JP2019193979A - Frp cylinder and method for producing the same - Google Patents

Frp cylinder and method for producing the same Download PDF

Info

Publication number
JP2019193979A
JP2019193979A JP2018088089A JP2018088089A JP2019193979A JP 2019193979 A JP2019193979 A JP 2019193979A JP 2018088089 A JP2018088089 A JP 2018088089A JP 2018088089 A JP2018088089 A JP 2018088089A JP 2019193979 A JP2019193979 A JP 2019193979A
Authority
JP
Japan
Prior art keywords
prepregs
prepreg
pair
layer
frp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018088089A
Other languages
Japanese (ja)
Other versions
JP6961531B2 (en
Inventor
尚紀 木元
Naoki Kimoto
尚紀 木元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Composites Inc
Original Assignee
Fujikura Composites Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Composites Inc filed Critical Fujikura Composites Inc
Priority to JP2018088089A priority Critical patent/JP6961531B2/en
Publication of JP2019193979A publication Critical patent/JP2019193979A/en
Application granted granted Critical
Publication of JP6961531B2 publication Critical patent/JP6961531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide an FRP cylinder in which fracture is hard to be generated by securing its strength, and a method for producing the same.SOLUTION: An FRP cylinder is obtained by winding a plurality of prepregs and thermally curing the same so as to be an FRP layer. The FRP layer includes a co-multilayer wound layer obtained, in a state where a pair of twist rigidity holding prepregs having a fiber layer oblique in a cylindrical axial direction and a buckling prevention prepreg having a fiber layer orthogonal in a cylindrical axial direction are superimposed, by continuously winding a plurality of plys and thermally curing the same, and off-set is performed in such a manner that the winding end positions of the pair of twist rigidity holding prepregs are mutually differentiated.SELECTED DRAWING: Figure 4

Description

本発明は、FRP円筒及びその製造方法に関する。   The present invention relates to an FRP cylinder and a manufacturing method thereof.

特許文献1、2には、強化繊維を熱硬化性樹脂シート中に含浸させてなる複数のプリプレグを筒状に巻回して熱硬化させ複数のFRP層とするFRP円筒及びその製造方法が開示されている。複数のFRP層中には、複数のプリプレグを重ねてなるセットプリプレグを複数回連続して巻回して熱硬化させた同時多層巻回層が含まれている。   Patent Documents 1 and 2 disclose an FRP cylinder in which a plurality of prepregs obtained by impregnating a reinforcing fiber in a thermosetting resin sheet are wound into a cylindrical shape and thermally cured to form a plurality of FRP layers, and a method for manufacturing the same. ing. The plurality of FRP layers include a simultaneous multi-layer winding layer in which a set prepreg formed by stacking a plurality of prepregs is continuously wound a plurality of times and thermally cured.

特許文献1、2において、セットプリプレグは、円筒軸線方向に斜交する繊維層を有する捩り剛性保持プリプレグ(例えばバイアスプリプレグ)と、円筒軸線方向に直交する繊維層を有する座屈防止プリプレグ(例えば90°プリプレグ)とから構成されている。あるいは、セットプリプレグは、上述した捩り剛性保持プリプレグと座屈防止プリプレグに、円筒軸線方向と平行をなす繊維層を有する曲げ剛性保持プリプレグ(例えば0°プリプレグ)を加えて構成されている。   In Patent Documents 1 and 2, a set prepreg includes a torsional rigidity holding prepreg (for example, a bias prepreg) having a fiber layer obliquely intersecting in the cylindrical axis direction and a buckling prevention prepreg (for example, 90) having a fiber layer orthogonal to the cylindrical axis direction. ° prepreg). Alternatively, the set prepreg is configured by adding a bending rigidity holding prepreg (for example, 0 ° prepreg) having a fiber layer parallel to the cylindrical axial direction to the torsional rigidity holding prepreg and the buckling prevention prepreg described above.

特許文献1、2では、セットプリプレグにおける捩り剛性保持プリプレグと座屈防止プリプレグの巻回開始位置を互いに異ならせて、同時多層巻回層における捩り剛性保持層と座屈防止層をオフセットさせている。例えば、特許文献2では、セットプリプレグにおける捩り剛性保持プリプレグと座屈防止プリプレグの巻回開始位置が、座屈防止プリプレグが単独で少なくとも1プライ巻回され、その後、捩り剛性保持プリプレグと座屈防止プリプレグが重ねられた状態で少なくとも2プライ連続して巻回されるように、互いにオフセットされている。   In Patent Documents 1 and 2, the winding start positions of the torsional rigidity holding prepreg and the buckling prevention prepreg in the set prepreg are different from each other, and the torsional rigidity holding layer and the buckling prevention layer in the simultaneous multilayer winding layer are offset. . For example, in Patent Document 2, the winding start position of the torsional rigidity holding prepreg and the buckling prevention prepreg in the set prepreg is wound by at least one ply of the buckling prevention prepreg, and then the torsional rigidity holding prepreg and the buckling prevention. The prepregs are offset from each other so that at least two plies are continuously wound in a stacked state.

国際公開第2010/084809号International Publication No. 2010/084809 特開2014−172308号公報JP 2014-172308 A

しかし、特許文献1、2のFRP円筒及びその製造方法は、FRP円筒の強度が不十分であるために、破壊(例えば剥離や捩り疲労破壊)が起こりやすいという問題がある点で、改良の余地がある。   However, the FRP cylinders of Patent Documents 1 and 2 and the manufacturing method thereof have room for improvement because the strength of the FRP cylinders is insufficient, and there is a problem that breakage (for example, peeling or torsional fatigue failure) is likely to occur. There is.

本発明は、上記の問題意識に基づいて完成されたものであり、FRP円筒の強度を確保して破壊が起こりにくいFRP円筒及びその製造方法を提供することを目的の1つとする。   The present invention has been completed based on the above awareness of problems, and an object of the present invention is to provide an FRP cylinder that secures the strength of the FRP cylinder and is less likely to break down, and a method for manufacturing the same.

本発明のFRP円筒は、複数のプリプレグを巻回して熱硬化させることでFRP層とするFRP円筒であって、前記FRP層は、円筒軸線方向に斜交する繊維層を有する一対の捩り剛性保持プリプレグと円筒軸線方向に直交する繊維層を有する座屈防止プリプレグとを重ねた状態で複数プライ連続して巻回して熱硬化させた同時多層巻回層を含んでおり、前記一対の捩り剛性保持プリプレグの巻回終了位置が互いに異なるようにオフセットされている、ことを特徴としている。   The FRP cylinder of the present invention is an FRP cylinder which is made into an FRP layer by winding and thermosetting a plurality of prepregs, and the FRP layer has a pair of torsional rigidity holdings having a fiber layer obliquely intersecting the cylinder axis direction. A plurality of ply prepregs and a buckling-preventing prepreg having a fiber layer perpendicular to the axial direction of the cylinder. The winding ending positions of the prepreg are offset so as to be different from each other.

