JP2019195242A - 昇圧コンバータ - Google Patents

昇圧コンバータ Download PDF

Info

Publication number
JP2019195242A
JP2019195242A JP2018088505A JP2018088505A JP2019195242A JP 2019195242 A JP2019195242 A JP 2019195242A JP 2018088505 A JP2018088505 A JP 2018088505A JP 2018088505 A JP2018088505 A JP 2018088505A JP 2019195242 A JP2019195242 A JP 2019195242A
Authority
JP
Japan
Prior art keywords
switching element
winding
coupling reactor
output capacitor
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018088505A
Other languages
English (en)
Inventor
功太 小熊
Kota Oguma
功太 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2018088505A priority Critical patent/JP2019195242A/ja
Publication of JP2019195242A publication Critical patent/JP2019195242A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

【課題】スイッチング素子の短絡故障発生直後に、バッテリに流れる過電流を抑制してバッテリの過電流破損の危険性を低減した昇圧コンバータを提供する。【解決手段】低圧側に設けられたバッテリ50の電圧を昇圧して、高圧側に設けられた出力コンデンサCに出力する昇圧コンバータであって、前記出力コンデンサCの正、負極間にスイッチング素子S1およびS2を直列接続し、一つのコアの互いに対向する2辺に各々巻回された一次巻線11および二次巻線12を有した結合リアクトル10を設け、前記バッテリの正極50を、機械遮断器60および結合リアクトル10の一次巻線11を介してスイッチング素子S1およびS2の共通接続点に接続し、スイッチング素子S1および出力コンデンサCの正極の共通接続点を、結合リアクトル10の二次巻線12およびスイッチング素子S3を介して、出力コンデンサCの負極とバッテリ50の負極に接続した。【選択図】 図1

