JP2019191001A - 地中レーダーシステム - Google Patents

地中レーダーシステム Download PDF

Info

Publication number
JP2019191001A
JP2019191001A JP2018084353A JP2018084353A JP2019191001A JP 2019191001 A JP2019191001 A JP 2019191001A JP 2018084353 A JP2018084353 A JP 2018084353A JP 2018084353 A JP2018084353 A JP 2018084353A JP 2019191001 A JP2019191001 A JP 2019191001A
Authority
JP
Japan
Prior art keywords
transmission
reception
ground
radar
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018084353A
Other languages
English (en)
Other versions
JP7086697B2 (ja
Inventor
中村 泰之
Yasuyuki Nakamura
泰之 中村
敦夫 千賀
Atsuo Chiga
敦夫 千賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP2018084353A priority Critical patent/JP7086697B2/ja
Publication of JP2019191001A publication Critical patent/JP2019191001A/ja
Application granted granted Critical
Publication of JP7086697B2 publication Critical patent/JP7086697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】複数の地中レーダー装置の間において、簡易かつ正確に同期をとって、種々の要請に対応可能な地中レーダーシステムを提供すること。【解決手段】各地中レーダー装置30が個々に有する電波の送受信機能を利用して、一の地中レーダー装置30Mからの送信を他の地中レーダー装置30Sで受信することで同期をとるようにしている。地中レーダー装置30間での電波の送受信を利用することにより、高精度な同期動作が可能となる。また、例えば地中レーダー装置30の数を増減させたり、配置を変えたりといった場合においても、配線等の煩雑な準備を必要とすること無く同期をとることができるので、簡易かつ迅速な対応が可能となる。【選択図】図1

Description

本発明は、地中の状態を探査するための地中レーダー装置を備える地中レーダーシステムに関する。
地中レーダー装置として、複数の送受信アンテナを備えることで、無指向性の合成アンテナを形成したり、探査可能な範囲が広い構成としたりするものが知られている(例えば、特許文献1、2等参照)。
上記特許文献1、2のように、複数のアンテナを設け、これを一括制御する構成の場合、アンテナ間での動作について、例えば同期をとって各アンテナでの送受信のタイミングを合わせる等の制御に関しては、正確性を担保しやすいと考えられる。しかし、その反面、複数のアンテナとこれを制御する装置とが一体不可分となり、複数のアンテナの配置を変えて探査範囲を変更するといった種々の態様変更の要請に必ずしも容易に対応できるとは限らない。これに対して、例えば探査範囲に応じて複数個の地中レーダー装置を並べることで、探査を行うことも考えられる。しかし、この場合、各地中レーダー装置の間での同期をいかに取るかが問題となる。例えば、同期がとれないことに起因して、各地中レーダー装置の間で測定時刻が正確に合っていない状態であると、測定時間のずれの影響で、各地中レーダー装置で取得データを正確に繋ぎ合わせられなくなる可能性がある。特に、地中レーダー装置が高速で移動するような場合には、測定時間のずれの影響が大きくなると考えられる。
特開2002−214356号公報 特開2008−96199号公報
本発明は上記した点に鑑みてなされたものであり、複数の地中レーダー装置の間において、簡易かつ正確に同期をとって、種々の要請に対応可能な地中レーダーシステムを提供することを目的とする。
上記目的を達成するため、本発明に係る地中レーダーシステムは、送信信号を送信する送信部と受信信号を受信する受信部とをそれぞれ備えて探査を行う複数の地中レーダー装置を備え、複数の地中レーダー装置のうち一の地中レーダー装置の送信部から送信された送信信号を、他の地中レーダー装置の受信部において受信して、複数の地中レーダー装置の間での同期をとる。
上記地中レーダーシステムでは、複数の地中レーダー装置の間での同期をとるに際して、各地中レーダー装置が個々に有する電波の送受信機能を利用している。具体的には、一の地中レーダー装置からの送信を他の地中レーダー装置で受信することで同期をとるようにしている。地中レーダー装置間での電波の送受信を利用することにより、高精度な同期動作が可能となる。また、例えば地中レーダー装置の数を増減させたり、配置を変えたりといった場合においても、配線等の煩雑な準備を必要とすること無く同期をとることができるので、簡易かつ迅速な対応が可能となる。
本発明の具体的な側面では、複数の地中レーダー装置は、探査における時刻を計測するための時計をそれぞれ有し、一の地中レーダー装置から送信される時刻設定用の送信信号を受信することで、各地中レーダー装置に設けた時計の間での時刻合わせを行う。この場合、時刻設定用の送信信号を利用することで、複数の地中レーダー装置の間での時刻合わせを正確にできる。
