JP2019197014A - Testing device and testing method - Google Patents

Testing device and testing method Download PDF

Info

Publication number
JP2019197014A
JP2019197014A JP2018092005A JP2018092005A JP2019197014A JP 2019197014 A JP2019197014 A JP 2019197014A JP 2018092005 A JP2018092005 A JP 2018092005A JP 2018092005 A JP2018092005 A JP 2018092005A JP 2019197014 A JP2019197014 A JP 2019197014A
Authority
JP
Japan
Prior art keywords
water
specimen
joint
concrete layer
test apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018092005A
Other languages
Japanese (ja)
Other versions
JP7110524B2 (en
Inventor
知子 石田
Tomoko Ishida
知子 石田
一成 中越
Kazunari Nakagoshi
一成 中越
和也 三上
Kazuya Mikami
和也 三上
直樹 長見
Naoki Osami
直樹 長見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Marui Co Ltd
Original Assignee
Obayashi Corp
Marui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Marui Co Ltd filed Critical Obayashi Corp
Priority to JP2018092005A priority Critical patent/JP7110524B2/en
Publication of JP2019197014A publication Critical patent/JP2019197014A/en
Application granted granted Critical
Publication of JP7110524B2 publication Critical patent/JP7110524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

To effectively evaluate water permeability of a sample by directly applying water pressure into the sample.SOLUTION: A testing device for evaluating water permeability of a sample 100 comprises: water pressure pump supplying predetermined pressure water; a percolation mechanism 74 provided within the sample 100 and percolating water supplied from the water pressure pump from the inside of the sample 100; and a funnel with water collection mechanism collecting the water passing through the sample 100.SELECTED DRAWING: Figure 3

Description

本開示は、試験装置及び、試験方法に関し、特に、供試体の透水性を評価する試験装置及び、試験方法に関する。   The present disclosure relates to a test apparatus and a test method, and more particularly to a test apparatus and a test method for evaluating water permeability of a specimen.

一般的に、コンクリート構造物においては、先行打設したコンクリートと後行打設したコンクリートとの境界部位に打継目が生じる。特に、水上等に設置されるコンクリート製浮体構造物においては水密性が要求されるため、このような打継目の透水性が問題となる。このため、施工に際しては、施工条件を考慮したコンクリート供試体を準備し、該供試体の透水性を予め試験装置等により評価することが望まれる。   In general, in a concrete structure, a joint is generated at a boundary portion between concrete cast in advance and concrete cast in subsequent. In particular, a concrete floating structure installed on the water or the like requires water tightness, so that the water permeability of such a joint is a problem. For this reason, at the time of construction, it is desirable to prepare a concrete specimen in consideration of the construction conditions and to evaluate the water permeability of the specimen beforehand with a test apparatus or the like.

例えば、特許文献1には、容器内に収容したコンクリート供試体の外側から水圧を加えると共に、該供試体内を透過した水の量を計測することにより透水係数を求める試験装置が開示されている。   For example, Patent Document 1 discloses a test apparatus that calculates hydraulic conductivity by applying water pressure from the outside of a concrete specimen accommodated in a container and measuring the amount of water that has permeated through the specimen. .

特開平08−178828号公報Japanese Patent Laid-Open No. 08-178828

ところで、上記特許文献1記載の技術では、コンクリート供試体の外側から水圧を加えるため、供試体を容器内に密閉状態で収容する必要がある。このため、施工条件等を考慮した大型のコンクリート供試体には対応できない課題がある。   By the way, in the technique of the said patent document 1, in order to apply a hydraulic pressure from the outer side of a concrete test body, it is necessary to accommodate a test body in a sealed state in a container. For this reason, there exists a subject which cannot respond to the large-sized concrete specimen which considered construction conditions.

また、打継目の透水性を正確に評価するには、コンクリート供試体の内部、すなわち、打継目部分に水圧を直接的に作用させることが望ましい。上記特許文献1記載の技術では、コンクリート供試体の外側から水圧を加えているため、供試体全体の透水性は評価できるが、打継目の透水性は正確に評価できない課題がある。   Further, in order to accurately evaluate the water permeability of the joint, it is desirable to apply the water pressure directly to the inside of the concrete specimen, that is, the joint portion. In the technique described in Patent Document 1, since water pressure is applied from the outside of the concrete specimen, the permeability of the whole specimen can be evaluated, but there is a problem that the permeability of the joint at the joint cannot be accurately evaluated.

本開示の技術は、上記課題に鑑みてなされたものであり、供試体の内部に水圧を直接的に作用させることにより、供試体の透水性を効果的に評価することができる試験装置及び試験方法を提供することを目的とする。   The technology of the present disclosure has been made in view of the above problems, and a test apparatus and a test that can effectively evaluate the water permeability of the test specimen by directly applying a water pressure to the inside of the test specimen. It aims to provide a method.

本開示の装置は、供試体の透水性を評価する試験装置であって、所定圧の水を圧送する圧送手段と、前記供試体内に埋設されると共に、前記圧送手段から圧送される水を前記供試体の内部から透水させる透水手段と、前記供試体内を透過した水を計量手段に集水する集水手段と、を備えることを特徴とする。   The apparatus of the present disclosure is a test apparatus for evaluating water permeability of a specimen, and includes a pumping means that pumps water of a predetermined pressure, and water that is embedded in the specimen and pumped from the pumping means. It comprises water permeation means for permeating water from the inside of the specimen, and water collection means for collecting water that has permeated through the specimen into a measuring means.

また、前記供試体は、先行打設した一次コンクリート層と、後行打設した二次コンクリート層とを有するコンクリート供試体であり、前記透水手段は、前記一次コンクリート層と前記二次コンクリート層との打継目に位置して埋設されて該打継目に水を透水させ、前記集水手段は、前記打継目を透過して漏出する水を集水することが好ましい。   Further, the specimen is a concrete specimen having a primary concrete layer placed in advance and a secondary concrete layer placed in a subsequent manner, and the water-permeable means includes the primary concrete layer, the secondary concrete layer, Preferably, the water is buried in the joint and allows water to pass through the joint, and the water collecting means collects water that leaks through the joint.

また、前記透水手段は、前記圧送手段から圧送される水を浸透可能な多孔質体で形成された透水部材と、該透水部材を挟み込んで対向する一対のプレート部材とを有すると共に、該プレート部材の平面を前記打継目に並行させて前記コンクリート供試体内に埋設されることが好ましい。   In addition, the water permeable means includes a water permeable member formed of a porous body capable of penetrating water pumped from the pressure feeding means, and a pair of plate members sandwiching the water permeable member and facing each other. Are preferably embedded in the concrete specimen in parallel with the joint.

また、一端を前記圧送手段に接続されると共に、他端を前記一対のプレート部材の何れか一方に固定されて、その内部流路を前記透水部材に連通させた水供給配管をさらに備えることが好ましい。   Further, the apparatus further includes a water supply pipe having one end connected to the pumping means, the other end fixed to one of the pair of plate members, and an internal flow path communicating with the water permeable member. preferable.

