1674号公報(特許文献1)に開示された構成では、室内用空調装置のみを熱源としている。このため、バッテリの温度をすみやかに確実に最適な温度にするためには、室内用空調装置の能力を十分高くしておく必要があり、改善の余地があった。   However, when the outside air temperature is low as in the winter period, it is necessary to quickly heat the battery to the optimum temperature. In the case of heating the battery, only the indoor air conditioner is used as the heat source in the configuration disclosed in Japanese Patent Application Laid-Open No. 2004-1674 (Patent Document 1). For this reason, in order to quickly and surely bring the temperature of the battery to the optimum temperature, it is necessary to sufficiently increase the capacity of the indoor air conditioner, and there is room for improvement.

この発明は、エネルギーの有効活用が図られた車載用のバッテリ温度管理装置およびこれを備える自動車を提供することを目的とする。   It is an object of the present invention to provide an in-vehicle battery temperature management device in which energy is effectively used and an automobile including the same.

この発明は、要約すると、バッテリ温度管理装置であって、温風発生装置と、バッテリと、回転電機と、バッテリからの電気エネルギーを交流に変換して回転電機を駆動するインバータと、温風発生装置から回転電機またはインバータを経由してバッテリに至る第1の送風経路とを備える。   In summary, the present invention provides a battery temperature management device, a hot air generator, a battery, a rotating electrical machine, an inverter that converts electrical energy from the battery into alternating current and drives the rotating electrical machine, and hot air generation And a first air flow path from the device to the battery via the rotating electrical machine or the inverter.

好ましくは、バッテリ温度管理装置は、バッテリから車室に至る第2の送風経路をさらに備える。   Preferably, the battery temperature management device further includes a second air blowing path from the battery to the passenger compartment.

好ましくは、温風発生装置は、車室内用空調装置である。   Preferably, the warm air generator is a vehicle interior air conditioner.

より好ましくは、バッテリ温度管理装置は、回転電機およびインバータを経由せずに温風発生装置からバッテリに至る第3の送風経路と、第1の送風経路と第3の送風経路のいずれか一方の選択を行なう切替手段とをさらに備える。   More preferably, the battery temperature management device is one of a third air passage from the hot air generator to the battery without passing through the rotating electrical machine and the inverter, and any one of the first air passage and the third air passage. And switching means for performing selection.

さらに好ましくは、バッテリ温度管理装置は、バッテリの温度を検知する温度センサと、温度センサの出力に応じて切替手段に対して送風経路の選択制御を行なう制御部をさらに備える。   More preferably, the battery temperature management device further includes a temperature sensor that detects the temperature of the battery, and a control unit that performs selection control of the air flow path with respect to the switching unit according to the output of the temperature sensor.

さらに好ましくは、バッテリ温度管理装置は、温風発生装置から第3の送風経路と並列に設けられ、第3の送風経路と同時に使用される第4の送風経路をさらに備える。第4の送風経路上には回転電機またはインバータが配置される。   More preferably, the battery temperature management device further includes a fourth air supply path that is provided in parallel with the third air supply path from the hot air generator and is used simultaneously with the third air supply path. A rotating electrical machine or an inverter is disposed on the fourth air blowing path.

好ましくは、バッテリ、回転電機およびインバータは、車両のリア部に配置され、温風発生装置は、車両のフロント部に配置される。   Preferably, the battery, the rotating electrical machine, and the inverter are arranged at the rear part of the vehicle, and the hot air generator is arranged at the front part of the vehicle.

この発明の他の局面に従うと、自動車であって、上記いずれかのバッテリ温度管理装置を備える。   When the other situation of this invention is followed, it is a motor vehicle, Comprising: One of the said battery temperature management apparatuses is provided.

本発明のバッテリ温度管理装置は、低コストでバッテリの早期暖機が実現でき、バッテリの高出力状態を始動後早期に実現できる。   The battery temperature management device of the present invention can realize early warm-up of the battery at low cost, and can realize a high output state of the battery early after starting.

本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。   Embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

図1は、本発明に係る自動車100の構成を示す図である。   FIG. 1 is a diagram showing a configuration of an automobile 100 according to the present invention.

図1を参照して、自動車100は、車室25の前方のフロント部に配置されるエンジン23とトランスミッション24と空調装置とを含む。   Referring to FIG. 1, an automobile 100 includes an engine 23, a transmission 24, and an air conditioner that are disposed in a front part in front of a passenger compartment 25.

エンジン23およびトランスミッション24は、前輪21を駆動する。空調装置は、具体的にはエアコンであり、車内外熱交換器4と圧縮機5と電動圧縮機6と熱交換器7が「「車室用空調装置」に該当する。なお、「車室用空調装置」としては、エンジンの冷却水で加熱されるヒーターを用いることもできる。   The engine 23 and the transmission 24 drive the front wheels 21. The air conditioner is specifically an air conditioner, and the inside / outside heat exchanger 4, the compressor 5, the electric compressor 6, and the heat exchanger 7 correspond to “a vehicle compartment air conditioner”. In addition, as the “vehicle compartment air conditioner”, a heater heated by engine cooling water can also be used.