Description

本発明は、低圧側にバッテリ等の直流電圧源が、高圧側に出力コンデンサと負荷が接続される非絶縁型昇圧コンバータの、スイッチング素子短絡故障時の保護方式に関する。
従来の非絶縁型昇圧コンバータの構成例を図7、図8に示す。図7、図8の昇圧コンバータは、低圧側に鉛蓄電池やリチウムイオン電池といったバッテリが接続され、高圧側に負荷と出力コンデンサが接続される構成をとり、スイッチング素子のオン、オフ動作を制御することでバッテリ電圧から昇圧された所定の出力電圧を負荷に印加する機能を有する。
図7は単相昇圧コンバータの構成例を示し、負荷100が並列に接続された出力コンデンサCの正、負極間には、スイッチング素子S1、S2が直列に接続されている。
バッテリ50の正極は、遮断器/ヒューズ55および直流リアクトル70を介して、スイッチング素子S1、S2の共通接続点に接続されている。バッテリの負極は、スイッチング素子S2および出力コンデンサCの共通接続点に接続されている。
図7の回路では、通常動作時は遮断器/ヒューズ55がオン状態にあり、スイッチング素子S1をオフ、S2をオンにすることでバッテリ50から直流リアクトル70に電流を流して直流リアクトル70にエネルギーを蓄積させ、次にスイッチング素子S1をオン、S2をオフにすることで、直流リアクトル70に蓄積されたエネルギーをスイッチング素子S1を介して出力コンデンサCに放出する。
そして前記スイッチング素子S1、S2のオン、オフ動作を繰り返すことによって、バッテリ50の電圧を昇圧した電圧を出力コンデンサCに得るようにしている。
図8は二相インターリーブ昇圧コンバータの構成例を示し、負荷100が並列に接続された出力コンデンサCの正、負極間には、スイッチング素子S1、S2を直列接続した第1直列回路と、スイッチング素子S3、S4を直列接続した第2直列回路とが並列に接続されている。
バッテリ50の正極は遮断器/ヒューズ55を介して、一つのコアの互いに対向する2辺に各々巻回された結合リアクトル80の一次巻線81、二次巻線82の各一端に接続されている。
結合リアクトル80の一次巻線81の他端はスイッチング素子S1、S2の共通接続点に接続され、結合リアクトル80の二次巻線82の他端はスイッチング素子S3、S4の共通接続点に接続されている。
バッテリ50の負極はスイッチング素子S2、S4および出力コンデンサCの共通接続点に接続されている。
図8の回路の通常動作時は、遮断器/ヒューズ55がオンされている状態において、スイッチング素子S1〜S4のオン、オフ制御を繰り返し実行することによって、結合リアクトル80に蓄積されたエネルギーを出力コンデンサCに放出させて、バッテリ50の電圧を昇圧した電圧を出力コンデンサCに得るようにしている。
スイッチング素子S1〜S4のオン、オフの制御パターンは、例えば、S1オフ、S2オン、S3オン、S4オフとするモード1、S1オン、S2オフ、S3オフ、S4オンとするモード2、S1オン、S2オフ、S3オン、S4オフとするモード3、S1オフ、S2オン、S3オフ、S4オンとするモード4とを備え、スイッチングのデューティ比が0.5より小さい場合はモード1→モード3→モード2→モード3のパターンを繰り返し、デューティ比が0.5よりも大きくなるとモード1→モード4→モード2→モード4のパターンを繰り返し、デューティ比が0.5のときはモード1とモード2を交互に繰り返すものである。
結合リアクトル80では一つのコアに巻回された二相の巻線(一次巻線81、二次巻線82)のインダクタンスが磁気的に相互結合され、相互誘導によって電流リプルが低減される。
上記構成において、昇圧コンバータに用いるスイッチング素子は短絡故障を起こす場合がある。例えば、図7に示す単相昇圧コンバータの下アームスイッチング素子S2が短絡故障した場合、バッテリ50が直流リアクトル70を介して短絡された状態となる。
短絡状態が継続すると、短絡電流が増加してバッテリ50に過電流が流れ、バッテリ50が破損する危険がある。そのため、下アームスイッチング素子S2が短絡故障した場合には、直流遮断器やヒューズ(55)やスイッチング素子などの開閉装置を用いて、バッテリ50を開放して昇圧コンバータ装置を停止する必要がある。
図8に示す二相インターリーブ昇圧コンバータも同様に、下アームのスイッチング素子S2又はS4が短絡故障した場合には、遮断器/ヒューズ55などの開閉装置を用いて、バッテリ50を開放して昇圧コンバータ装置を停止する必要がある。
尚、従来の、昇圧コンバータを用いた車載用回転電機の駆動装置は特許文献1に記載され、スイッチング電源装置は特許文献2に記載され、結合インダクタを用いた車載用昇圧チョッパ回路は非特許文献1に記載されている。
特開2011−97721号公報 特許第6099581号公報
今岡淳、山本真義、川島崇宏、「結合インダクタを用いた車載用昇圧チョッパ回路の特性解析と設計」、パワーエレクトロニクス学会誌、2014年3月、Vol.39,pp.55−64
昇圧コンバータのスイッチング素子の短絡故障に対処するため、例えば特許文献1では、図7、図8に示すようにバッテリと直流リアクトルの間に遮断器などの開閉装置を設置している。
開閉装置が、機械接点を用いた機械遮断器の場合、遮断に数百ms以上の時間が必要である。さらに開極時に電流が流れていると機械接点間でアーク放電が発生し、これにより機械接点が磨耗する問題もある。また、ヒューズを用いる場合にも溶断までの遅延は熱時定数に依存する。これらの遮断方式では遮断までの遅延が大きく、その遅延時間中に短絡電流が増大してバッテリが破損する可能性がある。
開閉装置としてスイッチング素子(IGBTなど)を用いる場合、高速な遮断を実現できるが、短絡故障のない通常動作時には常に遮断用スイッチング素子を導通状態とする必要があり、スイッチング素子に定常損失が発生する。この損失によって、昇圧コンバータの効率が低下する。