また、一端を前記一対のプレート部材の何れか一方に固定されて、その内部流路を前記透水部材に連通させると共に、他端を大気に開放された空気排出配管と、前記空気排出配管の内部流路を開閉可能なバルブと、をさらに備えることが好ましい。   Also, one end is fixed to either one of the pair of plate members, the internal flow path is communicated with the water permeable member, and the other end is opened to the atmosphere, and the inside of the air discharge pipe It is preferable to further include a valve capable of opening and closing the flow path.

また、前記集水手段は、前記打継目から漏出する水を集水する漏斗を含み、前記計量手段は、前記漏斗から滴下される水を貯留する計量容器であることが好ましい。   Moreover, it is preferable that the said water collection means contains the funnel which collects the water leaked from the said joint, and the said measurement means is a measurement container which stores the water dripped from the said funnel.

本開示の方法は、供試体の透水性を評価する試験方法であって、所定圧の水を前記供試体内に圧送する圧送工程と、圧送される水を前記供試体の内部から透水させる透水工程と、前記供試体内を透過した水を計量する計量工程と、を含むことを特徴とする。   The method of the present disclosure is a test method for evaluating the water permeability of a specimen, a pumping process for pumping water of a predetermined pressure into the specimen, and water permeability for allowing the pumped water to permeate from the inside of the specimen. And a measuring step for measuring water that has permeated through the specimen.

また、前記供試体は、先行打設した一次コンクリート層と、後行打設した二次コンクリート層とを有するコンクリート供試体であり、前記圧送工程では、前記一次コンクリート層と前記二次コンクリート層との打継目に前記所定圧の水を圧送し、前記透水工程では、圧送される水を前記打継目に透水させ、前記計量工程では、前記打継目を透過して漏出する水を計量することが好ましい。   Further, the specimen is a concrete specimen having a primary concrete layer placed in advance and a secondary concrete layer placed in a subsequent manner, and in the pumping step, the primary concrete layer and the secondary concrete layer Water at the predetermined pressure is pumped to the joint, and in the water permeation step, the water to be pumped is made to permeate the joint, and in the metering step, water leaking through the joint is measured. preferable.

本開示の技術によれば、供試体の内部に水圧を直接的に作用させることにより、供試体の透水性を効果的に評価することができる。   According to the technique of the present disclosure, the water permeability of the specimen can be effectively evaluated by applying the water pressure directly to the inside of the specimen.

(A)は、本実施形態に係る試験装置及び、供試体を示す模式的な斜視図であり、(B)は、本実施形態に係る試験装置を示す模式的な側面図である。(A) is a schematic perspective view showing a test apparatus and a specimen according to the present embodiment, and (B) is a schematic side view showing the test apparatus according to the present embodiment. (A)は、本実施形態に係る透水機構を示す模式的な斜視図であり、(B)は、本実施形態に係る透水機構の模式的な縦断面図である。(A) is a typical perspective view which shows the water-permeable mechanism which concerns on this embodiment, (B) is a typical longitudinal cross-sectional view of the water-permeable mechanism which concerns on this embodiment. 本実施形態に係る透水機構が供試体内に埋設された状態を示す模式的な縦断面図である。It is a typical longitudinal cross-sectional view which shows the state by which the water-permeable mechanism which concerns on this embodiment was embed | buried in a test body. 本実施形態に係る供試体の作製手順を説明する模式図である。It is a schematic diagram explaining the preparation procedure of the test body which concerns on this embodiment. 本実施形態に係る試験装置を用いた供試体の透水性の評価手順を説明する模式的な縦断面図である。It is a typical longitudinal cross-sectional view explaining the water-permeable permeability evaluation procedure of the test body using the test apparatus which concerns on this embodiment. 本実施形態に係る試験装置を用いた供試体の透水性の評価手順を説明する模式的な横断面図である。It is a typical cross-sectional view explaining the procedure for evaluating water permeability of a specimen using the test apparatus according to the present embodiment. 他の実施形態に係る試験装置の模式的な縦断面図である。It is a typical longitudinal cross-sectional view of the testing apparatus which concerns on other embodiment.

以下、添付図面に基づいて、本実施形態に係る試験装置及び、試験方法について説明する。同一の部品には同一の符号を付してあり、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰返さない。   Hereinafter, a test apparatus and a test method according to the present embodiment will be described with reference to the accompanying drawings. The same parts are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.

[全体構成]
図1(A)は、本実施形態に係る試験装置10及び、供試体100を示す模式的な斜視図であり、図1(B)は、本実施形態に係る試験装置10を示す模式的な側面図である。同図に示すように、試験装置10は、供試体100を収容する収容部20と、収容部20を載せる載置台30と、載置台30を支持する支持フレーム部40と、脚部50と、一対の集水機構60A,60B(集水手段)と、給排機構70とを備えている。
[overall structure]
FIG. 1A is a schematic perspective view showing a test apparatus 10 and a specimen 100 according to this embodiment, and FIG. 1B is a schematic view showing the test apparatus 10 according to this embodiment. It is a side view. As shown in the figure, the test apparatus 10 includes a storage unit 20 that stores the specimen 100, a mounting table 30 on which the storage unit 20 is mounted, a support frame unit 40 that supports the mounting table 30, a leg unit 50, A pair of water collecting mechanisms 60 </ b> A and 60 </ b> B (water collecting means) and a water supply / discharge mechanism 70 are provided.

なお、以下の説明では、試験装置10の給排機構70が配置されている側を前側、給排機構70とは反対側を後側とする。また、作業者が試験装置10を前側(給排機構70側)から正面視したときの左方を左側、右方を右側とする。   In the following description, the side where the supply / discharge mechanism 70 of the test apparatus 10 is disposed is the front side, and the side opposite to the supply / discharge mechanism 70 is the rear side. Further, when the operator views the test apparatus 10 from the front side (supply / discharge mechanism 70 side) from the front, the left side is the left side and the right side is the right side.

供試体100は、先行打設した一次コンクリート層110と、後行打設した二次コンクリート層120とを有する二層構造の略直方体状に形成されている。供試体100は、前後方向の長さL1を約400mm、左右方向の長さL2を約500mm、上下方向の長さL3を約300mmで形成されている。供試体100は、一次コンクリート層110と二次コンクリート層120との打継目130が略鉛直方向となるように試験装置10に設置される。供試体100の詳細な作製手順については後述する。   The specimen 100 is formed in a substantially rectangular parallelepiped shape having a two-layer structure including a primary concrete layer 110 that has been placed in advance and a secondary concrete layer 120 that has been placed in a subsequent manner. The specimen 100 has a length L1 in the front-rear direction of about 400 mm, a length L2 in the left-right direction of about 500 mm, and a length L3 in the up-down direction of about 300 mm. The specimen 100 is installed in the test apparatus 10 so that the joint 130 between the primary concrete layer 110 and the secondary concrete layer 120 is in a substantially vertical direction. A detailed manufacturing procedure of the specimen 100 will be described later.