車内外熱交換器4と圧縮機5と電動圧縮機6と熱交換器7とは冷媒通路27によって接続されており、エンジン23が動作中は圧縮機5によって冷媒が圧縮され、エンジン23が停止中には電動圧縮機6によって冷媒が圧縮され、冷媒が冷媒通路を循環する。   The inside / outside heat exchanger 4, the compressor 5, the electric compressor 6, and the heat exchanger 7 are connected by a refrigerant passage 27, and while the engine 23 is operating, the refrigerant is compressed by the compressor 5 and the engine 23 is stopped. The refrigerant is compressed by the electric compressor 6 and circulates in the refrigerant passage.

暖房時には、圧縮機で圧縮された冷媒が熱交換器7から車内外熱交換器4を経由して圧縮機に戻ることにより、車内に熱が汲み入れられる。また、冷房時には、圧縮機で圧縮された冷媒が車内外熱交換器4から熱交換器7を経由して圧縮機に戻ることにより、車外に熱が排出される。   At the time of heating, the refrigerant compressed by the compressor returns from the heat exchanger 7 to the compressor via the vehicle interior / exterior heat exchanger 4, thereby pumping heat into the vehicle. Further, at the time of cooling, the refrigerant compressed by the compressor returns from the vehicle interior / exterior heat exchanger 4 to the compressor via the heat exchanger 7, whereby heat is discharged outside the vehicle.

自動車100は、エンジンとモータとを併用して車両を駆動するハイブリッド自動車である。このため、自動車100は、バッテリ1と、モータジェネレータ2と、インバータ3とをさらに含む。バッテリ1としては、例えばニッケル水素バッテリが好適に用いられる。   The automobile 100 is a hybrid automobile that drives a vehicle using both an engine and a motor. Therefore, automobile 100 further includes a battery 1, a motor generator 2, and an inverter 3. As the battery 1, for example, a nickel metal hydride battery is preferably used.

モータジェネレータ2は、力行運転時にはバッテリ1から電気エネルギーを受けて後輪22を駆動し、回生運転時には後輪から受けた回転エネルギーによって発生した電気エネルギーをバッテリ1に戻す。インバータ3は、バッテリ1の直流とモータジェネレータ2の交流とを相互に変換する。   The motor generator 2 receives the electrical energy from the battery 1 during the power running operation and drives the rear wheel 22 and returns the electrical energy generated by the rotational energy received from the rear wheel to the battery 1 during the regenerative operation. Inverter 3 mutually converts the direct current of battery 1 and the alternating current of motor generator 2.

バッテリ1は、最適温度が25〜35℃程度であり、冬期など外気が−20℃〜0℃の環境下で始動時にバッテリ温度が低くなってしまっているときには、速やかに暖機を行なうことが望ましい。このため、空調装置の熱交換器7からの暖かい空気が車室を経ずに通風路26からバッテリに直接与えられるように通風路26が形成されている。バッテリ1の表面に形成された熱交換フィン8を介して暖かい空気から熱がバッテリ1に与えられる。   The battery 1 has an optimum temperature of about 25 to 35 ° C., and can be quickly warmed up when the battery temperature is low at start-up in an environment where the outside air is −20 ° C. to 0 ° C. such as in winter. desirable. For this reason, the ventilation path 26 is formed so that the warm air from the heat exchanger 7 of the air conditioner is directly given to the battery from the ventilation path 26 without passing through the passenger compartment. Heat is applied to the battery 1 from warm air through the heat exchange fins 8 formed on the surface of the battery 1.

また、インバータ3やモータジェネレータ2は、走行時にはおよそ80℃になるので、バッテリ1を暖機する熱源として利用することが可能である。したがって、モータジェネレータ2およびインバータ3には、熱交換器12,13がそれぞれ設けられており、熱を通風路26の空気を介して排出するようになっている。   In addition, since the inverter 3 and the motor generator 2 reach approximately 80 ° C. during traveling, they can be used as a heat source for warming up the battery 1. Therefore, the motor generator 2 and the inverter 3 are provided with heat exchangers 12 and 13, respectively, so that heat is exhausted through the air in the air passage 26.

熱交換器7からバッテリ1に至る通風経路に熱交換器12,13を挿入可能なように弁9,10,11が設けられている。これによりバッテリ1の暖機を行なう必要がある場合には、通風経路においてバッテリ1の上流側に熱交換器12,13が来るように必要に応じて通風経路を変更することができる。なお、弁9,10,11の開閉による通風経路の変更については、後に図3、図4を用いて詳しく説明する。   Valves 9, 10, 11 are provided so that the heat exchangers 12, 13 can be inserted into the ventilation path from the heat exchanger 7 to the battery 1. Thus, when it is necessary to warm up the battery 1, the ventilation path can be changed as necessary so that the heat exchangers 12 and 13 are located upstream of the battery 1 in the ventilation path. The change of the ventilation path by opening and closing the valves 9, 10, and 11 will be described in detail later with reference to FIGS.

