WO2019131893A1 - Composite material, layered structure, aircraft wing, and composite material manufacturing method - Google Patents

Composite material, layered structure, aircraft wing, and composite material manufacturing method Download PDF

Info

Publication number
WO2019131893A1
WO2019131893A1 PCT/JP2018/048189 JP2018048189W WO2019131893A1 WO 2019131893 A1 WO2019131893 A1 WO 2019131893A1 JP 2018048189 W JP2018048189 W JP 2018048189W WO 2019131893 A1 WO2019131893 A1 WO 2019131893A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
fiber
fibers
ply
oriented
Prior art date
Application number
PCT/JP2018/048189
Other languages
French (fr)
Japanese (ja)
Inventor
周 水口
展雄 武田
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2019562175A priority Critical patent/JPWO2019131893A1/en
Publication of WO2019131893A1 publication Critical patent/WO2019131893A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Definitions

  • the present invention relates to composite materials, laminated structures, aircraft wings and methods of making composite materials.
  • Composite materials are widely used in structures such as aircrafts and satellites because they are lightweight, have high strength, and can be freely designed to have strength and rigidity depending on applications.
  • the load or external force acting on such a structure is not uniform depending on the position on the structure. For this reason, according to the position on a structure, the weight reduction can be achieved, securing rigidity required for the position by changing the number of sheets of the composite material to laminate
  • U.S. Pat. No. 5,956,015 describes a composite laminate that reduces the weight of the wing skin without sacrificing flexural strength, flexural rigidity and damage tolerance.
  • first plurality of plies comprising longitudinally oriented reinforcing fibers with respect to the main loading direction, and reinforcing fibers oriented at an angle of between 15 degrees and 35 degrees to the main loading direction.
  • a laminate of the second plurality of plies is described.
  • the thickness is changed so as to form a gentle taper, the waste of material increases and the weight of the structure increases.
  • providing a gradual taper of 1:50 to 1: 100 may result in a weight gain of 30% or more as compared to a steep taper of 1: 5.
  • An object of the present invention is to provide a composite material, a laminated structure, a wing of an aircraft, and a method of manufacturing the composite material, which can achieve both suppression of delamination and weight reduction.
  • the composite material according to one aspect of the present invention is integrally connected to the main body in which the first fibers are oriented in the first direction and the end of the main body in the first direction in the matrix. It is equipped with a stress relieving portion provided.
  • the second fibers of the stress relieving portion continuous with the first fibers of the main body portion are oriented along a second direction which forms an acute angle with the first direction.
  • the main body portion in which the first fiber is oriented in the first direction is provided, while maintaining the elastic modulus in the first direction, the second direction having an acute angle with the first direction
  • the elastic modulus in the first direction at the end becomes small. For this reason, when laminating such a composite material, for example, stress concentration occurring at the end can be alleviated and peeling can be suppressed due to the high elastic modulus of the end. .
  • the first and second fibers are continuous, stress concentration at this boundary is also avoided.
  • the composite material according to another aspect of the present invention is connected to the first main body portion in which the first fibers are oriented in the first direction, and the one end portion of the first main body portion in the first direction. And a stress relaxation portion in which a second fiber continuous to the first fiber is oriented along a curve including a straight line directed in a third direction perpendicular to the first direction as a tangent. .
  • the stress relaxation portion in which the second fiber continuous to the first fiber is oriented is provided along the curve including, as a tangent, a straight line directed in the third direction perpendicular to the first direction, while maintaining the elastic modulus with respect to the first direction in one direction, the elastic modulus in multiple directions including the first direction in the stress relaxation portion decreases. For this reason, when laminating such a composite material, for example, the stress concentration generated in the portion corresponding to the stress relaxation portion is alleviated due to the high elastic modulus, and the peeling is suppressed. It becomes possible.
  • a third fiber continuous to the second fiber is oriented along a fourth direction toward the other end in the first direction of the first main body portion, integrally connected to the stress relieving portion, You may further provide the 2nd main-body part laminated
  • the third fibers continuous with the second fibers may be oriented in the fourth direction.
  • the fourth direction may form an acute angle with the first direction, or may be parallel to the first direction.
  • the curve indicating the orientation of the second fiber in the stress relieving portion may be a circular arc, an ellipse, or any other curve, but it is possible to continuously and smoothly connect the first fiber and the third fiber preferable.
  • a partially linear portion for example, a curve having a large radius of curvature may be included.
  • a laminated structure according to another aspect of the present invention includes a second composite material that is longer than the composite material in the first direction, and the composite material stacked on the second composite material.
  • the composite material provided with the above-described stress relaxation portion can be used as the composite material laminated on the second composite material, it is possible to reduce the stress concentration generated at the end. As a result, it is possible to suppress exfoliation between the second composite material.
  • the fibers included in the second composite material may not necessarily be oriented in the first direction, and may be oriented in different directions (for example, 90 degrees or ⁇ 45 degrees).
  • a composite material comprising fibers oriented in different directions may be further laminated in the gap with the composite material or above and below.
  • another composite material comprising fibers oriented at +45 degrees
  • yet another composite material comprising fibers oriented at -45 degrees
  • the composite materials of the above may be laminated in order.
  • the fibers may be made of the same material among the composite materials.
  • glass fibers or carbon reinforced fibers can be used as the fibers.
  • the resin the same material may be used among the composite materials, and for example, an epoxy resin or a carbon resin can be used as the resin.
  • an aircraft wing according to another aspect of the present invention includes the above-described laminated structure.
  • Another aspect of the present invention is a method of producing a composite material. Then, preparing a composite material in which fibers are oriented in a first direction into the matrix, and shearing the end of the composite material in a direction perpendicular to the first direction, And a body portion in which the first fibers are oriented along the direction, and an end portion of the body portion in the first direction, integrally provided, along a second direction forming an acute angle with the first direction Providing a stress relieving portion in which the second fibers continuous with the first fibers are oriented.
  • a step of preparing a composite material in which fibers are oriented in a first direction in a base material, and bending an intermediate portion in the first direction of the base material A first main body portion in which the first fibers are oriented in the first direction, and one end of the first main body portion in the first direction are integrally provided in the base material, in the first direction;
  • Providing including.
  • a stress relaxation portion in which the second fiber continuous to the first fiber is oriented along a curve including, as a tangent, a straight line directed in the third direction perpendicular to the first direction.
  • the elastic modulus in the first direction in the stress relaxation portion decreases. For this reason, when laminating such a composite material, for example, the stress concentration generated in the portion corresponding to the stress relaxation portion is alleviated due to the high elastic modulus, and the peeling is suppressed. It is possible to produce composite materials.
  • a middle part means the part which is not an edge part, and it is not restricted to the part which bisects the both ends of a base material. Therefore, the length in the first direction of the first main body and the length in the first direction of the second main body may be different. Also, the portion to be bent may not necessarily be perpendicular to the first direction. It is also possible to adjust the fourth direction by bending the first direction at an acute angle. After that, if necessary, the composite material can be cut to obtain a composite material having a desired shape.
  • the third direction may be a stacking direction, but may be an in-plane direction perpendicular to the first direction.
  • the base material is preferably in the form of a layer, but is not limited thereto.
  • the present invention it is possible to provide a composite material, a laminated structure, a wing of an aircraft, and a method of manufacturing the composite material, which can achieve both suppression of delamination and weight reduction.
  • FIG. 1A is a plan view conceptually showing a laminated structure 10 according to the first embodiment of the present invention
  • FIG. 1B is a front view of the laminated structure 10.
  • FIG. 2A is a plan view conceptually showing the laminated structure 100 of the comparative example
  • FIG. 2B is a front view of the laminated structure 100. As shown in FIG.
  • the laminated structure 10 includes a base ply 12 (an example of a “second composite material”) and a ply 14 (“composite material”) laminated on the ply 12. And a ply 16 (an example of a “base material” made of a “composite material”) laminated on the ply 14.
  • Each ply 12, the ply 14 and the ply 16 have a sheet-like layer structure made of CFRP (Carbon Fiber Reinforced Plastic), and are provided with fibers oriented in a predetermined direction in a resin.
  • CFRP Carbon Fiber Reinforced Plastic
  • Each ply of the laminated structure 10 is integrally molded by being heated and pressurized in an autoclave.
  • the laminated structure 10 does not have to be a double layer of the ply 14 and the ply 16, and may be only the ply 14 or the ply 16. Furthermore, other plies may be laminated.
  • the material and content of the resin and fibers of the ply 12, the ply 14 and the ply 16 of the laminated structure 10 can be appropriately set without changing the gist of the present invention.
  • the resin may be thermoplastic or thermosetting, and the fibers may be carbon fibers or glass fibers and the like.
  • the thickness and shape of the layer structure of the ply 12, the ply 14 and the ply 16 can be appropriately set according to the purpose and the like. Further, the ply 12, the ply 14 and the ply 16 do not have to be made of the same material, and for example, the materials of the resins contained in the ply 12 and the ply 14 may be made different. Furthermore, as described in detail later, plies having the same or different fiber orientations may be further stacked between each ply 12, ply 14 and ply 16 or up and down. Furthermore, a cover ply may be provided.
  • the orientation direction of the fibers 16C of the ply 16 is shown in FIG. 1A.
  • first direction and is referred to as "longitudinal direction X" or "0 degree direction”
  • first direction and is referred to as "longitudinal direction X" or "0 degree direction”
  • main portion 16A an example of a “main portion”.
  • each fiber 16C of the ply 16 is bent in the vicinity of the end on the other end side in the longitudinal direction X, and in a direction X1 (an example of “second direction”) forming an acute angle with the longitudinal direction X in plan view. It is oriented in parallel. In the present embodiment, the angle of the direction X1 with respect to the longitudinal direction X is +45 degrees.
  • a region in which the fibers 16C are oriented along the direction X1 is referred to as a stress relaxation portion 16B (an example of a "stress relaxation portion").
  • the length of the stress relaxation portion 16B is, for example, 5 mm, and the length of the main body portion 16A has a length of 10 times or more.
  • the lower ply 14 of the ply 16 also has a similar structure. Specifically, the fibers of the ply 14 are oriented parallel to the longitudinal direction X from one end of the ply 14 to the vicinity of the other end, bent near the end, and oriented parallel to the direction X1. For this reason, the ply 14 also includes the main body portion 14A and the stress relief portion 14B at substantially the same position as the ply 16 in the longitudinal direction X.
  • the length of the ply 14 in the first direction may be longer than that of the ply 16 so that the thickness of the stacked structure 10 in the stacking direction Z may be different. Furthermore, a plurality of plies having different lengths in the first direction may be stacked on the ply 16 as well.
  • FRP Fiber Reinforced Plastic
  • CFRP Fiber Reinforced Plastic
  • the elastic modulus in the direction different from the orientation direction is greatly reduced.
  • the elastic modulus in the direction different by 20 degrees from the orientation direction drops to about half of the elastic modulus in the orientation direction.
  • the elastic modulus of the main body portion 16A and the main body portion 14A in the longitudinal direction X is about 200 GPa
  • the elastic modulus of the stress relaxation portion 16B and the stress relaxation portion 14B is 50 GPa or less.
  • a ply containing fibers oriented in the depth direction Y (or “90 degree direction”) perpendicular to the longitudinal direction X and the stacking direction Z on the ply 16, +45 degrees from the longitudinal direction X and the depth direction Y
  • a ply containing fibers oriented in a direction, and a ply containing fibers oriented in the direction of ⁇ 45 degrees from the longitudinal direction X and the depth direction Y can be laminated repeatedly in random order.
  • a plurality of plies in which fibers are oriented in the 0 degree direction, +45 degree direction, -45 degree direction, and 90 degree direction can be repeatedly laminated.
  • the fibers of the ply 12 disposed below the ply 14 may be oriented in the 0 degree direction from one end of the longitudinal direction X to the other end.
  • the ply 12 is formed to be longer than the plies 16 and 14 in the longitudinal direction X. Unlike the plies 16 and 14, the fibers of the ply 12 are not oriented parallel to the direction X1 at the ends. However, it is not limited to this. For example, when the ply 12 is further laminated on another ply, the end of the fiber of the ply 12 whose thickness in the laminating direction changes is bent and oriented parallel to the direction X1 forming an acute angle with the longitudinal direction X It may be configured as follows. In that case, the ply 12 also has a body portion and a stress relief portion.
  • the fibers of the ply 12, the ply 14 and the ply 16 are not oriented in the stacking direction Z of the ply 12, the ply 14 and the ply 16. However, it is not limited to this.
  • FIG. 2A is a plan view of the laminated structure 100 according to the comparative example
  • FIG. 2B is a front view of the laminated structure 100.
  • the laminated structure 100 includes a base ply 120, a ply 140 stacked on the ply 120, and a ply 160 stacked on the ply 140.
  • Each ply 120, the ply 140 and the ply 160 have a sheet-like layer structure made of CFRP.
  • the fibers 160C of the ply 160 of the laminate structure 100 and the fibers of the ply 140 are oriented parallel to the longitudinal direction X over the entire area from one end to the other in the longitudinal direction X. There is.
  • the elastic modulus in the longitudinal direction X of the ply 140 is uniformly high, a large stress is generated for a predetermined strain. As a result, stress is concentrated at the end portion of the ply 140 whose thickness is changed, and a large peel stress and shear stress which cause peeling from the lower ply 120 occur. Further, in the laminated structure 100, since the elastic modulus also changes in the laminating direction as the thickness changes, the neutral axis of the cross section shifts to the ply 140 side, and a secondary bending deformation also occurs due to the tensile load. Do. As a result, a large bending moment is generated in the vicinity of the end of the ply 140, which causes a crack to occur and progress.
  • the elastic modulus in the longitudinal direction X of the stress relaxation portion 14B of the ply 14 is not more than half the elastic modulus of the main body portion 14A, the stress generated for a predetermined strain is also relative As small as As a result, it is possible to suppress the stress concentration in the stress relieving portion 14B and the generation of a crack associated therewith.
  • the stress relaxation portion 14B is provided, the change in elastic modulus in the stacking direction is also smaller than that in the stacked structure 100. Therefore, the neutral axis of the cross section does not change significantly, and secondary bending deformation due to tensile load is suppressed. As a result, the bending moment in the vicinity of the end portion of the ply 14 is reduced, so that it is possible to suppress the occurrence and progress of the crack as compared with the laminated structure 100.
  • FIG. 3A is a front view of the laminated structure 200 according to the comparative example
  • FIG. 3B is a front view of the laminated structure 300 according to the comparative example
  • FIG. 3C is a front view of the laminated structure 20 according to the present invention
  • FIG. These show the front view of the laminated structure 30 which concerns on this invention.
  • FIG. 4A is an enlarged view of a portion where the thickness direction of the laminated structure 200 changes
  • FIG. 4B is an enlarged view of the laminated structure 300
  • FIG. 4C is an enlarged view of the laminated structure 20, FIG. These show the same enlarged view of the laminated structure 30.
  • FIG. 4A is an enlarged view of a portion where the thickness direction of the laminated structure 200 changes
  • FIG. 4B is an enlarged view of the laminated structure 300
  • FIG. 4C is an enlarged view of the laminated structure 20, FIG. These show the same enlarged view of the laminated structure 30.
  • Each of the laminated structures 200, 300, 20 and 30 is a structure in which a plurality of plies made of T700SC / 2592 are laminated, and the length in the longitudinal direction X is 180 mm, and the length in the depth direction Y is , 10 mm. Both ends in the longitudinal direction X form thick portions where the thickness in the stacking direction Z is large, and 16 plies each having a thickness of about 100 ⁇ m (for example, 125 ⁇ m) are stacked. The central portion forms a thin portion having a small thickness in the stacking direction Z, and eight plies are stacked.
  • the fibers of each ply of the laminated structure 200 are uniformly oriented in the 0 degree direction, that is, in the longitudinal direction X from one end to the other end.
  • the fibers of each ply of the laminated structure 300 are also uniformly oriented in the 0 degree direction, that is, in the longitudinal direction X from one end to the other end.
  • the variation in the stacking direction Z is gentler than that of the stacked structure 200 in the 10: 1 taper (ie, 1 mm variation in the stacking direction).
  • a lower ply portion 22 in which eight plies are laminated and a ply portion 24 in which eight plies are laminated and laminated on the ply portion 22 (an example of a “composite material”) Equipped with The fibers of each ply of the ply portion 22 are oriented in the 0 degree direction.
  • the ply portion 24 includes a main portion 24A in which the fibers of each ply are oriented in the 0 degree direction, and a stress relaxation portion 24B in which the fibers are bent and oriented in the +45 degree direction.
  • the length of the stress relaxation portion 24B in the longitudinal direction X is 5 mm. Since each ply of the ply portion 24 is laminated after providing the stress relieving portion 24B by in-plane shear deformation, the thickness in the laminating direction Z is larger than that of the main portion 24A.
  • a lower ply portion 32 in which eight plies are laminated and a ply portion 34 in which eight plies are laminated and laminated on the ply portion 32 (an example of a “composite material”) Equipped with The fibers of each ply of the ply portion 32 are oriented in the 0 degree direction.
  • the ply portion 34 is integrally provided by connecting the body portion in which the fibers are oriented in the 0 ° direction and the end portion of the body portion, and the fibers connected to the fibers in the body portion are oriented in the + 45 ° direction
  • the ply portion 34 has a main portion 34A in which the fibers of each ply are oriented in the 0 degree direction and a stress relaxation portion 34B in which the fibers are bent and alternately oriented in the +45 degree direction or -45 degree direction.
  • the length of the stress relaxation portion 34B in the longitudinal direction X is 5 mm.
  • a tensile fatigue test was performed on such a laminated structure 200, 300, 20, and 30 under the conditions of a maximum load of 4000 N, a load ratio of 0.1, and a test frequency of 8 Hz.
  • FIG. 5 shows the test results of the laminated structures 200, 300 and 20.
  • the horizontal axis represents the number of cycles at which the maximum load is applied at the test frequency, and the vertical axis represents the delamination length.
  • the laminated structure 200 is shown to have exfoliation occurring from 2000 to 3000 times. After the occurrence of peeling, peeling progressed in proportion to the number of times of load application, and when a load of about 10,000 times was applied, peeling of 40 mm or more was formed.
  • peeling occurs in the laminated structure 300 from 9000 times to 10000 times. And after 12000 times, peeling progressed in proportion to the number of times of load application, and when load of about 17000 times was applied, peeling of 50 mm or more was formed.
  • the laminated structure 20 was significantly superior to the other laminated structures 30, 200, and 300 in that peeling occurred at 28,000 times to 29,000 times. Thereafter, the progress of peeling is suppressed, and it is shown that the progress of peeling is within 5 mm, that is, in the stress relaxation portion 24B even when a load of 6000 times (34000 times in total) is applied after the peeling occurs. It was done. Peeling progressed to the same extent as laminated structure 300 after 35000 times after that.
  • the main body portions 16A, 24A and 34A are provided, it is possible to withstand the load in the longitudinal direction X, and the stress relieving portion 16B. , 24B and 34B, it is possible to suppress the occurrence and progress of peeling.
  • laminated structure 10, 20 and 30 can also be manufactured by a different method.
  • the resin may be impregnated and molded.
  • the composite according to the present invention using a known manufacturing technology (RTM (Resin Transfer Molding), RFI (Resin Film Infusion), CPM (Compression Press Molding), FW (Filament Winding), LFT (Long Fiber Thermoplastic), etc.) Materials and laminate structures can be manufactured.
  • RTM Resin Transfer Molding
  • RFI Resin Film Infusion
  • CPM Compression Press Molding
  • FW Filament Winding
  • LFT Long Fiber Thermoplastic
  • a sheet-like prepreg in which fibers are oriented in a predetermined direction is prepared.
  • a CFRP prepreg can be used as a base material.
  • the end portion of such a prepreg (for example, a region within 5 mm to 10 mm from the end surface of the prepreg) is sheared in an in-plane direction perpendicular to the fiber orientation to correspond to the main portion and the stress relaxation portion Provide an area.
  • a method for shear deformation for example, a region corresponding to the main body maintaining the orientation direction of the fiber constant is gripped and fixed, and an end portion to be a free end is gripped to be in a plane perpendicular to the fiber orientation direction.
  • the end of the prepreg can be sheared and deformed. By changing the amount of movement in the shearing direction, it is possible to adjust the orientation direction of the fibers.
  • the orientation direction can be changed in the 45 ° direction by moving approximately 10 mm in the in-plane direction perpendicular to the orientation direction of the fibers.
  • shear deformation it is possible to use a robot provided in the automatic stacking apparatus, or it may be deformed manually while being heated.
  • the elastic modulus rapidly decreases in the direction different from the orientation direction.
  • the elastic modulus is halved when it deviates 20 degrees from the orientation direction, and a nearly constant low elastic modulus is maintained when it deviates by 45 degrees or more.
  • it is not always necessary to bend the fibers in the correct orientation direction.
  • variation in orientation between fibers can be tolerated.
  • a portion corresponding to the main body portion in which the fiber orientation direction is constant and an end portion in the fiber orientation direction of the main body portion are integrally provided to be bent, As a result, for example, it is possible to provide a prepreg including a portion corresponding to the stress relaxation portion in which the fibers are oriented along the 45 ° direction.
  • such a prepreg is cut into a desired shape.
  • the end face of each fiber is not 45 degrees It can align so that it may turn to the 0 degree direction which is an orientation direction of textiles in a main part.
  • Each fiber itself has a high elastic modulus in the axial direction, for example, in the stress relaxation portion whose orientation direction is changed in the 45-degree direction, the axis of the fiber, not the 45-degree direction perpendicular to the axial direction of the fibers
  • the present invention is not limited to this, and shear deformation may be performed after the shape is adjusted by cutting or the like.
  • the fiber may be bent to change the orientation direction by means other than shear deformation.
  • the laminated structure including the main body portion and the stress relieving portion can be integrally formed.
  • Such a laminated structure can be applied to transportation devices such as aircraft fuselages and wings, artificial satellites, automobiles, ships and the like.
  • the bottom of the skin of an aircraft wing is provided with a plurality of inspection openings called access holes. Since a large load is applied to the peripheral portion of the access hole, it is necessary to increase the thickness of the composite material. On the other hand, it is necessary to reduce the thickness of the composite material and achieve weight reduction at a position away from the peripheral portion and not subjected to a large load. By applying the laminated structure according to the present embodiment to such a portion, it is possible to achieve both suppression of delamination and weight reduction.
  • the laminated structure according to the present embodiment By using the above, it is possible to suppress the easy peeling of the laminated structure attached.
  • the laminated structure which concerns on this embodiment is applicable also to the structure of other parts, such as a fuselage
  • the length in the longitudinal direction X of the composite material according to the above embodiment is, for example, several tens of mm or more, but each composite material and the fibers contained therein may be shorter.
  • CFRP can be cut by using a short pulse laser such as a femtosecond laser.
  • the laser is used to cut in a brick shape so that the length in the longitudinal direction is 5 to 10 mm or less, and each particle has a fixed fiber orientation direction while maintaining the aligned state of each particle
  • a composite material can be formed that includes a body portion and a stress relaxation portion in which the orientation direction of these fibers is bent. Under the present circumstances, it may be made a structure which can absorb energy by filling between each particle
  • Such a composite material has a problem that brittle fracture occurs from the end due to fatigue, a stress relaxation portion is provided at the end of each particle to reduce stress concentration by reducing the elastic modulus in the longitudinal direction. Since it is possible, it becomes possible to control the brittle fracture from the end.
  • the configuration is such that the height in the stacking direction Z gradually increases from the end face of the stress relaxation portion 16B toward the main body portion 16A by chamfering (in other words, the length in the longitudinal direction X It is good also as composition which becomes small. With such a configuration, it is possible to further reduce the elastic modulus in the longitudinal direction X of the stress relaxation portion 16B.
  • the laminated structures 10, 20, and 30 according to the above embodiments may include one or more cover plies. By providing such a cover ply and covering the upper surface facing in the stacking direction Z with the cover ply, it is possible to further suppress delamination.
  • the fiber orientation in the longitudinal direction X in the horizontal portion of the cover ply to be laminated on the main body portion 16A and the stress relaxation portion 16B is stress relaxation portion. From 16B, for the portion where the inclination varies toward the ply 12, the fiber orientation is in the direction X1, and then for the tapered portion toward the ply 12 while maintaining the inclination, the fiber orientation is again in the longitudinal direction X, The fiber orientation is in the direction X1 for the part reaching the ply 12 and the inclination is changed again in the horizontal direction, and for the horizontal part along the upper surface of the ply 12 in the longitudinal direction X. It can be structured as
  • the stress relaxation portion having a low elastic modulus in the portion where the stress is discontinuous, it becomes possible to suppress the occurrence of peeling due to the concentration of the stress in that portion.
  • the stress concentration at the tip of the CFRP disposed diagonally can be relaxed.
  • FIG. 6 is a perspective view of a laminated structure 60 according to a fifth modification.
  • the laminated structure described above has an object of alleviating stress concentration generated at an end in the longitudinal direction X, which is a direction in which a load is applied.
  • the stress relaxation portion 62B is provided at the free end of the depth direction Y end of the ply 62 including the fibers oriented in the 90 ° direction.
  • the ply 62 is integrally connected to the end of the main portion 62A in which the first fibers 62C are oriented in the depth direction Y and the end of the main portion 62A in the depth direction Y in the base material.
  • a stress relaxation portion 62B in which the first fibers 62C are oriented along a direction (for example, the X1 direction) forming an acute angle with the depth direction Y.
  • Another layer of the laminated structure 60 may be provided with a stress relaxation portion which relieves stress concentration generated at the end in the longitudinal direction X.
  • a stress relaxation portion which relieves stress concentration generated at the end in the longitudinal direction X.
  • a body portion in which fibers are oriented along the longitudinal direction X, and a tip portion continuous to the fibers along a direction (for example, X1 direction) forming an acute angle with the longitudinal direction X The stress relieving portion may be provided.
  • FIG. 7A is a plan view of the laminated structure 70 according to the second embodiment
  • FIG. 7B is a front view of the laminated structure 70.
  • the laminated structure 70 comprises at least a ply 12 and a ply 74 laminated on the ply 12.
  • the ply 74 has a structure in which the central portion is folded and laminated. Specifically, it is connected to a first main portion 74A1 in which fibers 74C1 (an example of "first fibers”) are oriented along the longitudinal direction X, and one end in the longitudinal direction X of the first main portion 74A1.
  • the stress relieving portion 74B (one example of “second fibers”) integrally provided and continuous to the fiber 74C1 is curvilinearly oriented, and the stress relieving part 74B (one example of “intermediate part”)
  • An example of a fiber 74C3 (“third fiber") continuous with the fiber 74C2 along the longitudinal direction X (an example of the "fourth direction") which is integrally provided and connected to the other end of the first main body 74A1 ) Is provided, and the second main body 74A2 is provided.
  • FIG. 7A also shows the orientation direction of the fibers 74C3 in the second main portion 74A2 that is the lower layer of the first main portion 74A1 in order to easily show the orientation direction of the fibers 74C.
  • the fibers 74C1 and the fibers 74C3 are oriented along the longitudinal direction X in parallel with each other, slightly separated in the depth direction Y.
  • the fibers 74C1 and the fibers 74C3 connected to the fibers 74C3 are smoothly bent so as to form an arc-shaped curve having a diameter larger than the distance between the fibers 74C1 and the fibers 74C3 in a plan view.
  • two tangents (L11 and L21 in FIG. 8) at both ends in the depth direction Y are directed in the longitudinal direction X and a tangent at one end in the longitudinal direction X (L31 in FIG.
  • An example of “a straight line facing in the direction” faces in the depth direction Y.
  • the fibers 74C1 and the fibers 74C3 are slightly separated in the stacking direction Z and oriented parallel to one another along the longitudinal direction X. Further, the fibers 74C2 are connected to the fibers 74C1 and the fibers 74C3 by drawing a gentle curve. For this reason, a tangent at one end of the longitudinal direction X of the fiber 74C2 (an example of “a straight line facing the third direction”) faces the stacking direction Z.
  • the fibers 74C2 in the stress relieving portion 74B are spirally bent so as to advance in the stacking direction Z while drawing a loop.
  • the elastic modulus of the stress relieving portion 74B is not only in the longitudinal direction X but also in any direction, the longitudinal direction X of the main body portion 74A1.
  • FIG. 8 shows a modification of the shape of the fibers 74C as viewed in the stacking direction Z.
  • FIG. 8A shows the shape of the fibers 74C1 '.
  • the fibers 74C1 ' have the same shape as the fibers 74C. That is, the fibers 74C11 'and the fibers 74C31' are oriented parallel to each other and in the longitudinal direction X while being slightly separated from each other in the depth direction Y, and the fibers 74C21 'are more than the distance between the fibers 74C11' and 74C31 '. It is smoothly curved to form an arc-shaped curve having a wide diameter.
  • the two tangents L11 and L21 at both ends in the depth direction Y are in the longitudinal direction X, and the tangent L31 at one end in the longitudinal direction X (a straight line facing the third direction) ) Is facing in the depth direction Y.
  • the fiber 74C shown in FIG. 7 is provided over the laminated structure of the main body 74A1 and the main body 74A2 by bending the ply 74
  • the fiber 74C1 ′ shown in FIG. 8A consists of a single layer It is provided in the ply.
  • a single main body including fibers 74C11 'oriented along the longitudinal direction X and fibers 74C31' oriented along the longitudinal direction X, and one end in the longitudinal direction of the main body
  • the stress relieving portion is integrally provided, and a fiber 74C21 'continuous to the fiber 74C11' and the fiber 74C31 'is oriented along a curve.
  • the elastic modulus of the stress relaxation portion is relatively small not only in the longitudinal direction X but also in any direction (for example, not more than half the elastic modulus in the longitudinal direction X of the main body 74A1) Have. Therefore, for example, even when a load in the direction X1 is received, it is possible to relieve the stress concentration.
  • the fibers 74C21 'of the stress relaxation portion of two adjacent fibers 74C1' may be arranged to overlap.
  • FIG. 8B also shows the shape of the fibers 74C2 '.
  • the fibers 74C22 ' may have an elliptical curve whose minor axis is the distance between the fibers 74C12' and the fibers 74C32 '.
  • a tangent L32 (an example of a "straight line pointing in the third direction") at one end in the longitudinal direction X is directed in the depth direction Y.
  • the curve of the fiber 74C12 'connecting the fiber 74C12' and the fiber 74C32 ' may be an ellipse, an arc, another higher order curve, or a combination of two or more thereof, and the curvature is partially small. It may include a portion that looks straight. Further, the fibers 74C12 'and the fibers 74C32' may be provided in the same main body, or may be provided in different main bodies by being bent.
  • FIG. 8C also shows the shape of the fiber 74C3 '.
  • the fibers 74C13 'and the fibers 74C33' are bent at the stress relieving portion provided with the fibers 74C23 'so as to substantially overlap when viewed in the stacking direction Z. Even in such a shape, the tangent L33 at one end of the longitudinal direction X of the fiber 74C23 'is directed in the depth direction Y.
  • FIG. 8D also shows the shape of the fibers 74C4 '.
  • the fibers 74C14 ' are oriented in the longitudinal direction X, and the fibers 74C34' are in the direction X2 ("fourth direction") forming an acute angle (eg 45 degrees) with the longitudinal direction X (Example) oriented.
  • the fibers 74C24 ' are bent at the stress relieving portion provided. Even in such a shape, the tangent L34 at one end of the longitudinal direction X of the fiber 74C24 'is directed in the depth direction Y. Further, tangents L14 and L24 at both ends in the depth direction Y are in the longitudinal direction X.
  • the elastic modulus of each of the stress relaxation portions provided with the fibers 74C21 'to 74C24' is smaller than the elastic modulus in the longitudinal direction X of the main body portion 74A1 in any direction (for example, , Half or less). Therefore, for example, even when a load in the direction X1 is received, it is possible to relieve the stress concentration.
  • the composite material shown in FIG. 8D has a high elastic modulus not only in the longitudinal direction X but also in the direction X2. For this reason, it is possible to suitably use a composite material in which a fiber 74C4 'as shown in FIG. 8D is provided at a place where it is known that a strong load is applied in two directions (longitudinal direction X and direction X2). Become.
  • the position at which the base material is bent does not necessarily have to be the central portion in the longitudinal direction X.
  • the base material may be bent at a position deviated from the central portion in the longitudinal direction X so that the length in the longitudinal direction X of the first body portion and the length in the longitudinal direction X of the second body portion are different. .
  • FIG. 9 is a view for explaining an example of a process of bending a base material performed by the automatic laminating apparatus M in order to produce the composite material as described above.
  • the composite material and the laminated structure according to the present invention can be manufactured by various methods. For example, a dry fiber is bent to form a desired laminated structure, and then the resin is impregnated. You may do so.
  • the automatic laminating apparatus M includes two adjacent cylindrical rollers R1 and R2 and a stage S.
  • a layered prepreg sheet P in which fibers are oriented in a predetermined direction in a base material is prepared.
  • the prepreg sheet P is passed using the roller R1 while passing the prepreg sheet P through the gap between the roller R1 and the roller R2 so that the orientation direction of the fibers of the prepreg sheet P and the moving direction by rotation of the roller R1 coincide. It is pressed against the stage S. As a result, a prepreg sheet P in which the fibers are oriented in the same direction as the moving direction of the roller R1 is disposed on the stage S.
  • FIG. 9B shows a state in which the prepreg sheet P is disposed on the stage S while the roller R1 and the roller R2 move in the right direction in the drawing by rotating.
  • the roller R1 and the roller R2 are rotated in the opposite direction, and the prepreg sheet P is pressed against the prepreg sheet P disposed on the stage S using the roller R1 using the roller R2, so that the base material is intermediate A process of folding the part and laminating the base material is performed.
  • FIG. 9C shows a state in which the prepreg sheet P is laminated while the roller R1 and the roller R2 move to the left in the drawing respectively by rotating in the opposite direction.
  • FIG. 10 shows the manufactured laminated structure 70 '.
  • the laminated structure 70 ′ comprises a ply 12 and four plies 74 ′ laminated on the ply 12.
  • each ply 74 ′ has the same configuration as the ply 74.
  • the first main body portion in the upper layer, the second main body portion in the lower layer, and a stress relaxation portion (an example of an “intermediate portion”) connecting these are provided.
  • the four plies 74 ' are provided such that the length in the longitudinal direction X becomes smaller as the upper layer becomes. Therefore, as a result of the position in the longitudinal direction X of the stress relieving portions 74B 'of each ply 74' being different, the laminated structure 70 'has a tapered shape as shown in FIG. Furthermore, a cover ply CP is provided above the stacking direction Z of the four plies 74 'so as to cover the stress relieving portion 74B'.
  • Each of the laminated structure 70 ′ and the standard test piece was subjected to a tensile test, and the number of cycles when broken was measured.
  • the standard test piece is provided with the cover ply CP after laminating 8 plies so as to have a taper of 5: 1 equivalent to the ply 74'. It has a structure.