収容部20は、上下前後の計4枚の金属プレート等で構成されている。具体的には、収容部20は、供試体100の上面を覆う上側プレート部材21と、供試体100の下面を覆う下側プレート部材22と、供試体100の前面を覆う前側プレート部材23と、供試体100の後面を覆う後側プレート部材24とを備えている。   The accommodating part 20 is comprised by the metal plate etc. of a total of 4 sheets up and down. Specifically, the storage unit 20 includes an upper plate member 21 that covers the upper surface of the specimen 100, a lower plate member 22 that covers the lower surface of the specimen 100, a front plate member 23 that covers the front surface of the specimen 100, And a rear plate member 24 that covers the rear surface of the specimen 100.

上側プレート部材21及び下側プレート部材22は、供試体100の上下面の形状と略同形状の方形状に形成されている。これら上側プレート部材21及び下側プレート部材22は、供試体100内に埋設された不図示のアンカーボルトに不図示のナットを締結することにより固定されている。なお、上側プレート部材21及び下側プレート部材22の固定方法は、アンカーボルトに限定されず、ブラケット等を介して前側プレート部材23及び後側プレート部材24に固定してもよい。   The upper plate member 21 and the lower plate member 22 are formed in a rectangular shape that is substantially the same shape as the upper and lower surfaces of the specimen 100. The upper plate member 21 and the lower plate member 22 are fixed by fastening a nut (not shown) to an anchor bolt (not shown) embedded in the specimen 100. In addition, the fixing method of the upper side plate member 21 and the lower side plate member 22 is not limited to an anchor bolt, You may fix to the front side plate member 23 and the rear side plate member 24 via a bracket etc.

前側プレート部材23及び後側プレート部材24は、供試体100の前後面の形状と略同形状の方形状に形成されている。これら前側プレート部材23及び後側プレート部材24は、供試体100内に埋設された4本のアンカーボルト150にナット160を締結することにより固定されている。前側プレート部材23には、後述する給排機構70の配管73,75をそれぞれ挿通させる上下一対の貫通孔23A,23Bが設けられている。   The front plate member 23 and the rear plate member 24 are formed in a rectangular shape that is substantially the same shape as the shape of the front and rear surfaces of the specimen 100. The front plate member 23 and the rear plate member 24 are fixed by fastening nuts 160 to four anchor bolts 150 embedded in the specimen 100. The front plate member 23 is provided with a pair of upper and lower through holes 23A and 23B through which pipes 73 and 75 of a supply / exhaust mechanism 70 described later are inserted.

載置台30は、例えば金属プレート等で略矩形枠体状に形成されており、前板部31と、後板部32と、左板部33と、右板部34とを備えている。左板部33及び右板部34の長手方向の長さは、好ましくは、供試体100の前後方向の長さL1と略同等の長さで形成されている。前板部31及び後板部32の長手方向の長さは、好ましくは、供試体100の左右方向の長さL2よりも短く形成されている。左板部33及び右板部34には、後述する集水機構60A,60Bの各漏斗62A,62Bをそれぞれ保持する左右一対の固定部材35,36(右側の固定部材36は図1(B)参照)が取り付けられている。   The mounting table 30 is formed in a substantially rectangular frame shape with, for example, a metal plate or the like, and includes a front plate portion 31, a rear plate portion 32, a left plate portion 33, and a right plate portion 34. The length in the longitudinal direction of the left plate portion 33 and the right plate portion 34 is preferably formed to be approximately the same as the length L1 in the front-rear direction of the specimen 100. The length in the longitudinal direction of the front plate portion 31 and the rear plate portion 32 is preferably shorter than the length L2 in the left-right direction of the specimen 100. The left plate portion 33 and the right plate portion 34 have a pair of left and right fixing members 35 and 36 respectively holding the funnels 62A and 62B of the water collecting mechanisms 60A and 60B described later (the right fixing member 36 is shown in FIG. 1B). Is attached).

支持フレーム部40は、左右一対の上側フレーム部材41,42と、前後一対の下側フレーム部材43,44と、補強用フレーム部材45とを備えている。   The support frame portion 40 includes a pair of left and right upper frame members 41 and 42, a pair of front and rear lower frame members 43 and 44, and a reinforcing frame member 45.

上側フレーム部材41,42は、載置台30の下方を前後方向に並行に延びる長板状の金属プレートであって、載置台30にブラケット46を介して固定されている。上側フレーム部材41,42の長手方向の長さは、好ましくは、供試体100の前後方向の長さL1よりも長く形成されている。   The upper frame members 41 and 42 are long plate-like metal plates extending in parallel in the front-rear direction below the mounting table 30, and are fixed to the mounting table 30 via brackets 46. The length of the upper frame members 41, 42 in the longitudinal direction is preferably longer than the length L 1 of the specimen 100 in the front-rear direction.

下側フレーム部材43,44は、下方に開口する断面略U字状の鋼材であって、上側フレーム部材41,42の下方を左右方向に延設されている。下側フレーム部材43,44は、箱状部材47を介して上側フレーム部材41,42の長手方向端部に固定されている。下側フレーム部材43,44の長手方向の長さL4は、好ましくは、供試体100の左右方向の長さL2よりも長い約600mmで形成されている。また、下側フレーム部材43,44の短手方向の長さL5は、好ましくは、約100mmで形成されている。さらに、各下側フレーム部材43,44の離間幅Wは、供試体100の前後方向の長さL1よりも長い約480mmで設定されている。   The lower frame members 43 and 44 are steel materials having a substantially U-shaped cross section that open downward, and extend below the upper frame members 41 and 42 in the left-right direction. The lower frame members 43 and 44 are fixed to the longitudinal end portions of the upper frame members 41 and 42 via a box-shaped member 47. The length L4 in the longitudinal direction of the lower frame members 43 and 44 is preferably about 600 mm longer than the length L2 in the left-right direction of the specimen 100. The length L5 in the short direction of the lower frame members 43, 44 is preferably about 100 mm. Further, the separation width W between the lower frame members 43 and 44 is set to about 480 mm, which is longer than the length L1 of the specimen 100 in the front-rear direction.

補強用フレーム部材45は、載置台30の下方を前後方向に延設されており、その長手方向の両端部を下側フレーム部材43,44に固定されている。下側フレーム部材43,44の長手方向の両端部からは、4本の脚部50がそれぞれ垂下されている。   The reinforcing frame member 45 extends in the front-rear direction below the mounting table 30, and both ends in the longitudinal direction are fixed to the lower frame members 43 and 44. Four leg portions 50 are suspended from both ends of the lower frame members 43 and 44 in the longitudinal direction.

集水機構60A,60Bは、供試体100の打継目130から外部に漏出する水を集水するもので、一対の樋部材61A,61Bと、一対の漏斗62A,62Bと、一対の計量容器63A,63B(計量手段)とを備えている。   The water collecting mechanisms 60A and 60B collect water leaking from the joint 130 of the specimen 100 to the outside, and a pair of trough members 61A and 61B, a pair of funnels 62A and 62B, and a pair of measuring containers 63A. , 63B (measuring means).