本発明の別の側面では、他の地中レーダー装置は、一の地中レーダー装置の送信部から送信された送信信号の受信を行う間、自己の送信部による送信を停止する又はゼロ信号送信とする。この場合、他の地中レーダー装置の受信部において、一の地中レーダー装置の送信部から送信された送信信号を確実に受信させることができる。
本発明のさらに別の側面では、複数の地中レーダー装置と接続し、複数の地中レーダー装置の動作を統括制御する全体制御部を備える。この場合、全体制御部の統括制御下において、各地中レーダー装置に所望の動作を行わせることができる。
本発明のさらに別の側面では、複数の地中レーダー装置は、同期の完了を全体制御部にそれぞれ通知し、全体制御部は、複数の地中レーダー装置の全てから通知を受けた後、複数の地中レーダー装置による探査を開始する。この場合、全体制御部の統括制御下において、各地中レーダー装置間での同期がとれた状態で探査を行うことができる。
本発明のさらに別の側面では、全体制御部は、複数の地中レーダー装置における同期が完了しない場合、複数の地中レーダー装置のうち送信信号を送信する地中レーダー装置を変更する。この場合、基準となる地中レーダー装置を変更することで、同期を完了させることが可能になる。
本発明のさらに別の側面では、他の地中レーダー装置は、一の地中レーダー装置の送信部から送信された送信信号の受信タイミングに基づいて、自己の受信可能期間を調整して一の地中レーダー装置と同期受信させる。この場合、受信可能期間を調整して最適な受信タイミングにあわせることで、正確な同期が可能になる。
本発明のさらに別の側面では、他の地中レーダー装置は、一の地中レーダー装置の送信部から送信された送信信号のうち地表ではね返る第1反射成分を同期用の信号として受信する。この場合、より正確かつ確実な信号受信が可能になる。
本発明のさらに別の側面では、複数の地中レーダー装置の間での同期を、探査開始前の起動時ごとにとる。この場合、探査開始前の起動時ごとにおいて同期がとれた状態とした上で、探査ができる。
第1実施形態の地中レーダーシステムの概要を説明するための概念図である。 地中レーダーシステムの一構成例について説明するためのブロック図である。 複数の地中レーダー装置における同期の動作について概要を説明するための概念図である。 地中レーダー装置の同期動作の一例について概要を示すタイムチャートである。 図4における動作についての詳細を説明するためのタイムチャートである。 同期に際しての全体制御部における動作の一例について説明するためのフローチャートである。 同期に際しての一の地中レーダー装置における動作の一例について説明するためのフローチャートである。 同期に際しての他の地中レーダー装置における動作の一例について説明するためのフローチャートである。 (A)は、地中レーダーシステムの一応用例を示す概念的な平面図であり、(B)は、地中レーダーシステムの他の一応用例を示す概念的な平面図である。 (A)及び(B)は、第2実施形態の地中レーダーシステムの概要を説明するための概念図である。
〔第1実施形態〕
以下、図面を参照しつつ、第1実施形態に係る地中レーダーシステムの一例について説明する。
図1及び図2に示すように、第1実施形態の一態様の地中レーダーシステム100は、複数の地中レーダー装置30,30,…と、主制御部であり制御全体を統括する全体制御部50と、全体制御部50に各地中レーダー装置30を接続するスイッチ回路SWとを備える。
各地中レーダー装置30は、図2に示すように、アンテナ装置10と、制御部20とを備え、全体制御部50からの指示に従って各部を動作させることで、個別に地中探査を行うことを可能としている。
以下、1つの地中レーダー装置30における構成について、より具体的に説明すると、まず、アンテナ装置10は、送信アンテナTxと受信アンテナRxとを備えている。また、制御部20は、送受信制御部21と、送信部22aと、受信部22bとを備えている。制御部20は、送信部22aと、受信部22bとにより、全体制御部50からの指示に従ってアンテナ装置10を構成する各アンテナTx,Rxを動作させ、地中探査を行う。このため、送信部22aは、パルスやチャープによる送信波(電波)S1を生成する発信器のほか、信号変換を行うD/Aコンバーター、送信波S1を増幅するためのアンプ等で構成されている。また、受信部22bは、地中に存在する探査対象である埋設物や空洞その他の対象物で反射されて戻って来た応答波S2を受信すべく、ノイズ処理等のための各種フィルターや、応答波S2を増幅するためのアンプ、サンプリング処理を行う相間処理器、信号変換を行うA/Dコンバーター等で構成されている。
また、制御部20のうち送受信制御部21は、送信部22aと受信部22bとにおける送受信制御を行う。また、ここでは、特に、送受信制御部21は、受信部22bでの受信タイミングを調整するためのクロック調整部21aと、地中探査を行う際に計測時刻の測定(自己の内部時刻の測定)を行うための時計であるタイマー21bとを備える。制御部20は、送受信制御部21のクロック調整部21aにおいて受信部22bでの受信タイミングを最適化する調整を行う。さらに、送受信制御部21において、タイミングの最適化がなされた上で、タイマー21bにおける自己の内部時刻の測定と他の地中レーダー装置30における内部時刻の測定との誤差調整を図ることで、各地中レーダー装置30の間での同期をとるに際して、正確な時刻合わせ(時間合わせ)を行うことが可能となっている。
全体制御部50は、例えば、CPUや各種ストレージ、表示部等で構成され、典型的には、これらを内蔵するPCで構成される。全体制御部50は、複数の地中レーダー装置30においてそれぞれ送信される送信波S1の送信タイミングの制御のほか、演算処理等の各種処理を行い、地中探査の制御動作全体を統括する。このため、本実施形態における全体制御部50は、例えばCPU等により各種アプリケーションプログラムに基づく種々の処理が可能となっているとともに、各種データの一時記憶が可能となっている。