前記一対の捩り剛性保持プリプレグと前記座屈防止プリプレグは、内層側から外層側に向かって順に、前記一対の捩り剛性保持プリプレグと前記座屈防止プリプレグとが重ねられた状態で少なくとも2プライ連続して巻回され、前記座屈防止プリプレグが単独で少なくとも1プライ巻回されるようにオフセットされていてもよい。   The pair of torsional rigidity holding prepregs and the buckling prevention prepreg are successively continued from the inner layer side toward the outer layer side in a state where the pair of torsional rigidity holding prepregs and the buckling prevention prepreg are overlapped. The buckling prevention prepreg may be offset so that at least one ply is wound alone.

前記一対の捩り剛性保持プリプレグと前記座屈防止プリプレグは、内層側から外層側に向かって順に、前記座屈防止プリプレグが単独で少なくとも2プライ巻回され、前記一対の捩り剛性保持プリプレグと前記座屈防止プリプレグとが重ねられた状態で少なくとも2プライ連続して巻回され、前記座屈防止プリプレグが単独で少なくとも1プライ巻回されるようにオフセットされていてもよい。   The pair of torsional rigidity retaining prepregs and the buckling prevention prepreg are wound in order from the inner layer side to the outer layer side, and the buckling prevention prepreg is wound alone by at least two plies. It may be offset so that at least two plies are continuously wound in a state where the anti-bending prepreg is overlapped, and at least one ply is wound alone.

前記一対の捩り剛性保持プリプレグの巻回開始位置が互いに異なるようにオフセットされていてもよい。   The pair of torsional rigidity holding prepregs may be offset so that the winding start positions are different from each other.

前記一対の捩り剛性保持プリプレグは長繊維方向が円筒軸線方向に±α°(0<α<90)で斜交する一対のバイアスプリプレグからなってもよい。前記座屈防止プリプレグは長繊維方向が円筒軸線方向に直交する90°プリプレグからなってもよい。   The pair of torsional rigidity holding prepregs may be composed of a pair of bias prepregs whose long fiber direction obliquely intersects with the cylinder axis direction at ± α ° (0 <α <90). The buckling prevention prepreg may be a 90 ° prepreg whose long fiber direction is orthogonal to the cylindrical axis direction.

本発明のFRP円筒の製造方法は、複数のプリプレグを巻回して熱硬化させることでFRP層とするFRP円筒の製造方法であって、前記複数のプリプレグを巻回する際に、円筒軸線方向に斜交する繊維層を有する一対の捩り剛性保持プリプレグと円筒軸線方向に直交する繊維層を有する座屈防止プリプレグとを重ねた状態で複数プライ連続して巻回する同時多層巻回工程を含んでおり、前記一対の捩り剛性保持プリプレグの巻回終了位置が互いに異なるようにオフセットした、ことを特徴としている。   The FRP cylinder manufacturing method of the present invention is a method for manufacturing an FRP cylinder in which a plurality of prepregs are wound and thermally cured to form an FRP layer, and when the plurality of prepregs are wound, Including a simultaneous multi-layer winding process in which a plurality of plies are continuously wound in a state in which a pair of torsional rigidity holding prepregs having oblique fiber layers and a buckling prevention prepreg having fiber layers perpendicular to the cylindrical axial direction are stacked. The winding end positions of the pair of torsional rigidity holding prepregs are offset so as to be different from each other.

本発明によれば、FRP円筒の強度を確保して破壊が起こりにくいFRP円筒及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the strength of an FRP cylinder can be ensured and the FRP cylinder which is hard to break down, and its manufacturing method can be provided.

本実施形態によるFRP円筒を示す斜視図である。It is a perspective view which shows the FRP cylinder by this embodiment. 本実施形態による複数のプリプレグの構成の一例を示す図である。It is a figure which shows an example of a structure of the several prepreg by this embodiment. 本実施形態による複数のプリプレグの積層構造の一例を示す図である。It is a figure which shows an example of the laminated structure of the several prepreg by this embodiment. 本実施形態による複数のプリプレグの巻回終了位置を拡大して示す図である。It is a figure which expands and shows the winding end position of the several prepreg by this embodiment. 角度層(バイアス層)の巻回終了位置に応じた剥離箇所の違いを示す概念図である。It is a conceptual diagram which shows the difference in the peeling location according to the winding end position of an angle layer (bias layer). 本実施形態によるFRP円筒を示す断面図である。It is sectional drawing which shows the FRP cylinder by this embodiment.

図1は、本実施形態によるFRP(Fiber Reinforced Plastics)円筒1を示す斜視図である。FRP円筒1は、強化繊維を熱硬化性樹脂シート中に含浸させてなる複数のプリプレグを筒状に巻回して熱硬化させることでFRP層10としたものである。図1において、FRP円筒1の長さをLとし、FRP円筒1の外径をΦとし、FRP円筒1の内径をφとしている。FRP円筒1の長さLは、FRP円筒1の用途(例えば、車両のプロペラシャフトやドライブシャフト等)に応じて適宜設定することができる。外径Φと内径φの差分(Φ−φ)であるFRP円筒1の厚みは、複数のプリプレグの各種パラメータ(種類、厚み、枚数、プライ数等)によって適宜設定することができる。   FIG. 1 is a perspective view showing an FRP (Fiber Reinforced Plastics) cylinder 1 according to the present embodiment. The FRP cylinder 1 is a FRP layer 10 formed by winding a plurality of prepregs obtained by impregnating reinforcing fibers into a thermosetting resin sheet into a cylindrical shape and thermosetting them. In FIG. 1, the length of the FRP cylinder 1 is L, the outer diameter of the FRP cylinder 1 is Φ, and the inner diameter of the FRP cylinder 1 is φ. The length L of the FRP cylinder 1 can be appropriately set according to the application of the FRP cylinder 1 (for example, a propeller shaft or a drive shaft of a vehicle). The thickness of the FRP cylinder 1 that is the difference (Φ−φ) between the outer diameter Φ and the inner diameter φ can be set as appropriate according to various parameters (type, thickness, number of sheets, number of plies, etc.) of the plurality of prepregs.

図2は、本実施形態による複数のプリプレグの構成の一例を示す図である。作図の便宜上の理由により、複数のプリプレグの厚みを誇張して大きめに描いている。厳密には、FRP円筒1の内層側から外層側に向かうに連れて、同じプライ数でも必要なプリプレグの幅が漸増するが、その点は無視して描いている。   FIG. 2 is a diagram illustrating an example of a configuration of a plurality of prepregs according to the present embodiment. For the convenience of drawing, the thickness of a plurality of prepregs is exaggerated and drawn larger. Strictly speaking, as the FRP cylinder 1 moves from the inner layer side to the outer layer side, the necessary prepreg width gradually increases even with the same number of plies, but this point is ignored.

FRP円筒1のFRP層10を構成する複数のプリプレグは、内層側から外層側に向かって順に、曲げ剛性保持プリプレグ20と、セットプリプレグ30とを有している。セットプリプレグ30は、内層側から外層側に向かって順に、一対の捩り剛性保持プリプレグ31、32と、座屈防止プリプレグ33とを有している。   The plurality of prepregs constituting the FRP layer 10 of the FRP cylinder 1 have a bending rigidity holding prepreg 20 and a set prepreg 30 in order from the inner layer side to the outer layer side. The set prepreg 30 has a pair of torsional rigidity retaining prepregs 31 and 32 and a buckling prevention prepreg 33 in order from the inner layer side to the outer layer side.