樋部材61A,61Bは、横断面略U字状に湾曲する長板材で形成されている。樋部材61A,61Bは、その長手方向が上下方向、且つ、その開口側が打継目130と対向するように、供試体100の左右側面にベルト部材64等を介して保持されている。樋部材61A,61Bの長手方向の長さは、好ましくは、その上下両端が供試体100の上下面よりも突出するように、供試体100の上下方向の長さL3よりも長く形成されている。打継目130から水が勢いよく漏出した際には、当該水が樋部材61A,61Bの内周面によって確実に受け止められるようになっている。   The eaves members 61A and 61B are formed of a long plate material that is curved in a substantially U-shaped cross section. The flange members 61A and 61B are held on the left and right side surfaces of the specimen 100 via belt members 64 and the like so that the longitudinal direction thereof is the vertical direction and the opening side thereof is opposed to the joint 130. The length in the longitudinal direction of the flange members 61A and 61B is preferably longer than the length L3 in the vertical direction of the specimen 100 so that the upper and lower ends protrude from the upper and lower surfaces of the specimen 100. . When water leaks vigorously from the joint 130, the water is reliably received by the inner peripheral surfaces of the flange members 61A and 61B.

漏斗62A,62Bは、上端側から下端側に向かうに従い縮径する略逆円錐状に形成されている。漏斗62A,62Bは、好ましくは、その中心軸線X(図1(B)参照)が打継目130(図1(A)参照)の左右端部と略一致するように固定部材35,36に保持されている。漏斗62A,62Bの下方には、メスシリンダ等の計量容器63A,63Bが配置されている。すなわち、打継目130の左右端部から漏出する水が、漏斗62A,62Bを介して下方の計量容器63A,63B内に滴下されるようになっている。   The funnels 62 </ b> A and 62 </ b> B are formed in a substantially inverted conical shape whose diameter is reduced from the upper end side toward the lower end side. The funnels 62A and 62B are preferably held by the fixing members 35 and 36 so that the center axis X (see FIG. 1B) substantially coincides with the left and right ends of the joint 130 (see FIG. 1A). Has been. Under the funnels 62A and 62B, measuring containers 63A and 63B such as a graduated cylinder are arranged. That is, water leaking from the left and right ends of the joint 130 is dripped into the lower measuring containers 63A and 63B through the funnels 62A and 62B.

給排機構70は、水を圧送する水圧ポンプ71(圧送手段)と、水圧を計測する圧力計72と、少なくとも水を流通させる水供給配管73と、供試体100の打継目130に水を浸透(透水)させる透水機構74(透水手段)と、少なくとも空気を流通させる空気排出配管75と、空気排出配管75の流路を開閉可能なエア抜きバルブ76とを備えている。   The supply / discharge mechanism 70 penetrates water into the water pressure pump 71 (pressure feeding means) that pumps water, a pressure gauge 72 that measures water pressure, a water supply pipe 73 that circulates at least water, and the joint 130 of the specimen 100. A water permeation mechanism 74 (water permeation means) for allowing water permeation, an air exhaust pipe 75 through which at least air flows, and an air vent valve 76 capable of opening and closing the flow path of the air exhaust pipe 75 are provided.

水圧ポンプ71は、例えば、0.2〜5.0MPaの水圧を吐出可能な電動式又は手動式の水圧ポンプである。水圧ポンプ71の吐出口は、不図示の配管継手等を介して水供給配管73の上流端に接続されている。水圧ポンプ71と隣接する水供給配管73には、圧力計72が設けられている。   The hydraulic pump 71 is, for example, an electric or manual hydraulic pump that can discharge a water pressure of 0.2 to 5.0 MPa. The discharge port of the water pressure pump 71 is connected to the upstream end of the water supply pipe 73 via a pipe joint (not shown). A pressure gauge 72 is provided in the water supply pipe 73 adjacent to the water pressure pump 71.

水供給配管73及び、空気排出配管75は、例えば、内径12.7mm:外径17.3mmの鉄パイプ等で形成されている。水供給配管73の下流側及び、空気排出配管75の上流側は、供試体100内に埋設されている。また、水供給配管73の下流端及び、空気排出配管75の上流端には、透水機構74が接続されている。さらに、空気排出配管75の下流端には、エア抜きバルブ76が設けられている。エア抜きバルブ76を開状態で水圧ポンプ71を駆動させると、透水機構74の内部空気が空気排出配管75を介して外気に放出されるようになっている。   The water supply pipe 73 and the air discharge pipe 75 are formed of, for example, an iron pipe having an inner diameter of 12.7 mm and an outer diameter of 17.3 mm. The downstream side of the water supply pipe 73 and the upstream side of the air discharge pipe 75 are embedded in the specimen 100. A water permeation mechanism 74 is connected to the downstream end of the water supply pipe 73 and the upstream end of the air discharge pipe 75. Further, an air vent valve 76 is provided at the downstream end of the air discharge pipe 75. When the hydraulic pump 71 is driven with the air vent valve 76 open, the internal air of the water permeable mechanism 74 is released to the outside air through the air discharge pipe 75.

[透水機構]
次に、図2,3に基づいて、本実施形態に係る透水機構74の詳細について説明する。図2(A)は、透水機構74を示す模式的な斜視図であり、図2(B)は、透水機構74の模式的な縦断面図である。同図に示すように、透水機構74は、第1プレート部材74Aと、透水部材74Bと、第2プレート部材74Cとを順に積層して構成されている。
[Water permeability mechanism]
Next, based on FIG.2, 3, the detail of the water-permeable mechanism 74 which concerns on this embodiment is demonstrated. FIG. 2A is a schematic perspective view showing the water permeable mechanism 74, and FIG. 2B is a schematic longitudinal sectional view of the water permeable mechanism 74. As shown in the drawing, the water permeable mechanism 74 is configured by sequentially laminating a first plate member 74A, a water permeable member 74B, and a second plate member 74C.

第1プレート部材74A及び、第2プレート部材74Cは、平板状の金属プレート等で略矩形状に形成されている。第1プレート部材74A及び、第2プレート部材74Cは、好ましくは、長幅W1を約240mm、短幅W2を約100mmで形成されている。第2プレート部材74Cの略中心部には、水供給配管73の下流端を嵌入固定する第1貫通孔74Dが設けられている。また、第2プレート部材74Cの一端部には、空気排出配管75の上流端を嵌入固定する第2貫通孔74Eが設けられている。これら各配管73,74は、好ましくは溶接等により第2プレート部材74Cに固設されている。   The first plate member 74A and the second plate member 74C are formed in a substantially rectangular shape by a flat metal plate or the like. The first plate member 74A and the second plate member 74C are preferably formed with a long width W1 of about 240 mm and a short width W2 of about 100 mm. A first through hole 74D for fitting and fixing the downstream end of the water supply pipe 73 is provided at a substantially central portion of the second plate member 74C. Further, a second through hole 74E for fitting and fixing the upstream end of the air discharge pipe 75 is provided at one end of the second plate member 74C. These pipes 73 and 74 are preferably fixed to the second plate member 74C by welding or the like.