図9に、類似の先行発明である特許文献2の実施例を示す。図9において、図7と異なる点は、前記直流リアクトル70に代えて、直列接続され、L1,L2の自己インダクタンスを持つ2つの巻線91、92を有した直流リアクトル90を設け、バッテリ50の正極を開閉装置56および直流リアクトル90の巻線91、92を介してスイッチング素子S1、S2の共通接続点に接続し、巻線91に切替スイッチ93を並列に接続した点にあり、その他の部分は図7と同一に構成されている。
この図9では、スイッチング素子S2の短絡故障発生時に切替スイッチ93をターンオフすることで、短絡電流経路のインダクタンスを「L2」から「L1+L2」に増大させ、短絡電流の増加率を抑制している。しかし、インダクタンス増大後も短絡電流は単調増加を続け、開閉装置56の遮断遅延により大電流の流れた状態が継続されるため、上記のバッテリ破損の問題は完全には回避できない。
本発明は上記課題を解決するものであり、その目的は、スイッチング素子の短絡故障発生直後に、バッテリに流れる過電流を抑制することができ、これによってバッテリの過電流破損の危険性を低減した昇圧コンバータを提供することにある。
上記課題を解決するための請求項1に記載の昇圧コンバータは、
低圧側に設けられたバッテリの電圧を昇圧して、高圧側に設けられた出力コンデンサに出力する昇圧コンバータであって、
前記出力コンデンサの正、負極間に第1スイッチング素子および第2スイッチング素子を直列接続し、
一つのコアの互いに対向する2辺に各々巻回された一次巻線および二次巻線を有した結合リアクトルを設け、
前記バッテリの正極を、機械遮断器および前記結合リアクトルの一次巻線を介して前記第1スイッチング素子および第2スイッチング素子の共通接続点に接続し、
前記第1スイッチング素子および出力コンデンサの正極の共通接続点を、前記結合リアクトルの二次巻線および第3スイッチング素子を介して、出力コンデンサの負極とバッテリの負極に接続したことを特徴とする。
また、請求項2に記載の昇圧コンバータは、請求項1において、
前記バッテリの電圧Vin、前記出力コンデンサの電圧Vout、前記結合リアクトルの一次巻線と二次巻線の巻数比n、前記結合リアクトルの一次巻線と二次巻線間の結合係数kを、Vout−knVin>0なる条件を満たすように設計したことを特徴とする。
また、請求項3に記載の昇圧コンバータは、請求項1又は2において、
前記第2スイッチング素子の短絡故障を判定したときに前記第3スイッチング素子をターンオンし、その後、前記機械遮断器を流れる短絡電流が零又はほぼ零となるタイミングで機械遮断器を開極することを特徴としている。
また、請求項4に記載の昇圧コンバータは、
低圧側に設けられたバッテリの電圧を昇圧して、高圧側に設けられた出力コンデンサに出力する昇圧コンバータであって、
前記出力コンデンサの正、負極間に、第1スイッチング素子および第2スイッチング素子を直列接続した第1直列回路と、第3スイッチング素子および第4スイッチング素子を直列接続した第2直列回路とを並列に接続し、
一つのコアの互いに対向する2辺に各々巻回され、各々の一端が共通接続された一次巻線および二次巻線から成る主巻線と、前記2辺に隣接し互いに対向する2辺に各々巻回され、各々の一端が共通接続された三次巻線および四次巻線から成る補助巻線とを有した結合リアクトルを設け、
前記バッテリの正極を、機械遮断器を介して前記結合リアクトルの一次巻線および二次巻線の共通接続点に接続し、
前記結合リアクトルの一次巻線の他端を前記第1スイッチング素子および第2スイッチング素子の共通接続点に接続し、前記結合リアクトルの二次巻線の他端を前記第3スイッチング素子および第4スイッチング素子の共通接続点に接続し、
前記第1スイッチング素子および第3スイッチング素子および出力コンデンサの正極の共通接続点を、前記結合リアクトルの三次巻線および四次巻線の共通接続点に接続し、
前記結合リアクトルの三次巻線の他端を、第5スイッチング素子を介して前記出力コンデンサの負極とバッテリの負極に接続し、
前記結合リアクトルの四次巻線の他端を、第6スイッチング素子を介して前記出力コンデンサの負極とバッテリの負極に接続したことを特徴とする。
また、請求項5に記載の昇圧コンバータは、請求項4において、
前記結合リアクトルの主巻線と補助巻線の巻数比n、前記結合リアクトルの主巻線の一次巻線と二次巻線間の結合係数k12、前記結合リアクトルの主巻線と補助巻線間の結合係数k13を、
Figure 2019195242
なる条件を満たすように設計したことを特徴とする。
また、請求項6に記載の昇圧コンバータは、請求項4又は5において、
前記第2スイッチング素子の短絡故障を判定したときに前記第5スイッチング素子をターンオンし、その後、前記機械遮断器を流れる短絡電流が零又はほぼ零となるタイミングで機械遮断器を開極し、
前記第4スイッチング素子の短絡故障を判定したときに前記第6スイッチング素子をターンオンし、その後、前記機械遮断器を流れる短絡電流が零又はほぼ零となるタイミングで機械遮断器を開極することを特徴としている。
(1)請求項1〜6に記載の発明によれば、スイッチング素子の短絡故障発生直後に、バッテリに流れる過電流を抑制することができ、これによってバッテリの過電流破損の危険性を低減することができる。
(2)請求項2に記載の発明によれば、通常動作時に結合リアクトルの二次巻線側を開放状態にすることができ、結合リアクトルの相互インダクタンスの影響を受けることが無い。
(3)請求項5に記載の発明によれば、通常動作時に結合リアクトルの補助巻線側を開放状態にすることができ、結合リアクトルの相互インダクタンスの影響を受けることが無い。
(4)請求項3、6に記載の発明によれば、機械遮断器のアーク放電を抑制することができ、これによって機械遮断器の磨耗が低減され、昇圧コンバータを長寿命化することができる。