曲げ剛性保持プリプレグ20は、円筒軸線方向と平行をなす繊維層を有しており、円筒軸線方向と平行をなす方向に加わる力(曲げ)に対する強度を受け持つものである。曲げ剛性保持プリプレグ20は、長繊維方向が円筒軸線方向と平行をなす0°プリプレグから構成することができる。曲げ剛性保持プリプレグ20は、マンドレルMの外周に2プライ巻回できる幅に設定されている。なお、曲げ剛性保持プリプレグ20の幅には自由度があり、例えば、マンドレルMの外周に少なくとも2プライ巻回できる幅とすることができる。   The bending rigidity maintaining prepreg 20 has a fiber layer that is parallel to the cylindrical axis direction, and is responsible for strength against a force (bending) applied in a direction parallel to the cylindrical axis direction. The bending rigidity maintaining prepreg 20 can be constituted by a 0 ° prepreg in which the long fiber direction is parallel to the cylindrical axis direction. The bending rigidity holding prepreg 20 is set to a width that allows two-ply winding around the outer periphery of the mandrel M. The width of the bending rigidity holding prepreg 20 has a degree of freedom. For example, the bending rigidity holding prepreg 20 can have a width that allows at least two plies to be wound around the outer periphery of the mandrel M.

一対の捩り剛性保持プリプレグ31、32は、円筒軸線方向に斜交する繊維層を有しており、円筒軸線方向に斜交する方向に加わる力(捩り)に対する強度を受け持つものである。一対の捩り剛性保持プリプレグ31、32は、長繊維方向が円筒軸線方向に±α°(0<α<90)で斜交する一対のバイアスプリプレグから構成することができる。斜交角度αは、例えば、±30°、±45°又は±60°に設定することができるが、具体的な値には自由度があり、種々の設計変更が可能である。一対の捩り剛性保持プリプレグ31、32は、マンドレルMの外周に11プライ巻回できる幅に設定されている。なお、一対の捩り剛性保持プリプレグ31、32の幅には自由度があり、例えば、マンドレルMの外周に少なくとも2プライ巻回できる幅とすることができる。   The pair of torsional rigidity holding prepregs 31 and 32 have fiber layers that are oblique to the cylindrical axis direction, and are responsible for the strength against the force (torsion) applied in the direction oblique to the cylindrical axis direction. The pair of torsional rigidity holding prepregs 31 and 32 can be constituted by a pair of bias prepregs whose long fiber direction is obliquely crossed by ± α ° (0 <α <90) in the cylindrical axis direction. The oblique angle α can be set to, for example, ± 30 °, ± 45 °, or ± 60 °. However, the specific value has a degree of freedom, and various design changes are possible. The pair of torsional rigidity retaining prepregs 31 and 32 are set to have a width that allows 11 ply to be wound around the outer periphery of the mandrel M. The width of the pair of torsional rigidity holding prepregs 31 and 32 has a degree of freedom. For example, the width can be wound around at least two plies on the outer periphery of the mandrel M.

一対の捩り剛性保持プリプレグ31、32は、巻回開始位置と巻回終了位置が互いに異なるようにオフセットされている。より具体的に、一対の捩り剛性保持プリプレグ31、32のうち、外層側の捩り剛性保持プリプレグ32が先に巻回開始されて内層側の捩り剛性保持プリプレグ31が後に巻回開始され、且つ、外層側の捩り剛性保持プリプレグ32が先に巻回終了されて内層側の捩り剛性保持プリプレグ31が後に巻回終了される。これにより、捩り剛性保持プリプレグ31、32の巻回終了位置から進展する層間剥離を防止することができる。   The pair of torsional rigidity holding prepregs 31 and 32 are offset so that the winding start position and the winding end position are different from each other. More specifically, of the pair of torsional rigidity holding prepregs 31 and 32, the outer layer side torsional rigidity holding prepreg 32 is started to wind first, and the inner layer side torsional rigidity holding prepreg 31 is started to wind later, and The outer layer side torsional rigidity holding prepreg 32 is finished winding first, and the inner layer side torsional rigidity holding prepreg 31 is finished winding later. Thereby, delamination which advances from the winding end position of the torsional rigidity holding prepregs 31 and 32 can be prevented.

なお、一対の捩り剛性保持プリプレグ31、32のうち、内層側の捩り剛性保持プリプレグ31が先に巻回開始されて外層側の捩り剛性保持プリプレグ32が後に巻回開始され、且つ、内層側の捩り剛性保持プリプレグ31が先に巻回終了されて外層側の捩り剛性保持プリプレグ32が後に巻回終了されてもよい。この場合、捩り剛性保持プリプレグ31、32の巻回終了位置から進展する層間剥離を防止することができる。   Of the pair of torsional rigidity holding prepregs 31 and 32, the inner layer side torsional rigidity holding prepreg 31 is started to wind first, the outer layer side torsional rigidity holding prepreg 32 is started to wind later, and the inner layer side torsional rigidity holding prepreg 31 is started to wind. The torsional rigidity holding prepreg 31 may be finished winding first, and the outer layer side torsional rigidity holding prepreg 32 may be finished winding later. In this case, delamination that progresses from the winding end position of the torsional rigidity retaining prepregs 31 and 32 can be prevented.

一対の捩り剛性保持プリプレグ31、32の巻回開始位置と巻回終了位置のオフセット量をどのように設定するかには自由度があり、種々の設計変更が可能である。一例として、FRP円筒1の内径φが33mmであり外径Φが44mmであるとき、オフセット量を30mm程度に設定することができる。   There is a degree of freedom in how to set the offset amount between the winding start position and the winding end position of the pair of torsional rigidity holding prepregs 31 and 32, and various design changes are possible. As an example, when the inner diameter φ of the FRP cylinder 1 is 33 mm and the outer diameter Φ is 44 mm, the offset amount can be set to about 30 mm.