図2は、図1に示した自動車の変形例である自動車200の構成を示した図である。   FIG. 2 is a diagram showing a configuration of an automobile 200 that is a modification of the automobile shown in FIG.

図2を参照して、自動車200は、図1で説明した自動車100の構成に加えて弁14,15,16を含む。弁14,15,16によって、暖房時においてモータジェネレータ2、インバータ3およびバッテリ1を経由してより加熱された空気を車室25に導入できるように通風経路を変更できるようになっている。弁14,15,16の開閉による通風経路の変更については、後に図3、図4を用いて詳しく説明する。   Referring to FIG. 2, automobile 200 includes valves 14, 15 and 16 in addition to the configuration of automobile 100 described in FIG. 1. With the valves 14, 15, and 16, the ventilation path can be changed so that more heated air can be introduced into the passenger compartment 25 via the motor generator 2, the inverter 3, and the battery 1 during heating. The change of the ventilation path by opening and closing the valves 14, 15 and 16 will be described in detail later with reference to FIGS.

なお、自動車200の他の構成については、図1で説明した自動車100と同様であるので説明は繰返さない。   The other configuration of automobile 200 is similar to that of automobile 100 described with reference to FIG. 1, and therefore description thereof will not be repeated.

図3は、弁の開閉による通風経路の変更を説明するための図である。   FIG. 3 is a diagram for explaining the change of the ventilation path by opening and closing the valve.

図3において熱交換器7,12,13、熱交換フィン8、車室25、弁9〜11,14〜16については、図1で説明しているので説明は繰返さない。   In FIG. 3, heat exchangers 7, 12 and 13, heat exchange fins 8, vehicle compartment 25, and valves 9 to 11 and 14 to 16 have been described with reference to FIG. 1, and therefore description thereof will not be repeated.

モータジェネレータ2に設けられた熱交換器12は温度センサ17で温度が観測され、インバータ3に設けられた熱交換器13は温度センサ18で温度が観測され、バッテリ1の熱交換フィン8は温度センサ19で温度が観測され、各温度センサの温度は制御部30に送られる。制御部30は、温度センサ17〜19で観測された温度に応じて弁9〜11,14〜16の開閉制御を行なう。   The temperature of the heat exchanger 12 provided in the motor generator 2 is observed by a temperature sensor 17, the temperature of the heat exchanger 13 provided in the inverter 3 is observed by a temperature sensor 18, and the heat exchange fin 8 of the battery 1 has a temperature. The temperature is observed by the sensor 19, and the temperature of each temperature sensor is sent to the control unit 30. The control unit 30 performs opening / closing control of the valves 9 to 11 and 14 to 16 according to the temperatures observed by the temperature sensors 17 to 19.

基本的にバッテリに対する温度管理は、空気循環で行なわれ、バッテリに関して液体配管を通すことによるレイアウトの複雑化や液漏れ等の心配がない。空気を循環させる機器は従来使われている機器であり、新たに機器を開発する必要がないため低コストで図3に示したシステムを実現できる。   Basically, the temperature management for the battery is performed by air circulation, and there is no concern about the complexity of the layout or liquid leakage caused by passing the liquid piping through the battery. A device that circulates air is a conventionally used device, and it is not necessary to develop a new device. Therefore, the system shown in FIG. 3 can be realized at low cost.

熱交換器7からモータの熱交換器12、インバータの熱交換器13および弁10を経由してバッテリの熱交換フィン8に至る送風経路41は「第1の送風経路」に該当する。熱交換フィン8から弁15を経由して車室25に至る送風経路42は、「第2の送風経路」に該当する。熱交換器7から弁9を経由してバッテリの熱交換フィン8に至る送風経路43は「第3の送風経路」に該当する。送風経路43と並列に設けられ熱交換器7からモータの熱交換器12、インバータの熱交換器13および弁11を経由する送風経路44は、送風経路43と同時に使用される「第4の送風経路」に該当する。弁9〜11,14〜16は、送風経路を切り替える「切替手段」に該当する。   The air passage 41 from the heat exchanger 7 to the heat exchanger fins 8 of the battery through the heat exchanger 12 of the motor, the heat exchanger 13 of the inverter, and the valve 10 corresponds to the “first air passage”. The ventilation path 42 from the heat exchange fin 8 to the vehicle compartment 25 via the valve 15 corresponds to the “second ventilation path”. The air blowing path 43 from the heat exchanger 7 through the valve 9 to the heat exchange fin 8 of the battery corresponds to a “third air blowing path”. The air passage 44 that is provided in parallel with the air passage 43 and passes through the heat exchanger 7, the motor heat exchanger 12, the inverter heat exchanger 13, and the valve 11 is used simultaneously with the air passage 43. Corresponds to “route”. The valves 9 to 11 and 14 to 16 correspond to “switching means” for switching the air blowing path.