スイッチ回路SWは、全体制御部50と接続するともに、複数の地中レーダー装置30とそれぞれ接続され、全体制御部50からの各種信号を、複数の地中レーダー装置30に対して、個別に送信を行っている。なお、スイッチ回路SWについては、種々の構成が可能であるが、例えばスイッチングハブを利用したLAN接続とすることで、上記のような構成が可能となる。また、図1では、4つの地中レーダー装置30と接続した場合を例示しており、図2では、3つの地中レーダー装置30と接続した場合を例示しているが、地中レーダー装置30の個数はこれらに限らず、測定対象となる範囲や精度等に応じて、種々変更することができる。例えば上記のように、LAN接続とする場合であれば接続するポートを十分大きくしておくことで、さらに多くの地中レーダー装置30を並べることが可能である。また、LAN接続については、例えば無線で通信可能な態様(無線LAN)とすることも可能である。なお、ここでは、スイッチ回路SWと各地中レーダー装置30間での通信に関しては、非同期接続ACになっており、各地中レーダー装置30間での同期については、別の方法をとっている。同期のとり方についての詳細は、後述する。
ここで、一般に、本願と同様に複数の地中レーダー装置を並べて利用することで、地中探査を行う地中レーダーシステムにおいては、各地中レーダー装置間での同期を高精度に行うことが非常に重要である。複数の地中レーダー装置を並べて利用する態様としては、種々のものが考えられるが、一例を挙げると、各地中レーダーを走行装置において、進行方向に対して垂直な方向に一例に並べて幅広の範囲を一斉に探査する(図9参照)、といったことが考えられる。このような場合において、各レーダー装置において取得されたデータの位置合わせが正確でないと、全体として整合したデータが取れなくなってしまう。すなわち、個々に取得したデータの正確な位置合わせのために、各レーダー装置間で高精度な同期をとる等の必要がある。以上のようなことへの対応のために、例えば、探査データの取得に際して併せて取得されるデータ取得のタイミングすなわち各レーダー装置での時刻データを基準として利用することが考えられる。この場合、各レーダー装置における時刻データの正確性が重要となる。つまり、複数台の地中レーダー装置に対して、各装置内の内部時刻を高精度に一致させる、といったことが必要になる。
各レーダー装置間で同期をとる方法については、例えば各地中レーダー装置をケーブル等で数珠つなぎにすることで、1つの地中レーダー装置を基準として、各地中レーダー装置で取得したデータの位置や時間についての情報の同期をとることができる。ただし、この場合、各地中レーダー装置を繋ぐ構成となるため、例えば上記のように一列に並べるといった場合には、並べる個数に応じて、数珠つなぎにする箇所を増減させていく、といった準備作業が必要になる。
また、別の実現方法として、既述のように、各装置内の内部時刻を高精度に一致させ、時刻を基準に同期をとる方法が考えられる。例えば、高精度GNSS(GPS)を用いて、衛星時刻とPPS信号(高精度1秒間隔パルス)を使うことで、各地中レーダー装置の個々の内部時刻を高精度に一致させ、一致している時刻を基準に同期をとる方法が知られている。ただし、この場合、各地中レーダー装置に対し高精度GNSSを搭載することになるため、コスト面の課題となる。
以上に対して、本実施形態の地中レーダーシステム100は、上記のような構成において、各地中レーダー装置30が個々に有する電波の送受信機能を利用することで、複数の地中レーダー装置30の間での同期をとるに際して、簡易な構成で、高精度な同期動作を可能とし、さらに、地中レーダー装置30の増減や配置変更について、簡易かつ迅速な対応が可能となる構成となっている。
以下、図1等を参照して、本実施形態の地中レーダーシステム100における本動作である探査前の準備処理として、各地中レーダー装置30間における同期のとり方の一例について、概要を説明する。ここでは、図1〜図3に例示するように、複数の地中レーダー装置30のうち、一の地中レーダー装置30Mが同期の基準となるマスターとなり、他の地中レーダー装置30S,30S…が、マスターに従って同期するスレーブとなっている。本実施形態では、図3に示すように、同期のための動作として、マスターである一の地中レーダー装置30Mから送信される同期用の送信波S1を、スレーブである他の地中レーダー装置30Sにおいて受信することで、同期がとられる。なお、図2に示す例では、第1地中レーダー装置30Aが、マスターの地中レーダー装置30Mであるものとし、第2〜第4地中レーダー装置30B,30C,30Dを、スレーブの地中レーダー装置30Sとしている。また、この際、例えば図2に示すように、マスターの地中レーダー装置30Mでは、送信アンテナTxと受信アンテナRxとの双方が動作して、送信及び受信をすることで、自己内での同期をとる動作を行っているのに対して、スレーブの地中レーダー装置30Sでは、実質的に受信アンテナRxのみが動作するものとする。言い換えると、スレーブの地中レーダー装置30Sでは、同期の動作の間においては、送信アンテナTxにおいて、送信を停止する又はゼロ信号送信とするようになっている。これにより、スレーブである地中レーダー装置30Sの受信アンテナRxや、マスターである地中レーダー装置30Mの受信アンテナRxにおいて、マスターである地中レーダー装置30Mの送信アンテナTxからの送信波S1以外の電波を受けてしまうことを回避して、混信することなく確実に目的とする受信ができる。
また、ここでは、同期用の送信波S1のうち、地表ESではね返る第1反射成分を、各送信アンテナTxにおいて同期用の応答波S2として捉えることで、送信から受信までの間に起因する時間誤差がほとんどない同時とみなせる状態で、各地中レーダー装置30における受信動作がなされることになる。