本発明の実施例1による単相昇圧コンバータの回路構成図。 本発明の実施例1の要部の構成図。 図1のスイッチング素子S2短絡故障時の等価回路図。 本発明の実施例1における、短絡故障時の電流波形図。 本発明の実施例2による二相インターリーブ昇圧コンバータの回路構成図。 本発明の実施例2の要部の構成図。 従来の単相昇圧コンバータの一例を示す構成図。 従来の二相インターリーブ昇圧コンバータの一例を示す構成図。 特許文献2の実施例を示す構成図。
以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。
図1に本実施例1による単相昇圧コンバータの回路構成を示す。図1において、一般的な単相昇圧コンバータを示す図7と異なる点は、遮断器/ヒューズ55および直流リアクトル70に代えて、機械遮断器60、結合リアクトル10、スイッチング素子S3を設け、バッテリ50の正極を機械遮断器60および結合リアクトル10の一次巻線11を介してスイッチング素子S1、S2の共通接続点に接続し、出力コンデンサCおよびスイッチング素子S1の共通接続点を、結合リアクトル10の二次巻線12およびスイッチング素子S3を介してバッテリ50の負極と、出力コンデンサCおよびスイッチング素子S2の共通接続点に接続した点にあり、その他の部分は図7と同一に構成されている。
尚、スイッチング素子S1〜S3は、各々帰還ダイオードが逆並列接続された半導体スイッチングデバイスで構成されている。
図1において、Vinは低圧側のバッテリ電圧、Voutは高圧側の出力コンデンサ電圧、VL1は結合リアクトル10の一次側電圧(一次巻線11の電圧)、VL2は二次側電圧(二次巻線12の電圧)を表している。また、IL1、IL2はそれぞれ結合リアクトル10の一次側電流、二次側電流を表している。
前記結合リアクトル10は図2に示すように、中空を囲む4辺を有したコア15の、互いに対向する2辺に一次巻線11、二次巻線12を各々巻回して構成されている。
結合リアクトル10の一次巻線11および二次巻線12の自己インダクタンスをそれぞれL1、L2、結合係数をk(<1)、巻数比をnとする。この際、相互インダクタンスMは、M=k(L121/2=knL1で表される。図1、図2において、結合リアクトル10の二次側を開放とすることで、一次側から見たインダクタンスは一次巻線の自己インダクタンスL1と一致し、相互インダクタンスMの影響を受けない。そのため、図7に示す一般的な単相昇圧コンバータと同一の挙動を達成できる。
スイッチング素子S3をオフ状態とし、スイッチング素子S3に印加される電圧が常に正であれば、スイッチング素子S3の逆並列ダイオードもターンオフし、結合リアクトル10の二次側を開放とすることができる。
結合リアクトル10の一次側に印加される電圧VL1は、通常運転時にはスイッチング素子S1およびS2のスイッチングにより式(1)の範囲で変動する。
Figure 2019195242
このとき、結合リアクトル10の一次側から二次側に誘導される電圧VL2は式(2)で表される。
Figure 2019195242
スイッチング素子S3に印加される電圧VS3=Vout−VL2は、式(1)、式(2)から、式(3)の範囲となる。
Figure 2019195242
この最小電圧について、「Vout−knVin>0」となるよう、Vin、Vout、n、kを設計すれば、スイッチング素子S3のオフ時にはスイッチング素子S3に印加される電圧が常に正となり、結合リアクトル10の二次側を開放できる。
図1の回路では、通常動作時は機械遮断器60がオン状態にあり、スイッチング素子S1をオフ、S2をオンにすることでバッテリ50から結合リアクトル10の一次巻線11に電流を流して一次巻線11にエネルギーを蓄積させ、次にスイッチング素子S1をオン、S2をオフにすることで、一次巻線11に蓄積されたエネルギーをスイッチング素子S1を介して出力コンデンサCに放出する。
そして前記スイッチング素子S1,S2のオン、オフ動作を繰り返すことによって、バッテリ50の電圧を昇圧した電圧が出力コンデンサCに得られる。
次に、スイッチング素子S2短絡故障時の動作を、短絡故障時の等価回路を示す図3および短絡故障時の電流波形を示す図4とともに説明する。
図4の時刻t1において、スイッチング素子S2の短絡故障が発生すると、一次巻線11に流れる短絡電流IL1が図4上段の実線で示す波形のように増加する。短絡電流IL1が過電流判定しきい値を超過すると、スイッチング素子S1とS2をオフすると同時に、出力コンデンサCに接続された負荷100への給電を停止させる。その後もIL1の電流増加が継続した場合、短絡故障判定しきい値を超過し、例えば図示省略の短絡故障検出部がスイッチング素子S2の短絡故障を検出する(図4の時刻t2)。
スイッチング素子S2の短絡故障を検出した時刻t2において、スイッチング素子S3をターンオンする。スイッチング素子S3をターンオンすると、図3の等価回路のように結合リアクトル10の二次側に、Voutに充電された出力コンデンサCが接続され、出力コンデンサCと結合リアクトル10による直列共振が発生し、結合リアクトル10の二次側に図4下段に示すような二次側電流IL2が流れる。
スイッチング素子S3をターンオンした時刻t2から、短絡電流IL1には共振電流が重畳され、特に「Vin<(k/n)Vout」を満たす場合、一次側漏れインダクタンスに逆電圧を印加し、短絡電流IL1を低減することができる。
そして、機械遮断器60を流れる短絡電流IL1が零又はほぼ零まで低減する時刻t3において機械遮断器60を開極し、遮断が完了する。
機械遮断器60は電流がほぼ零のときに開極するため、開極後にアーク放電は発生しない(尚、機械遮断器60の開極動作には遅延があるため、機械遮断器60の開極指令は遅延時間を考慮したタイミングで送信する)。
短絡電流遮断完了後も、結合リアクトル10の二次側には共振電流が流れ続けるため、スイッチング素子S3をターンオフして共振電流を遮断する。
また、図4に示すように、本発明では時刻t2においてスイッチング素子S3をターンオンした後では短絡電流IL1が減少するため、従来技術と比較して、短絡故障発生直後にバッテリ50に流れる過電流を抑制できる。よって、バッテリ50の過電流破損の危険性を低減することができる。