これらの送風経路の切替により必要に応じてバッテリの早期暖機を実現したり、車室内の暖房能力を強化することができる。   By switching these ventilation paths, it is possible to realize early warm-up of the battery as needed, or to enhance the heating capability of the passenger compartment.

図4は、各モードにおける弁の開閉状態を示した図である。   FIG. 4 is a view showing the open / close state of the valve in each mode.

図5は、図3の制御部30の制御動作を示すフローチャートである。   FIG. 5 is a flowchart showing the control operation of the control unit 30 of FIG.

制御部30は、所定の条件化で図5のフローチャートに従って弁9〜11,14〜16の開閉制御を行なう。所定の条件とは、たとえば始動時や、一定時間が経過しバッテリの温度変動があると予想されるときや、エアコンの操作が行なわれたとき等が該当する。   The control unit 30 performs opening / closing control of the valves 9 to 11 and 14 to 16 according to the flowchart of FIG. 5 under predetermined conditions. The predetermined condition corresponds to, for example, when starting, when it is predicted that a certain time has elapsed and the battery temperature fluctuates, or when an air conditioner is operated.

図4、図5を参照して、まず、制御が開始されると、ステップS1においてエアコンが暖房運転をしているか否かが判断される。   Referring to FIGS. 4 and 5, first, when control is started, it is determined in step S1 whether or not the air conditioner is in a heating operation.

ステップS1でエアコンが暖房運転をしているときはステップS2に処理が進む。一方、ステップS1でエアコンが暖房運転をしていないときにはステップS5に処理が進む。   When the air conditioner is heating in step S1, the process proceeds to step S2. On the other hand, when the air conditioner is not heating in step S1, the process proceeds to step S5.

ステップS2では、温度センサ19で観測されたバッテリ温度が25℃未満であるか否かが判断される。   In step S2, it is determined whether or not the battery temperature observed by the temperature sensor 19 is less than 25 ° C.

ステップS2において、バッテリ温度が25℃未満であるときにはステップS3に処理が進む。一方、ステップS2においてバッテリ温度が25℃以上であるときには処理はステップS4に進む。   In step S2, when the battery temperature is lower than 25 ° C., the process proceeds to step S3. On the other hand, when the battery temperature is 25 ° C. or higher in step S2, the process proceeds to step S4.

バッテリ温度が25℃未満である場合、ステップS3では、図4のモード1に示す弁の状態で通風経路が選択され、エアコンの運転が行なわれる。このとき、弁9,11は閉じられ、弁10は開放される。これによりエアコンの熱交換器7からの暖気は、熱交換器12,13を経由してさらに暖かくなりバッテリ1の熱交換フィン8に導入される。これにより、バッテリ1が速やかに暖機される。これによりバッテリ温度が速やかに最適温度となり早期に高出力状態を実現することができる。   When the battery temperature is lower than 25 ° C., in step S3, the ventilation path is selected in the state of the valve shown in mode 1 of FIG. 4, and the air conditioner is operated. At this time, the valves 9 and 11 are closed and the valve 10 is opened. Thereby, the warm air from the heat exchanger 7 of the air conditioner is further warmed via the heat exchangers 12 and 13 and introduced into the heat exchange fins 8 of the battery 1. Thereby, the battery 1 is quickly warmed up. As a result, the battery temperature quickly reaches the optimum temperature, and a high output state can be realized at an early stage.

また、モード1では、弁14,16は閉じられ、弁15が開放される。これにより、バッテリを経由した暖気は車室25に導入される。   In mode 1, the valves 14 and 16 are closed and the valve 15 is opened. Thereby, warm air via the battery is introduced into the passenger compartment 25.

一方、バッテリ温度が25℃以上である場合、ステップS4では、図4のモード2に示す弁の状態で通風経路が選択され、エアコンの運転が行なわれる。このとき、弁9,11は開放され、弁10は閉じられる。これによりエアコンの熱交換器7からの暖気は、通風路43を経由してバッテリ1の熱交換フィン8に直接導入され、バッテリ1は最適温度25℃〜35℃に維持される。   On the other hand, when the battery temperature is 25 ° C. or higher, in step S4, the ventilation path is selected in the state of the valve shown in mode 2 in FIG. 4, and the air conditioner is operated. At this time, the valves 9 and 11 are opened, and the valve 10 is closed. Thereby, the warm air from the heat exchanger 7 of the air conditioner is directly introduced into the heat exchange fins 8 of the battery 1 via the ventilation path 43, and the battery 1 is maintained at the optimum temperature of 25 ° C to 35 ° C.