なお、以上の動作を、各地中レーダー装置30の動作を制御する制御部20等から考えると、スレーブの地中レーダー装置30Sの制御部20において、マスターの地中レーダー装置30Mの送信部22aから送信された送信信号の受信を行う間、自己の送信部22aによる送信を停止する又はゼロ信号送信とするように制御することで、自己の受信部22bにおいて、地中レーダー装置30Mの送信部22aから送信された送信信号を確実に受信させることができる、という態様となっている。
以下、図4のタイムチャート等を参照して、上記のような同期のための動作に関して、より具体的に説明する。図4は、地中レーダー装置30の同期動作の一例について概要を示すタイムチャートである。また、図5は、図4における動作についての詳細を説明するためのタイムチャートである。
まず、図4及び図5では、上段から順に、PC等で構成される全体制御部50について示すチャートα、マスターの地中レーダー装置30Mについて示すチャートβ、1つ目のスレーブの地中レーダー装置30S(スレーブ1)について示すチャートγ及び2つ目のスレーブの地中レーダー装置30S(スレーブ2)について示すチャートδがそれぞれ表示されている。
まず、図4においてチャートαに示されるように、全体制御部50から各地中レーダー装置30に対して、受信処理を開始する旨の指令信号C1が送信される。ここでは、各地中レーダー装置30の受信部22bにおいて、図示において、チャートβ〜δに示されるように、一定周期で受信処理可能な期間(受信オン期間)と受信できない受信準備期間(受信オフ期間)とが繰り返されるものとする。ただし、全体制御部50からの指令信号C1は、非同期の信号であるため、各地中レーダー装置30は、受信動作を個別に開始することになり、そのタイミングは、初期の状態において、必ずしも揃っていない。すなわち、各地中レーダー装置30間において、受信タイミングは同期していない。
以上の状態において、全体制御部50から、さらに、マスターの地中レーダー装置30Mに対して、送信処理を開始する旨の指令信号C2が送信される。すなわち、地中レーダー装置30Mは、指令信号C2に従い、送信部22aにおいて、同期をとるための送信波S1の送信を開始する。ここでは、チャートβに示すように、送信波S1として、一定間隔でパルス送信PSを行うものとする。このパルス送信PSの一定間隔については、例えばμ秒オーダーの精度で規定され、受信部22bにおける受信期間についての一定周期と同じ時間幅になっている。
さらに、ここにおいて、マスターの地中レーダー装置30Mでは、送信部22aからの送信波S1の送信が、自己の受信部22bにおいてベストタイミングで受信するように動作している。この様子は、時刻T1において示されている。図示のように、ここでは、送信波S1であるパルス送信のタイミングと、受信部22bにおいて送信波S1に対応する応答波S2を受信処理可能な期間(受信オン期間)の開始のタイミングとが一致する状態がベストであるものとする。すなわち、この状態において、マスターの地中レーダー装置30Mの送信部22aによる送信動作と、受信部22bにおける受信動作が同期した状態になったものとする。
上記のように、マスターの地中レーダー装置30Mの内部においては、地中レーダー装置30Mの送信部22aからの送信波S1の送信タイミングを調整できるあるいは地中レーダー装置30M自身が知っているので、最初からベストタイミングとなるように動作を行うようにできる。なお、マスターの地中レーダー装置30Mは、上記のような受信タイミングの同期が完了した後、その旨を、全体制御部50に対して通知する。つまり、チャートαに示すように、全体制御部50は、マスターの内部での同期完了を把握する。
一方、スレーブの地中レーダー装置30S(スレーブ1,2)については、マスターの地中レーダー装置30Mの送信部22aからの送信波S1の送信タイミングが分からないため、マスターからの送信波S1を自己の受信部22bにおいて受信できることによって初めてベストタイミングとなるようにする調整が可能となる。
例えば、図示のうち、スレーブの地中レーダー装置30Sの1つであるスレーブ2、すなわちチャートδでは、時刻T1において、初めて送信波S1に対応する応答波S2を受信することになるが、必ずしもベストタイミングとはならない。図示の例では、時刻T1において、受信部22bにおける受信処理可能な期間(受信オン期間)のうちの中間あたりのタイミングで受信した場合を示している。スレーブ2は、この時刻T1の時点で、マスターからの送信タイミングと自身の受信タイミングと同期していないことと、同期した状態(ベストタイミングの状態)からどの程度ずれているかを、把握できる。以上のような時刻T1での受信状況に基づいて、スレーブ2において、送受信制御部21は、自己のクロック調整部21aにより、受信部22bでの受信タイミングを所定量だけずらしてタイミング調整を行う。すなわち、図中において、時刻T2として示すように、受信処理可能な受信オン期間の開始タイミングを、マスターからの送信波S1であるパルス送信のタイミングに一致させるように、受信に関するタイミングクロックの調整がなされる。さらに、以上を図中のチャートδ(スレーブ2)に関して言い換えると、チャートδにおける受信オン期間の先頭が、チャートβ(マスター)のパルス送信のタイミングに揃えられ、マスターとスレーブ2との受信タイミングの同期が完了する。なお、スレーブの地中レーダー装置30Sの1つであるスレーブ2は、時刻T2において、上記のような受信タイミングの同期が完了した後、その旨を、全体制御部50に対して通知する。つまり、チャートαに示すように、全体制御部50は、スレーブ2の同期完了を把握する。