尚、図4上段の破線の電流波形は、本発明を適用しない場合に時刻t2後も短絡電流IL1の増加が継続することを表している。
以上のように本実施例1によれば、次のような効果が得られる。
先行技術では、非絶縁型昇圧コンバータの下アームスイッチング素子が短絡故障した場合に、機械遮断器やヒューズ・スイッチング素子などの開閉装置による遮断を行っていた。開閉装置として機械遮断器やヒューズを用いる場合、遮断完了までの遅延が大きく、その間に短絡電流が増大してバッテリが破損する可能性がある。開閉装置としてスイッチング素子を用いる場合、高速な遮断が可能であるが通常動作時に導通損失が発生する。
本実施例1では、図4に示すように短絡故障判定直後(時刻t2直後)に短絡電流を減少させることができるため、バッテリ50の過電流破損の危険性を低減できる。
さらに、零又はほぼ零電流時(図4の時刻t3)に機械遮断器60を開極させるため、機械遮断器60のアーク放電を抑制できる。これにより機械遮断器60の磨耗が低減され、昇圧コンバータを長寿命化できる。
さらに、開閉装置にスイッチング素子を用いないため、通常動作時に導通損失が発生しない。よって昇圧コンバータの通常動作時の効率も、開閉装置にスイッチング素子を用いる従来技術と比較して向上できる。
本実施例2では、図5に示すように、図8の一般的な二相インターリーブ昇圧コンバータの構成に対し、二相の結合リアクトルを四相の結合リアクトル20に変更し、追加した三次巻線と四次巻線にそれぞれスイッチング素子S5、S6を接続したものである。
図5において、バッテリ50の正極は機械遮断器60を介して結合リアクトル20の一次巻線21および二次巻線22の各一端に共通接続されている。
結合リアクトル20の一次巻線21の他端はスイッチング素子S1、S2の共通接続点に接続され、二次巻線22の他端はスイッチング素子S3、S4の共通接続点に接続されている。
スイッチング素子S1、S3および出力コンデンサCの正極の共通接続点は、結合リアクトル20の三次巻線23および四次巻線24の各一端に共通接続されている。
結合リアクトル20の三次巻線23の他端はスイッチング素子S5を介して、スイッチング素子S2、S4およびコンデンサCの負極の共通接続点とバッテリ50の負極に接続されている。
結合リアクトル20の四次巻線24の他端はスイッチング素子S6を介して、スイッチング素子S2、S4およびコンデンサCの負極の共通接続点とバッテリ50の負極に接続されている。
尚スイッチング素子S1〜S6は、各々帰還ダイオードが逆並列接続された半導体スイッチングデバイスで構成されている。
図5において、Vinは低圧側のバッテリ電圧、Voutは高圧側の出力コンデンサ電圧、VL1は結合リアクトル20の一次側電圧(一次巻線21の電圧)、VL2は二次側電圧(二次巻線22の電圧)、VL3は三次側電圧(三次巻線23の電圧)、VL4は四次側電圧(四次巻線24の電圧)を各々表している。また、IL1〜IL4はそれぞれ結合リアクトル20の一次側電流〜四次側電流を表している。
前記結合リアクトル20は図6に示すように、中空を囲む4辺を有したコア25の、互いに対向する2辺に各々巻回され、各々の一端が共通接続された一次巻線21および二次巻線22から成る主巻線と、前記2辺に隣接し互いに対向する2辺に各々巻回され、各々の一端が共通接続された三次巻線23および四次巻線24から成る補助巻線とを有している。
前記一次巻線21および二次巻線22から成る主巻線は通常動作時に用い、三次巻線23および四次巻線24から成る補助巻線は、下アームのスイッチング素子S2又はS4が短絡故障した場合に用いる。
主巻線に関して、一次巻線21と二次巻線22の自己インダクタンスは同一であり(L1=L2)、巻線間の結合係数をk12とする。同様に補助巻線に関して、三次巻線23と四次巻線24の自己インダクタンスは同一であり(L3=L4)、主巻線と補助巻線の結合係数をk13とする。また、主巻線と補助巻線の巻数比をnとする。この際、一次巻線−二次巻線間の相互インダクタンスM12は、M12=k12(L121/2=k121で表される。同様に、主巻線−補助巻線間の相互インダクタンスM13は、M13=k13(L131/2=k13nL1で表される。
図5、図6において、結合リアクトル2の三次側および四次側を開放することで、一次側と二次側の動作は三次側および四次側との相互インダクタンスM13の影響を受けない。そのため、図8に示す一般的な二相インターリーブ昇圧コンバータと同一の挙動を達成できる。
スイッチング素子S5およびS6をオフ状態とし、これらに印加される電圧が常に正であれば、これらのスイッチング素子の逆並列ダイオードもターンオフし、結合リアクトル20の三次側および四次側を開放とすることができる。
通常運転時にはスイッチング素子S1〜S4のスイッチングを行い、結合リアクトル20の一次側電圧VL1と二次側電圧VL2は変動する。この時一次側および二次側から三次側に誘導される電圧VL3は式(4)で表される。
Figure 2019195242
以降では、スイッチの状態で四つに場合分けをして、VL3を導出する。尚、VL3の導出は非特許文献1に基づく。
(1)スイッチング素子S1とS3がオン状態の場合
非特許文献1より式(5)が得られる。これを式(4)に代入することで、結合リアクトル20の三次側に誘導される電圧VL3は式(6)となる。
Figure 2019195242
Figure 2019195242
(2)スイッチング素子S2とS4がオン状態の場合
非特許文献1より式(7)が得られる。これを式(4)に代入することで、結合リアクトル20の三次側に誘導される電圧VL3は式(8)となる。
Figure 2019195242
Figure 2019195242
(3)スイッチング素子S2とS3がオン状態の場合
非特許文献1より式(9)が得られる。これを式(4)に代入することで、結合リアクトル20の三次側に誘導される電圧VL3は式(10)となる。