Abstract

Provided is a composite material that achieves weight reduction and separation prevention. The composite material comprises: a body section 16A in which fibers 16C are aligned in a matrix in a first direction X; and a stress relief section 16B which is integrally provided connected to an end of the body section 16A in the first direction X, and in which fibers 16C are aligned in a second direction X1 that forms an acute angle with the first direction X, such fibers being continuous with the fibers of the body section 16A.

Description

複合材料、積層構造体、航空機の翼及び複合材料の製造方法Composite material, laminated structure, wing of aircraft, and method of manufacturing composite material
 本発明は、複合材料、積層構造体、航空機の翼及び複合材料の製造方法に関する。 The present invention relates to composite materials, laminated structures, aircraft wings and methods of making composite materials.
 複合材料は、軽量で高強度を有し、用途に応じて強度や剛性を自由に設計することができるため、航空機や人工衛星をはじめとする構造体に幅広く利用されている。このような構造体に作用する荷重や外力は、構造体上の位置に応じて一様ではない。このため、構造体上の位置に応じて、積層する複合材料の枚数を異ならせることで、その位置に必要な剛性を確保しつつ、軽量化を図ることができる。 Composite materials are widely used in structures such as aircrafts and satellites because they are lightweight, have high strength, and can be freely designed to have strength and rigidity depending on applications. The load or external force acting on such a structure is not uniform depending on the position on the structure. For this reason, according to the position on a structure, the weight reduction can be achieved, securing rigidity required for the position by changing the number of sheets of the composite material to laminate | stack.
 特許文献1には、曲げ強度、曲げ剛性及び損傷許容性を犠牲にすることなしに、ウイングスキンの重さを減少させる複合材料の積層板が記載されている。 U.S. Pat. No. 5,956,015 describes a composite laminate that reduces the weight of the wing skin without sacrificing flexural strength, flexural rigidity and damage tolerance.
 具体的には、主要な荷重方向に関して、縦方向に方向づけられる強化用繊維を備える第1の複数のプライと、主要な荷重方向と15度以上35度以下の角度に方向づけられる強化用繊維を備える第2の複数のプライからなる積層板が記載されている。 Specifically, it comprises a first plurality of plies comprising longitudinally oriented reinforcing fibers with respect to the main loading direction, and reinforcing fibers oriented at an angle of between 15 degrees and 35 degrees to the main loading direction. A laminate of the second plurality of plies is described.
特開2015-214027号公報JP, 2015-214027, A
 しかしながら、積層する枚数を変動させることで厚みを変化させる際に、軽量化を重視してテーパを急峻にすると、偏心による曲げ応力が発生するため、亀裂や剥離を引き起こしやすい。特許文献1に記載されるように、繊維の配向方向が異なるプライを積層させても、依然として繊維が長手方向に配向するゼロ層の端部から亀裂や剥離が発生してしまう。 However, when the thickness is changed by changing the number of laminated layers, if the taper is made sharp with emphasis on weight reduction, a bending stress due to the eccentricity is generated, and thus cracking and peeling are likely to occur. As described in Patent Document 1, even if plies having different fiber orientations are laminated, cracks and peeling still occur from the end of the zero layer in which the fibers are oriented in the longitudinal direction.
 一方で、緩やかなテーパを形成するように厚みを変化させると、材料の無駄が多くなり、構造体の重量が増加してしまう。例えば、1:50から1:100の緩やかなテーパを設ける場合、1:5の急峻なテーパと比較して、30%以上の重量増加を招く場合がある。 On the other hand, if the thickness is changed so as to form a gentle taper, the waste of material increases and the weight of the structure increases. For example, providing a gradual taper of 1:50 to 1: 100 may result in a weight gain of 30% or more as compared to a steep taper of 1: 5.
 そこで本発明は、層間剥離の抑制と軽量化を両立することが可能になる複合材料、積層構造体、航空機の翼及び複合材料の製造方法を提供することを目的とする。 An object of the present invention is to provide a composite material, a laminated structure, a wing of an aircraft, and a method of manufacturing the composite material, which can achieve both suppression of delamination and weight reduction.
 本発明の一態様に係る複合材料は、母材中に、第1方向に沿って第1繊維が配向されている本体部と、この本体部の第1方向における端部に繋げて一体的に設けられる応力緩和部を備える。本体部の第1繊維と連続する応力緩和部の第2繊維は、第1方向に対して鋭角をなす第2方向に沿って配向されている。 The composite material according to one aspect of the present invention is integrally connected to the main body in which the first fibers are oriented in the first direction and the end of the main body in the first direction in the matrix. It is equipped with a stress relieving portion provided. The second fibers of the stress relieving portion continuous with the first fibers of the main body portion are oriented along a second direction which forms an acute angle with the first direction.
 この態様によれば、第1方向に第1繊維が配向されている本体部を備えているので、第1方向に対する弾性率を維持する一方で、第1方向に対して鋭角をなす第2方向に、第1繊維と連続する第2繊維が配向されている応力緩和部を備えているので、端部における第1方向の弾性率は小さくなる。このため、このような複合材料を例えば積層させた際に、端部が高い弾性率であることに起因して、端部に発生する応力集中を緩和し、剥離を抑制することが可能になる。また、第1繊維と第2繊維は連続しているので、この境界に応力が集中することも回避される。 According to this aspect, since the main body portion in which the first fiber is oriented in the first direction is provided, while maintaining the elastic modulus in the first direction, the second direction having an acute angle with the first direction In addition, since the second fiber continuous with the first fiber is provided with the stress relaxation portion, the elastic modulus in the first direction at the end becomes small. For this reason, when laminating such a composite material, for example, stress concentration occurring at the end can be alleviated and peeling can be suppressed due to the high elastic modulus of the end. . In addition, since the first and second fibers are continuous, stress concentration at this boundary is also avoided.
 さらに、加熱成形や環境の温度変化等に起因して発生する残留応力を緩和することも可能になる。 Furthermore, it also becomes possible to relieve the residual stress generated due to the heat molding, the temperature change of the environment and the like.
 本発明の他の態様に係る複合材料は、母材中に、第1方向に沿って第1繊維が配向されている第1本体部と、第1本体部の第1方向における一端部に繋げて一体的に設けられ、第1方向に垂直な第3方向を向いた直線を接線として含む曲線に沿って、第1繊維に連続する第2繊維が配向されている応力緩和部と、を備える。 The composite material according to another aspect of the present invention is connected to the first main body portion in which the first fibers are oriented in the first direction, and the one end portion of the first main body portion in the first direction. And a stress relaxation portion in which a second fiber continuous to the first fiber is oriented along a curve including a straight line directed in a third direction perpendicular to the first direction as a tangent. .
 この態様によれば、第1方向に垂直な第3方向を向いた直線を接線として含む曲線に沿って、第1繊維に連続する第2繊維が配向されている応力緩和部を備えるから、第1方向における第1方向に対する弾性率を維持する一方で、応力緩和部における第1方向を含む多方向における弾性率が小さくなる。このため、このような複合材料を例えば積層させた際に、応力緩和部に相当する部分が高い弾性率であることに起因して、この部分に発生する応力集中を緩和し、剥離を抑制することが可能になる。 According to this aspect, since the stress relaxation portion in which the second fiber continuous to the first fiber is oriented is provided along the curve including, as a tangent, a straight line directed in the third direction perpendicular to the first direction, While maintaining the elastic modulus with respect to the first direction in one direction, the elastic modulus in multiple directions including the first direction in the stress relaxation portion decreases. For this reason, when laminating such a composite material, for example, the stress concentration generated in the portion corresponding to the stress relaxation portion is alleviated due to the high elastic modulus, and the peeling is suppressed. It becomes possible.
 さらに、応力緩和部に繋げて一体的に設けられ、第1本体部の第1方向における他端部に向かう第4方向に沿って、第2繊維に連続する第3繊維が配向されており、第1本体部に積層される第2本体部を更に備えてもよい。 Furthermore, a third fiber continuous to the second fiber is oriented along a fourth direction toward the other end in the first direction of the first main body portion, integrally connected to the stress relieving portion, You may further provide the 2nd main-body part laminated | stacked on a 1st main-body part.
 あるいは、第1本体部中に、第2繊維に連続する第3繊維が第4方向に配向されていてもよい。 Alternatively, in the first body portion, the third fibers continuous with the second fibers may be oriented in the fourth direction.
 これら態様によれば、第4方向に対する弾性率を維持することも可能になる。第4方向は、第1方向と鋭角をなしてもよいし、第1方向と平行であってもよい。 According to these aspects, it is also possible to maintain the elastic modulus in the fourth direction. The fourth direction may form an acute angle with the first direction, or may be parallel to the first direction.
 応力緩和部における第2繊維の配向を示す曲線は、円弧であってもよいし、楕円その他の曲線であってもよいが、第1繊維及び第3繊維と連続して滑らかに接続することが好ましい。ただし、一部直線状の部分(例えば、曲率半径が大きい曲線)が含まれていてもよい。 The curve indicating the orientation of the second fiber in the stress relieving portion may be a circular arc, an ellipse, or any other curve, but it is possible to continuously and smoothly connect the first fiber and the third fiber preferable. However, a partially linear portion (for example, a curve having a large radius of curvature) may be included.
 また、本発明の他の態様に係る積層構造体は、第1方向に上記複合材料より長い第2の複合材料と、この第2の複合材料上に積層された上記複合材料とを備える。 In addition, a laminated structure according to another aspect of the present invention includes a second composite material that is longer than the composite material in the first direction, and the composite material stacked on the second composite material.
 この態様によれば、第2の複合材料上に積層される複合材料として上記のような応力緩和部を備える複合材料を用いることができるから、端部において発生する応力集中を緩和することが可能になり、その結果、第2の複合材料との間の剥離を抑制することが可能になる。 According to this aspect, since the composite material provided with the above-described stress relaxation portion can be used as the composite material laminated on the second composite material, it is possible to reduce the stress concentration generated at the end. As a result, it is possible to suppress exfoliation between the second composite material.
 なお、第2の複合材料が備える繊維は、必ずしも第1方向に配向されていなくてもよく、異なる方向(たとえば、90度または±45度)に配向されていてもよい。 The fibers included in the second composite material may not necessarily be oriented in the first direction, and may be oriented in different directions (for example, 90 degrees or ± 45 degrees).
 また、異なる方向に配向された繊維を備える複合材料を、上記複合材料との間隙または上下に更に積層させてもよい。たとえば、上記複合材料の上に、+45度に配向された繊維を備える別の複合材料、-45度に配向された繊維を備えるさらに別の複合材料、90度に配向された繊維を備えるさらに別の複合材料を順番に積層させてもよい。 Also, a composite material comprising fibers oriented in different directions may be further laminated in the gap with the composite material or above and below. For example, another composite material comprising fibers oriented at +45 degrees, yet another composite material comprising fibers oriented at -45 degrees, further comprising fibers oriented at 90 degrees above the composite material. The composite materials of the above may be laminated in order.
 また、繊維は、複合材料間で同じ材質のものを用いてもよく、例えば、ガラス繊維や炭素強化繊維を繊維として用いることができる。また、樹脂についても、複合材料間で同じ材質のものを用いてもよく、例えば、エポキシ樹脂やカーボン樹脂を樹脂として用いることができる。 The fibers may be made of the same material among the composite materials. For example, glass fibers or carbon reinforced fibers can be used as the fibers. Further, as to the resin, the same material may be used among the composite materials, and for example, an epoxy resin or a carbon resin can be used as the resin.
 また、本発明の他の態様に係る航空機の翼は、上記のような積層構造体を備える。 In addition, an aircraft wing according to another aspect of the present invention includes the above-described laminated structure.
 また、本発明の他の態様は、複合材料の製造方法である。そして、母材中に第1方向に繊維が配向される複合材料を準備するステップと、この複合材料の端部を第1方向と垂直な方向にせん断変形させて、母材中に、第1方向に沿って第1繊維が配向されている本体部と、この本体部の第1方向における端部に繋げて一体的に設けられ、第1方向に対して鋭角をなす第2方向に沿って、第1繊維と連続する第2繊維が配向されている応力緩和部を設けるステップを含む。 Another aspect of the present invention is a method of producing a composite material. Then, preparing a composite material in which fibers are oriented in a first direction into the matrix, and shearing the end of the composite material in a direction perpendicular to the first direction, And a body portion in which the first fibers are oriented along the direction, and an end portion of the body portion in the first direction, integrally provided, along a second direction forming an acute angle with the first direction Providing a stress relieving portion in which the second fibers continuous with the first fibers are oriented.
 なお、せん断変形させた後に、この応力緩和部の一部を第1方向と垂直な方向に切断して、第2繊維の端面が、第2方向ではなく、第1方向を向くようにしてもよい。 In addition, even after shear deformation, a part of the stress relaxation portion is cut in a direction perpendicular to the first direction so that the end face of the second fiber is not in the second direction but in the first direction. Good.
 また、本発明の他の態様に係る複合材料の製造方法は、母材中に第1方向に繊維が配向される複合材料を準備するステップと、母材の第1方向における中間部を折り曲げて、母材中に、第1方向に沿って第1繊維が配向されている第1本体部と、第1本体部の第1方向における一端部に繋げて一体的に設けられ、第1方向に垂直な第3方向を向いた直線を接線として含む曲線に沿って、第1繊維に連続する第2繊維が配向されている応力緩和部と、この応力緩和部に繋げて一体的に設けられ、第1本体部の第1方向における他端部に向かう第4方向に沿って、第2繊維に連続する第3繊維が配向されており、第1本体部に積層される第2本体部と、を設けるステップと、
 を含む。
In the method of manufacturing a composite material according to another aspect of the present invention, a step of preparing a composite material in which fibers are oriented in a first direction in a base material, and bending an intermediate portion in the first direction of the base material A first main body portion in which the first fibers are oriented in the first direction, and one end of the first main body portion in the first direction are integrally provided in the base material, in the first direction; A stress relieving portion in which a second fiber continuous to the first fiber is oriented and a stress relieving portion connected integrally along a curve including a straight line directed in a vertical third direction as a tangent; A second main body portion in which a third fiber continuous to the second fiber is oriented along a fourth direction toward the other end in the first direction of the first main body portion, and is stacked on the first main body portion; Providing
including.
 この態様によれば、第1方向に垂直な第3方向を向いた直線を接線として含む曲線に沿って、第1繊維に連続する第2繊維が配向されている応力緩和部を設けることができるから、第1方向における第1方向に対する弾性率を維持する一方で、応力緩和部における第1方向の弾性率は小さくなる。このため、このような複合材料を例えば積層させた際に、応力緩和部に相当する部分が高い弾性率であることに起因して、この部分に発生する応力集中を緩和し、剥離を抑制する複合材料を製造することが可能になる。 According to this aspect, it is possible to provide a stress relaxation portion in which the second fiber continuous to the first fiber is oriented along a curve including, as a tangent, a straight line directed in the third direction perpendicular to the first direction. Thus, while maintaining the elastic modulus in the first direction in the first direction, the elastic modulus in the first direction in the stress relaxation portion decreases. For this reason, when laminating such a composite material, for example, the stress concentration generated in the portion corresponding to the stress relaxation portion is alleviated due to the high elastic modulus, and the peeling is suppressed. It is possible to produce composite materials.
 なお、中間部とは、端部ではない部分をいい、母材の両端を二等分する部分に限られない。従って、第1本体部の第1方向における長さと、第2本体部の第1方向における長さは、異なっていてもよい。また、折り曲げる部分は、必ずしも第1方向に垂直でなくてもよい。第1方向に対して鋭角で折り曲げることにより第4方向を調整することも可能になる。また、その後、必要に応じて複合材料を切断することにより、所望の形状の複合材料を得ることもできる。 In addition, a middle part means the part which is not an edge part, and it is not restricted to the part which bisects the both ends of a base material. Therefore, the length in the first direction of the first main body and the length in the first direction of the second main body may be different. Also, the portion to be bent may not necessarily be perpendicular to the first direction. It is also possible to adjust the fourth direction by bending the first direction at an acute angle. After that, if necessary, the composite material can be cut to obtain a composite material having a desired shape.
 また、第3方向は、積層方向であってもよいが、第1方向に垂直な面内方向であってもよい。母材は、層状をなしていることが好ましいが、それに限られるものではない。 The third direction may be a stacking direction, but may be an in-plane direction perpendicular to the first direction. The base material is preferably in the form of a layer, but is not limited thereto.
 本発明によれば、層間剥離の抑制と軽量化を両立することが可能になる複合材料、積層構造体、航空機の翼及び複合材料の製造方法を提供することができる。 According to the present invention, it is possible to provide a composite material, a laminated structure, a wing of an aircraft, and a method of manufacturing the composite material, which can achieve both suppression of delamination and weight reduction.