また、例えば、図示のうち、スレーブの地中レーダー装置30Sの1つであるスレーブ1、すなわちチャートγでは、例えば時刻T1において、送信波S1に対応する応答波S2を受信できない状態となっている。具体的には、図示のように、全体制御部50からの指令信号C1に従い、一定周期で受信処理可能な期間(受信オン期間)と受信できない受信準備期間(受信オフ期間)とを繰り返す受信処理を続けているものの、マスターからの送信波S1であるパルス送信PSのタイミングが、受信オフ期間と重なってしまっていることで、送信波S1に対応する応答波S2の受信取りこぼしが発生してしまっている。以上のような状況について、例えば、スレーブ1は、数周期分の上記受信処理の動作を繰り返しても受信されなければ、上記のような受信取りこぼしが生じていると判断することで対応している。具体的に、図示の例では時刻T2において示されるように、スレーブ1は、自己のクロック調整部21aにより、受信部22bでの受信タイミングをランダムにずらしてタイミング調整を行う。この処理により、スレーブ1は、時刻T3において、初めて送信波S1に対応する応答波S2を受信することが可能になる。なお、以上のようなランダムにずらすタイミング調整を1度行っても状況が変わらなければ、複数回に亘って同様の操作を行い、応答波S2を受信するまで繰り返すようにしてもよい。ただし、以上のような場合、応答波S2を受信することは可能になったが、必ずしもベストタイミングとはならない。図示の例では、受信部22bにおける受信処理可能な期間(受信オン期間)のうちの後半あたりのタイミングで受信した場合を示している。スレーブ1は、この時刻T3の時点で、マスターからの送信タイミングと自身の受信タイミングと同期していないことと、同期した状態(ベストタイミングの状態)からどの程度ずれているかを、把握できる。したがって、以後は、上記したスレーブ2の場合と同様に、所定量だけずらすタイミング調整を行い、マスターに対する受信タイミングの同期を完了させ、受信タイミングの同期が完了した後、その旨を、全体制御部50に対して通知する。つまり、チャートαに示すように、全体制御部50は、スレーブ1の同期完了を把握する。
以上のようにして、全ての地中レーダー装置30(マスター、スレーブ1,2)の間での同期が完了すると、チャートαに示すように、全体制御部50は、時刻設定用の送信信号を、マスターの地中レーダー装置30Mの送信部22aから送信させるべく、マスターの地中レーダー装置30Mに対して、反転パルス送信をする旨の指令信号C3を送信する。時刻T5として示すように、地中レーダー装置30Mの送信部22aから反転パルス送信IPがなされ、これに対応して各受信部22bでの応答波S2の受信がなされると、各地中レーダー装置30は、当該応答波S2の受信タイミングを基準として、自己がそれぞれ有する時刻測定用の時計であるタイマー21bにおける時刻データ取得での基準時とする。すなわち、各地中レーダー装置30にそれぞれ内蔵されるタイマー21bの間での時刻合わせが行われる。これにより、各地中レーダー装置30のタイマー21bの間に誤差があっても、この誤差を補正したデータ取得が可能になる。なお、反転パルスすなわち負のパルス信号が送信されるため、受信側においても、負の受信信号を受けることになる。
以上のようにして、地中レーダー装置30間での時刻合わせを含む同期に関する一連の処理を終えると、地中レーダーシステム100は、同期のための動作処理を停止する。同期のための動作処理を停止後において、地中レーダーシステム100は、例えば、本動作である地中探査の開始が可能な状態となる。すなわち、複数の地中レーダー装置30が、同期の完了を全体制御部50にそれぞれ通知し、全体制御部50が、複数の地中レーダー装置30の全てから通知を受けた後、複数の地中レーダー装置30による探査を開始する、といった態様となる。
以下、図5を参照して、上記した各スレーブ1,2でのクロック調整部21aによる受信タイミングのタイミング調整の一例に関して、さらに詳しく説明する。図5は、図4に対応する図であり、特に、各受信部22bでの受信処理について、サンプリング時のクロック信号のイメージで示している。ここでは、図示のように、矢印ARでクロック信号の1つ分の様子を示している。つまり、1回の受信処理可能な期間(受信オン期間)に相当するクロック信号を、6つの矢印ARで示している。ここでは、既述のように、受信オン期間の先頭すなわち、6つの矢印ARのうち先頭の矢印AR1が、送信波S1であるパルス送信PSと同じタイミングになっていることをもって送受信の同期がとれていることになる。なお、パルス送信PSが、受信オン期間にいずれかの矢印ARにおいて受信されることで、図示のように、各受信部22bの受信波形において、立上りの部分が生じることになる。
各地中レーダー装置30のうち、まず、マスター(地中レーダー装置30M)の場合では、チャートβに示すように、最初からパルス送信PSと矢印AR1とが一致していることになる。すなわち、最初のパルス送信PSが送信される時刻T1の時点から、パルス送信PSのピーク取得タイミングに受信タイミングの先頭の矢印AR1が揃っている。
これに対して、スレーブ1(地中レーダー装置30S)の場合では、チャートγに示すように、最初のうちは、パルス送信PSの送信時において、矢印ARが無い受信部22bの受信準備期間(受信オフ期間)となっている。このため、スレーブ1は、時刻T2において、受信準備期間(受信オフ期間)の変更を行っている。図示の例では、通常の受信準備期間(受信オフ期間)から矢印ARの1つ分すなわちクロック信号として1つ分の時間だけ受信準備期間(受信オフ期間)を延長した調整区間AJ1を設けることでタイミング調整を行っている。この結果、時刻T3において、受信オン期間に相当する6つの矢印ARのうちの最後(6つ目)の矢印AR6において、パルス送信PSが受信されている。この状況に応じて、スレーブ1は、さらに、通常の受信準備期間(受信オフ期間)から矢印ARの5つ分すなわちクロック信号として5つ分の時間だけ受信準備期間(受信オフ期間)を延長した調整区間AJ2を設けることで、時刻T4において、パルス送信PSのピーク取得タイミングに、受信タイミングの先頭の矢印AR1を揃えている。