透水部材74Bは、水を浸透可能なモノリス多孔質体等(例えば、スリーエムジャパン株式会社製、商品名「スコッチブライト」等を好ましくは二枚重ね)で略矩形状に形成されている。透水部材74Bは、好ましくは接着剤等により第1プレート部材74A及び、第2プレート部材74Cにそれぞれ接合されており、各配管73,74の内部流路と連通する。透水部材74Bの寸法は、特に限定されないが、長幅W3を約230mm、短幅W2を約100mmで形成されている。   The water permeable member 74B is formed in a substantially rectangular shape with a monolith porous body or the like that can permeate water (for example, a product name “Scotch Bright” manufactured by 3M Japan, preferably two layers). The water permeable member 74B is preferably joined to the first plate member 74A and the second plate member 74C by an adhesive or the like, and communicates with the internal flow paths of the pipes 73 and 74, respectively. Although the dimension of the water permeable member 74B is not particularly limited, the long width W3 is about 230 mm and the short width W2 is about 100 mm.

以上のように構成された透水機構74は、図3に示すように、透水部材74Bが一次コンクリート層110と二次コンクリート層120との打継目130に略一致するように供試体100内に埋設される。すなわち、エア抜きバルブ76を閉弁した状態で、水圧ポンプ71により水圧を加えると、水供給配管73から透水部材74B内に浸透した水が、第1及び第2プレート部材74A,74Cの対向面に沿って案内されながら、打継目130に向けて確実に導かれるように構成されている。このように、透水部材74B内に浸透した水を第1及び第2プレート部材74A,74Cに沿って流通させることにより、水が打継目130以外の他の部位(例えば、各配管73,75と二次コンクリート層120との間等)に透水することを効果的に防止することが可能になる。供試体100の透水性試験の詳細な手順については後述する。   As shown in FIG. 3, the water-permeable mechanism 74 configured as described above is embedded in the specimen 100 so that the water-permeable member 74 </ b> B substantially coincides with the joint 130 between the primary concrete layer 110 and the secondary concrete layer 120. Is done. That is, when water pressure is applied by the water pressure pump 71 with the air vent valve 76 closed, the water permeated into the water permeable member 74B from the water supply pipe 73 is opposed to the first and second plate members 74A and 74C. It is comprised so that it may guide | deviate reliably toward the joint line 130, guiding along. In this way, by allowing the water that has permeated into the water permeable member 74B to flow along the first and second plate members 74A and 74C, the water is supplied to other parts (for example, the pipes 73 and 75 and the pipes 73 and 75). It is possible to effectively prevent water permeation between the secondary concrete layer 120 and the like. The detailed procedure of the water permeability test of the specimen 100 will be described later.

[供試体の作製手順]
次に、図4に基づいて、本実施形態に係る供試体100の作製手順について説明する。
[Sample preparation procedure]
Next, based on FIG. 4, the preparation procedure of the specimen 100 which concerns on this embodiment is demonstrated.

まず、図4(A)に示すように、コンクリートを不図示の型枠内に約200mmの高さまで流し込み、一次コンクリート層110を打設する。この際、後述する前側及び後側プレート部材23,24を取り付けるための4本のアンカーボルト150、さらには、上側及び下側プレート部材21,22を取り付けるための2本のアンカーボルト170も一次コンクリート層110内に埋設する。   First, as shown in FIG. 4A, concrete is poured into a mold (not shown) to a height of about 200 mm, and a primary concrete layer 110 is placed. At this time, four anchor bolts 150 for attaching front and rear plate members 23 and 24, which will be described later, and further two anchor bolts 170 for attaching upper and lower plate members 21 and 22 are also primary concrete. Embedded in layer 110.

次いで、図4(B)に示すように、一次コンクリート層110が固化するよりも前に、一次コンクリート層110の略中心位置に、透水機構74の第1プレート部材74A及び、透水部材74Bの一部を埋め込むように配置する。   Next, as shown in FIG. 4 (B), before the primary concrete layer 110 is solidified, the first plate member 74A and the water permeable member 74B of the water permeable mechanism 74 are placed at a substantially central position of the primary concrete layer 110. Arrange to embed part.

次いで、一次コンクリート層110が少なくとも透水機構74を自立させられる程度に固化したならば、図4(C)に示すように、コンクリートを一次コンクリート層110の上面から約200mmの高さまで流し込むことにより、二次コンクリート層120を打設する。この際、上側及び下側プレート部材21,22を取り付けるための2本のアンカーボルト170も二次コンクリート層120内に埋設する。   Next, once the primary concrete layer 110 has solidified to such an extent that at least the water permeable mechanism 74 can be self-supported, as shown in FIG. A secondary concrete layer 120 is placed. At this time, two anchor bolts 170 for attaching the upper and lower plate members 21 and 22 are also embedded in the secondary concrete layer 120.

最後に、図4(D)に示すように、二次コンクリート層120が固化したならば、不図示の型枠から供試体100を取り出し、アンカーボルト150にナット160を締結して前側及び後側プレート部材23,24を取り付け、アンカーボルト170にナット180を締結して上側及び下側プレート部材21,22を取り付けて、供試体100の作製を終了する。   Finally, as shown in FIG. 4 (D), when the secondary concrete layer 120 is solidified, the specimen 100 is taken out from the mold (not shown), and the nut 160 is fastened to the anchor bolt 150, and the front side and the rear side. The plate members 23 and 24 are attached, the nuts 180 are fastened to the anchor bolts 170 and the upper and lower plate members 21 and 22 are attached, and the preparation of the specimen 100 is completed.

[評価手順]
次に、図5,6に基づいて、本実施形態に係る試験装置10を用いた供試体100の評価手順について説明する。本実施形態では、打継目130の止水性の指標の一つである透水係数kを求めるものとする。
[Evaluation procedure]
Next, based on FIG.5, 6, the evaluation procedure of the specimen 100 using the test apparatus 10 which concerns on this embodiment is demonstrated. In the present embodiment, the water permeability coefficient k, which is one of the water-stopping indexes of the joint 130, is obtained.

[1:エア抜き・圧送工程]
まず、図5(A)に示すように、エア抜きバルブ76を開弁した状態で、水圧ポンプ71から水供給配管73を介して透水部材74Bに水を圧送する。透水部材74Bに水が供給されると、これに伴い、水よりも比重の軽い内部空気は上方の空気排出配管75を介して大気に放出される。このように、水圧ポンプ71により水圧を加えて内部空気を押し出すことで、透水部材74Bから内部空気を早期に排出することができる。
[1: Air venting and pumping process]
First, as shown in FIG. 5A, water is pumped from the water pressure pump 71 to the water permeable member 74B through the water supply pipe 73 with the air vent valve 76 opened. When water is supplied to the water permeable member 74B, the internal air having a specific gravity lighter than that of water is released to the atmosphere through the upper air discharge pipe 75. In this way, by applying water pressure by the water pressure pump 71 to push out the internal air, the internal air can be discharged from the water permeable member 74B at an early stage.