一対の捩り剛性保持プリプレグ31、32の巻回開始位置と巻回終了位置のオフセット量O(単位はmm)は、例えば、FRP円筒1の外周長R(単位はmm)との関係で、以下の条件式(1)を満足することが好ましい。条件式(1)、の下限を下回ると、オフセット量Oが小さくなりすぎて、FRP円筒1の強度が不十分となって破壊(例えば剥離や捩り疲労破壊)が起こりやすくなってしまう。条件式(1)の上限を上回ると、オフセット量Oが大きくなりすぎて、捩り方向に対する強度が不十分となってしまう。条件式(1)を満足することにより、FRP円筒1の強度(捩り方向に対する強度を含む)を確保して破壊(例えば剥離や捩り疲労破壊)を起こりにくくすることができる。以上の作用効果は、例えば、以下の条件式(1’)さらには条件式(1”)を満足することで、より一層顕著に得ることができる。
(1)0.1<O/R<0.5
(1’)0.2<O/R<0.4
(1”)0.25<O/R<0.35
The offset amount O (unit: mm) between the winding start position and the winding end position of the pair of torsional rigidity holding prepregs 31, 32 is, for example, in relation to the outer peripheral length R (unit: mm) of the FRP cylinder 1. It is preferable that the conditional expression (1) is satisfied. If the lower limit of conditional expression (1) is not reached, the offset amount O becomes too small, the strength of the FRP cylinder 1 becomes insufficient, and breakage (for example, peeling or torsional fatigue failure) is likely to occur. If the upper limit of conditional expression (1) is exceeded, the offset amount O becomes too large and the strength in the torsion direction becomes insufficient. By satisfying conditional expression (1), it is possible to secure the strength (including the strength in the torsional direction) of the FRP cylinder 1 and to prevent breakage (for example, peeling or torsional fatigue failure). The above effects can be obtained more remarkably, for example, by satisfying the following conditional expression (1 ′) and further conditional expression (1 ″).
(1) 0.1 <O / R <0.5
(1 ′) 0.2 <O / R <0.4
(1 ") 0.25 <O / R <0.35

なお、一対の捩り剛性保持プリプレグ31、32の巻回終了位置だけを互いに異ならせて、巻回開始位置を一致させてもよい。この場合、一対の捩り剛性保持プリプレグ31、32のうち、先に巻回終了する方の幅を相対的に小さくし、後に巻回終了する方の幅を相対的に大きくすることができる。   Note that the winding start positions may be matched by changing the winding end positions of the pair of torsional rigidity holding prepregs 31 and 32 only from each other. In this case, of the pair of torsional rigidity retaining prepregs 31 and 32, the width of the one that finishes winding first can be made relatively small, and the width that finishes the winding later can be made relatively large.

座屈防止プリプレグ33は、円筒軸線方向に直交する繊維層を有しており、円筒軸線方向に直交する方向に加わる力(座屈)に対する強度を受け持つものである。座屈防止プリプレグ33は、長繊維方向が円筒軸線方向に直交する90°プリプレグから構成することができる。座屈防止プリプレグ33は、マンドレルMの外周に14プライ巻回できる幅に設定されている。なお、座屈防止プリプレグ33の幅には自由度があり、例えば、マンドレルMの外周に少なくとも2プライ巻回できる幅とすることができる。   The buckling prevention prepreg 33 has a fiber layer orthogonal to the cylindrical axis direction, and is responsible for strength against a force (buckling) applied in a direction orthogonal to the cylindrical axis direction. The buckling prevention prepreg 33 can be composed of a 90 ° prepreg whose long fiber direction is orthogonal to the cylindrical axis direction. The buckling prevention prepreg 33 is set to a width that can be wound around the outer periphery of the mandrel M by 14 plies. The width of the buckling prevention prepreg 33 has a degree of freedom. For example, the buckling prevention prepreg 33 can have a width that allows at least two plies to be wound around the outer periphery of the mandrel M.

座屈防止プリプレグ33は、一対の捩り剛性保持プリプレグ31、32に対する巻回開始位置と巻回終了位置が互いに異なるようにオフセットされている。より具体的に、座屈防止プリプレグ33は、一対の捩り剛性保持プリプレグ31、32の巻回開始位置より2プライ分だけ巻回開始方向に突出しており、一対の捩り剛性保持プリプレグ31、32の巻回開始前に2プライ分だけ単独で巻回される。また、座屈防止プリプレグ33は、一対の捩り剛性保持プリプレグ31、32の巻回終了位置より1プライ分だけ巻回終了方向に突出しており、一対の捩り剛性保持プリプレグ31、32の巻回終了後に1プライ分だけ単独で巻回される。なお、ここでは、一対の捩り剛性保持プリプレグ31、32の巻回開始位置と巻回終了位置のオフセットを無視して、一対の捩り剛性保持プリプレグ31、32のいずれかの巻回開始位置と巻回終了位置を基準としている。   The buckling prevention prepreg 33 is offset so that the winding start position and the winding end position with respect to the pair of torsional rigidity holding prepregs 31 and 32 are different from each other. More specifically, the buckling prevention prepreg 33 protrudes in the winding start direction by two plies from the winding start position of the pair of torsional rigidity holding prepregs 31, 32. Before the start of winding, it is wound alone for two plies. Further, the buckling prevention prepreg 33 protrudes in the winding end direction by one ply from the winding end position of the pair of torsional rigidity holding prepregs 31, 32, and the winding end of the pair of torsional rigidity holding prepregs 31, 32 ends. Later, only one ply is wound. Here, the winding start position and the winding of either of the pair of torsional rigidity holding prepregs 31 and 32 are ignored, ignoring the offset between the winding start position and the winding end position of the pair of torsional rigidity holding prepregs 31 and 32. This is based on the end position.

なお、座屈防止プリプレグ33は、一対の捩り剛性保持プリプレグ31、32に対する巻回開始位置及び/又は巻回終了位置を一致させてもよい。この場合、座屈防止プリプレグ33の幅を一対の捩り剛性保持プリプレグ31、32の幅と略同一に設定することができる。   Note that the buckling prevention prepreg 33 may match the winding start position and / or the winding end position with respect to the pair of torsional rigidity holding prepregs 31 and 32. In this case, the width of the buckling prevention prepreg 33 can be set substantially the same as the width of the pair of torsional rigidity holding prepregs 31 and 32.

FRP円筒1を製造する場合、曲げ剛性保持プリプレグ20とセットプリプレグ30(一対の捩り剛性保持プリプレグ31、32と座屈防止プリプレグ33)をマンドレルMに巻回していく。図3は、本実施形態による複数のプリプレグの積層構造の一例を示す図である。まず、曲げ剛性保持プリプレグ20を単独で2プライ巻回する。次いで、曲げ合成保持プリプレグの外周にセットプリプレグ30を巻回する。より具体的に、座屈防止プリプレグ33を単独で2プライ巻回し、一対の捩り剛性保持プリプレグ31、32と座屈防止プリプレグ33を重ねた状態で11プライ連続して巻回し(3×11=33プライ)、座屈防止プリプレグ33を単独で1プライ巻回する。以上の合計巻回数は38プライとなる。プリプレグ巻回工程は、各プリプレグを密着させるために、所定の予熱状態で行うことが好ましい。   When manufacturing the FRP cylinder 1, the bending rigidity holding prepreg 20 and the set prepreg 30 (a pair of torsional rigidity holding prepregs 31 and 32 and a buckling prevention prepreg 33) are wound around the mandrel M. FIG. 3 is a view showing an example of a laminated structure of a plurality of prepregs according to the present embodiment. First, the bending rigidity holding prepreg 20 is wound by two plies independently. Next, the set prepreg 30 is wound around the outer periphery of the bending composite holding prepreg. More specifically, the buckling prevention prepreg 33 is wound by two plies independently, and 11 plies are continuously wound in a state where the pair of torsional rigidity holding prepregs 31 and 32 and the buckling prevention prepreg 33 are overlapped (3 × 11 = 33 ply), and buckling prevention prepreg 33 is wound by one ply alone. The total number of turns is 38 plies. The prepreg winding step is preferably performed in a predetermined preheated state in order to bring each prepreg into close contact.