熱交換器7からの暖気は、人間にとっての快適温度に設定されているが、この温度はバッテリにとっても最適温度でもある。このため、バッテリ温度が低い場合にはバッテリが加熱され、またバッテリ温度が高くなりすぎた場合にはバッテリが冷却され、バッテリ温度に対して複雑な温度管理を行なわなくてもよいという利点がある。   The warm air from the heat exchanger 7 is set to a comfortable temperature for humans, but this temperature is also the optimum temperature for the battery. Therefore, when the battery temperature is low, the battery is heated, and when the battery temperature becomes too high, the battery is cooled, and there is an advantage that complicated temperature management for the battery temperature does not have to be performed. .

また、弁9により開かれる通風路43と並列的に、弁11によって熱交換器12,13を経由する通風経路が開かれる。これにより、80℃程度にまで上昇する熱交換器12,13の熱によりバッテリが過熱されることがなくなる。   In parallel with the ventilation path 43 opened by the valve 9, the ventilation path via the heat exchangers 12 and 13 is opened by the valve 11. Thereby, the battery is not overheated by the heat of the heat exchangers 12 and 13 rising to about 80 ° C.

この場合、熱交換器12,13の冷却が十分でないときには、補助冷却機31を起動させる。補助冷却機31は、エアコンの通風路とは別系統の外気による冷却を行なうものであってもよいし、また冷却水によって冷却を行なうものであってもよい。   In this case, when the heat exchangers 12 and 13 are not sufficiently cooled, the auxiliary cooler 31 is started. The auxiliary cooler 31 may be one that cools by outside air of a different system from the air passage of the air conditioner, or may be cooled by cooling water.

また、モード2では、弁14,16は閉じられ、弁15が開放される。これにより、熱交換器12,13を経由して元のエアコンの温度よりもより加熱された暖気は車室25に導入される。よって暖房能力を高めることができる。   In mode 2, the valves 14 and 16 are closed and the valve 15 is opened. Thereby, the warm air heated more than the temperature of the original air conditioner via the heat exchangers 12 and 13 is introduced into the passenger compartment 25. Therefore, the heating capacity can be increased.

つぎに、ステップS1からステップS5に進んだ場合について説明する。ステップS5では、エアコンの冷房運転が行なわれているか否かが判断される。   Next, a case where the process proceeds from step S1 to step S5 will be described. In step S5, it is determined whether or not the air conditioner is cooling.

ステップS5で冷房運転が行なわれている場合にはステップS6に進む。一方、冷房運転が行なわれていない場合には、弁の開閉の変更を行なわずに処理が終了し、メイン処理に戻る。   If the cooling operation is performed in step S5, the process proceeds to step S6. On the other hand, when the cooling operation is not performed, the process ends without changing the opening / closing of the valve, and the process returns to the main process.

ステップS6では図4のモード3に示す弁の開閉が行なわれる。まず、弁9,11は開放され、弁10は閉じられる。これによりエアコンの熱交換器7からの冷気は、通風路43を経由してバッテリ1の熱交換フィン8に直接導入され、バッテリ1は最適温度25℃〜35℃に維持される。熱交換器7からの冷気は、人間にとっての快適温度であるが、この温度はバッテリにとっても最適温度でもある。このため、バッテリの温度が低い場合にはバッテリが加熱され、またバッテリの温度が高くなりすぎた場合にはバッテリが冷却され、バッテリに対して複雑な温度管理を行なわなくてもよいという利点がある。   In step S6, the valve shown in mode 3 of FIG. 4 is opened and closed. First, the valves 9 and 11 are opened and the valve 10 is closed. Thereby, the cold air from the heat exchanger 7 of the air conditioner is directly introduced into the heat exchange fins 8 of the battery 1 via the ventilation path 43, and the battery 1 is maintained at the optimum temperature of 25 ° C. to 35 ° C. The cool air from the heat exchanger 7 is a comfortable temperature for humans, but this temperature is also the optimum temperature for the battery. Therefore, when the battery temperature is low, the battery is heated, and when the battery temperature becomes too high, the battery is cooled, so that there is no need to perform complicated temperature management on the battery. is there.

また、弁9により開かれる通風路43と並列的に、弁11によって熱交換器12,13を経由する通風経路が開かれる。これにより、80℃程度にまで上昇する熱交換器12,13の熱によりバッテリが過熱されることがなくなる。この場合、熱交換器12,13の冷却が十分でないときには、補助冷却機31を起動させる。補助冷却機31は、エアコンの通風路とは別系統の外気による冷却を行なうものであってもよいし、また冷却水によって冷却を行なうものであってもよい。   In parallel with the ventilation path 43 opened by the valve 9, the ventilation path via the heat exchangers 12 and 13 is opened by the valve 11. Thereby, the battery is not overheated by the heat of the heat exchangers 12 and 13 rising to about 80 ° C. In this case, when the heat exchangers 12 and 13 are not sufficiently cooled, the auxiliary cooler 31 is started. The auxiliary cooler 31 may be one that cools by outside air of a different system from the air passage of the air conditioner, or may be cooled by cooling water.