第1実施形態に係る積層構造体10の平面図Plan view of the laminated structure 10 according to the first embodiment 第1実施形態に係る積層構造体10の正面図Front view of laminated structure 10 according to the first embodiment 比較例に係る積層構造体100の平面図Top view of laminated structure 100 according to comparative example 比較例に係る積層構造体100の正面図Front view of a laminated structure 100 according to a comparative example 引張試験の対象となる比較例に係る積層構造体200の正面図Front view of a laminated structure 200 according to a comparative example to be subjected to a tensile test 引張試験の対象となる比較例に係る積層構造体300の正面図Front view of a laminated structure 300 according to a comparative example to be subjected to a tensile test 引張試験の対象となる本発明に係る積層構造体20の正面図Front view of a laminated structure 20 according to the present invention to be subjected to a tensile test 引張試験の対象となる本発明に係る積層構造体30の正面図Front view of a laminated structure 30 according to the present invention to be subjected to a tensile test 積層構造体200の一部拡大図Partially Expanded View of Laminated Structure 200 積層構造体300の一部拡大図A partially enlarged view of the laminated structure 300 積層構造体20の一部拡大図A partially enlarged view of the laminated structure 20 積層構造体30の一部拡大図Partially enlarged view of laminated structure 30 引張試験の実験結果を示すグラフGraph showing experimental results of tensile test 変形例5に係る積層構造体60の斜視図The perspective view of the laminated structure 60 which concerns on the modification 5 第2実施形態に係る積層構造体70の平面図Plan view of the laminated structure 70 according to the second embodiment 第2実施形態に係る積層構造体70の正面図Front view of a laminated structure 70 according to a second embodiment 第2実施形態の変形例に係る繊維形状74C1’Fiber shape 74C1 'according to a modification of the second embodiment 第2実施形態の変形例に係る繊維形状74C2’Fiber shape 74C2 'according to a modification of the second embodiment 第2実施形態の変形例に係る繊維形状74C3’Fiber shape 74C3 'according to a modification of the second embodiment 第2実施形態の変形例に係る繊維形状74C4’Fiber shape 74C4 'according to a modification of the second embodiment 第2実施形態に係る複合材料の製造プロセスの説明図Explanatory drawing of the manufacturing process of the composite material which concerns on 2nd Embodiment 第2実施形態に係る複合材料の製造プロセスの説明図Explanatory drawing of the manufacturing process of the composite material which concerns on 2nd Embodiment 第2実施形態に係る複合材料の製造プロセスの説明図Explanatory drawing of the manufacturing process of the composite material which concerns on 2nd Embodiment 製造された積層構造体70’を奥行方向から見た図A view of the manufactured laminated structure 70 'viewed from the depth direction
 [第1実施形態]
 以下、図面を参照して本発明の実施形態について詳細に説明する。なお、同一の要素には同一の符号を付し、重複する説明を省略する。また、以下の実施の形態は、本発明を説明するための例示であり、本発明をその実施の形態のみに限定する趣旨ではない。さらに、本発明は、その要旨を逸脱しない限り、さまざまな変形が可能である。
First Embodiment
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same element and the overlapping description is abbreviate | omitted. In addition, the following embodiments are exemplifications for describing the present invention, and the present invention is not limited to the embodiments. Furthermore, the present invention can be variously modified without departing from the scope of the invention.
 図1Aは、本発明の第1実施形態に係る積層構造体10を概念的に示す平面図であり、図1Bは、積層構造体10の正面図である。図2Aは、比較例の積層構造体100を概念的に示す平面図であり、図2Bは、積層構造体100の正面図である。 FIG. 1A is a plan view conceptually showing a laminated structure 10 according to the first embodiment of the present invention, and FIG. 1B is a front view of the laminated structure 10. FIG. 2A is a plan view conceptually showing the laminated structure 100 of the comparative example, and FIG. 2B is a front view of the laminated structure 100. As shown in FIG.
 図1A及び図1Bに示されるように、積層構造体10は、土台となるプライ12(「第2の複合材料」の一例)と、このプライ12上に積層されているプライ14(「複合材料」からなる「母材」の一例)と、このプライ14上に積層されているプライ16(「複合材料」からなる「母材」の一例)とから構成される。各プライ12、プライ14及びプライ16は、CFRP(Carbon Fiber Reinforced Plastic)からなるシート状の層構造をなしており、樹脂中に、所定方向に配向された繊維をそれぞれ備えている。積層構造体10の各プライは、オートクレーブ内で加熱及び加圧されることにより一体的に成形されている。なお、積層構造体10は、プライ14とプライ16の二層である必要はなく、プライ14又はプライ16のみでもよい。更に、他のプライが積層されていてもよい。 As shown in FIGS. 1A and 1B, the laminated structure 10 includes a base ply 12 (an example of a “second composite material”) and a ply 14 (“composite material”) laminated on the ply 12. And a ply 16 (an example of a “base material” made of a “composite material”) laminated on the ply 14. Each ply 12, the ply 14 and the ply 16 have a sheet-like layer structure made of CFRP (Carbon Fiber Reinforced Plastic), and are provided with fibers oriented in a predetermined direction in a resin. Each ply of the laminated structure 10 is integrally molded by being heated and pressurized in an autoclave. The laminated structure 10 does not have to be a double layer of the ply 14 and the ply 16, and may be only the ply 14 or the ply 16. Furthermore, other plies may be laminated.
 なお、積層構造体10のプライ12、プライ14及びプライ16の樹脂及び繊維の材質並びに含有量は、本発明の要旨を変更しない範囲で適宜設定することができる。樹脂は、熱可塑性又は熱硬化性のものでもよく、繊維は、炭素繊維又はガラス繊維等のものでもよい。 In addition, the material and content of the resin and fibers of the ply 12, the ply 14 and the ply 16 of the laminated structure 10 can be appropriately set without changing the gist of the present invention. The resin may be thermoplastic or thermosetting, and the fibers may be carbon fibers or glass fibers and the like.
 また、プライ12、プライ14及びプライ16の層構造の厚みや形状も、目的等に応じて適宜設定することができる。また、プライ12、プライ14及びプライ16を同じ材料から構成する必要はなく、例えば、プライ12とプライ14に含まれる樹脂の材質を異ならせてもよい。さらに、後に詳述するように、各プライ12、プライ14及びプライ16の間、または、上下にさらに、繊維の配向が同一又は異なるプライを積層してもよい。更に、カバープライを設けてもよい。 Further, the thickness and shape of the layer structure of the ply 12, the ply 14 and the ply 16 can be appropriately set according to the purpose and the like. Further, the ply 12, the ply 14 and the ply 16 do not have to be made of the same material, and for example, the materials of the resins contained in the ply 12 and the ply 14 may be made different. Furthermore, as described in detail later, plies having the same or different fiber orientations may be further stacked between each ply 12, ply 14 and ply 16 or up and down. Furthermore, a cover ply may be provided.
 図1Aには、プライ16の繊維16Cの配向方向が示される。図に示されるように、プライ16の一端(紙面右端)から他端の近傍までは、長手方向X(「第1方向」の一例であり、「長手方向X」または「0度方向」と呼ぶ)に平行に各繊維16Cが配向されている。この、繊維16Cが長手方向Xに沿って配向されている領域を本体部16A(「本体部」の一例)と呼ぶ。 The orientation direction of the fibers 16C of the ply 16 is shown in FIG. 1A. As shown in the figure, from one end (right end in the drawing) of the ply 16 to the vicinity of the other end is an example of a longitudinal direction X ("first direction" and is referred to as "longitudinal direction X" or "0 degree direction" Each fiber 16C is oriented in parallel to. A region in which the fibers 16C are oriented along the longitudinal direction X is referred to as a main portion 16A (an example of a “main portion”).
 また、プライ16の各繊維16Cは、長手方向Xの他端側の端部近傍において曲げられて、平面視において長手方向Xに対して鋭角をなす方向X1(「第2方向」の一例)に平行に配向されている。本実施形態においては、長手方向Xに対する方向X1の角度は、+45度である。この、繊維16Cが方向X1に沿って配向されている領域を応力緩和部16B(「応力緩和部」の一例)と呼ぶ。 In addition, each fiber 16C of the ply 16 is bent in the vicinity of the end on the other end side in the longitudinal direction X, and in a direction X1 (an example of “second direction”) forming an acute angle with the longitudinal direction X in plan view. It is oriented in parallel. In the present embodiment, the angle of the direction X1 with respect to the longitudinal direction X is +45 degrees. A region in which the fibers 16C are oriented along the direction X1 is referred to as a stress relaxation portion 16B (an example of a "stress relaxation portion").
 本実施形態において、長手方向Xにおいて、応力緩和部16Bの長さは、例えば、5mmであり、本体部16Aの長さは、その10倍以上の長さを有する。 In the present embodiment, in the longitudinal direction X, the length of the stress relaxation portion 16B is, for example, 5 mm, and the length of the main body portion 16A has a length of 10 times or more.
 プライ16の下層のプライ14も、同様の構造を備えている。具体的には、プライ14の繊維は、プライ14の一端から他端の近傍までは、長手方向Xに平行に配向され、端部近傍において曲げられて、方向X1に平行に配向されている。このため、プライ14も、長手方向Xにおいてプライ16とほぼ同じ位置に、本体部14A及び応力緩和部14Bを備える。 The lower ply 14 of the ply 16 also has a similar structure. Specifically, the fibers of the ply 14 are oriented parallel to the longitudinal direction X from one end of the ply 14 to the vicinity of the other end, bent near the end, and oriented parallel to the direction X1. For this reason, the ply 14 also includes the main body portion 14A and the stress relief portion 14B at substantially the same position as the ply 16 in the longitudinal direction X.
 なお、第1方向におけるプライ14の長さを、プライ16よりも長くなるように形成して、積層方向Zにおける積層構造体10の厚みを異ならせるテーパ構造にしてもよい。更に、プライ16の上にも、第1方向における長さが異なる複数のプライを積層してもよい。 The length of the ply 14 in the first direction may be longer than that of the ply 16 so that the thickness of the stacked structure 10 in the stacking direction Z may be different. Furthermore, a plurality of plies having different lengths in the first direction may be stacked on the ply 16 as well.
 CFRPに代表されるFRP(Fiber Reinforced Plastic)は、繊維の配向方向に高い弾性率を持つが、配向方向と異なる方向の弾性率は大きく低下する。例えば、典型的なCFRPの場合、配向方向から20度異なる方向の弾性率は、配向方向の弾性率の半分程度に低下する。本実施形態においても、長手方向Xにおける、本体部16A及び本体部14Aの弾性率は、約200GPaであり、応力緩和部16B及び応力緩和部14Bの弾性率は50GPa以下である。 Although FRP (Fiber Reinforced Plastic) represented by CFRP has a high elastic modulus in the fiber orientation direction, the elastic modulus in the direction different from the orientation direction is greatly reduced. For example, in the case of a typical CFRP, the elastic modulus in the direction different by 20 degrees from the orientation direction drops to about half of the elastic modulus in the orientation direction. Also in the present embodiment, the elastic modulus of the main body portion 16A and the main body portion 14A in the longitudinal direction X is about 200 GPa, and the elastic modulus of the stress relaxation portion 16B and the stress relaxation portion 14B is 50 GPa or less.
 また、様々な方向からの外力に対応するために、プライ14及びプライ16の上下に異なる方向に配向されたプライを更に積層することが好ましい。たとえば、プライ16の上に、長手方向X及び積層方向Zに垂直な奥行方向Y(または「90度方向」と呼ぶ)に配向した繊維を含有するプライ、長手方向X及び奥行方向Yから+45度方向に配向した繊維を含有するプライ、長手方向X及び奥行方向Yから-45度方向に配向した繊維を含有するプライを、順不同で繰り返し積層することができる。 In addition, it is preferable to further stack plies oriented in different directions above and below the ply 14 and the ply 16 in order to respond to external forces from various directions. For example, a ply containing fibers oriented in the depth direction Y (or “90 degree direction”) perpendicular to the longitudinal direction X and the stacking direction Z on the ply 16, +45 degrees from the longitudinal direction X and the depth direction Y A ply containing fibers oriented in a direction, and a ply containing fibers oriented in the direction of −45 degrees from the longitudinal direction X and the depth direction Y can be laminated repeatedly in random order.
 土台となるプライについても、同様に、0度方向、+45度方向、-45度方向、90度方向に繊維が配向された複数のプライを繰り返し積層することができる。たとえば、プライ14の下方に配置されるプライ12の繊維は、長手方向Xの一端から他端にわたり、0度方向に配向されていてもよい。 Similarly, with regard to the base ply, a plurality of plies in which fibers are oriented in the 0 degree direction, +45 degree direction, -45 degree direction, and 90 degree direction can be repeatedly laminated. For example, the fibers of the ply 12 disposed below the ply 14 may be oriented in the 0 degree direction from one end of the longitudinal direction X to the other end.
 プライ12は、長手方向Xにおいて、プライ16及びプライ14より長くなるように形成されている。プライ12の繊維は、プライ16及びプライ14と異なり、端部において方向X1に平行に配向されていない。しかしながら、これに限られるものではない。例えば、プライ12が更に他のプライ上に積層されている場合に、積層方向の厚みが変化するプライ12の繊維の端部を曲げて、長手方向Xと鋭角をなす方向X1に平行に配向するように構成してもよい。その場合は、プライ12も、本体部と応力緩和部を備える。 The ply 12 is formed to be longer than the plies 16 and 14 in the longitudinal direction X. Unlike the plies 16 and 14, the fibers of the ply 12 are not oriented parallel to the direction X1 at the ends. However, it is not limited to this. For example, when the ply 12 is further laminated on another ply, the end of the fiber of the ply 12 whose thickness in the laminating direction changes is bent and oriented parallel to the direction X1 forming an acute angle with the longitudinal direction X It may be configured as follows. In that case, the ply 12 also has a body portion and a stress relief portion.
 なお、本実施形態においては、プライ12、プライ14及びプライ16の各繊維は、プライ12、プライ14及びプライ16の積層方向Zには、配向していない。ただし、これに限られるものではない。 In the present embodiment, the fibers of the ply 12, the ply 14 and the ply 16 are not oriented in the stacking direction Z of the ply 12, the ply 14 and the ply 16. However, it is not limited to this.
 図2Aは、比較例に係る積層構造体100の平面図であり、図2Bは、積層構造体100の正面図である。積層構造体100は、土台となるプライ120と、このプライ120上に積層されているプライ140と、このプライ140上に積層されているプライ160とから構成される。各プライ120、プライ140及びプライ160は、CFRPからなるシート状の層構造をなしている。 FIG. 2A is a plan view of the laminated structure 100 according to the comparative example, and FIG. 2B is a front view of the laminated structure 100. The laminated structure 100 includes a base ply 120, a ply 140 stacked on the ply 120, and a ply 160 stacked on the ply 140. Each ply 120, the ply 140 and the ply 160 have a sheet-like layer structure made of CFRP.
 ただし、積層構造体100のプライ160の繊維160C及びプライ140の繊維が、長手方向Xの一端から他端の全域にわたり長手方向Xに平行に配向されている点が、積層構造体10と異なっている。 However, unlike the laminate structure 10, the fibers 160C of the ply 160 of the laminate structure 100 and the fibers of the ply 140 are oriented parallel to the longitudinal direction X over the entire area from one end to the other in the longitudinal direction X. There is.
 ここで、本実施形態に係る積層構造体10と、比較例に係る積層構造体100に、それぞれ長手方向Xに引張荷重をかけた場合の作用効果の相違について説明する。 Here, the difference in the effect at the time of applying tensile load to the longitudinal direction X to the laminated structure 10 which concerns on this embodiment, and the laminated structure 100 which concerns on a comparative example, respectively is demonstrated.
 積層構造体100の場合、プライ140の長手方向Xの弾性率は一様に高いため、所定の歪みに対して大きな応力が発生する。その結果、厚さが変化するプライ140の端部において、応力が集中し、下層のプライ120との剥離の原因となる大きなピールストレスとシアストレスが発生する。また、積層構造体100は、厚さが変化することにともなって弾性率が積層方向でも変化するため、断面の中立軸がプライ140側にシフトし、引張負荷によって二次的な曲げ変形も発生する。この結果、プライ140の端部付近に大きな曲げモーメントが発生し、亀裂の発生と進展の要因になる。 In the case of the laminated structure 100, since the elastic modulus in the longitudinal direction X of the ply 140 is uniformly high, a large stress is generated for a predetermined strain. As a result, stress is concentrated at the end portion of the ply 140 whose thickness is changed, and a large peel stress and shear stress which cause peeling from the lower ply 120 occur. Further, in the laminated structure 100, since the elastic modulus also changes in the laminating direction as the thickness changes, the neutral axis of the cross section shifts to the ply 140 side, and a secondary bending deformation also occurs due to the tensile load. Do. As a result, a large bending moment is generated in the vicinity of the end of the ply 140, which causes a crack to occur and progress.
 一方で、積層構造体10の場合、プライ14の応力緩和部14Bの長手方向Xの弾性率は、本体部14Aの弾性率の半分以下であるため、所定の歪みに対して発生する応力も相対的に小さい。その結果、応力緩和部14Bにおける応力集中ならびにこれに伴う亀裂の発生を抑制することができる。また、応力緩和部14Bを設けたため、積層方向の弾性率の変化も、積層構造体100と比較して小さい。このため、断面の中立軸は大きく変化せず、引張負荷による2次的な曲げ変形が抑制される。この結果、プライ14の端部付近の曲げモーメントが低減するため、積層構造体100と比較して、亀裂の発生と進展を抑制することもできる。 On the other hand, in the case of the laminated structure 10, since the elastic modulus in the longitudinal direction X of the stress relaxation portion 14B of the ply 14 is not more than half the elastic modulus of the main body portion 14A, the stress generated for a predetermined strain is also relative As small as As a result, it is possible to suppress the stress concentration in the stress relieving portion 14B and the generation of a crack associated therewith. Further, since the stress relaxation portion 14B is provided, the change in elastic modulus in the stacking direction is also smaller than that in the stacked structure 100. Therefore, the neutral axis of the cross section does not change significantly, and secondary bending deformation due to tensile load is suppressed. As a result, the bending moment in the vicinity of the end portion of the ply 14 is reduced, so that it is possible to suppress the occurrence and progress of the crack as compared with the laminated structure 100.