Figure 2019195242
Figure 2019195242
(4)スイッチング素子S1とS4がオン状態の場合
非特許文献1より式(11)が得られる。これを式(4)に代入することで、結合リアクトル20の三次側に誘導される電圧VL3は式(12)となる。
Figure 2019195242
Figure 2019195242
スイッチング素子S5に印加される電圧VS5=Vout−VL3は、式(6)、式(8)、式(10)、式(12)から、式(13)の範囲となる。
Figure 2019195242
この最小電圧について
Figure 2019195242
となるようにn、k12、k13を設計すれば、スイッチング素子S5がオフ状態のときにスイッチング素子S5に印加される電圧が常に正となり、結合リアクトル20の三次側を開放できる。
また、結合リアクトル20の四次側に誘導される電圧VL4=−VL3で表される。そのため、スイッチング素子S6に印加される電圧も同一範囲
Figure 2019195242
となり、同様に
Figure 2019195242
となるようにn、k12、k13を設計すればよい。
図5の昇圧コンバータの通常時の動作は、スイッチング素子S5、S6をオフしている状態で、図8の場合と同様にスイッチング素子S1〜S4のオン、オフ制御を繰り返し実行することによって、結合リアクトル20に蓄積されたエネルギーを出力コンデンサCに放出させて、バッテリ50の電圧を昇圧した電圧を出力コンデンサCに得るようにしている。
スイッチング素子S1〜S4のオン、オフの制御パターンは、例えば図8の場合と同様にモード1〜モード4を組み合わせたパターンとなる。
次に、スイッチング素子S2短絡故障時の動作を説明する。スイッチング素子S2の短絡故障が発生すると、一次巻線21に流れる短絡電流IL1が増加する。短絡電流IL1が過電流判定しきい値を超過すると、スイッチング素子S1〜S4をオフすると同時に、出力コンデンサCに接続された負荷100への給電を停止させる。その後もIL1の電流増加が継続した場合、短絡故障判定しきい値を超過し、例えば図示省略の短絡故障検出部がスイッチング素子S2の短絡故障を検出する。
スイッチング素子S2の短絡故障を検出すると、スイッチング素子S5をターンオンする。スイッチング素子S5をターンオンすると、結合リアクトル20の三次側に、Voutに充電された出力コンデンサCが接続された状態となる。これは図3の等価回路と同等の状態であり、出力コンデンサCと結合リアクトル20による直列共振が発生する。そして短絡電流IL1にも共振電流が重畳され、特に「Vin<(k13/n)Vout」を満たす場合、一次側漏れインダクタンスに逆電圧を印加し、短絡電流IL1を低減することができる。
そして、機械遮断器60を流れる短絡電流IL1が零又はほぼ零まで低減するタイミング時に、機械遮断器60を開極し、遮断が完了する。
機械遮断器60は電流がほぼ零のときに開極するため、開極後にアーク放電は発生しない(尚、機械遮断器60の開極動作には遅延があるため、機械遮断器60の開極指令は遅延時間を考慮したタイミングで送信する)。
短絡電流遮断完了後も、結合リアクトル20の三次側には共振電流が流れ続けるため、スイッチング素子S5をターンオフして共振電流を遮断する。
次に、スイッチング素子S4が短絡故障した場合の動作を説明する。この場合も前記スイッチング素子S2短絡故障時と同様の動作となり、まずスイッチング素子S4の短絡故障が発生すると、二次巻線22に流れる短絡電流IL2が増加する。短絡電流IL2が過電流判定しきい値を超過すると、スイッチング素子S1〜S4をオフすると同時に、出力コンデンサCに接続された負荷100への給電を停止させる。その後もIL2の電流増加が継続した場合、短絡故障判定しきい値を超過し、例えば図示省略の短絡故障検出部がスイッチング素子S4の短絡故障を検出する。
スイッチング素子S4の短絡故障を検出すると、スイッチング素子S6をターンオンする。スイッチング素子S6をターンオンすると、結合リアクトル20の四次側に、Voutに充電された出力コンデンサCが接続された状態となる。これは図3の等価回路と同等の状態であり、出力コンデンサCと結合リアクトル20による直列共振が発生する。そして短絡電流IL2にも共振電流が重畳され、特に「Vin<(k13/n)Vout」を満たす場合、二次側漏れインダクタンスに逆電圧を印加し、短絡電流IL2を低減することができる。
そして、機械遮断器60を流れる短絡電流IL2が零又はほぼ零まで低減するタイミング時に、機械遮断器60を開極し、遮断が完了する。
機械遮断器60は電流がほぼ零のときに開極するため、開極後にアーク放電は発生しない(尚、機械遮断器60の開極動作には遅延があるため、機械遮断器60の開極指令は遅延時間を考慮したタイミングで送信する)。
短絡電流遮断完了後も、結合リアクトル20の四次側には共振電流が流れ続けるため、スイッチング素子S6をターンオフして共振電流を遮断する。
尚、実施例2における下アームのスイッチング素子S2、S4の短絡故障時の電流波形は図4と同様となる。
以上のように本実施例2によれば、二相インターリーブ昇圧コンバータにおいて、下アームスイッチング素子(S2、S4)の短絡故障検出直後に短絡電流を減少させることができるため、バッテリ50の過電流破損の危険性を低減できる。
さらに、零又はほぼ零電流時に機械遮断器60を開極させるため、機械遮断器60のアーク放電を抑制できる。これにより機械遮断器60の磨耗が低減され、昇圧コンバータを長寿命化できる。
さらに、開閉装置にスイッチング素子を用いないため、通常動作時に導通損失が発生しない。よって昇圧コンバータの通常動作時の効率も、スイッチング素子を用いる従来技術と比較して向上できる。
10、20…結合リアクトル
11、21…一次巻線
12、22…二次巻線
15、25…コア
23…三次巻線
24…四次巻線
50…バッテリ
60…機械遮断器
100…負荷