プリプレグ巻回工程が終了したら、張力を与えながら熱収縮テープを巻回して外圧力を加えた状態で、加熱装置(例えばオーブン等)により加熱してプリプレグを硬化させる。この加熱硬化工程は、真空雰囲気中で実施することが好ましい。この加熱硬化により、マンドレルMに巻回された複数のプリプレグが加熱硬化してFRP層10となる。最後にマンドレルMを引き抜くことにより、マンドレルMの外径に対応する内径φと、この内径φにFRP層10の厚みを加えた外径Φと、プリプレグの長さに対応する長さLとを有するFRP円筒1が完成される(図1)。   When the prepreg winding process is completed, the prepreg is cured by being heated by a heating device (for example, an oven or the like) in a state in which the heat shrink tape is wound and an external pressure is applied while applying tension. This heat curing step is preferably performed in a vacuum atmosphere. By this heat curing, the plurality of prepregs wound around the mandrel M are heat cured to become the FRP layer 10. Finally, by pulling out the mandrel M, an inner diameter φ corresponding to the outer diameter of the mandrel M, an outer diameter φ obtained by adding the thickness of the FRP layer 10 to the inner diameter φ, and a length L corresponding to the length of the prepreg. The FRP cylinder 1 is completed (FIG. 1).

以上のFRP円筒1の製造方法は、複数のプリプレグを巻回する際に、一対の捩り剛性保持プリプレグ31、32と座屈防止プリプレグ33を重ねた状態で複数プライ(一例として11プライ)連続して巻回する同時多層巻回工程を有している。従って、FRP円筒1のFRP層10は、一対の捩り剛性保持プリプレグ31、32と座屈防止プリプレグ33を重ねた状態で複数プライ(一例として11プライ)連続して巻回して熱硬化させた同時多層巻回層を有している。これにより捩り方向と座屈方向に対する強度が高いFRP円筒1を得ることができる。また、セットプリプレグ30に含まれる一対の捩り剛性保持プリプレグ31、32と座屈防止プリプレグ33の樹脂量を減らしつつ強化繊維量を増やせるので、FRP円筒1の軽量化と高強度化を図ることができる。   In the manufacturing method of the FRP cylinder 1 described above, when a plurality of prepregs are wound, a plurality of plies (for example, 11 plies) are continued in a state where the pair of torsional rigidity holding prepregs 31 and 32 and the buckling prevention prepreg 33 are overlapped. And a simultaneous multi-layer winding process of winding. Accordingly, the FRP layer 10 of the FRP cylinder 1 is formed by simultaneously winding a plurality of plies (for example, 11 plies) in a state where the pair of torsional rigidity holding prepregs 31 and 32 and the buckling prevention prepreg 33 are overlapped, and simultaneously thermosetting them. It has a multilayer wound layer. Thereby, the FRP cylinder 1 having high strength in the twisting direction and the buckling direction can be obtained. Further, since the amount of reinforcing fibers can be increased while reducing the amount of resin of the pair of torsional rigidity retaining prepregs 31 and 32 and the buckling prevention prepreg 33 included in the set prepreg 30, it is possible to reduce the weight and increase the strength of the FRP cylinder 1. it can.

図4は、本実施形態による複数のプリプレグの巻回終了位置を拡大して示す図である。図4に示すように、一対の捩り剛性保持プリプレグ31、32の巻回終了位置が互いに異なるようにオフセットされている。より具体的に、外層側の捩り剛性保持プリプレグ32が先に巻回終了されて、内層側の捩り剛性保持プリプレグ31が後に巻回終了される。さらに、一対の捩り剛性保持プリプレグ31、32と座屈防止プリプレグ33の同時多層巻回の終了後、座屈防止プリプレグ33が続けてもう1プライ連続して巻回される。   FIG. 4 is an enlarged view showing winding end positions of a plurality of prepregs according to the present embodiment. As shown in FIG. 4, the winding end positions of the pair of torsional rigidity holding prepregs 31 and 32 are offset so as to be different from each other. More specifically, the torsional rigidity holding prepreg 32 on the outer layer side is wound first, and the winding of the torsional rigidity holding prepreg 31 on the inner layer side is finished later. Further, after the simultaneous multilayer winding of the pair of torsional rigidity retaining prepregs 31 and 32 and the buckling prevention prepreg 33 is completed, the buckling prevention prepreg 33 is continuously wound by another ply.

本発明者は、FRP円筒の捩り疲労破壊が起こるメカニズムについて鋭意研究を重ねた結果、角度層(バイアス層)の巻回終了位置から進展する層間剥離が大きな影響を及ぼすことを見出した。すなわち、FRP円筒に捩り方向の力が加わることにより、角度層(バイアス層)の巻回終了位置に、外径方向に剥離する力が局所的に発生する。角度層(バイアス層)は、円筒軸線方向に±α°で斜交する一対のバイアスプリプレグ(例えば±45°プリプレグ)で構成されることが多く、この一対のバイアスプリプレグの巻回終了位置が同じであると、+方向と−方向の両方で同じ位置で外径方向に剥離する力を受けることになり、剥離進展が加速する。   As a result of intensive studies on the mechanism of torsional fatigue failure of the FRP cylinder, the present inventor has found that delamination that progresses from the winding end position of the angle layer (bias layer) has a great effect. That is, when a force in the torsional direction is applied to the FRP cylinder, a force for peeling in the outer diameter direction is locally generated at the winding end position of the angle layer (bias layer). The angle layer (bias layer) is often composed of a pair of bias prepregs (for example, ± 45 ° prepregs) obliquely crossed at ± α ° in the cylinder axis direction, and the winding end positions of the pair of bias prepregs are the same. If it is, it will receive the force which peels in an outer-diameter direction in the same position in both + direction and-direction, and peeling progress will be accelerated.

これに対し、本実施形態では、一対の捩り剛性保持プリプレグ31、32の巻回終了位置を互いに異ならせる(オフセットする)ことにより、角度層(バイアス層)の巻回終了位置から進展する層間剥離を効果的に防止することができる(層間剥離の起点を分散させることができる)。   On the other hand, in this embodiment, the delamination progresses from the winding end position of the angle layer (bias layer) by making the winding end positions of the pair of torsional rigidity holding prepregs 31 and 32 different (offset) from each other. Can be effectively prevented (the starting point of delamination can be dispersed).

図5A、図5Bは角度層(バイアス層)の巻回終了位置に応じた剥離箇所の違いを示す概念図である。図5Aは角度層(バイアス層)の巻回終了位置が同じである場合の剥離箇所を示しており、層間剥離の起点が大きいために剥離進展が加速していることが分かる。図5Bは角度層(バイアス層)の巻回終了位置を異ならせた場合の剥離箇所を示しており、層間剥離の起点を分散させることで層間剥離が効果的に防止されていることが分かる。   FIG. 5A and FIG. 5B are conceptual diagrams showing differences in peeled portions according to the winding end position of the angle layer (bias layer). FIG. 5A shows a peeling portion when the winding end position of the angle layer (bias layer) is the same, and it can be seen that the peeling progress is accelerated because the starting point of the delamination is large. FIG. 5B shows the peeled portion when the winding end position of the angle layer (bias layer) is varied, and it can be seen that the delamination is effectively prevented by dispersing the starting point of the delamination.