また、モード3では、弁14,16が開放され、弁15が閉じられる。これにより、熱交換器12,13を経由して元のエアコンの温度よりもより加熱された冷気は車室25に導入されることなく熱交換器7に戻される。車室には弁14を介してエアコンからの冷気が直接導入されるので車室にバッテリ、モータ、インバータの排熱が導入されることはない。   In mode 3, valves 14 and 16 are opened and valve 15 is closed. Thereby, the cold air heated more than the temperature of the original air conditioner via the heat exchangers 12 and 13 is returned to the heat exchanger 7 without being introduced into the passenger compartment 25. Since the cool air from the air conditioner is directly introduced into the passenger compartment via the valve 14, exhaust heat from the battery, motor, and inverter is not introduced into the passenger compartment.

以上説明したように、本発明のバッテリ温度管理装置は、低コストでバッテリの早期暖機が実現でき、バッテリの高出力状態を始動後早期に実現できる。さらに、暖機完了後には、車室内の暖房能力も高めることができる。また、廃熱を暖機に利用するので電力消費を抑えることができる。   As described above, the battery temperature management device of the present invention can realize early warm-up of the battery at a low cost, and can realize a high output state of the battery early after starting. Furthermore, after the warm-up is completed, the heating capacity of the passenger compartment can be increased. Moreover, since waste heat is used for warm-up, power consumption can be suppressed.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and is intended to include meanings equivalent to the scope of claims for patent and all modifications within the scope.

本発明に係る自動車100の構成を示す図である。1 is a diagram showing a configuration of an automobile 100 according to the present invention. 図1に示した自動車の変形例である自動車200の構成を示した図である。It is the figure which showed the structure of the motor vehicle 200 which is a modification of the motor vehicle shown in FIG. 弁の開閉による通風経路の変更を説明するための図である。It is a figure for demonstrating the change of the ventilation path | route by opening and closing of a valve. 各モードにおける弁の開閉状態を示した図である。It is the figure which showed the open / close state of the valve in each mode. 図3の制御部30の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the control part 30 of FIG.

符号の説明Explanation of symbols

1 バッテリ、2 モータジェネレータ、3 インバータ、4 車内外熱交換器、5 圧縮機、6 電動圧縮機、7,12,13 熱交換器、8 熱交換フィン、9〜11,14〜16 弁、17〜19 温度センサ、21 前輪、22 後輪、23 エンジン、24 トランスミッション、25 車室、26,43 通風路、27 冷媒通路、30 制御部、31 補助冷却機、100,200 自動車。   1 Battery 2 Motor generator 3 Inverter 4 Inside / outside heat exchanger 5 Compressor 6 Electric compressor 7, 12, 13 Heat exchanger, 8 Heat exchange fin, 9-11, 14-16 Valve, 17 -19 Temperature sensor, 21 Front wheel, 22 Rear wheel, 23 Engine, 24 Transmission, 25 Car compartment, 26, 43 Ventilation path, 27 Refrigerant path, 30 Control part, 31 Auxiliary cooler, 100, 200 Automobile.

Claims (8)

温風発生装置と、
バッテリと、
回転電機と、
前記バッテリからの電気エネルギーを交流に変換して前記回転電機を駆動するインバータと、
前記温風発生装置から前記回転電機または前記インバータを経由して前記バッテリに至る第1の送風経路とを備える、バッテリ温度管理装置。
A hot air generator,
Battery,
Rotating electrical machinery,
An inverter that converts electrical energy from the battery into alternating current and drives the rotating electrical machine;
A battery temperature management device comprising: a first air flow path from the hot air generator to the battery via the rotating electrical machine or the inverter.
前記バッテリから車室に至る第2の送風経路をさらに備える、請求項1に記載のバッテリ温度管理装置。   The battery temperature management device according to claim 1, further comprising a second ventilation path from the battery to a vehicle compartment. 前記温風発生装置は、車室内用空調装置である、請求項1または2に記載のバッテリ温度管理装置。   The battery temperature management device according to claim 1, wherein the hot air generation device is a vehicle interior air conditioner. 前記回転電機および前記インバータを経由せずに前記温風発生装置から前記バッテリに至る第3の送風経路と、
前記第1の送風経路と前記第3の送風経路のいずれか一方の選択を行なう切替手段とをさらに備える、請求項3に記載のバッテリ温度管理装置。
A third air flow path from the hot air generator to the battery without passing through the rotating electrical machine and the inverter;
The battery temperature management device according to claim 3, further comprising a switching unit that selects one of the first blower path and the third blower path.
前記バッテリの温度を検知する温度センサと、
前記温度センサの出力に応じて前記切替手段に対して送風経路の選択制御を行なう制御部をさらに備える請求項4に記載のバッテリ温度管理装置。
A temperature sensor for detecting the temperature of the battery;
The battery temperature management apparatus according to claim 4, further comprising a control unit that performs air-flow path selection control on the switching unit in accordance with an output of the temperature sensor.
前記温風発生装置から前記第3の送風経路と並列に設けられ、前記第3の送風経路と同時に使用される第4の送風経路をさらに備え、
前記第4の送風経路上には前記回転電機または前記インバータが配置される、請求項4に記載のバッテリ温度管理装置。
A fourth blower path provided in parallel with the third blower path from the hot air generator and used simultaneously with the third blower path;
The battery temperature management device according to claim 4, wherein the rotating electrical machine or the inverter is arranged on the fourth ventilation path.
前記バッテリ、前記回転電機および前記インバータは、車両のリア部に配置され、
前記温風発生装置は、車両のフロント部に配置される、請求項1〜6のいずれか1項に記載のバッテリ温度管理装置。
The battery, the rotating electrical machine, and the inverter are arranged in a rear portion of a vehicle,
The battery temperature management device according to claim 1, wherein the hot air generation device is disposed at a front portion of a vehicle.
請求項1〜7のいずれか1項に記載されたバッテリ温度管理装置を備える自動車。   An automobile comprising the battery temperature management device according to any one of claims 1 to 7.
JP2004304077A 2004-10-19 2004-10-19 Device for controlling temperature of battery and car equipped with the same Withdrawn JP2006120334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004304077A JP2006120334A (en) 2004-10-19 2004-10-19 Device for controlling temperature of battery and car equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004304077A JP2006120334A (en) 2004-10-19 2004-10-19 Device for controlling temperature of battery and car equipped with the same