また、スレーブ2(地中レーダー装置30S)の場合では、チャートδに示すように、時刻T1において、受信オン期間に相当する6つの矢印ARのうちの3つ目の矢印AR3において、パルス送信PSが受信されている。この状況に応じて、スレーブ2は、通常の受信準備期間(受信オフ期間)から矢印ARの2つ分すなわちクロック信号として2つ分の時間だけ受信準備期間(受信オフ期間)を延長した調整区間AJ3を設けることで、時刻T2において、パルス送信PSのピーク取得タイミングに、受信タイミングの先頭の矢印AR1を揃えている。
全体制御部50は、まず、時刻T1以後において、マスター(地中レーダー装置30M)から同期した旨の信号を受けることで、マスターの同期を把握し、次に、時刻T2以後において、スレーブ2(地中レーダー装置30S)から同期した旨の信号を受けることで、スレーブ2の同期を把握し、最後に、時刻T4以後において、スレーブ1(地中レーダー装置30S)から同期した旨の信号を受けることで、スレーブ1の同期を把握する。
なお、以上では、一例として3つの地中レーダー装置30が存在する場合について説明しているが、これに限らず、例えば4つ以上の地中レーダー装置30を使用する場合においても、上記と同様にして、全ての地中レーダー装置30での同期をとることができる。
以下、図6のフローチャート等を参照して、上記した同期における各部での一連の動作について説明する。図6は、同期に際しての全体制御部50における動作の一例について説明するためのフローチャートである。図7は、同期に際してのマスターの地中レーダー装置30Mにおける動作の一例について説明するためのフローチャートである。図8は、同期に際してのスレーブの地中レーダー装置30Sにおける動作の一例について説明するためのフローチャートである。
以下、図6のフローチャートを参照して、同期における全体制御部50での一連の動作について説明する。図6に示すように、まず、全体制御部50は、全ての地中レーダー装置30に対して、同期処理を開始させるための各種指令信号を送信する(ステップS101)。すなわち、上記図4に示した一例であれば、各地中レーダー装置30に対して受信処理を開始する旨の指令信号C1を送信し、さらに、地中レーダー装置30Mに対して送信処理を開始する旨の指令信号C2を送信する。
ステップS101での送信を完了すると、全体制御部50は、各地中レーダー装置30での同期完了通知の受付を開始し(ステップS102)、全ての地中レーダー装置30での同期が完了するまで、通知の受付を継続する(ステップS103,S104)。
ステップS104において、全ての地中レーダー装置30での同期完了が確認されると(ステップS104:Yes)、全体制御部50は、時刻設定用の送信信号としての反転パルス送信を開始させる指令をマスターの地中レーダー装置30Mに対して行い(ステップS105)、一連の動作を終了する。すなわち、上記図4に示した一例であれば、マスターの地中レーダー装置30Mに対して反転パルス送信IPをする旨の指令信号C3を送信して、同期のための動作を完了する。
一方、ステップS104において、地中レーダー装置30のうち同期完了が確認されないものがある場合(ステップS104:No)、所定時間が経過したか否かを確認し(ステップS106)、経過していない限りは(ステップS106:No)、通知受付を継続し(ステップS103)、完了の確認を行う(ステップS104)。ここで、ステップS106での所定時間については、例えば全ての同期が完了するのに通常必要となる時間にある程度のマージンを設けた時間とすることが考えられる。上記図4等に示した一例であれば、スレーブのうち、スレーブ1の態様のようなものが最も同期をとるのに時間を要すると考えられ、このような場合において同期完了までに掛かる時間や、同期完了した旨の通知を制御側が受け取るまでに生じ得る時間ロス等を考慮して、所定時間を設定することができる。以上のようにして設定された時間を経過してもなお同期が完了しない場合、何らかのトラブルで同期がとれない状態にあると考えられる。したがって、ステップS106において、所定時間が経過した場合(ステップS106:Yes)、全体制御部50は、何らかの異常が生じていると判断し、同期のための処理動作を中止する(ステップS107)。なお、この場合、同期の完了ができない旨を、地中レーダーシステム100を操作するオペレーターに示すべく各種報知動作を併せて行うものとしてもよい。
以下、図7のフローチャートを参照して、同期におけるマスターの地中レーダー装置30Mでの一連の動作について説明する。図7に示すように、同期のための動作が開始されると、まず、マスターの地中レーダー装置30Mは、同期処理を開始させるための指令があったか否かを確認する(ステップS201)。すなわち、図6のステップS101に示すような指令信号が出されているかの確認をする。ステップS201において、確認がなされると(ステップS201:Yes)、地中レーダー装置30Mの送受信制御部21は、受信部22bによりアンテナ装置10の受信アンテナRxを駆動させ、さらに、送信部22aによりアンテナ装置10の送信アンテナTxを駆動させて、同期用の送信波S1の送信を開始する(ステップS202)。さらに、送受信制御部21は、全体制御部50から反転パルス送信を開始させる旨の指令を受けるまで、送信波S1の送信を継続する(ステップS203,S204)。
ステップS204において、全体制御部50から反転パルス送信を開始させる旨の指令を受けた場合(ステップS204:Yes)、すなわち、全ての地中レーダー装置30での同期が完了して図6のステップS105に示すような指令信号が出された場合、地中レーダー装置30Mは、送信部22aにおいて、当該指令に従って、送信波S1の送信として反転パルス送信を行い(ステップS205)、一連の動作を終了する。すなわち、上記図4に示した一例であれば、全体制御部50からの指令信号C3に基づいて、地中レーダー装置30Mの送信部22aから反転パルス送信がなされ、これに対応して各受信部22bでの応答波S2の受信がなされると、各地中レーダー装置30は、これを基準として内蔵されるタイマー21bでの時刻合わせが行われる。