Claims (6)

  1. 低圧側に設けられたバッテリの電圧を昇圧して、高圧側に設けられた出力コンデンサに出力する昇圧コンバータであって、
    前記出力コンデンサの正、負極間に第1スイッチング素子および第2スイッチング素子を直列接続し、
    一つのコアの互いに対向する2辺に各々巻回された一次巻線および二次巻線を有した結合リアクトルを設け、
    前記バッテリの正極を、機械遮断器および前記結合リアクトルの一次巻線を介して前記第1スイッチング素子および第2スイッチング素子の共通接続点に接続し、
    前記第1スイッチング素子および出力コンデンサの正極の共通接続点を、前記結合リアクトルの二次巻線および第3スイッチング素子を介して、出力コンデンサの負極とバッテリの負極に接続したことを特徴とする昇圧コンバータ。
  2. 前記バッテリの電圧Vin、前記出力コンデンサの電圧Vout、前記結合リアクトルの一次巻線と二次巻線の巻数比n、前記結合リアクトルの一次巻線と二次巻線間の結合係数kを、Vout−knVin>0なる条件を満たすように設計したことを特徴とする請求項1に記載の昇圧コンバータ。
  3. 前記第2スイッチング素子の短絡故障を判定したときに前記第3スイッチング素子をターンオンし、その後、前記機械遮断器を流れる短絡電流が零又はほぼ零となるタイミングで機械遮断器を開極することを特徴とする請求項1又は2に記載の昇圧コンバータ。
  4. 低圧側に設けられたバッテリの電圧を昇圧して、高圧側に設けられた出力コンデンサに出力する昇圧コンバータであって、
    前記出力コンデンサの正、負極間に、第1スイッチング素子および第2スイッチング素子を直列接続した第1直列回路と、第3スイッチング素子および第4スイッチング素子を直列接続した第2直列回路とを並列に接続し、
    一つのコアの互いに対向する2辺に各々巻回され、各々の一端が共通接続された一次巻線および二次巻線から成る主巻線と、前記2辺に隣接し互いに対向する2辺に各々巻回され、各々の一端が共通接続された三次巻線および四次巻線から成る補助巻線とを有した結合リアクトルを設け、
    前記バッテリの正極を、機械遮断器を介して前記結合リアクトルの一次巻線および二次巻線の共通接続点に接続し、
    前記結合リアクトルの一次巻線の他端を前記第1スイッチング素子および第2スイッチング素子の共通接続点に接続し、前記結合リアクトルの二次巻線の他端を前記第3スイッチング素子および第4スイッチング素子の共通接続点に接続し、
    前記第1スイッチング素子および第3スイッチング素子および出力コンデンサの正極の共通接続点を、前記結合リアクトルの三次巻線および四次巻線の共通接続点に接続し、
    前記結合リアクトルの三次巻線の他端を、第5スイッチング素子を介して前記出力コンデンサの負極とバッテリの負極に接続し、
    前記結合リアクトルの四次巻線の他端を、第6スイッチング素子を介して前記出力コンデンサの負極とバッテリの負極に接続したことを特徴とする昇圧コンバータ。
  5. 前記結合リアクトルの主巻線と補助巻線の巻数比n、前記結合リアクトルの主巻線の一次巻線と二次巻線間の結合係数k12、前記結合リアクトルの主巻線と補助巻線間の結合係数k13を、
    Figure 2019195242
    なる条件を満たすように設計したことを特徴とする請求項4に記載の昇圧コンバータ。
  6. 前記第2スイッチング素子の短絡故障を判定したときに前記第5スイッチング素子をターンオンし、その後、前記機械遮断器を流れる短絡電流が零又はほぼ零となるタイミングで機械遮断器を開極し、
    前記第4スイッチング素子の短絡故障を判定したときに前記第6スイッチング素子をターンオンし、その後、前記機械遮断器を流れる短絡電流が零又はほぼ零となるタイミングで機械遮断器を開極することを特徴とする請求項4又は5に記載の昇圧コンバータ。
JP2018088505A 2018-05-02 2018-05-02 昇圧コンバータ Pending JP2019195242A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018088505A JP2019195242A (ja) 2018-05-02 2018-05-02 昇圧コンバータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018088505A JP2019195242A (ja) 2018-05-02 2018-05-02 昇圧コンバータ