Publications (1)

Publication Number Publication Date
JP2006120334A true JP2006120334A (en) 2006-05-11

Family

ID=36538051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004304077A Withdrawn JP2006120334A (en) 2004-10-19 2004-10-19 Device for controlling temperature of battery and car equipped with the same

Country Status (1)

Country Link
JP (1) JP2006120334A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052997A (en) * 2006-08-23 2008-03-06 Toyota Motor Corp Power system
JP2009004164A (en) * 2007-06-20 2009-01-08 Toyota Motor Corp Heat storage system and vehicle equipped with the same
JP2009023482A (en) * 2007-07-19 2009-02-05 Valeo Thermal Systems Japan Corp Rear unit and its control device
JP2009126256A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp Cooling device for vehicle
JP2009154697A (en) * 2007-12-26 2009-07-16 Calsonic Kansei Corp Battery temperature control device
WO2009102014A1 (en) * 2008-02-15 2009-08-20 Calsonic Kansei Corporation Battery cooling system
JP2010052450A (en) * 2008-08-26 2010-03-11 Toyota Motor Corp Battery temperature control apparatus
JP2010097872A (en) * 2008-10-17 2010-04-30 Denso Corp Battery cooler
JP2010531258A (en) * 2007-05-07 2010-09-24 ゼネラル・エレクトリック・カンパニイ System and method for cooling a battery
JP2010272285A (en) * 2009-05-20 2010-12-02 Nissan Motor Co Ltd Battery temperature control device
WO2011070848A1 (en) * 2009-12-08 2011-06-16 本田技研工業株式会社 Hybrid vehicle
WO2011111949A2 (en) * 2010-03-08 2011-09-15 (주)브이이엔에스 Vehicle and method for controlling same
JP2011255879A (en) * 2010-06-04 2011-12-22 Tesla Motors Inc Thermal management system with dual mode coolant loops
KR101172691B1 (en) * 2007-12-25 2012-08-09 비와이디 컴퍼니 리미티드 Vehicle with battery system
JPWO2010092692A1 (en) * 2009-02-16 2012-08-16 トヨタ自動車株式会社 Power storage device system, and motor driving body and moving body using the system
JP2015509278A (en) * 2012-02-07 2015-03-26 エルジー・ケム・リミテッド New air-cooled battery pack
JP2015528176A (en) * 2012-06-11 2015-09-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Temperature control system for high temperature battery or high temperature electrolytic cell
JP2016504228A (en) * 2012-10-19 2016-02-12 マーテル,イヴォン Compact drive unit with tracks
CN107437644A (en) * 2017-07-31 2017-12-05 辽宁工业大学 A kind of Vehicular battery group temperature control equipment and its control method
EP3477764A1 (en) 2017-10-27 2019-05-01 ABB Schweiz AG Battery energy storage system with two-phase cooling
CN109962320A (en) * 2017-12-22 2019-07-02 青岛市比亚迪汽车有限公司 A kind of power battery heating system and its control method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008052997A (en) * 2006-08-23 2008-03-06 Toyota Motor Corp Power system
JP2010531258A (en) * 2007-05-07 2010-09-24 ゼネラル・エレクトリック・カンパニイ System and method for cooling a battery
JP2009004164A (en) * 2007-06-20 2009-01-08 Toyota Motor Corp Heat storage system and vehicle equipped with the same
JP2009023482A (en) * 2007-07-19 2009-02-05 Valeo Thermal Systems Japan Corp Rear unit and its control device
JP2009126256A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp Cooling device for vehicle
KR101172691B1 (en) * 2007-12-25 2012-08-09 비와이디 컴퍼니 리미티드 Vehicle with battery system
JP2009154697A (en) * 2007-12-26 2009-07-16 Calsonic Kansei Corp Battery temperature control device
WO2009102014A1 (en) * 2008-02-15 2009-08-20 Calsonic Kansei Corporation Battery cooling system
JP2010052450A (en) * 2008-08-26 2010-03-11 Toyota Motor Corp Battery temperature control apparatus
JP2010097872A (en) * 2008-10-17 2010-04-30 Denso Corp Battery cooler
US8283878B2 (en) 2009-02-16 2012-10-09 Toyota Jidosha Kabushiki Kaisha Battery storage device system, and motor driving body and moving body using the system