透水部材74Bの内部空気が完全に抜け切り、エア抜きバルブ76から水が漏出し始めたならば、エア抜きバルブ76を閉弁状態に切り替えることによりエア抜き工程を終了する。なお、図中において、黒塗り矢印は水の流れを示し、白抜き矢印は内部空気の流れを示している。   If the internal air of the water permeable member 74B has completely escaped and water has started to leak from the air vent valve 76, the air vent process is terminated by switching the air vent valve 76 to the closed state. In the figure, the black arrow indicates the flow of water, and the white arrow indicates the flow of internal air.

[2:圧送・透水工程]
次に、図5(B)に示すように、エア抜きバルブ76を閉弁した状態で、水圧ポンプ71により、所望の水圧の水を水供給配管73から透水部材74Bに供給する。水圧の設定は、例えば、水深20m相当の施工条件を評価するのであれば約0.2MPa、水深500m相当の施工条件を評価するのであれば約5.0MPaに設定すればよい。水圧ポンプ71の吐出圧の調節作業は、圧力計72の計測値を確認しながら行えばよい。
[2: Pressure feeding / water permeability process]
Next, as shown in FIG. 5 (B), water with a desired water pressure is supplied from the water supply pipe 73 to the water permeable member 74B by the water pressure pump 71 with the air vent valve 76 closed. The water pressure may be set to, for example, about 0.2 MPa if a construction condition corresponding to a water depth of 20 m is evaluated, and about 5.0 MPa if a construction condition corresponding to a water depth of 500 m is evaluated. The operation of adjusting the discharge pressure of the water pressure pump 71 may be performed while checking the measurement value of the pressure gauge 72.

透水部材74Bに加圧状態で供給される水は、透水部材74B内を第1及び第2プレート部材74A,74Cの対向面に沿って浸透しながら打継目130に到達し、打継目130内に次第に透水し始める。本実施形態では、透水部材74Bが打継目130と略並行な一対のプレート部材74A,74Cによって挟み込まれているので、透水部材74B内を浸透する水は、打継目130以外の他の部位に浸透することなく、打継目130に向けて確実に案内されるようになる。   The water supplied in a pressurized state to the water permeable member 74B reaches the joint 130 while penetrating the water permeable member 74B along the opposing surfaces of the first and second plate members 74A and 74C, and enters the joint 130. Gradually begin to permeate. In this embodiment, since the water permeable member 74B is sandwiched between the pair of plate members 74A and 74C substantially parallel to the joint 130, the water that permeates the water permeable member 74B permeates into other parts other than the joint 130. Without being done, it is surely guided toward the joint 130.

[3:計量工程]
次に、図6に示すように、所定時間Tが経過して打継目130から外部に水が漏出し、該漏出水が漏斗62A,62Bを介して計量容器63A,63Bに集水されたならば、該計量容器63A,63B内の水量Qを計量する。計量は、計量容器63A,63Bが例えばメスシリンダであれば、該メスシリンダの目盛を読み取ればよい。
[3: Weighing process]
Next, as shown in FIG. 6, if a predetermined time T has passed and water has leaked to the outside from the joint 130, and the leaked water has been collected in the measuring containers 63A and 63B via the funnels 62A and 62B. For example, the water quantity Q in the measuring containers 63A and 63B is measured. For weighing, if the weighing containers 63A, 63B are, for example, a graduated cylinder, the scale of the graduated cylinder may be read.

水量Qを計量したならば、水量Q及び経過時間Tに基づいて単位時間当たりに打継目130の単位面積を通り抜けた水量を計算すると共に、該計算値と圧力計72の水圧値P(又は、水圧ポンプ71が自動制御式であれば設定圧値)との関係から透水係数kを計算する。透水係数kは、例えば、ダルシーの法則等の公式に基づいて算出すればよい。   If the amount of water Q is measured, the amount of water passing through the unit area of the joint 130 per unit time based on the amount of water Q and the elapsed time T is calculated, and the calculated value and the water pressure value P (or the pressure gauge 72) If the hydraulic pump 71 is an automatic control type, the hydraulic conductivity k is calculated from the relationship with the set pressure value). The hydraulic conductivity k may be calculated based on a formula such as Darcy's law.

以上詳述した本実施形態によれば、水圧ポンプ71により圧送される水を供試体100の内部に埋設された透水機構74に供給して打継目130に浸透させ、該打継目130から漏出する水を漏斗62A,62Bにより滴下して計量容器63A,63Bに集水するように構成されている。これにより、打継目130からの漏水量を正確に把握することが可能となり、打継目130の透水性を高精度に評価することができる。   According to this embodiment described in detail above, the water pumped by the hydraulic pump 71 is supplied to the water permeable mechanism 74 embedded in the specimen 100 so as to penetrate the joint 130 and leak from the joint 130. Water is dropped by the funnels 62A and 62B and collected in the measuring containers 63A and 63B. Thereby, it becomes possible to grasp | ascertain the amount of water leakage from the joint 130 correctly, and the water permeability of the joint 130 can be evaluated with high precision.

また、水圧ポンプ71により圧送される水を供試体100の内部に埋設した透水機構74から浸透させるため、従前装置のような供試体を完全に密閉する収容器等が不要となり、施工条件等を考慮した大型の供試体100にも適宜に対応することが可能になる。   Further, since the water pumped by the water pressure pump 71 is infiltrated from the water permeable mechanism 74 embedded in the specimen 100, a container such as a conventional apparatus that completely seals the specimen is not required, and the construction conditions and the like are determined. It is possible to appropriately deal with the large specimen 100 considered.

なお、本開示は、上述の実施形態に限定されるものではなく、本開示の趣旨を逸脱しない範囲で、適宜変形して実施することが可能である。   It should be noted that the present disclosure is not limited to the above-described embodiment, and can be appropriately modified and implemented without departing from the spirit of the present disclosure.

例えば、上記実施形態において、透水機構74は、透水部材74Bが打継目130と略一致するように供試体100内に埋設されるものとして説明したが、図7に示すように、第1プレート部材74Aが一次コンクリート層110と二次コンクリート層120との打継目130に着座するように埋設されてもよい。この場合は、図4(B)に示す工程において、一次コンクリート層110が固化した際に、第1プレート部材74Aを一次コンクリート層110の上面に着座させればよい。   For example, in the above embodiment, the water permeable mechanism 74 has been described as being embedded in the specimen 100 so that the water permeable member 74B substantially coincides with the joint 130, but as shown in FIG. 74A may be embedded so as to be seated on the joint 130 between the primary concrete layer 110 and the secondary concrete layer 120. In this case, the first plate member 74A may be seated on the upper surface of the primary concrete layer 110 when the primary concrete layer 110 is solidified in the step shown in FIG.

また、空気排出配管75は、その上流端を第2プレート部材74Cに固定されるものとして説明したが、第1プレート部材74Aに固定されてもよい。この場合は、空気排出配管75の上流側を一次コンクリート層110内に埋設すればよい。   Moreover, although the air discharge piping 75 demonstrated that the upstream end was fixed to the 2nd plate member 74C, you may be fixed to 74 A of 1st plate members. In this case, the upstream side of the air discharge pipe 75 may be embedded in the primary concrete layer 110.