Publications (1)

Publication Number Publication Date
JP2019195242A true JP2019195242A (ja) 2019-11-07

Family

ID=68469652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018088505A Pending JP2019195242A (ja) 2018-05-02 2018-05-02 昇圧コンバータ

Country Status (1)

Country Link
JP (1) JP2019195242A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549028A (zh) * 2022-09-27 2022-12-30 湖南工程学院 一种基于双耦合电感的串联型混合断路器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115549028A (zh) * 2022-09-27 2022-12-30 湖南工程学院 一种基于双耦合电感的串联型混合断路器

Similar Documents

Publication Publication Date Title
JP5860720B2 (ja) 電力変換装置、直流変電所、直流送電システム及び電力変換装置の制御方法
JP6272438B1 (ja) 電力変換装置
US10530243B2 (en) Power conversion device with malfunction detection
US9178348B2 (en) DC voltage line circuit breaker
US10367423B1 (en) Power conversion device
JP4942169B2 (ja) 3レベルインバータ装置
JP2009273280A (ja) Dc−dcコンバータ
CN108701556B (zh) 直流电压开关
JPWO2013164875A1 (ja) 直流遮断器
JP3965037B2 (ja) 直流用真空遮断装置
WO2016104623A1 (ja) 回路遮断器
US20190074149A1 (en) DC Voltage Switch
JP2017118806A (ja) 電力変換装置および制御方法
JP2013074767A (ja) Dc/dcコンバータ
JP6525308B2 (ja) 回路遮断器
JP2019195242A (ja) 昇圧コンバータ
KR20090026900A (ko) 자계 스위칭을 이용한 직류 차단기용 순간 전류 제한기
JP2011030312A (ja) 交流−交流直接変換装置の予備充電装置および予備充電方法
JP2010153368A (ja) 直流電流遮断支援回路、直流過電流遮断回路、直流電流遮断回路及び直流突入電流防止回路
JP2017093210A (ja) 無停電電源装置
JP2007267435A (ja) 電力変換装置
JP2017184496A (ja) 電力変換装置及びその制御方法
JP6919497B2 (ja) 直流遮断装置
CN201813204U (zh) 无触点补偿式交流稳压器主电路结构
JP2011091927A (ja) 交流−直流変換装置