 さらに、積層構造体10のプライ14及びプライ16に加えて、長手方向Xにおける弾性率がいずれも小さい、+45度方向、-45度方向、90度方向に繊維が配向されたプライを積層した場合であっても、依然として、長手方向Xにおける応力緩和部14B及び16Bが存在する領域の弾性率は、低いまま維持されるため、亀裂の発生と進展を抑制することができる。 Furthermore, in addition to the ply 14 and the ply 16 of the laminated structure 10, when the ply in which the fibers are oriented in the +45 degree direction, the -45 degree direction, and the 90 degree direction is small. Even in this case, the elastic modulus of the region where stress relaxation portions 14B and 16B exist in the longitudinal direction X is still kept low, so that the generation and progress of cracks can be suppressed.
 以下では、本発明に係る積層構造体と、比較例に係る積層構造体の引張疲労試験の結果について説明する。 Below, the result of the tension fatigue test of the laminated structure which concerns on this invention, and the laminated structure which concerns on a comparative example is demonstrated.
 図3Aは、比較例に係る積層構造体200の正面図、図3Bは、比較例に係る積層構造体300の正面図、図3Cは、本発明に係る積層構造体20の正面図、図3Dは、本発明に係る積層構造体30の正面図を示している。 FIG. 3A is a front view of the laminated structure 200 according to the comparative example, FIG. 3B is a front view of the laminated structure 300 according to the comparative example, FIG. 3C is a front view of the laminated structure 20 according to the present invention, FIG. These show the front view of the laminated structure 30 which concerns on this invention.
 また、図4Aは、積層構造体200の厚さ方向が変化する部分の拡大図、図4Bは、積層構造体300の同拡大図、図4Cは、積層構造体20の同拡大図、図4Dは、積層構造体30の同拡大図を示している。 4A is an enlarged view of a portion where the thickness direction of the laminated structure 200 changes, FIG. 4B is an enlarged view of the laminated structure 300, and FIG. 4C is an enlarged view of the laminated structure 20, FIG. These show the same enlarged view of the laminated structure 30. FIG.
 積層構造体200、300、20及び30は、いずれもT700SC/2592を材料とする複数枚のプライを積層した構造体であり、長手方向Xの長さは、180mm、奥行方向Yの長さは、10mmである。長手方向Xの両端は、積層方向Zの厚さが大きい厚肉部を形成しており、それぞれ1枚100μm程度(たとえば、125μm)の厚さの16枚のプライが積層されている。また、中央部分は、積層方向Zの厚さが小さい薄肉部を形成しており、8枚のプライが積層されている。 Each of the laminated structures 200, 300, 20 and 30 is a structure in which a plurality of plies made of T700SC / 2592 are laminated, and the length in the longitudinal direction X is 180 mm, and the length in the depth direction Y is , 10 mm. Both ends in the longitudinal direction X form thick portions where the thickness in the stacking direction Z is large, and 16 plies each having a thickness of about 100 μm (for example, 125 μm) are stacked. The central portion forms a thin portion having a small thickness in the stacking direction Z, and eight plies are stacked.
 積層構造体200の各プライの繊維は、0度方向、すなわち、長手方向Xに、一端から他端まで一様に配向されている。 The fibers of each ply of the laminated structure 200 are uniformly oriented in the 0 degree direction, that is, in the longitudinal direction X from one end to the other end.
 積層構造体300の各プライの繊維も、0度方向、すなわち、長手方向Xに、一端から他端まで一様に配向されている。ただし、図4Bに示されるように、積層構造体300は、積層方向Zの変動が、積層構造体200よりも緩やかな10:1のテーパ(すなわち、積層方向に1mmの変動に対し、長手方向Xに10mmの変動)を形成するように上側の8枚のプライの長手方向Xの長さが調整されている点が、テーパがほとんど形成されず急峻に積層方向Zが変動している積層構造体200と異なる。 The fibers of each ply of the laminated structure 300 are also uniformly oriented in the 0 degree direction, that is, in the longitudinal direction X from one end to the other end. However, as shown in FIG. 4B, in the stacked structure 300, the variation in the stacking direction Z is gentler than that of the stacked structure 200 in the 10: 1 taper (ie, 1 mm variation in the stacking direction). A laminated structure in which the length of the upper eight plies in the longitudinal direction X is adjusted to form a fluctuation of 10 mm in X, but the taper is hardly formed and the lamination direction Z fluctuates sharply Different from body 200.
 積層構造体20は、8枚のプライが積層されている下側のプライ部22と、8枚のプライが積層され、プライ部22上に積層されるプライ部24(「複合材料」の一例)
を備える。プライ部22の各プライの繊維は、0度方向に配向している。プライ部24は、各プライの繊維が0度方向に配向している本体部24Aと、繊維が曲げられ+45度方向に配向している応力緩和部24Bを備えている。応力緩和部24Bの長手方向Xの長さは5mmである。プライ部24の各プライは、それぞれ面内せん断変形により応力緩和部24Bを設けた後に積層されたため、積層方向Zにおける厚さが、本体部24Aと比較して大きい。
In the laminated structure 20, a lower ply portion 22 in which eight plies are laminated and a ply portion 24 in which eight plies are laminated and laminated on the ply portion 22 (an example of a “composite material”)
Equipped with The fibers of each ply of the ply portion 22 are oriented in the 0 degree direction. The ply portion 24 includes a main portion 24A in which the fibers of each ply are oriented in the 0 degree direction, and a stress relaxation portion 24B in which the fibers are bent and oriented in the +45 degree direction. The length of the stress relaxation portion 24B in the longitudinal direction X is 5 mm. Since each ply of the ply portion 24 is laminated after providing the stress relieving portion 24B by in-plane shear deformation, the thickness in the laminating direction Z is larger than that of the main portion 24A.
 積層構造体30は、8枚のプライが積層されている下側のプライ部32と、8枚のプライが積層され、プライ部32上に積層されるプライ部34(「複合材料」の一例)
を備える。プライ部32の各プライの繊維は、0度方向に配向している。プライ部34は、繊維が0度方向に配向している本体部と、本体部の端部に繋げて一体的に設けられ、本体部の繊維に連続する繊維が+45度方向に配向している応力緩和部を備えるプライと、繊維が0度方向に配向している本体部と、本体部の端部に繋げて一体的に設けられ、本体部の繊維に連続する繊維が-45度方向に配向している応力緩和部を備えるプライとを交互に積層して形成されている。このため、プライ部34は、各プライの繊維が0度方向に配向している本体部34Aと、繊維が曲げられ+45度方向又は-45度方向に交互に配向している応力緩和部34Bを備えている。応力緩和部34Bの長手方向Xの長さは5mmである。
In the laminated structure 30, a lower ply portion 32 in which eight plies are laminated and a ply portion 34 in which eight plies are laminated and laminated on the ply portion 32 (an example of a “composite material”)
Equipped with The fibers of each ply of the ply portion 32 are oriented in the 0 degree direction. The ply portion 34 is integrally provided by connecting the body portion in which the fibers are oriented in the 0 ° direction and the end portion of the body portion, and the fibers connected to the fibers in the body portion are oriented in the + 45 ° direction A ply having a stress relaxation portion, a main portion in which fibers are oriented in the 0 degree direction, and an end portion of the main portion are integrally provided, and fibers continuous to the fibers in the main portion are in the -45 degree direction It is formed by alternately laminating plies having stress relieving portions oriented. Therefore, the ply portion 34 has a main portion 34A in which the fibers of each ply are oriented in the 0 degree direction and a stress relaxation portion 34B in which the fibers are bent and alternately oriented in the +45 degree direction or -45 degree direction. Have. The length of the stress relaxation portion 34B in the longitudinal direction X is 5 mm.
 このような積層構造体200、300、20及び30に対し、最大荷重は4000N、荷重比は0.1、試験周波数は8Hzの条件で引張疲労試験を実施した。 A tensile fatigue test was performed on such a laminated structure 200, 300, 20, and 30 under the conditions of a maximum load of 4000 N, a load ratio of 0.1, and a test frequency of 8 Hz.
 図5は、積層構造体200、300及び20の試験結果を示しており、横軸は試験周波数で最大荷重を加えた数を示すサイクル数、縦軸は層間剥離の長さを示している。 FIG. 5 shows the test results of the laminated structures 200, 300 and 20. The horizontal axis represents the number of cycles at which the maximum load is applied at the test frequency, and the vertical axis represents the delamination length.
 この図に示されるように、積層構造体200は、2000回から3000回のときに剥離が発生していることが示される。そして、剥離発生後は、荷重を加えた回数にほぼ比例して、剥離が進展し、およそ10000回の荷重を加えた際に、40mm以上の剥離が形成された。 As shown in this figure, the laminated structure 200 is shown to have exfoliation occurring from 2000 to 3000 times. After the occurrence of peeling, peeling progressed in proportion to the number of times of load application, and when a load of about 10,000 times was applied, peeling of 40 mm or more was formed.
 積層構造体300は、9000回から10000回のときに剥離が発生していることが示される。そして、12000回以降は、荷重を加えた回数に比例して、剥離が進展し、およそ17000回の荷重を加えた際に、50mm以上の剥離が形成された。 It is shown that peeling occurs in the laminated structure 300 from 9000 times to 10000 times. And after 12000 times, peeling progressed in proportion to the number of times of load application, and when load of about 17000 times was applied, peeling of 50 mm or more was formed.
 なお、積層構造体30についても、積層構造体200及び300よりも、剥離の進展が抑制されていることが確認された。具体的には、総計で12000回の荷重を加えても、剥離の進展は、5mm以内、すなわち、応力緩和部34Bにとどまっていた。 In addition, it was confirmed also about the laminated structure 30 that the advancing of peeling is suppressed rather than the laminated structure 200 and 300. FIG. Specifically, even when a total of 12000 loads were applied, the progress of peeling remained within 5 mm, that is, in the stress relaxation portion 34B.
 積層構造体20は、28000回から29000回のときに剥離が発生している点で、他の積層構造体30、200及び300よりも格別に優れていた。その後は、剥離の進展が抑制され、剥離発生後、6000回(総計で34000回)の荷重を加えても、剥離の進展は、5mm以内、すなわち、応力緩和部24Bにとどまっていたことが示された。その後の35000回以降は、積層構造体300と同様の程度に剥離が進展した。 The laminated structure 20 was significantly superior to the other laminated structures 30, 200, and 300 in that peeling occurred at 28,000 times to 29,000 times. Thereafter, the progress of peeling is suppressed, and it is shown that the progress of peeling is within 5 mm, that is, in the stress relaxation portion 24B even when a load of 6000 times (34000 times in total) is applied after the peeling occurs. It was done. Peeling progressed to the same extent as laminated structure 300 after 35000 times after that.
 以上述べたように、本実施形態に係る積層構造体10、20及び30によれば、本体部16A、24A及び34Aを備えるから、長手方向Xの荷重に耐えることができるとともに、応力緩和部16B、24B及び34Bを備えるから、剥離の発生及び進展を抑制することが可能になる。 As described above, according to the laminated structures 10, 20 and 30 according to the present embodiment, since the main body portions 16A, 24A and 34A are provided, it is possible to withstand the load in the longitudinal direction X, and the stress relieving portion 16B. , 24B and 34B, it is possible to suppress the occurrence and progress of peeling.
 このような積層構造体10、20及び30をプリプレグを用いて製造する方法について、以下に説明する。なお、以下は、製造方法の一態様に過ぎず、積層構造体10、20及び30は、異なる方法で製造することもできる。例えば、ドライファイバーを用いて積層した後に、樹脂を含浸させて成形させてもよい。その他、公知の製造技術(RTM(Resin Transfer Molding)、RFI(Resin Film Infusion)、CPM(Compression Press Molding)、FW(Filament Winding)、LFT(Long Fiber Thermoplastic)等)を用いて本発明に係る複合材料及び積層構造を製造することができる。 The method of manufacturing such laminated structures 10, 20 and 30 using a prepreg will be described below. In addition, the following is only one aspect of a manufacturing method, and laminated structure 10, 20 and 30 can also be manufactured by a different method. For example, after laminating using dry fibers, the resin may be impregnated and molded. In addition, the composite according to the present invention using a known manufacturing technology (RTM (Resin Transfer Molding), RFI (Resin Film Infusion), CPM (Compression Press Molding), FW (Filament Winding), LFT (Long Fiber Thermoplastic), etc.) Materials and laminate structures can be manufactured.
 まず、一定の方向に繊維が配向されているシート状のプリプレグを準備する。例えば、CFRPのプリプレグを母材として用いることができる。 First, a sheet-like prepreg in which fibers are oriented in a predetermined direction is prepared. For example, a CFRP prepreg can be used as a base material.
 次いで、このようなプリプレグの端部(たとえば、プリプレグの端面から5mm~10mm以内の領域)を、繊維の配向方向に垂直な面内方向にせん断変形させて、本体部及び応力緩和部に相当する領域を設ける。せん断変形させるための方法としては、例えば、繊維の配向方向を一定に維持する本体部に相当する領域を把持固定し、自由端となる端部を把持して繊維の配向方向に垂直な面内方向に移動させることで、プリプレグの端部をせん断変形させることができる。せん断方向への移動量を変更することで、繊維の配向方向を調整することが可能である。例えば、プリプレグの端面から10mm以内の領域をせん断変形させる場合に、繊維の配向方向に垂直な面内方向に概ね10mm移動させることで、45度方向に配向方向を変化させることができる。このようなせん断変形させるための手段として、自動積層装置が備えるロボットを用いることも可能であるし、加熱しながら手動で変形させてもよい。 Then, the end portion of such a prepreg (for example, a region within 5 mm to 10 mm from the end surface of the prepreg) is sheared in an in-plane direction perpendicular to the fiber orientation to correspond to the main portion and the stress relaxation portion Provide an area. As a method for shear deformation, for example, a region corresponding to the main body maintaining the orientation direction of the fiber constant is gripped and fixed, and an end portion to be a free end is gripped to be in a plane perpendicular to the fiber orientation direction. By moving in the direction, the end of the prepreg can be sheared and deformed. By changing the amount of movement in the shearing direction, it is possible to adjust the orientation direction of the fibers. For example, when a region within 10 mm from the end face of the prepreg is sheared, the orientation direction can be changed in the 45 ° direction by moving approximately 10 mm in the in-plane direction perpendicular to the orientation direction of the fibers. As means for such shear deformation, it is possible to use a robot provided in the automatic stacking apparatus, or it may be deformed manually while being heated.
 なお、上述したように、複合材料は、繊維の配向方向について大きな弾性率を発揮する一方で、配向方向と異なる方向については弾性率が急減する。例えば、配向方向から20度ずれると弾性率が半減し、45度以上ずれると、ほぼ一定の低い弾性率を維持するような複合材料もある。このため、用途によっては、必ずしも正確な配向方向に繊維を曲げなくてもよい。また、同一のプリプレグ内でも、繊維間での配向方向のばらつきを許容できる場合もある。 As described above, while the composite material exerts a large elastic modulus in the fiber orientation direction, the elastic modulus rapidly decreases in the direction different from the orientation direction. For example, there is also a composite material in which the elastic modulus is halved when it deviates 20 degrees from the orientation direction, and a nearly constant low elastic modulus is maintained when it deviates by 45 degrees or more. For this reason, depending on the application, it is not always necessary to bend the fibers in the correct orientation direction. In addition, even within the same prepreg, in some cases, variation in orientation between fibers can be tolerated.
 以上のようなプロセスを経ることにより、繊維の配向方向が一定である本体部に相当する部分と、この本体部の繊維の配向方向における端部に繋げて一体的に設けられ、繊維が曲げられたことにより、例えば、45度方向に沿って、繊維が配向されている応力緩和部に相当する部分を備えるプリプレグを設けることができる。 By passing through the process as described above, a portion corresponding to the main body portion in which the fiber orientation direction is constant and an end portion in the fiber orientation direction of the main body portion are integrally provided to be bent, As a result, for example, it is possible to provide a prepreg including a portion corresponding to the stress relaxation portion in which the fibers are oriented along the 45 ° direction.
 その後、このようなプリプレグを所望の形状に切断する。このとき、プリプレグの応力緩和部の一部(例えば、端面から5mm離れた部分)を、本体部における配向方向に垂直な方向に切断することによって、各繊維の端面を、45度方向ではなく、本体部における繊維の配向方向である0度方向を向くように揃えることができる。 Thereafter, such a prepreg is cut into a desired shape. At this time, by cutting a part of the stress relaxation portion of the prepreg (for example, a portion 5 mm away from the end face) in a direction perpendicular to the orientation direction of the main body, the end face of each fiber is not 45 degrees It can align so that it may turn to the 0 degree direction which is an orientation direction of textiles in a main part.
 各繊維は、それ自体、軸方向に高い弾性率を有するところ、例えば、45度方向に配向方向が変更された応力緩和部において、繊維の軸方向に垂直な45度方向ではなく、繊維の軸方向から45度傾斜した端面を設けることにより、繊維ごとに応力集中の緩和を促進することができる。ただし、本発明は、これに限られるものではなく、切断等により形状を整えた後に、せん断変形をさせてもよい。また、せん断変形以外の手段により、繊維を曲げて配向方向を変化させてもよい。 Each fiber itself has a high elastic modulus in the axial direction, for example, in the stress relaxation portion whose orientation direction is changed in the 45-degree direction, the axis of the fiber, not the 45-degree direction perpendicular to the axial direction of the fibers By providing the end face inclined 45 degrees from the direction, relaxation of stress concentration can be promoted for each fiber. However, the present invention is not limited to this, and shear deformation may be performed after the shape is adjusted by cutting or the like. The fiber may be bent to change the orientation direction by means other than shear deformation.