また、供試体100は、試験装置10に打継目130が略鉛直方向となるように設置されるものとして説明したが、打継目130が水平方向となるように設置されてもよい。この場合は、漏斗62A,62Bの上端側開口を打継目130の水平方向の長さに応じて拡張するか、或は、設置個数を増加すればよい。   Further, although the specimen 100 has been described as being installed in the test apparatus 10 such that the joint 130 is in a substantially vertical direction, the specimen 100 may be installed so that the joint 130 is in a horizontal direction. In this case, the upper end openings of the funnels 62A and 62B may be expanded according to the horizontal length of the joint 130, or the number of installations may be increased.

また、供試体100の寸法や形状は、上記実施形態に限定されず、さらに大型又は小型の供試体であってもよい。   Moreover, the dimension and shape of the specimen 100 are not limited to the above embodiment, and may be a larger or smaller specimen.

また、供試体100の適用範囲は、コンクリート供試体に限定されず、モルタル供試体等の他の供試体にも広く適用することが可能である。   Moreover, the application range of the specimen 100 is not limited to a concrete specimen, and can be widely applied to other specimens such as a mortar specimen.

10…試験装置,20…収容部,30…載置台,40…支持フレーム部,50…脚部,60A,60B…集水機構(集水手段),61A,61B…樋部材,62A,62B…漏斗,63A,63B…計量容器(計量手段),70…給排機構,71…水圧ポンプ(圧送手段),72…圧力計,73…水供給配管,74…透水機構74(透水手段),74A…第1プレート部材,74B…透水部材,74C…第2プレート部材,75…空気排出配管,76…エア抜きバルブ,100…供試体,110…一次コンクリート層,120…二次コンクリート層,130…打継目 DESCRIPTION OF SYMBOLS 10 ... Test apparatus, 20 ... Accommodating part, 30 ... Mounting stand, 40 ... Supporting frame part, 50 ... Leg part, 60A, 60B ... Water collecting mechanism (water collecting means), 61A, 61B ... Scissors member, 62A, 62B ... Funnel, 63A, 63B ... measuring container (measuring means), 70 ... supply / discharge mechanism, 71 ... water pressure pump (pressure feeding means), 72 ... pressure gauge, 73 ... water supply piping, 74 ... water permeation mechanism 74 (water permeation means), 74A ... 1st plate member, 74B ... Permeable member, 74C ... 2nd plate member, 75 ... Air exhaust pipe, 76 ... Air vent valve, 100 ... Specimen, 110 ... Primary concrete layer, 120 ... Secondary concrete layer, 130 ... Joint

Claims (8)

供試体の透水性を評価する試験装置であって、
所定圧の水を圧送する圧送手段と、
前記供試体内に埋設されると共に、前記圧送手段から圧送される水を前記供試体の内部から透水させる透水手段と、
前記供試体内を透過した水を計量手段に集水する集水手段と、を備える
ことを特徴とする試験装置。
A test device for evaluating the water permeability of a specimen,
A pumping means for pumping water of a predetermined pressure;
A water-permeable means that is embedded in the specimen and allows water to be pumped from the pressure-feeding means to permeate from the inside of the specimen;
And a water collecting means for collecting the water that has permeated through the specimen into a measuring means.
前記供試体は、先行打設した一次コンクリート層と、後行打設した二次コンクリート層とを有するコンクリート供試体であり、
前記透水手段は、前記一次コンクリート層と前記二次コンクリート層との打継目に位置して埋設されて該打継目に水を透水させ、
前記集水手段は、前記打継目を透過して漏出する水を集水する
請求項1に記載の試験装置。
The specimen is a concrete specimen having a primary concrete layer placed in advance and a secondary concrete layer placed in a subsequent manner,
The water-permeable means is embedded at the joint between the primary concrete layer and the secondary concrete layer and allows water to permeate the joint.
The test apparatus according to claim 1, wherein the water collecting means collects water leaking through the seam.
前記透水手段は、前記圧送手段から圧送される水を浸透可能な多孔質体で形成された透水部材と、該透水部材を挟み込んで対向する一対のプレート部材とを有すると共に、該プレート部材の平面を前記打継目に並行させて前記コンクリート供試体内に埋設される
請求項2に記載の試験装置。
The water permeable means includes a water permeable member formed of a porous body capable of penetrating water pumped from the pressure feeding means, and a pair of plate members facing each other with the water permeable member interposed therebetween, and a plane of the plate member. The test apparatus according to claim 2, wherein the test apparatus is embedded in the concrete specimen in parallel with the joint.
一端を前記圧送手段に接続されると共に、他端を前記一対のプレート部材の何れか一方に固定されて、その内部流路を前記透水部材に連通させた水供給配管をさらに備える
請求項3に記載の試験装置。
A water supply pipe having one end connected to the pumping means and the other end fixed to one of the pair of plate members and having an internal flow path communicating with the water permeable member. The test apparatus described.
一端を前記一対のプレート部材の何れか一方に固定されて、その内部流路を前記透水部材に連通させると共に、他端を大気に開放された空気排出配管と、
前記空気排出配管の内部流路を開閉可能なバルブと、をさらに備える
請求項3又は4に記載の試験装置。
One end is fixed to any one of the pair of plate members, and the internal flow path is communicated with the water permeable member, and the other end is opened to the atmosphere,
The test apparatus according to claim 3, further comprising a valve capable of opening and closing an internal flow path of the air discharge pipe.
前記集水手段は、前記打継目から漏出する水を集水する漏斗を含み、前記計量手段は、前記漏斗から滴下される水を貯留する計量容器である
請求項1から5の何れか一項に記載の試験装置。
The said water collection means contains the funnel which collects the water which leaks from the said joint, The said measurement means is a measurement container which stores the water dripped from the said funnel. The test apparatus described in 1.
供試体の透水性を評価する試験方法であって、
所定圧の水を前記供試体内に圧送する圧送工程と、
圧送される水を前記供試体の内部から透水させる透水工程と、
前記供試体内を透過した水を計量する計量工程と、を含む
ことを特徴とする試験方法。
A test method for evaluating the water permeability of a specimen,
A pumping step of pumping water of a predetermined pressure into the specimen;
A water permeation step for allowing water to be pumped from the inside of the specimen;
And a measuring step for measuring water that has permeated through the specimen.
前記供試体は、先行打設した一次コンクリート層と、後行打設した二次コンクリート層とを有するコンクリート供試体であり、
前記圧送工程では、前記一次コンクリート層と前記二次コンクリート層との打継目に前記所定圧の水を圧送し、前記透水工程では、圧送される水を前記打継目に透水させ、前記計量工程では、前記打継目を透過して漏出する水を計量する
請求項7に記載の試験方法。
The specimen is a concrete specimen having a primary concrete layer placed in advance and a secondary concrete layer placed in a subsequent manner,
In the pumping step, the water of the predetermined pressure is pumped to the joint between the primary concrete layer and the secondary concrete layer, and in the water permeation step, the pumped water is permeated to the joint, and in the metering step The test method according to claim 7, wherein water leaking through the seam is measured.
JP2018092005A 2018-05-11 2018-05-11 Test equipment and test method Active JP7110524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018092005A JP7110524B2 (en) 2018-05-11 2018-05-11 Test equipment and test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018092005A JP7110524B2 (en) 2018-05-11 2018-05-11 Test equipment and test method