また本実施形態では、セットプリプレグ30の一対の捩り剛性保持プリプレグ31、32と座屈防止プリプレグ33が、内層側から外層側に向かって順に、座屈防止プリプレグ33が単独で少なくとも2プライ巻回され、一対の捩り剛性保持プリプレグ31、32と座屈防止プリプレグ33とが重ねられた状態で少なくとも2プライ連続して巻回され、座屈防止プリプレグ33が単独で少なくとも1プライ巻回されるようにオフセットされている。   Further, in this embodiment, the pair of torsional rigidity retaining prepregs 31 and 32 and the buckling prevention prepreg 33 of the set prepreg 30 are wound in order of at least two plies independently from the inner layer side toward the outer layer side. The pair of torsional rigidity retaining prepregs 31 and 32 and the buckling prevention prepreg 33 are wound continuously so that at least two plies are wound continuously, and the buckling prevention prepreg 33 is wound alone by at least one ply. Is offset.

捩り方向の力を負担することなく径方向の力に対して有効に働く周方向の繊維層(90°層)を、角度層(バイアス層)を含む同時多層巻回層の巻回終了位置を完全に覆うように少なくとも1プライ(好ましくは1.5プライ以上)巻回することにより、角度層(バイアス層)の巻回終了位置の剥離を抑えるとともに、捩り疲労強度を飛躍的に向上させることが可能になる。   The circumferential fiber layer (90 ° layer) that works effectively against the radial force without bearing the twisting force, and the winding end position of the simultaneous multilayer winding layer including the angle layer (bias layer) By winding at least one ply (preferably 1.5 ply or more) so as to completely cover, the peeling at the winding end position of the angle layer (bias layer) is suppressed and the torsional fatigue strength is dramatically improved. Is possible.

図6は、本実施形態によるFRP円筒1を示す断面図である。図6に示すように、FRP円筒1の最外層に捩りに対して直接的に荷重を受けない最外層の90°層を少なくとも2プライに亘って設けることにより、角度層(バイアス層)に多少の層間剥離が発生した場合であってもその悪影響を最低限に抑えることができる。また、FRP円筒1の周方向における層間剥離範囲を抑制することができる。   FIG. 6 is a cross-sectional view showing the FRP cylinder 1 according to the present embodiment. As shown in FIG. 6, the outermost layer of the FRP cylinder 1 is provided with a 90 ° outermost layer that does not receive a load directly against torsion over at least two plies. Even if delamination occurs, the adverse effect can be minimized. Moreover, the delamination range in the circumferential direction of the FRP cylinder 1 can be suppressed.

本発明者は、図2〜図4の積層構造を有する一対の捩り剛性保持プリプレグの巻回終了位置を互いに異ならせたFRP円筒(以下、本実施形態のFRP円筒と呼ぶ)、及び、使用するプリプレグはそのままで一対の捩り剛性保持プリプレグの巻回終了位置を一致させたFRP円筒(以下、比較例のFRP円筒)を実際に作製して、捩り疲労破壊試験を行った。捩り疲労破壊試験は、株式会社鷺宮製作所のRFH電気サーボねじり疲労試験機(形式213-050)を用いてFRP円筒の一端を固定し、他端について試験トルク3kNm、試験速度0.1〜1Hzのようにして行った。   The present inventor uses an FRP cylinder (hereinafter referred to as an FRP cylinder of the present embodiment) in which the winding end positions of the pair of torsional rigidity holding prepregs having the laminated structure of FIGS. FRP cylinders (hereinafter referred to as FRP cylinders of comparative examples) in which the winding end positions of a pair of torsional rigidity holding prepregs were made to coincide with each other were actually produced, and a torsional fatigue fracture test was performed. The torsional fatigue fracture test was performed by fixing one end of the FRP cylinder using an RFH electric servo torsional fatigue tester (type 213-050) manufactured by Kinomiya Seisakusho Co., Ltd., with a test torque of 3 kNm and a test speed of 0.1 to 1 Hz. It was done like that.

本実施形態のFRP円筒と比較例のFRP円筒を各3本ずつ作製して、捩り疲労破壊試験を3回行った。捩り疲労破壊に至るまでの試行回数は、平均ベースで、本実施形態のFRP円筒が比較例のFRP円筒の約7倍となっており、本実施形態のFRP円筒が比較例のFRP円筒よりも飛躍的に高い捩り疲労強度を実現できていることが分かる。
FRP円筒 破壊までの試行回数
本実施形態1 47858回
本実施形態2 57018回
本実施形態3 44638回
平均 49838回
比較例1 5683回
比較例2 6353回
比較例3 9433回
平均 7156回
Three FRP cylinders of this embodiment and three FRP cylinders of comparative examples were produced, respectively, and the torsional fatigue fracture test was performed three times. The number of trials up to torsional fatigue failure is on an average basis, and the FRP cylinder of this embodiment is about 7 times the FRP cylinder of the comparative example, and the FRP cylinder of this embodiment is more than the FRP cylinder of the comparative example. It can be seen that a tremendously high torsional fatigue strength can be realized.
FRP cylinder Number of trials until failure This embodiment 1 47858 times This embodiment 2 57018 times This embodiment 3 44638 times average 49838 times Comparative example 1 5683 times Comparative example 2 6353 times Comparative example 3 9433 times average 7156 times

セットプリプレグ30を構成する座屈防止プリプレグ33を一対の捩り剛性保持プリプレグ31、32の巻回開始前に2プライ分だけ単独で巻回することにより、FRP円筒1の静強度を向上させることができる。セットプリプレグ30の最内層に角度層(バイアス層)を設けた場合、捩りトルクによってプリプレグの巻き始めが内径方向に剥離しやすいが、本実施形態のようにセットプリプレグ30の最内層に座屈防止プリプレグ(90°プリプレグ)33を支持することで、プリプレグの巻き始めが内径方向に剥離するのを効果的に防止することが可能になる。   The static strength of the FRP cylinder 1 can be improved by winding the buckling-preventing prepreg 33 constituting the set prepreg 30 by only two plies before starting the winding of the pair of torsional rigidity holding prepregs 31 and 32. it can. When an angle layer (bias layer) is provided in the innermost layer of the set prepreg 30, the winding start of the prepreg is easily peeled off in the inner diameter direction by torsional torque, but buckling is prevented in the innermost layer of the set prepreg 30 as in this embodiment. By supporting the prepreg (90 ° prepreg) 33, it is possible to effectively prevent the start of winding of the prepreg from peeling in the inner diameter direction.