 そして、このようなプリプレグとともに、+45度方向、-45度方向、90度方向にそれぞれ繊維が配向された複数のプリプレグを繰り返し積層する。 Then, along with such a prepreg, a plurality of prepregs in which fibers are respectively oriented in the +45 degree direction, the -45 degree direction, and the 90 degree direction are repeatedly laminated.
 その後、オートクレーブにより加圧及び加熱することにより、本体部及び応力緩和部を備える積層構造体を一体的に成形することができる。 Thereafter, by applying pressure and heat with an autoclave, the laminated structure including the main body portion and the stress relieving portion can be integrally formed.
 このような積層構造体は、航空機の胴体や翼、人工衛星、自動車、船舶等の輸送機器に適用することができる。 Such a laminated structure can be applied to transportation devices such as aircraft fuselages and wings, artificial satellites, automobiles, ships and the like.
 例えば、航空機の翼の外板底面には、アクセスホールと呼ばれる点検用の複数の開口が設けられる。このアクセスホールの周縁部は、大きな荷重がかかるため、複合材料の厚みを大きくする必要がある。その一方で、周縁部から離れ、それほど大きな荷重がかからない位置では、複合材料の厚みを小さくし、軽量化を図らなければならない。このような部分に、本実施形態に係る積層構造体を適用することにより、層間剥離の抑制と軽量化を両立することが可能になる。また、落雷等により構造体の一部が破損した際には、破損した積層構造体をはがして、新たな積層構造体を貼りなおして修理する必要があるが、本実施形態に係る積層構造体を用いることにより、貼りつけられた積層構造体が容易に剥離することを抑制することが可能になる。なお、航空機の胴体など他の部分や、船舶等の他の輸送機器の構造体にも本実施形態に係る積層構造体を適用することができる。 For example, the bottom of the skin of an aircraft wing is provided with a plurality of inspection openings called access holes. Since a large load is applied to the peripheral portion of the access hole, it is necessary to increase the thickness of the composite material. On the other hand, it is necessary to reduce the thickness of the composite material and achieve weight reduction at a position away from the peripheral portion and not subjected to a large load. By applying the laminated structure according to the present embodiment to such a portion, it is possible to achieve both suppression of delamination and weight reduction. In addition, when a part of the structure is broken due to lightning strike or the like, it is necessary to peel off the broken laminated structure and attach a new laminated structure for repair, but the laminated structure according to the present embodiment By using the above, it is possible to suppress the easy peeling of the laminated structure attached. In addition, the laminated structure which concerns on this embodiment is applicable also to the structure of other parts, such as a fuselage | body of an aircraft, and other transport devices, such as a ship.
 以下では、上記実施形態に係る積層構造体の変形例について説明する。 Below, the modification of the laminated structure which concerns on the said embodiment is demonstrated.
 [変形例1]
 上記実施形態に係る複合材料の長手方向Xの長さは、例えば、数十mm以上であったが、各複合材料及びそこに含まれる繊維は、更に短くてもよい。
[Modification 1]
The length in the longitudinal direction X of the composite material according to the above embodiment is, for example, several tens of mm or more, but each composite material and the fibers contained therein may be shorter.
 例えば、フェムト秒レーザなどの短パルスレーザを用いることにより、CFRPを切断できることが知られている。 For example, it is known that CFRP can be cut by using a short pulse laser such as a femtosecond laser.
 そこで、長手方向の長さが5~10mm以下となるようにレーザを用いてレンガ状に切断し、切断された各粒子が整列状態を維持したまま、各粒子が、繊維の配向方向が一定の本体部と、これら繊維の配向方向が曲げられた応力緩和部を備えるような複合材料を形成することができる。この際、剛性が小さく柔軟な物質で、切断により形成された各粒子間を埋めることにより、エネルギーを吸収できるような構造にしてもよい。 Therefore, the laser is used to cut in a brick shape so that the length in the longitudinal direction is 5 to 10 mm or less, and each particle has a fixed fiber orientation direction while maintaining the aligned state of each particle A composite material can be formed that includes a body portion and a stress relaxation portion in which the orientation direction of these fibers is bent. Under the present circumstances, it may be made a structure which can absorb energy by filling between each particle | grains formed by cutting | disconnection with a small rigid substance and a flexible substance.
 このような複合材料は、疲労により端部から脆性破壊することが問題となるが、各粒子の端部に応力緩和部を設けて、長手方向の弾性率を小さくすることによって、応力集中を抑制できるため、端部からの脆性破壊を抑制することが可能になる。 Although such a composite material has a problem that brittle fracture occurs from the end due to fatigue, a stress relaxation portion is provided at the end of each particle to reduce stress concentration by reducing the elastic modulus in the longitudinal direction. Since it is possible, it becomes possible to control the brittle fracture from the end.
 [変形例2]
 上記実施形態に係る複合材料を構成する各プライ(例えば、プライ14)は、積層方向Zの高さが一定であった。
[Modification 2]
In each ply (for example, the ply 14) constituting the composite material according to the above embodiment, the height in the stacking direction Z was constant.
 しかしながら、チャンファリングによって、応力緩和部16Bの端面から本体部16Aに近づくにつれて積層方向Zの高さが次第に高くなるような構成(換言すると、プライ12から離れるにしたがって、長手方向Xの長さが小さくなるような構成)としてもよい。このような構成とすることにより、一層、応力緩和部16Bの長手方向Xの弾性率を低減することが可能になる。 However, the configuration is such that the height in the stacking direction Z gradually increases from the end face of the stress relaxation portion 16B toward the main body portion 16A by chamfering (in other words, the length in the longitudinal direction X It is good also as composition which becomes small. With such a configuration, it is possible to further reduce the elastic modulus in the longitudinal direction X of the stress relaxation portion 16B.
 [変形例3]
 上記実施形態に係る積層構造体10、20及び30は、一または複数のカバープライを備えていてもよい。このようなカバープライを設け、積層方向Zを向いた上面をカバープライで覆うことによって、層間剥離を一層抑制することが可能になる。
[Modification 3]
The laminated structures 10, 20, and 30 according to the above embodiments may include one or more cover plies. By providing such a cover ply and covering the upper surface facing in the stacking direction Z with the cover ply, it is possible to further suppress delamination.
 この際、カバープライの傾きが変動する領域において、応力緩和部を設けるようにしてもよい。 Under the present circumstances, you may make it provide a stress relaxation part in the area | region where the inclination of a cover ply changes.
 たとえば、図1の積層構造体にカバープライを設ける場合、カバープライのうち、本体部16A及び応力緩和部16B上に積層される水平部分については、繊維の配向を長手方向Xにし、応力緩和部16Bから、プライ12に向かって傾きが変動する部分について、繊維の配向を方向X1にし、その後、傾きを維持しながらプライ12に向かうテーパ部分については、再び繊維の配向を長手方向Xにし、さらに、プライ12に到達し、再び水平方向に傾きが変動する部分については、繊維の配向を方向X1にし、そして、プライ12の上面に沿う水平部分については、繊維の配向を長手方向Xにする、といった構造にすることができる。 For example, when a cover ply is provided in the laminated structure of FIG. 1, the fiber orientation in the longitudinal direction X in the horizontal portion of the cover ply to be laminated on the main body portion 16A and the stress relaxation portion 16B is stress relaxation portion. From 16B, for the portion where the inclination varies toward the ply 12, the fiber orientation is in the direction X1, and then for the tapered portion toward the ply 12 while maintaining the inclination, the fiber orientation is again in the longitudinal direction X, The fiber orientation is in the direction X1 for the part reaching the ply 12 and the inclination is changed again in the horizontal direction, and for the horizontal part along the upper surface of the ply 12 in the longitudinal direction X. It can be structured as
 このように、応力が不連続となる部分について、弾性率が低い応力緩和部を設けることによって、その部分に応力が集中することに伴う剥離の発生を抑制することが可能になる。 As described above, by providing the stress relaxation portion having a low elastic modulus in the portion where the stress is discontinuous, it becomes possible to suppress the occurrence of peeling due to the concentration of the stress in that portion.
 [変形例4]
 上記実施形態に係る複合材料は、他の複合材からの剥離を抑制することを目的の一つとしていたが、これに限られるものではない。例えば、複合材料と、異種材料が一体的に構成される際に、異種材料から複合材料が剥離することを抑制するために、本発明を適用することができる。
[Modification 4]
Although the composite material which concerns on the said embodiment was made into one of the objective in suppressing peeling from another composite material, it is not restricted to this. For example, when the composite material and the different material are integrally configured, the present invention can be applied to suppress the separation of the composite material from the different material.
 たとえば、CFRP等からなるプライが積層される構造体中に、各プライ間をまたがるように、別のCFRPを斜めに配設することにより、層に平行に進む亀裂の進展を抑制する構造体が知られている。このような構造上、上層のプライとの境界と、斜めに配設されるCFRPの間の領域は、斜めに配設されるCFRPが上層のプライに近づくにつれて狭くなる。そして、先細りする先端部において応力が集中するため、斜めに配設されるCFRPとの剥離が発生する可能性がある。 For example, in a structure in which plies made of CFRP or the like are stacked, another CFRP is obliquely disposed so as to straddle each ply, so that a structure that suppresses the progress of a crack traveling parallel to the layer is obtained. Are known. Due to such a structure, the boundary between the upper layer ply and the area between the diagonally arranged CFRPs narrows as the diagonally arranged CFRP approaches the upper layer ply. And since stress concentrates in the tip part which tapers, exfoliation with CFRP arranged diagonally may occur.
 そこで、下層のプライの先細りする先端部における繊維を曲げて、本体部の配向方向である長手方向とは異なる方向に配向方向を変更することにより、先端部の応力集中を緩和し、もって剥離を抑制することが可能になる。 Therefore, by bending the fibers at the tapered end of the lower layer ply and changing the orientation direction to a direction different from the longitudinal direction, which is the orientation direction of the main portion, stress concentration at the end is alleviated, thus peeling off. It becomes possible to suppress.
 同様に、斜めに配設されるCFRPの先端部における繊維を曲げて、本体部の配向方向とは異なる方向に配向方向を変更することにより、斜めに配設されるCFRPの先端部の応力集中を緩和することができる。 Similarly, by bending the fibers at the tip of the CFRP disposed diagonally and changing the orientation direction to a direction different from the orientation direction of the main body, the stress concentration at the tip of the CFRP disposed diagonally Can be relaxed.
 [変形例5]
 図6は、変形例5に係る積層構造体60の斜視図である。
[Modification 5]
FIG. 6 is a perspective view of a laminated structure 60 according to a fifth modification.
 上述した積層構造体は、荷重がかかる方向である長手方向Xの端部において発生する応力集中を緩和することを目的の一つとしていた。 The laminated structure described above has an object of alleviating stress concentration generated at an end in the longitudinal direction X, which is a direction in which a load is applied.
 しかしながら、長手方向Xに引張荷重が作用すると、ポアソン効果により、奥行方向Yに縮もうとする応力が作用する。このとき、積層構造体中に、奥行方向Y、すなわち、90度方向に配向された繊維を含むプライが存在する場合、奥行方向Yの変形を妨げるために自由端近傍に高い層間応力が生じ、剥離が発生しやすくなる。 However, when a tensile load acts in the longitudinal direction X, a stress that tends to shrink in the depth direction Y acts due to the Poisson effect. At this time, if there is a ply containing fibers oriented in the depth direction Y, that is, 90 degrees in the laminated structure, high interlayer stress occurs near the free end to prevent deformation in the depth direction Y, Peeling is likely to occur.
 また、引張荷重の他、熱応力に起因して奥行方向Yに縮もうとする熱応力が作用する場合も同様に、自由端近傍に高い層間応力が生じ、剥離が発生しやすくなる。 In addition to tensile load, also when thermal stress acts to shrink in the depth direction Y due to thermal stress, high interlayer stress is generated near the free end, and peeling tends to occur.
 そこで、積層構造体60は、90度方向に配向された繊維を含むプライ62における奥行方向Y端部の自由端において、応力緩和部62Bを設けている。具体的には、プライ62は、母材中に、奥行方向Yに沿って第1繊維62Cが配向されている本体部62Aと、この本体部62Aの奥行方向Yにおける端部に繋げて一体的に設けられ、奥行方向Yに対して鋭角をなす方向(例えば、X1方向)に沿って第1繊維62Cが配向されている応力緩和部62Bが設けられている。 Therefore, in the laminated structure 60, the stress relaxation portion 62B is provided at the free end of the depth direction Y end of the ply 62 including the fibers oriented in the 90 ° direction. Specifically, the ply 62 is integrally connected to the end of the main portion 62A in which the first fibers 62C are oriented in the depth direction Y and the end of the main portion 62A in the depth direction Y in the base material. And a stress relaxation portion 62B in which the first fibers 62C are oriented along a direction (for example, the X1 direction) forming an acute angle with the depth direction Y.
 なお、積層構造体60の別の層は、長手方向Xの端部において発生する応力集中を緩和する応力緩和部を備えていてもよい。例えば、プライ64は、長手方向Xに沿って繊維が配向されている本体部と、長手方向Xに対して鋭角をなす方向(例えば、X1方向)に沿ってこの繊維に連続する先端部分が配向されている応力緩和部が設けられているように構成してもよい。 Another layer of the laminated structure 60 may be provided with a stress relaxation portion which relieves stress concentration generated at the end in the longitudinal direction X. For example, in the ply 64, a body portion in which fibers are oriented along the longitudinal direction X, and a tip portion continuous to the fibers along a direction (for example, X1 direction) forming an acute angle with the longitudinal direction X The stress relieving portion may be provided.
 [第2実施形態]
 以下、図面を参照して本発明の第2実施形態について詳細に説明する。なお、第1実施形態と同一又は同様の要素には同一の符号を付し、重複する説明を省略する。また、第1実施形態と同様に発揮される作用効果については記載を省略又は簡略化する。
Second Embodiment
Hereinafter, a second embodiment of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to an element the same as that of 1st Embodiment, or same, and the overlapping description is abbreviate | omitted. Moreover, description is abbreviate | omitted or simplified about the effect exhibited similarly to 1st Embodiment.
 図7Aは、第2実施形態に係る積層構造体70の平面図であり、図7Bは、積層構造体70の正面図である。 FIG. 7A is a plan view of the laminated structure 70 according to the second embodiment, and FIG. 7B is a front view of the laminated structure 70.
 この図に示されるように、積層構造体70は、少なくともプライ12と、プライ12上に積層されるプライ74を備える。ただし、第1実施形態と同様に、複数の方向に繊維が配向されている複数のプライを更に積層して積層構造体70を設けることが好ましい。 As shown in this figure, the laminated structure 70 comprises at least a ply 12 and a ply 74 laminated on the ply 12. However, as in the first embodiment, it is preferable to provide the laminated structure 70 by further laminating a plurality of plies in which the fibers are oriented in a plurality of directions.
 プライ74は、中央部において折り曲げられて積層された構造をしている。具体的には、長手方向Xに沿って繊維74C1(「第1繊維」の一例)が配向されている第1本体部74A1と、この第1本体部74A1における長手方向Xにおける一端部に繋げて一体的に設けられ、繊維74C1に連続する繊維74C2(「第2繊維」の一例)が、曲線的に配向されている応力緩和部74Bと、応力緩和部74B(「中間部」の一例)に繋げて一体的に設けられ、第1本体部74A1の他端部に向かう長手方向X(「第4方向」の一例)に沿って、繊維74C2に連続する繊維74C3(「第3繊維」の一例)が配向されている第2本体部74A2が設けられている。 The ply 74 has a structure in which the central portion is folded and laminated. Specifically, it is connected to a first main portion 74A1 in which fibers 74C1 (an example of "first fibers") are oriented along the longitudinal direction X, and one end in the longitudinal direction X of the first main portion 74A1. The stress relieving portion 74B (one example of “second fibers”) integrally provided and continuous to the fiber 74C1 is curvilinearly oriented, and the stress relieving part 74B (one example of “intermediate part”) An example of a fiber 74C3 ("third fiber") continuous with the fiber 74C2 along the longitudinal direction X (an example of the "fourth direction") which is integrally provided and connected to the other end of the first main body 74A1 ) Is provided, and the second main body 74A2 is provided.
 図7Aにおいては、繊維74Cの配向方向をわかりやすく示すために、第1本体部74A1の下層になる第2本体部74A2内の繊維74C3の配向方向も示している。 FIG. 7A also shows the orientation direction of the fibers 74C3 in the second main portion 74A2 that is the lower layer of the first main portion 74A1 in order to easily show the orientation direction of the fibers 74C.
 図7Aに示されるように、積層方向Zから見た平面視において、繊維74C1及び繊維74C3は、奥行方向Yに僅かに離間して、互いに平行に、長手方向Xに沿って配向されている。また、繊維74C1及び繊維74C3に接続される繊維74C2は、平面視において、繊維74C1と繊維74C3の間隔よりも広い直径を有する円弧状の曲線となるように滑らかに曲げられている。その結果、繊維74C2のうち、奥行方向Yの両端における2つの接線(図8のL11及びL21)が長手方向Xを向いており、長手方向Xの一端における接線(図8のL31。「第3方向を向いた直線」の一例)が奥行方向Yを向いている。 As shown in FIG. 7A, in a plan view seen from the stacking direction Z, the fibers 74C1 and the fibers 74C3 are oriented along the longitudinal direction X in parallel with each other, slightly separated in the depth direction Y. The fibers 74C1 and the fibers 74C3 connected to the fibers 74C3 are smoothly bent so as to form an arc-shaped curve having a diameter larger than the distance between the fibers 74C1 and the fibers 74C3 in a plan view. As a result, in the fiber 74C2, two tangents (L11 and L21 in FIG. 8) at both ends in the depth direction Y are directed in the longitudinal direction X and a tangent at one end in the longitudinal direction X (L31 in FIG. An example of “a straight line facing in the direction” faces in the depth direction Y.