Publications (2)

Publication Number Publication Date
JP2019197014A true JP2019197014A (en) 2019-11-14
JP7110524B2 JP7110524B2 (en) 2022-08-02

Family

ID=68537517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018092005A Active JP7110524B2 (en) 2018-05-11 2018-05-11 Test equipment and test method

Country Status (1)

Country Link
JP (1) JP7110524B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022016354A (en) * 2020-07-09 2022-01-21 ニチレキ株式会社 Delamination test method, test device and method for creating specimen
CN115326664A (en) * 2022-06-24 2022-11-11 石家庄铁道大学 Mine method assembly type inverted arch circumferential joint anti-permeability capacity full-scale test method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282806A (en) * 1975-12-30 1977-07-11 Obayashi Gumi Kk Method of building continuous water stopping wall
JPS57146049U (en) * 1981-03-09 1982-09-13
JPH0599834A (en) * 1991-06-04 1993-04-23 Mitsubishi Materials Corp Water penetration test device of rock sample
JPH08178828A (en) * 1994-12-21 1996-07-12 Mitsubishi Materials Corp Tester equipment for water permeability and gas permeability
JP2003307464A (en) * 2002-04-16 2003-10-31 Ohbayashi Corp Water leakage inspection method for concrete dam and water leakage treatment method
JP2005060165A (en) * 2003-08-12 2005-03-10 Akushisu:Kk Admixture for concrete, concrete material, concrete structure, method for constructing concrete structure, and method for preventing deterioration of concrete structure
JP2006299205A (en) * 2005-04-25 2006-11-02 Chugoku Koatsu Concrete Kogyo Kk Water-stop material for concrete
JP2009025156A (en) * 2007-07-19 2009-02-05 Chugoku Electric Power Co Inc:The Device and method for measuring water leakage amount
JP2010090689A (en) * 2009-07-10 2010-04-22 Hokuriku Regional Agricultural Administration Office Maff Method for measuring water leakage in water channel
JP2013238415A (en) * 2012-05-11 2013-11-28 Kajima Corp Quality evaluation method for concrete structure
US9341558B1 (en) * 2015-08-25 2016-05-17 King Saud University System and method for measuring permeation properties of concrete and porous materials
JP3205243U (en) * 2016-04-28 2016-07-14 株式会社ziba tokyo Ceiling leak collector

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5282806A (en) * 1975-12-30 1977-07-11 Obayashi Gumi Kk Method of building continuous water stopping wall
JPS57146049U (en) * 1981-03-09 1982-09-13
JPH0599834A (en) * 1991-06-04 1993-04-23 Mitsubishi Materials Corp Water penetration test device of rock sample
JPH08178828A (en) * 1994-12-21 1996-07-12 Mitsubishi Materials Corp Tester equipment for water permeability and gas permeability
JP2003307464A (en) * 2002-04-16 2003-10-31 Ohbayashi Corp Water leakage inspection method for concrete dam and water leakage treatment method
JP2005060165A (en) * 2003-08-12 2005-03-10 Akushisu:Kk Admixture for concrete, concrete material, concrete structure, method for constructing concrete structure, and method for preventing deterioration of concrete structure
JP2006299205A (en) * 2005-04-25 2006-11-02 Chugoku Koatsu Concrete Kogyo Kk Water-stop material for concrete
JP2009025156A (en) * 2007-07-19 2009-02-05 Chugoku Electric Power Co Inc:The Device and method for measuring water leakage amount
JP2010090689A (en) * 2009-07-10 2010-04-22 Hokuriku Regional Agricultural Administration Office Maff Method for measuring water leakage in water channel
JP2013238415A (en) * 2012-05-11 2013-11-28 Kajima Corp Quality evaluation method for concrete structure
US9341558B1 (en) * 2015-08-25 2016-05-17 King Saud University System and method for measuring permeation properties of concrete and porous materials
JP3205243U (en) * 2016-04-28 2016-07-14 株式会社ziba tokyo Ceiling leak collector

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
小野修司: "モルタル充填式継手で接合したプレキャスト部材接合部の水密性について", コンクリート工学年次論文集, vol. 23巻、3号, JPN6022006271, 2001, pages 565 - 570, ISSN: 0004710214 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022016354A (en) * 2020-07-09 2022-01-21 ニチレキ株式会社 Delamination test method, test device and method for creating specimen
JP7260598B2 (en) 2020-07-09 2023-04-18 ニチレキ株式会社 Interlaminar adhesion breaking test method, test equipment, and test piece preparation method
CN115326664A (en) * 2022-06-24 2022-11-11 石家庄铁道大学 Mine method assembly type inverted arch circumferential joint anti-permeability capacity full-scale test method
CN115326664B (en) * 2022-06-24 2023-06-20 石家庄铁道大学 Full-scale test method for impervious capacity of mine-method assembled upward arch circumferential seam

Also Published As

Publication number Publication date
JP7110524B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
US5161407A (en) Means and method of soil water desorption
KR101614804B1 (en) Permeability Test Method and Apparatus for Self Healing Concrete
JP2019197014A (en) Testing device and testing method
WO2023240817A1 (en) Device and method for continuously testing gas permeability coefficient of unsaturated soil under variable suction
CN108982327A (en) A kind of damage concrete permeability detection device
KR100905090B1 (en) Penetrability test apparatus for variable water level
JP2001183285A (en) Permeability test apparatus and permeability test method
RU2368881C1 (en) Test bench for testing of welded products for tightness
CN110542636A (en) Method for measuring permeability coefficient of partially saturated cement-based material and test device thereof
JP2015125078A (en) Water permeability evaluation device and method
CN212963892U (en) Breathable film true water detection device
DE102005008308B4 (en) Method for leak detection on leak-proof linings of tanks and containers or the like
CN111337407B (en) Device and method for testing impermeability and durability of precast concrete joint
CN117074270A (en) Test method for low-stress soft soil consolidation
KR100898230B1 (en) Measuring system for the hydraulic conductivity of a swelling clay with high density
CN115561135B (en) Flexible wall vertical permeameter
SK26497A3 (en) Process and device for monitoring the tightness of pipelines, in particular sewage pipeline systems
KR20230125043A (en) Apparatus and method for continuously testing the gas permeability coefficient of unsaturated soil under varying suction power
Pierson et al. A “Pouch Test” for Characterizing Gas Permeability of Geomembranes
CN217033525U (en) Test device for rapidly detecting porosity of concrete surface layer
CN219224510U (en) Device for detecting water seepage rate of concrete cracks
CN213957101U (en) Concrete coefficient of permeability testing arrangement
CN217112007U (en) Pressure bleeding detector
CN118150432A (en) Test system and test method for impermeability of premixed fluidized solidified soil
CN217561278U (en) Concrete gas permeability testing arrangement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220628

R150 Certificate of patent or registration of utility model

Ref document number: 7110524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150