一方、ステップS204において、全体制御部50から反転パルス送信を開始させる旨の指令が来ていない場合(ステップS204:No)、所定時間が経過したか否かを確認し(ステップS206)、経過していない限りは(ステップS206:No)、送信波S1の送信を継続し(ステップS203)、反転パルス送信を開始させる旨の指令を待つ(ステップS204)。ここで、ステップS206での所定時間については、ステップS106と同様に考えることができる。すなわち、全ての同期が完了するのに通常必要となる時間にある程度のマージンを設けた時間とし、当該時間を経過してもなお同期が完了しない場合、何らかのトラブルで同期がとれない状態にあると考え、ステップS206において、所定時間が経過した場合(ステップS206:Yes)、地中レーダー装置30Mは、何らかの異常が生じていると判断し、同期のための処理動作を中止する(ステップS207)。
なお、マスターの地中レーダー装置30Mは、上記において、併せて自己の同期を行う。すなわち、ステップS202において、駆動開始させた送信アンテナTxからの同期用の送信波S1に対応する応答波S2を、受信アンテナRxで受けることで、地中レーダー装置30M内での同期をとっている。
以下、図8のフローチャートを参照して、同期におけるスレーブの地中レーダー装置30Sでの一連の動作について説明する。図8に示すように、同期のための動作が開始されると、まず、スレーブの地中レーダー装置30Sは、同期処理を開始させるための指令があったか否かを確認する(ステップS301)。すなわち、図6のステップS101に示すような指令信号が出されているかの確認をする。ステップS301において、確認がなされると(ステップS301:Yes)、地中レーダー装置30Sの送受信制御部21は、受信部22bによりアンテナ装置10の受信アンテナRxを駆動させて、マスターの地中レーダー装置30Mから発信された同期用の送信波S1に対応する応答波S2の受信を開始する(ステップS302)。
ステップS302における受信を開始すると、地中レーダー装置30Sの送受信制御部21は、まず、所定時間が経過しているかを確認する(ステップS303)。なお、ステップS303での所定時間については、例えばステップS106やステップS206の場合と同様に設定することが考えられるが、これについて詳しくは後述する。
ステップS303において、所定時間が経過していなければ(ステップS303:No)、送受信制御部21は、受信の対象となる電波の受信ができたか否か、すなわち同期用の送信波S1に対応する応答波S2の受信がなされたか否かを確認する(ステップS304)。なお、ステップS304では、図4等において例示したような周期的に行う受信処理の動作について数周期分の受信を確認する。ステップS304において、受信がされていない場合(ステップS304:No)、送受信制御部21は、クロック調整部21aにおいて受信部22bでの受信タイミングについて、ランダムにずらしてタイミング調整を行う(ステップS305)。すなわち、この場合、数周期分の上記受信処理の動作を繰り返しているにも関わらず受信されていないことになり、受信タイミングがずれており、受信取りこぼしが発生していると考えられる。したがって、送受信制御部21は、クロック調整部21aにおいて受信タイミングをランダムにずらすことで、まず、受信が可能になるように調整している。
ステップS305での調整の後、送受信制御部21は、再び、ステップS303からの動作を繰り返す。
一方、ステップS304において、受信がされた場合(ステップS304:Yes)、送受信制御部21は、さらに、受信したタイミングがベストの状態となっているかを確認する(ステップS306)。上記図4等に示した一例であれば、受信オン期間の開始タイミングが、送信波S1であるパルス送信のタイミングに一致しているか否かを確認する。ここで、ベストタイミングでないと判断された場合(ステップS306:No)、送受信制御部21は、ベストタイミングからのずれ量を算出するとともに(ステップS307)、ステップS307での算出結果に基づいて所定量だけずらしてタイミング調整を行う(ステップS308)。すなわち、上記図5に示した一例であれば、スレーブ1においては、通常の受信準備期間(受信オフ期間)から矢印AR5つ分、スレーブ2においては、通常の受信準備期間(受信オフ期間)から矢印AR2つ分ずらしたように、ステップS307での算出結果であるベストタイミングとの差の分だけシフトさせたタイミング調整を行う。
ステップS307,S308での調整の後、送受信制御部21は、再び、ステップS303からの動作を繰り返す。
以上のような動作の結果、ステップS306において、ベストタイミングであると判断された場合(ステップS306:Yes)、送受信制御部21は、同期が完了した旨の通知を全体制御部50に対して行う(ステップS309)。
ステップS309での通知後、スレーブの地中レーダー装置30Sは、マスターの地中レーダー装置30Mからの送信波S1に対応する応答波S2として、反転パルスを受け取ったか否かを確認する(ステップS310)。すなわち、地中レーダー装置30Sは、個々に内蔵する時計であるタイマー21bについて、他の地中レーダー装置30との間で生じ得る誤差を補正するための信号の有無を確認する。ステップS310において、反転パルスを受け取ると(ステップS310:Yes)、地中レーダー装置30Sは、反転パルスを受け取った受信タイミングを基準時とする時刻合わせの処理をして(ステップS311)、一連の動作を終了する。すなわち、地中レーダー装置30Sは、ステップS311での時刻合わせに基づく計時を行い、探査データ取得時の計測を行う際の時刻データとして利用する。