 また、図7Bに示されるように、奥行方向Yから見た場合、繊維74C1及び繊維74C3は、積層方向Zに僅かに離間して、互いに平行に、長手方向Xに沿って配向されている。また、繊維74C2については、緩やかな曲線を描いて繊維74C1及び繊維74C3に接続している。このため、繊維74C2の長手方向Xの一端における接線(「第3方向を向いた直線」の一例)が積層方向Zを向いている。 Further, as shown in FIG. 7B, when viewed in the depth direction Y, the fibers 74C1 and the fibers 74C3 are slightly separated in the stacking direction Z and oriented parallel to one another along the longitudinal direction X. Further, the fibers 74C2 are connected to the fibers 74C1 and the fibers 74C3 by drawing a gentle curve. For this reason, a tangent at one end of the longitudinal direction X of the fiber 74C2 (an example of “a straight line facing the third direction”) faces the stacking direction Z.
 従って、応力緩和部74Bにおける繊維74C2は、螺旋状に、ループを描きながら積層方向Zに進行するように曲げられている。 Accordingly, the fibers 74C2 in the stress relieving portion 74B are spirally bent so as to advance in the stacking direction Z while drawing a loop.
 このような応力緩和部74Bにおいて、繊維74C2は、曲線を形成しているから、応力緩和部74Bの弾性率は、長手方向Xのみならず、何れの方向においても、本体部74A1の長手方向Xの弾性率と比較して相対的に小さい値(例えば、半分以下)を有する。従って、例えば、方向X1の荷重など、他の方向から荷重を受けた場合であっても、応力集中を緩和することが可能になる。 In such a stress relieving portion 74B, since the fiber 74C2 forms a curve, the elastic modulus of the stress relieving portion 74B is not only in the longitudinal direction X but also in any direction, the longitudinal direction X of the main body portion 74A1. Have a relatively small value (eg, less than half) as compared to the elastic modulus of Therefore, for example, even in the case of receiving a load from another direction such as a load in the direction X1, it is possible to relieve the stress concentration.
 図8は、積層方向Zから見た繊維74Cの形状の変形例を示している。 FIG. 8 shows a modification of the shape of the fibers 74C as viewed in the stacking direction Z.
 図8Aは、繊維74C1’の形状を示している。積層方向Zからみたときに、繊維74C1’は、繊維74Cと同様の形状をしている。すなわち、繊維74C11’及び繊維74C31’は、奥行方向Yに僅かに離間して、互いに平行に、長手方向Xに沿って配向され、繊維74C21’は、繊維74C11’と繊維74C31’の間隔よりも広い直径を有する円弧状の曲線となるように滑らかに曲げられている。その結果、繊維74C21’のうち、奥行方向Yの両端における2つの接線L11及びL21が長手方向Xを向いており、長手方向Xの一端における接線L31(「第3方向を向いた直線」の一例)が奥行方向Yを向いている。 FIG. 8A shows the shape of the fibers 74C1 '. When viewed in the stacking direction Z, the fibers 74C1 'have the same shape as the fibers 74C. That is, the fibers 74C11 'and the fibers 74C31' are oriented parallel to each other and in the longitudinal direction X while being slightly separated from each other in the depth direction Y, and the fibers 74C21 'are more than the distance between the fibers 74C11' and 74C31 '. It is smoothly curved to form an arc-shaped curve having a wide diameter. As a result, in the fiber 74C21 ′, the two tangents L11 and L21 at both ends in the depth direction Y are in the longitudinal direction X, and the tangent L31 at one end in the longitudinal direction X (a straight line facing the third direction) ) Is facing in the depth direction Y.
 ただし、図7に示される繊維74Cは、プライ74を折り曲げることにより、本体部74A1と本体部74A2の積層構造にわたって設けられる一方で、図8Aに示される繊維74C1’は、単一の層からなるプライ内に設けられている。換言すると、長手方向Xに沿って配向される繊維74C11’と、長手方向Xに沿って配向される繊維74C31’とを含む単一の本体部と、この本体部の長手方向における一端部に繋げて一体的に設けられ、曲線に沿って、これら繊維74C11’と繊維74C31’に連続する繊維74C21’が配向されている応力緩和部を備える。 However, while the fiber 74C shown in FIG. 7 is provided over the laminated structure of the main body 74A1 and the main body 74A2 by bending the ply 74, the fiber 74C1 ′ shown in FIG. 8A consists of a single layer It is provided in the ply. In other words, a single main body including fibers 74C11 'oriented along the longitudinal direction X and fibers 74C31' oriented along the longitudinal direction X, and one end in the longitudinal direction of the main body The stress relieving portion is integrally provided, and a fiber 74C21 'continuous to the fiber 74C11' and the fiber 74C31 'is oriented along a curve.
 このような構成においても、応力緩和部の弾性率は、長手方向Xのみならず、何れの方向においても、相対的に小さい値(例えば、本体部74A1の長手方向Xの弾性率の半分以下)を有する。従って、例えば、方向X1の荷重を受けた場合であっても、応力集中を緩和することが可能になる。 Even in such a configuration, the elastic modulus of the stress relaxation portion is relatively small not only in the longitudinal direction X but also in any direction (for example, not more than half the elastic modulus in the longitudinal direction X of the main body 74A1) Have. Therefore, for example, even when a load in the direction X1 is received, it is possible to relieve the stress concentration.
 なお、図7Aに示されるのと同様に、隣り合う2つの繊維74C1’の応力緩和部の繊維74C21’を重なり合うように配列してもよい。 As shown in FIG. 7A, the fibers 74C21 'of the stress relaxation portion of two adjacent fibers 74C1' may be arranged to overlap.
 また、図8Bは、繊維74C2’の形状を示している。この図に示されるように、繊維74C22’は、繊維74C12’及び繊維74C32’の間隔を短軸とする楕円状の曲線となるようにしてもよい。繊維74C22’のうち、長手方向Xの一端における接線L32(「第3方向を向いた直線」の一例)が奥行方向Yを向いている。 FIG. 8B also shows the shape of the fibers 74C2 '. As shown in this figure, the fibers 74C22 'may have an elliptical curve whose minor axis is the distance between the fibers 74C12' and the fibers 74C32 '. Of the fibers 74C22 ', a tangent L32 (an example of a "straight line pointing in the third direction") at one end in the longitudinal direction X is directed in the depth direction Y.
 なお、繊維74C12’及び繊維74C32’を接続する繊維74C22’の曲線は、楕円や円弧またはその他の高次曲線またはそれらが複数組み合わせられたものであってもよく、かつ、一部に曲率が小さな直線状に見える部分を含んでいてもよい。また、繊維74C12’と繊維74C32’は、同一の本体部内に設けられても、折り曲げられることにより異なる本体部内に設けられていてもよい。 The curve of the fiber 74C12 'connecting the fiber 74C12' and the fiber 74C32 'may be an ellipse, an arc, another higher order curve, or a combination of two or more thereof, and the curvature is partially small. It may include a portion that looks straight. Further, the fibers 74C12 'and the fibers 74C32' may be provided in the same main body, or may be provided in different main bodies by being bent.
 また、図8Cは、繊維74C3’の形状を示している。この図に示されるように、繊維74C13’と繊維74C33’は、積層方向Zからみてほぼ重なるように、繊維74C23’が設けられる応力緩和部で折り曲げられている。このような形状であっても、繊維74C23’の長手方向Xの一端における接線L33は、奥行方向Yを向いている。 FIG. 8C also shows the shape of the fiber 74C3 '. As shown in this figure, the fibers 74C13 'and the fibers 74C33' are bent at the stress relieving portion provided with the fibers 74C23 'so as to substantially overlap when viewed in the stacking direction Z. Even in such a shape, the tangent L33 at one end of the longitudinal direction X of the fiber 74C23 'is directed in the depth direction Y.
 また、図8Dは、繊維74C4’の形状を示している。この図に示されるように、繊維74C14’は、長手方向Xに配向され、繊維74C34’は、長手方向Xに対して鋭角(例えば、45度)をなす方向X2(「第4の方向」の一例)に配向されている。この変形例においても、繊維74C24’が設けられる応力緩和部で折り曲げられている。このような形状であっても、繊維74C24’の長手方向Xの一端における接線L34は、奥行方向Yを向いている。また、奥行方向Yの両端における接線L14及びL24は、長手方向Xを向いている。 FIG. 8D also shows the shape of the fibers 74C4 '. As shown in this figure, the fibers 74C14 'are oriented in the longitudinal direction X, and the fibers 74C34' are in the direction X2 ("fourth direction") forming an acute angle (eg 45 degrees) with the longitudinal direction X (Example) oriented. Also in this modification, the fibers 74C24 'are bent at the stress relieving portion provided. Even in such a shape, the tangent L34 at one end of the longitudinal direction X of the fiber 74C24 'is directed in the depth direction Y. Further, tangents L14 and L24 at both ends in the depth direction Y are in the longitudinal direction X.
 以上述べたような構成において、繊維74C21’~74C24’がそれぞれ設けられる各応力緩和部の弾性率は、何れの方向においても、本体部74A1の長手方向Xの弾性率に対して小さい値(例えば、半分以下)を有する。従って、例えば、方向X1の荷重を受けた場合であっても、応力集中を緩和することが可能になる。 In the configuration as described above, the elastic modulus of each of the stress relaxation portions provided with the fibers 74C21 'to 74C24' is smaller than the elastic modulus in the longitudinal direction X of the main body portion 74A1 in any direction (for example, , Half or less). Therefore, for example, even when a load in the direction X1 is received, it is possible to relieve the stress concentration.
 更に、図8Dに示される複合材料は、長手方向Xのみならず、方向X2の弾性率も高い。このため、2つの方向(長手方向X及び方向X2)に強い荷重がかかることが既知の箇所に、図8Dに示されるような繊維74C4’が設けられた複合材料を好適に用いることが可能になる。なお、図8C及び図8Dの繊維74C3’や74C4’の形状を複合材料として採用する際に、母材を折り曲げる位置は、必ずしも長手方向Xの中央部である必要はない。例えば、第1本体部の長手方向Xの長さと、第2本体部の長手方向Xの長さを異ならせるように、長手方向Xの中央部から外れた位置で、母材を折り曲げてもよい。 Furthermore, the composite material shown in FIG. 8D has a high elastic modulus not only in the longitudinal direction X but also in the direction X2. For this reason, it is possible to suitably use a composite material in which a fiber 74C4 'as shown in FIG. 8D is provided at a place where it is known that a strong load is applied in two directions (longitudinal direction X and direction X2). Become. When the shapes of the fibers 74C3 'and 74C4' in FIGS. 8C and 8D are adopted as the composite material, the position at which the base material is bent does not necessarily have to be the central portion in the longitudinal direction X. For example, the base material may be bent at a position deviated from the central portion in the longitudinal direction X so that the length in the longitudinal direction X of the first body portion and the length in the longitudinal direction X of the second body portion are different. .
 図9は、上述したような複合材料を製造するために、自動積層装置Mにより実行される母材を折り曲げるプロセスの一例を説明するための図である。なお、上述したように、本発明に係る複合材料及び積層構造は、様々な方法により製造することが可能であり、例えば、ドライファイバーを折り曲げて所望の積層構造を設けた後に、樹脂を含浸させるようにしてもよい。 FIG. 9 is a view for explaining an example of a process of bending a base material performed by the automatic laminating apparatus M in order to produce the composite material as described above. As described above, the composite material and the laminated structure according to the present invention can be manufactured by various methods. For example, a dry fiber is bent to form a desired laminated structure, and then the resin is impregnated. You may do so.
 図9に示されるように、自動積層装置Mは、隣接する二つの円柱状のローラR1及びローラR2と、ステージSを備えている。 As shown in FIG. 9, the automatic laminating apparatus M includes two adjacent cylindrical rollers R1 and R2 and a stage S.
 まず、母材中に一定方向に繊維が配向される層状のプリプレグシートPを準備する。 First, a layered prepreg sheet P in which fibers are oriented in a predetermined direction in a base material is prepared.
 次いで、プリプレグシートPの繊維の配向方向と、ローラR1の回転による移動方向が一致するように、プリプレグシートPをローラR1とローラR2の間隙に通しながら、ローラR1を用いて、プリプレグシートPをステージSに対して押し付ける。この結果、ローラR1の移動方向と同じ方向に繊維が配向されるプリプレグシートPが、ステージS上に配設される。 Next, the prepreg sheet P is passed using the roller R1 while passing the prepreg sheet P through the gap between the roller R1 and the roller R2 so that the orientation direction of the fibers of the prepreg sheet P and the moving direction by rotation of the roller R1 coincide. It is pressed against the stage S. As a result, a prepreg sheet P in which the fibers are oriented in the same direction as the moving direction of the roller R1 is disposed on the stage S.
 図9Bは、回転することにより、ローラR1及びローラR2がそれぞれ紙面右方向に移動するとともに、ステージS上にプリプレグシートPが配設された様子を示している。 FIG. 9B shows a state in which the prepreg sheet P is disposed on the stage S while the roller R1 and the roller R2 move in the right direction in the drawing by rotating.
 その後、ローラR1及びローラR2を反対方向に回転させ、ローラR2を用いて、プリプレグシートPを、ローラR1を用いてステージS上に配設されたプリプレグシートPに押し付けることで、母材の中間部の折り曲げ、ならびに、母材を積層するプロセスが実行される。 Thereafter, the roller R1 and the roller R2 are rotated in the opposite direction, and the prepreg sheet P is pressed against the prepreg sheet P disposed on the stage S using the roller R1 using the roller R2, so that the base material is intermediate A process of folding the part and laminating the base material is performed.
 図9Cは、反対方向に回転することにより、ローラR1及びローラR2がそれぞれ紙面左方向に移動するとともに、プリプレグシートPが積層された様子を示している。 FIG. 9C shows a state in which the prepreg sheet P is laminated while the roller R1 and the roller R2 move to the left in the drawing respectively by rotating in the opposite direction.
 以上のようなプロセス後、更に、異なるプリプレグシートを積層させ、その後に、オートクレーブ内で加熱及び加圧されることにより、一体的に成形された積層構造体を設けることができる。 After the above-described process, different prepreg sheets are further laminated, and thereafter, heating and pressure are applied in an autoclave, whereby an integrally formed laminated structure can be provided.
 図10は、製造された積層構造体70’を示している。この積層構造体70’は、プライ12と、プライ12上に積層された4つのプライ74’を備えている。ここで、各プライ74’は、プライ74と同等の構成を備えている。具体的には、それぞれ上層の第1本体部と、下層の第2本体部と、これらを接続する応力緩和部(「中間部」の一例)を備えている。 FIG. 10 shows the manufactured laminated structure 70 '. The laminated structure 70 ′ comprises a ply 12 and four plies 74 ′ laminated on the ply 12. Here, each ply 74 ′ has the same configuration as the ply 74. Specifically, the first main body portion in the upper layer, the second main body portion in the lower layer, and a stress relaxation portion (an example of an “intermediate portion”) connecting these are provided.
 また、4つのプライ74’は、上層ほど長手方向Xの長さが小さくなるように設けられている。従って、各プライ74’の応力緩和部74B’の長手方向Xの位置が異なることになる結果、積層構造体70’は、図10に示されるようなテーパ形状を備える。更に、これら4つのプライ74’の積層方向Z上方には、応力緩和部74B’を覆うように、カバープライCPが設けられている。 In addition, the four plies 74 'are provided such that the length in the longitudinal direction X becomes smaller as the upper layer becomes. Therefore, as a result of the position in the longitudinal direction X of the stress relieving portions 74B 'of each ply 74' being different, the laminated structure 70 'has a tapered shape as shown in FIG. Furthermore, a cover ply CP is provided above the stacking direction Z of the four plies 74 'so as to cover the stress relieving portion 74B'.
 このような積層構造体70’と、標準試験片とを、それぞれ引張試験にかけて、破壊したときのサイクル数を計測した。 Each of the laminated structure 70 ′ and the standard test piece was subjected to a tensile test, and the number of cycles when broken was measured.
 なお、プライ74’は、8プライ分の厚みを有するため、標準試験片は、8プライを、プライ74’と同等の5:1のテーパを有するように積層した後、カバープライCPを設けた構造を備えている。 Since the ply 74 'has a thickness of 8 plies, the standard test piece is provided with the cover ply CP after laminating 8 plies so as to have a taper of 5: 1 equivalent to the ply 74'. It has a structure.
 試験の結果、標準試験片は、約30,000サイクルで破壊した。 As a result of the test, the standard test piece was broken in about 30,000 cycles.
 一方で、積層構造体70’は、1,000,000サイクル(百万サイクル)でも、亀裂すら発見されなかった。 On the other hand, in the laminated structure 70 ′, even a crack was not found even at 1,000,000 cycles (one million cycles).
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are for the purpose of facilitating the understanding of the present invention, and are not for the purpose of limiting the present invention. The elements included in the embodiment and the arrangement, the material, the conditions, the shape, the size, and the like of the elements are not limited to those illustrated, and can be changed as appropriate. In addition, configurations shown in different embodiments can be partially substituted or combined with each other.
12…プライ、14…プライ、14A…本体部、14B…応力緩和部、16…プライ、16A…本体部、16B…応力緩和部、16C…繊維、20…積層構造体、22…プライ部、24…プライ部、24A…本体部、24B…応力緩和部、30…積層構造体、32…プライ部、34…プライ部、34A…本体部、34B…応力緩和部、40…積層構造体、60…積層構造体、62…プライ、62A…本体部、62B…応力緩和部、62C…繊維、64…プライ、70…積層構造体、74…プライ、74A1…本体部、74A2…本体部、74B…応力緩和部、74C…繊維、74C1、74C1’~74C4’…繊維、100…積層構造体、120…プライ、140…プライ、160…プライ、160C…繊維、200…積層構造体、300…積層構造体、AR…矢印、CP…カバープライ、M…自動積層装置、P…プリプレグシート、R1…ローラ、R2…ローラ、S…ステージ、X…長手方向、X1、X2…方向、Y…奥行方向、Z…積層方向 12 ply 14 ply 14A body portion 14B stress relaxation portion 16 ply 16A body portion 16B stress relaxation portion 16C fiber 20 laminated structure 22 ply portion 24 ... Ply part, 24A ... body part, 24B ... stress relaxation part, 30 ... laminated structure, 32 ... ply part, 34 ... ply part, 34A ... body part, 34B ... stress relaxation part, 40 ... laminated structure, 60 ... Laminated structure, 62: ply, 62A: main body portion, 62B: stress relieving portion, 62C: fiber, 64: ply, 70: laminated structure, 74: ply, 74A1: main body portion, 74A2: main body portion, 74B: stress Relief part, 74C ... fiber, 74C1, 74C1 'to 74C4' ... fiber, 100 ... laminated structure, 120 ... ply, 140 ... ply, 160 ... ply, 160C ... fiber, 200 ... laminated structure, 300 Laminated structure, AR: arrow, CP: cover ply, M: automatic laminating device, P: prepreg sheet, R1: roller, R2: roller, S: stage, X: longitudinal direction, X1, X2: direction, Y: depth Direction, Z: Stacking direction