JPWO2010092692A1 (en) * 2009-02-16 2012-08-16 トヨタ自動車株式会社 Power storage device system, and motor driving body and moving body using the system
JP2010272285A (en) * 2009-05-20 2010-12-02 Nissan Motor Co Ltd Battery temperature control device
RU2518144C2 (en) * 2009-12-08 2014-06-10 Хонда Мотор Ко., Лтд. Hybrid vehicle
US8700242B2 (en) 2009-12-08 2014-04-15 Honda Motor Co., Ltd. Hybrid vehicle
WO2011070848A1 (en) * 2009-12-08 2011-06-16 本田技研工業株式会社 Hybrid vehicle
US9583800B2 (en) 2010-03-08 2017-02-28 Lg Electronics Inc. Vehicle and method for controlling same
WO2011111949A2 (en) * 2010-03-08 2011-09-15 (주)브이이엔에스 Vehicle and method for controlling same
WO2011111949A3 (en) * 2010-03-08 2012-01-05 (주)브이이엔에스 Vehicle and method for controlling same
JP2011255879A (en) * 2010-06-04 2011-12-22 Tesla Motors Inc Thermal management system with dual mode coolant loops
JP2015509278A (en) * 2012-02-07 2015-03-26 エルジー・ケム・リミテッド New air-cooled battery pack
US10388998B2 (en) 2012-02-07 2019-08-20 Lg Chem, Ltd. Battery pack of novel air cooling structure
JP2015528176A (en) * 2012-06-11 2015-09-24 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Temperature control system for high temperature battery or high temperature electrolytic cell
US9537189B2 (en) 2012-06-11 2017-01-03 Siemens Aktiengesellschaft Temperature control system for a high-temperature battery or a high-temperature electrolyzer
JP2016504228A (en) * 2012-10-19 2016-02-12 マーテル,イヴォン Compact drive unit with tracks
CN107437644A (en) * 2017-07-31 2017-12-05 辽宁工业大学 A kind of Vehicular battery group temperature control equipment and its control method
EP3477764A1 (en) 2017-10-27 2019-05-01 ABB Schweiz AG Battery energy storage system with two-phase cooling
CN109962320A (en) * 2017-12-22 2019-07-02 青岛市比亚迪汽车有限公司 A kind of power battery heating system and its control method

Similar Documents

Publication Publication Date Title
JP2006120334A (en) Device for controlling temperature of battery and car equipped with the same
JP6916600B2 (en) Vehicle battery cooling system
JP7185469B2 (en) vehicle thermal management system
JP6206231B2 (en) Thermal management system for vehicles
JP5593087B2 (en) Air conditioner for electric vehicle and control method thereof
JP6596774B2 (en) Vehicle with electric motor
JP7232638B2 (en) Temperature control system for electric vehicles
JP2002352867A (en) Battery temperature controller for electric vehicle
JP2002191104A (en) Battery cooling device for vehicle
JP2010023527A (en) Vehicular heat storage control device and vehicular cold storage control device
KR101225660B1 (en) An auxiliary cooling and heating device for automobile using thermo element module and its controlling method thereof
JP2011121551A (en) Heat control device of vehicle
JP2002354608A (en) Battery cooling device for electric automobile
JP2010064651A (en) Temperature conditioning control device of motor driving system for vehicle
JP2010284045A (en) Heat supply device
JP2009286226A (en) Air conditioning device for vehicle
JP2009291008A (en) Heat management system of electric drive vehicle
KR20190120936A (en) Heat management system of vehicle
JP2006321269A (en) Heat source distribution system for vehicle
JP2010168926A (en) Vehicle control device
JP2008126970A (en) Vehicle heater
KR20080028174A (en) Heating device for vehicles
WO2010007909A1 (en) Ventilation load reducer and air conditioner for automobile using same
JP2014108770A (en) Air conditioner for electric vehicle and operation method of the same
JP2019098906A (en) Vehicular waste heat utilization device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108