FRP円筒1のFRP層10の最内層は、曲げ剛性保持プリプレグ(0°プリプレグ)20を単独で2プライ巻回して熱硬化した曲げ剛性保持層(0°層)となっている。これにより、FRP円筒1の内周面にセレーションを挿入(圧入)したとき、セレーションの谷部の隙間を曲げ剛性保持層(0°層)が埋めることで、FRP層10の最内層の剥離を抑制して、セレーションとの接合強度を向上させることができる。   The innermost layer of the FRP layer 10 of the FRP cylinder 1 is a bending stiffness holding layer (0 ° layer) obtained by thermally bending a bending stiffness holding prepreg (0 ° prepreg) 20 by winding two plies independently. As a result, when serrations are inserted (press-fitted) into the inner peripheral surface of the FRP cylinder 1, the innermost layer of the FRP layer 10 is peeled off by filling the gaps in the valleys of the serrations with the bending rigidity holding layer (0 ° layer). It can suppress and can improve the joint strength with serration.

このように本実施形態では、FRP円筒1のFRP層10が、円筒軸線方向に斜交する繊維層を有する一対の捩り剛性保持プリプレグ(一対のバイアスプリプレグ)31、32と円筒軸線方向に直交する繊維層を有する座屈防止プリプレグ(90°プリプレグ)33とが重ねられた状態で複数プライ連続して巻回して熱硬化させた同時多層巻回層を含んでおり、一対の捩り剛性保持プリプレグ(一対のバイアスプリプレグ)31、32の巻回終了位置が互いに異なるようにオフセットされている。これにより、FRP円筒1の強度を確保して破壊(例えば剥離や捩り疲労破壊)を起こりにくくすることができる。   As described above, in this embodiment, the FRP layer 10 of the FRP cylinder 1 is orthogonal to the pair of torsional rigidity holding prepregs 31 and 32 having a fiber layer obliquely intersecting in the cylinder axis direction. It includes a simultaneous multilayer winding layer in which a plurality of plies are continuously wound and heat-cured in a state where a buckling prevention prepreg (90 ° prepreg) 33 having a fiber layer is overlapped, and a pair of torsional rigidity retaining prepregs ( The winding end positions of the pair of bias prepregs 31, 32 are offset so as to be different from each other. As a result, the strength of the FRP cylinder 1 can be ensured and the destruction (for example, peeling or torsional fatigue failure) can be made difficult to occur.

以上の実施形態では、セットプリプレグ30の一対の捩り剛性保持プリプレグ31、32を一対のバイアスプリプレグから構成するとともに、セットプリプレグ30の座屈防止プリプレグ33を90°プリプレグから構成する場合を例示して説明した。しかし、一対の捩り剛性保持プリプレグと座屈防止プリプレグとして、織物プリプレグの繊維方向を適宜設定したものを用いることも可能である。織物プリプレグとしては、例えば、平織物を熱硬化性樹脂シートに含浸させてなり円筒軸線方向に斜交する繊維層を有する平織物プリプレグ、三軸織物を熱硬化性樹脂シートに含浸させてなり円筒軸線方向に斜交する繊維層を有する三軸織物プリプレグ、四軸織物を熱硬化性樹脂シートに含浸させてなり円筒軸線方向に斜交する繊維層を有する四軸織物プリプレグを使用することができる。   In the above embodiment, the pair of torsional rigidity holding prepregs 31 and 32 of the set prepreg 30 is constituted by a pair of bias prepregs, and the buckling prevention prepreg 33 of the set prepreg 30 is constituted by a 90 ° prepreg. explained. However, as the pair of torsional rigidity holding prepregs and buckling prevention prepregs, those in which the fiber direction of the woven prepreg is appropriately set can be used. Examples of the fabric prepreg include a plain fabric prepreg impregnated with a thermosetting resin sheet in a plain fabric and a fiber layer obliquely crossed in the cylindrical axis direction, and a cylinder in which a thermosetting resin sheet is impregnated with a triaxial fabric. A triaxial woven prepreg having a fiber layer obliquely crossed in the axial direction can be used, and a four-axis woven prepreg having a fiber layer obliquely crossed in the cylindrical axial direction obtained by impregnating a thermosetting resin sheet with a tetraaxial woven fabric can be used. .

1 FRP円筒
10 FRP層
20 曲げ剛性保持プリプレグ(0°プリプレグ)
30 セットプリプレグ
31 32 一対の捩り剛性保持プリプレグ(一対のバイアスプリプレグ)
33 座屈防止プリプレグ(90°プリプレグ)
1 FRP cylinder 10 FRP layer 20 Bending rigidity maintaining prepreg (0 ° prepreg)
30 Set prepregs 31 32 A pair of torsional rigidity retaining prepregs (a pair of bias prepregs)
33 Buckling prevention prepreg (90 ° prepreg)

Claims (6)