Claims (16)

  1.  複合材料であって、
     母材中に、第1方向に沿って第1繊維が配向されている本体部と、
     前記本体部の前記第1方向における端部に繋げて一体的に設けられ、前記第1方向に対して鋭角をなす第2方向に沿って、前記第1繊維と連続する第2繊維が配向されている応力緩和部と、
     を備える複合材料。
    A composite material,
    A body portion in which a first fiber is oriented in a matrix along a first direction;
    A second fiber continuous with the first fiber is oriented along a second direction which is integrally connected to an end of the main body in the first direction and which forms an acute angle with the first direction. Stress relieving part,
    Composite material comprising:
  2.  前記第1方向と前記第2方向がなす角度は、20度以上であることを特徴とする請求項1に記載の複合材料。 The composite material according to claim 1, wherein an angle formed by the first direction and the second direction is 20 degrees or more.
  3.  前記第1方向における前記応力緩和部の剛性は、前記第1方向における前記本体部の剛性の半分以下であることを特徴とする請求項1又は2に記載の複合材料。 The composite material according to claim 1 or 2, wherein the rigidity of the stress relieving portion in the first direction is equal to or less than half the rigidity of the main body portion in the first direction.
  4.  前記第1繊維及び第2繊維は、炭素を含むことを特徴とする請求項1から3の何れか一項に記載の複合材料。 The composite material according to any one of claims 1 to 3, wherein the first fiber and the second fiber contain carbon.
  5.  前記第2繊維の端面は、前記第1方向を向いていることを特徴とする請求項1から4の何れか一項に記載の複合材料。 The composite material according to any one of claims 1 to 4, wherein an end face of the second fiber faces the first direction.
  6.  複合材料であって、
     母材中に、
     第1方向に沿って第1繊維が配向されている第1本体部と、
     前記第1本体部の前記第1方向における一端部に繋げて一体的に設けられ、前記第1方向に垂直な第3方向を向いた直線を接線として含む曲線に沿って、前記第1繊維に連続する第2繊維が配向されている応力緩和部と、
     を備える複合材料。
    A composite material,
    In the base material,
    A first body portion in which a first fiber is oriented along a first direction;
    The first fiber is provided integrally with one end of the first body portion in the first direction, along a curve including, as a tangent, a straight line directed in a third direction perpendicular to the first direction. A stress relief section in which the continuous second fibers are oriented;
    Composite material comprising:
  7.  前記第1本体部には、前記第1本体部の前記第1方向における他端部に向かう第4方向に沿って、前記第2繊維に連続する第3繊維が配向されていることを特徴とする請求項6に記載の複合材料。 In the first main body portion, third fibers continuous to the second fibers are oriented in a fourth direction toward the other end of the first main body portion in the first direction. The composite material according to claim 6.
  8.  前記曲線は、前記第1方向を向いた直線を接線として含むことを特徴とする請求項6又は7に記載の複合材料。 The composite material according to claim 6, wherein the curve includes a straight line directed in the first direction as a tangent.
  9.  前記母材は、
     前記応力緩和部に繋げて一体的に設けられ、前記第1本体部の前記第1方向における他端部に向かう第4方向に沿って、前記第2繊維に連続する第3繊維が配向されており、前記第1本体部に積層される第2本体部を更に備える請求項6に記載の複合材料。
    The base material is
    A third fiber connected to the stress relieving portion is integrally provided, and a third fiber connected to the second fiber is oriented along a fourth direction toward the other end of the first body portion in the first direction. The composite material according to claim 6, further comprising: a second body portion stacked on the first body portion.
  10.  前記第1方向と前記第4方向は平行であることを特徴とする請求項7又は9に記載の複合材料。 The composite material according to claim 7, wherein the first direction and the fourth direction are parallel.
  11.  前記第1方向に前記複合材料より長い第2の複合材料と、
     この第2の複合材料上に積層された請求項1から10の何れか一項に記載の複合材料と、
     を備える積層構造体。
    A second composite material that is longer than the composite material in the first direction;
    11. A composite according to any one of the preceding claims, laminated on this second composite.
    Laminated structure.
  12.  前記複合材料の前記第1方向の長さは、前記第2の複合材料から離れるにしたがって小さくなることを特徴とする請求項11に記載の積層構造体。 The laminated structure according to claim 11, wherein the length in the first direction of the composite material decreases with distance from the second composite material.
  13.  請求項11又は請求項12に記載の積層構造体を備える航空機の翼。 An aircraft wing comprising the laminated structure according to claim 11 or 12.
  14.  複合材料の製造方法であって、
     母材中に第1方向に繊維が配向される複合材料を準備するステップと、
     この母材の端部を前記第1方向と垂直な方向にせん断変形させて、前記母材中に、前記第1方向に沿って第1繊維が配向されている本体部と、前記本体部の前記第1方向における端部に繋げて一体的に設けられ、前記第1方向に対して鋭角をなす第2方向に沿って、前記第1繊維と連続する第2繊維が配向されている応力緩和部と、を設けるステップと、
     を含む複合材料の製造方法。
    A method of manufacturing a composite material,
    Preparing a composite material in which the fibers are oriented in a first direction in the matrix;
    An end portion of the base material is sheared in a direction perpendicular to the first direction, and a main body portion in which first fibers are oriented in the first direction in the base material, and the main body portion Stress relaxation in which a second fiber connected to the first fiber is oriented along a second direction which is integrally provided at an end in the first direction and which forms an acute angle with the first direction. Providing a unit;
    A method of producing a composite material comprising:
  15.  前記せん断変形後に、前記応力緩和部の一部を前記第1方向と垂直な方向に切断して、前記第1方向を向いた端面を前記第2繊維に設けるステップと、
     を更に含む請求項14に記載の複合材料の製造方法。
    After the shear deformation, cutting a part of the stress relieving portion in a direction perpendicular to the first direction to provide the second fiber with an end surface facing the first direction;
    The method for producing a composite material according to claim 14, further comprising
  16.  複合材料の製造方法であって、
     層状の母材中に第1方向に繊維が配向される複合材料を準備するステップと、
     前記母材の中間部を折り曲げて、前記母材中に、前記第1方向に沿って第1繊維が配向されている第1本体部と、前記第1本体部の前記第1方向における一端部に繋げて一体的に設けられ、前記第1方向に垂直な第3方向を向いた直線を接線として含む曲線に沿って、前記第1繊維に連続する第2繊維が配向されている応力緩和部と、前記応力緩和部に繋げて一体的に設けられ、前記第1本体部の前記第1方向における他端部に向かう第4方向に沿って、前記第2繊維に連続する第3繊維が配向されている第2本体部であって、前記第1本体部からなる第1層部と、前記第2本体部からなり、前記第3方向を積層方向として、前記第1層部に積層される第2層部と、前記応力緩和部からなり、前記第1層部の前記第1方向における端部及び前記第2層部の前記第1方向における端部に繋げて一体的に設けられる中間部と、を設けるステップと、
     を含む複合材料の製造方法。
    A method of manufacturing a composite material,
    Providing a composite material in which the fibers are oriented in a first direction in a layered matrix;
    The first body portion in which the first fiber is oriented in the matrix along the first direction by bending the middle portion of the matrix, and one end of the first body portion in the first direction Stress relieving portion in which a second fiber connected to the first fiber is oriented along a curve including a straight line directed in a third direction perpendicular to the first direction as a tangent line. And a third fiber connected to the stress relieving portion and integrally provided, and a third fiber connected to the second fiber is oriented along a fourth direction toward the other end of the first main body in the first direction. The second main body, and the first main body including the first main body and the second main body, and the third direction is stacked on the first layer with the stacking direction A second layer portion and the stress relieving portion, and an end portion and a front portion of the first layer portion in the first direction Providing at an intermediate portion integrally provided by connecting the end portion in the first direction of the second layer portion,
    A method of producing a composite material comprising:
PCT/JP2018/048189 2017-12-28 2018-12-27 Composite material, layered structure, aircraft wing, and composite material manufacturing method WO2019131893A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019562175A JPWO2019131893A1 (en) 2017-12-28 2018-12-27 Manufacturing methods for composite materials, laminated structures, aircraft wings and composite materials