複数のプリプレグを巻回して熱硬化させることでFRP層とするFRP円筒であって、
前記FRP層は、円筒軸線方向に斜交する繊維層を有する一対の捩り剛性保持プリプレグと円筒軸線方向に直交する繊維層を有する座屈防止プリプレグとを重ねた状態で複数プライ連続して巻回して熱硬化させた同時多層巻回層を含んでおり、
前記一対の捩り剛性保持プリプレグの巻回終了位置が互いに異なるようにオフセットされている、
ことを特徴とするFRP円筒。
An FRP cylinder in which a plurality of prepregs are wound and thermally cured to form an FRP layer,
The FRP layer is formed by continuously winding a plurality of plies in a state in which a pair of torsional rigidity holding prepregs having a fiber layer obliquely intersecting the cylindrical axis direction and a buckling prevention prepreg having a fiber layer perpendicular to the cylindrical axis direction are overlapped. A simultaneous multi-layer wound layer that has been heat-cured and
The winding end positions of the pair of torsional rigidity holding prepregs are offset so as to be different from each other,
FRP cylinder characterized by this.
前記一対の捩り剛性保持プリプレグと前記座屈防止プリプレグは、内層側から外層側に向かって順に、前記一対の捩り剛性保持プリプレグと前記座屈防止プリプレグとが重ねられた状態で少なくとも2プライ連続して巻回され、前記座屈防止プリプレグが単独で少なくとも1プライ巻回されるようにオフセットされている、
ことを特徴とする請求項1に記載のFRP円筒。
The pair of torsional rigidity holding prepregs and the buckling prevention prepreg are successively continued from the inner layer side toward the outer layer side in a state where the pair of torsional rigidity holding prepregs and the buckling prevention prepreg are overlapped. And the buckling prevention prepreg is offset so that at least one ply is wound alone,
The FRP cylinder according to claim 1.
前記一対の捩り剛性保持プリプレグと前記座屈防止プリプレグは、内層側から外層側に向かって順に、前記座屈防止プリプレグが単独で少なくとも2プライ巻回され、前記一対の捩り剛性保持プリプレグと前記座屈防止プリプレグとが重ねられた状態で少なくとも2プライ連続して巻回され、前記座屈防止プリプレグが単独で少なくとも1プライ巻回されるようにオフセットされている、
ことを特徴とする請求項1又は請求項2に記載のFRP円筒。
The pair of torsional rigidity retaining prepregs and the buckling prevention prepreg are wound in order from the inner layer side to the outer layer side, and the buckling prevention prepreg is wound alone by at least two plies. At least two plies are continuously wound in a state where the anti-bending prepreg is stacked, and the buckling prevention prepreg is offset so that the at least one ply is wound alone.
The FRP cylinder according to claim 1 or 2, wherein the FRP cylinder is provided.
前記一対の捩り剛性保持プリプレグの巻回開始位置が互いに異なるようにオフセットされている、
ことを特徴とする請求項1から請求項3のいずれかに記載のFRP円筒。
The winding start positions of the pair of torsional rigidity holding prepregs are offset so as to be different from each other,
The FRP cylinder according to any one of claims 1 to 3, wherein the FRP cylinder is provided.
前記一対の捩り剛性保持プリプレグは長繊維方向が円筒軸線方向に±α°(0<α<90)で斜交する一対のバイアスプリプレグからなり、前記座屈防止プリプレグは長繊維方向が円筒軸線方向に直交する90°プリプレグからなる、
ことを特徴とする請求項1から請求項4のいずれかに記載のFRP円筒。
The pair of torsional rigidity retaining prepregs is composed of a pair of bias prepregs whose long fiber direction is obliquely intersected by ± α ° (0 <α <90) in the cylindrical axis direction, and the buckling prevention prepreg has a long fiber direction in the cylindrical axis direction. Consisting of 90 ° prepreg orthogonal to
The FRP cylinder according to any one of claims 1 to 4, wherein the FRP cylinder is provided.
複数のプリプレグを巻回して熱硬化させることでFRP層とするFRP円筒の製造方法であって、
前記複数のプリプレグを巻回する際に、円筒軸線方向に斜交する繊維層を有する一対の捩り剛性保持プリプレグと円筒軸線方向に直交する繊維層を有する座屈防止プリプレグとを重ねた状態で複数プライ連続して巻回する同時多層巻回工程を含んでおり、
前記一対の捩り剛性保持プリプレグの巻回終了位置が互いに異なるようにオフセットした、
ことを特徴とするFRP円筒の製造方法。
A method for producing an FRP cylinder, in which a plurality of prepregs are wound and thermally cured to form an FRP layer,
When winding the plurality of prepregs, a plurality of pairs of torsional rigidity holding prepregs having a fiber layer obliquely intersecting in the cylindrical axis direction and a buckling prevention prepreg having a fiber layer orthogonal to the cylinder axis direction are stacked. It includes a simultaneous multi-layer winding process in which plies are continuously wound,
The winding end positions of the pair of torsional rigidity holding prepregs are offset so as to be different from each other,
The manufacturing method of the FRP cylinder characterized by the above-mentioned.
JP2018088089A 2018-05-01 2018-05-01 FRP cylinder and its manufacturing method Active JP6961531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018088089A JP6961531B2 (en) 2018-05-01 2018-05-01 FRP cylinder and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018088089A JP6961531B2 (en) 2018-05-01 2018-05-01 FRP cylinder and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019193979A true JP2019193979A (en) 2019-11-07
JP6961531B2 JP6961531B2 (en) 2021-11-05

Family

ID=68469185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018088089A Active JP6961531B2 (en) 2018-05-01 2018-05-01 FRP cylinder and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6961531B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898373A (en) * 2021-10-19 2022-01-07 辽宁工业大学 FRP-PVC membrane shell filled with self-compacting coal gangue concrete fireproof combined coal pillar and reinforcing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128921A (en) * 2000-10-30 2002-05-09 Toho Tenax Co Ltd Prepreg for preventing different levels, manufacturing method of tubular body using the same and tubular body
JP2008093944A (en) * 2006-10-11 2008-04-24 Mrc Composite Products Co Ltd Method for manufacturing tubular body made of fiber-reinforced resin
WO2010084809A1 (en) * 2009-01-21 2010-07-29 藤倉ゴム工業株式会社 Method for producing frp cylinder and frp cylinder
US20130105501A1 (en) * 2010-05-17 2013-05-02 Covess N.V. Method for producing a leak-tight vessel, and a leak-tigh vessel
JP2014172308A (en) * 2013-03-11 2014-09-22 Fujikura Rubber Ltd Frp cylinder, and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128921A (en) * 2000-10-30 2002-05-09 Toho Tenax Co Ltd Prepreg for preventing different levels, manufacturing method of tubular body using the same and tubular body
JP2008093944A (en) * 2006-10-11 2008-04-24 Mrc Composite Products Co Ltd Method for manufacturing tubular body made of fiber-reinforced resin
WO2010084809A1 (en) * 2009-01-21 2010-07-29 藤倉ゴム工業株式会社 Method for producing frp cylinder and frp cylinder
US20130105501A1 (en) * 2010-05-17 2013-05-02 Covess N.V. Method for producing a leak-tight vessel, and a leak-tigh vessel
JP2014172308A (en) * 2013-03-11 2014-09-22 Fujikura Rubber Ltd Frp cylinder, and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113898373A (en) * 2021-10-19 2022-01-07 辽宁工业大学 FRP-PVC membrane shell filled with self-compacting coal gangue concrete fireproof combined coal pillar and reinforcing method
CN113898373B (en) * 2021-10-19 2023-10-13 辽宁工业大学 FRP-PVC film shell internally filled with self-compaction gangue concrete fireproof combined coal column and reinforcing method

Also Published As

Publication number Publication date
JP6961531B2 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
TWI507329B (en) FRP cylinder manufacturing method and FRP cylinder
JP6705402B2 (en) Reinforcement layer manufacturing method
WO2014065281A1 (en) Cylindrical case and process for producing cylindrical case
JP6766756B2 (en) Pressure-resistant container
JP6603463B2 (en) Shaft-shaped composite member and manufacturing method thereof
JP2016511168A (en) Improved method of manufacturing a power transmission shaft, preferably a power transmission shaft of an aircraft turbomachine accessory box system
JP6961531B2 (en) FRP cylinder and its manufacturing method
JP4790848B2 (en) Golf club shaft and golf club using the same
JP2014172308A (en) Frp cylinder, and method of manufacturing the same
JP6493094B2 (en) Fiber structure and fiber reinforced composite
JP6540085B2 (en) Propeller shaft
JP2007325823A (en) Golf club shaft and its manufacturing method
JP5900385B2 (en) Manufacturing method of FRP pipe
JP6589776B2 (en) tank
JP2009219652A (en) Golf club shaft
JP2004121402A (en) Golf club shaft
WO2019131893A1 (en) Composite material, layered structure, aircraft wing, and composite material manufacturing method
JP5248661B2 (en) Golf club shaft and golf club using the same
JP2002128921A (en) Prepreg for preventing different levels, manufacturing method of tubular body using the same and tubular body
JP2021160263A (en) FRP cylinder and power transmission shaft
JP2010214676A (en) Frp-made cylindrical body and method for producing the same
JPH01145985A (en) Roll made of carbon fiber-reinforced plastic
JPH1086229A (en) Laminating method of flange of pressure vessel
JP2009219681A (en) Golf club shaft and its manufacturing method
JP4771208B2 (en) FRP cylinder and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210127

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211013

R150 Certificate of patent or registration of utility model

Ref document number: 6961531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150