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017253113 2017-12-28
JP2017-253113 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019131893A1 true WO2019131893A1 (en) 2019-07-04

Family

ID=67067499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/048189 WO2019131893A1 (en) 2017-12-28 2018-12-27 Composite material, layered structure, aircraft wing, and composite material manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2019131893A1 (en)
WO (1) WO2019131893A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161717A1 (en) * 2020-02-12 2021-08-19 三菱重工業株式会社 Composite material structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115710B2 (en) * 1979-02-22 1986-04-25 Hasegawa Kagaku Kogyo Kk
JPH0496331U (en) * 1991-01-29 1992-08-20
JPH0569491A (en) * 1991-01-15 1993-03-23 United Technol Corp <Utc> Method and device for manufacturing composite material layer having bent shape
JP2006218720A (en) * 2005-02-10 2006-08-24 Murata Mach Ltd Automatic lamination apparatus of prepreg sheet
US20080187441A1 (en) * 2006-10-18 2008-08-07 Karl Schreiber Fan blade made of a textile composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115710B2 (en) * 1979-02-22 1986-04-25 Hasegawa Kagaku Kogyo Kk
JPH0569491A (en) * 1991-01-15 1993-03-23 United Technol Corp <Utc> Method and device for manufacturing composite material layer having bent shape
JPH0496331U (en) * 1991-01-29 1992-08-20
JP2006218720A (en) * 2005-02-10 2006-08-24 Murata Mach Ltd Automatic lamination apparatus of prepreg sheet
US20080187441A1 (en) * 2006-10-18 2008-08-07 Karl Schreiber Fan blade made of a textile composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021161717A1 (en) * 2020-02-12 2021-08-19 三菱重工業株式会社 Composite material structure
GB2607494A (en) * 2020-02-12 2022-12-07 Mitsubishi Heavy Ind Ltd Composite material structure

Also Published As

Publication number Publication date
JPWO2019131893A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US9550332B2 (en) Wing and blade structure using pultruded composites
JP6786256B2 (en) Systems and methods for forming composites
CA2824216C (en) Composite laminated structures and methods for manufacturing and using the same
EP2607229B1 (en) Composite rod and manufacturing method
US11376812B2 (en) Shock and impact resistant structures
US4793727A (en) Two-step composite joint
WO2010104741A1 (en) Composite structures employing quasi-isotropic laminates
EP1793989A2 (en) Thin ply laminates
US20210339499A1 (en) Composite materials and structures
KR20150128665A (en) Triaxial fiber-reinforced composite laminate
WO2019131893A1 (en) Composite material, layered structure, aircraft wing, and composite material manufacturing method
EP3075524A1 (en) Pressure bulkhead and method for producing a pressure bulkhead
EP3000586B1 (en) Method for manufacturing a composite material part comprising a web and at least one flange
US11440652B2 (en) All-fabric spar for aerodynamic components
WO2014031047A1 (en) A laminate structure of composite material
JP6103239B2 (en) Reinforced beam material
JP5401663B2 (en) bolt
JP3581334B2 (en) Continuous reinforcing fiber sheet and method for producing the same
US20200148336A1 (en) Landing gear of rotorcraft
US20230071796A1 (en) Composite material structure body production method, layered body production method, layered body, and layered form
JP6961531B2 (en) FRP cylinder and its manufacturing method
JP5900385B2 (en) Manufacturing method of FRP pipe
JP7296120B2 (en) FASTENING STRUCTURE, STRUCTURAL MEMBER, FASTENER, MOVING OBJECT, AND FASTENING METHOD
KR102131562B1 (en) Fiber reinforced plastic propellers for unmanned aerial vehicle and menufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562175

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894956

Country of ref document: EP

Kind code of ref document: A1