一方、ステップS310において、反転パルスが受信されない場合(ステップS310:No)、所定時間が経過したか否かを確認し(ステップS312)、経過していない限りは(ステップS312:No)、反転パルスの受信確認を継続する(ステップS310)。ここで、ステップS312での所定時間については、ステップS106等と同様に考えることができる。すなわち、全ての同期が完了するのに通常必要となる時間にある程度のマージンを設けた時間とし、当該時間を経過してもなお同期が完了しない場合、何らかのトラブルで同期がとれない状態にあると考えられ、ステップS312において、所定時間が経過した場合(ステップS312:Yes)、地中レーダー装置30Sは、例えば他の地中レーダー装置30Sにおいて同期がとれないものが存在する、といった何らかの異常が生じていると判断し、同期のための処理動作を中止する(ステップS313)。
また、ここで、上記のうち、ステップS303での所定時間についても、例えば上記と同様に、全ての同期が完了するのに通常必要となる時間にある程度のマージンを設けた時間等とすることが考えられる。ステップS303において、所定時間が経過する場合(ステップS303:Yes)とは、以下のステップS304〜S308の動作を繰り返しても、同期が完了しないことを意味する。すなわち、何らかの事情で、スレーブである地中レーダー装置30Sが、マスターからの情報を十分に得られない状態にあることを意味する。典型的には、マスターの地中レーダー装置30Mからの送信波S1に対応する応答波S2の受信が、配置関係等の理由から十分にできていない状況にある、といったことが考えられる。したがって、ステップS303において、所定時間が経過した場合(ステップS303:Yes)、地中レーダー装置30Sの送受信制御部21は、マスターとの通信が不能である旨を通知し(ステップS314)、一連の処理を終了する。なお、ステップS314における通知先については、全体制御部50やマスターの地中レーダー装置30M、あるいは他のスレーブの地中レーダー装置30S、さらには、地中レーダーシステム100を操作するオペレーター等種々の場合が考えられる。
なお、上記ステップS314のような状態になった場合、地中レーダーシステム100を操作するオペレーターは、同期できない地中レーダー装置30の取替えや地中レーダー装置30の配置変更、あるいはマスターとスレーブの入れ替え等によって対処することが考えられる。
以上の動作を行うことで、本動作である探査の準備として、複数の地中レーダー装置30の間での同期を簡易かつ確実に取ることができる。また、以上のような複数の地中レーダー装置30の間での同期については、地中レーダーシステム100による探査開始前の起動時ごとにとるように設定できる。
以下、図9を参照して、本実施形態の一態様である地中レーダーシステム100の適用例について説明する。図9(A)は、地中レーダーシステム100の一応用例を示す概念的な平面図であり、9(B)は、地中レーダーシステム100の他の一応用例を示す概念的な平面図である。
図9(A)に示す一応用例のように、地中レーダーシステム100を、例えば道路ROにおいて道路ROの延びる方向H1に沿って走行する車両VEに設けることが考えられる。より具体的には、自動車等の車両VEの進行方向に対して後端側において、方向H1に対して垂直な方向であり道路ROの横幅方向である方向H2に沿って一列に複数(4つ)の地中レーダー装置30を並べ、道路ROの横方向全体について地中探査を行うようにすることが考えられる。
さらに、図9(B)に示す他の一応用例のように、複数の地中レーダー装置30を面的に配置してもよい。図示の例は、図9(A)のさらなる一応用例であり、図9(A)において一列に4つ並べていた地中レーダー装置30に加え、さらに、3つの地中レーダー装置30を千鳥状になるように面的に配置している。例えば、図9(A)に示す場合においては、用いる地中レーダー装置30の配置感覚や性能等により、隣接する地中レーダー装置30の間において、探査できない領域が存在する可能性もある。これに対して、図9(B)に示すように、一列目の隣接する地中レーダー装置30における隙間に対応させるように二列目の地中レーダー装置30を配置することで、隈なく道路ROの地中探査を行うことができる。なお、ここでの位置情報については、例えば車両VEに搭載されたタコジェネレータのパルスから移動距離を演算すること等が考えられる。
ここで、上記のように、自動車等の車両VEを走行させつつ道路ROの地中探査を行うような場合、車両VEの走行速度と地中レーダーシステム100での測定精度との関係を考える必要が生じる。
例えば、車両VEを時速80km程度で走行させつつ、位置の誤差を10cm程度以内の精度として地中測定を行おうとすると、データ取得に際しての時間測定の誤差は、5mm秒以内程度とする必要があることになる。さらに、データ取得時の時間誤差等を考慮すると、許容される測定時間の誤差は、1mm秒以内程度とすることが望ましい。これに対して、本願の構成では、まず、送信波S1の送信開始から地表を経て応答波S2として受信されるまでの時間は、略ゼロに等しいと言える。また、クロックリセット等において生じる誤差は、500μ秒程度であると考えられる。したがって、本願の構成であれば、上記のような態様においても十分な精度を維持した測定が可能になる。
以上のように、本実施形態における一態様の地中レーダーシステム100によれば、複数の地中レーダー装置30の間での同期をとるに際して、各地中レーダー装置30が個々に有する電波の送受信機能を利用している。具体的には、一の地中レーダー装置30Mからの送信を他の地中レーダー装置30Sで受信することで同期をとるようにしている。地中レーダー装置30間での電波の送受信を利用することにより、高精度な同期動作が可能となる。また、例えば地中レーダー装置30の数を増減させたり、配置を変えたりといった場合においても、配線等の煩雑な準備を必要とすること無く同期をとることができるので、簡易かつ迅速な対応が可能となる。
〔第2実施形態〕
以下、図10を参照しつつ、本発明に係る第2実施形態の地中レーダーシステムの一態様について説明する。なお、本実施形態に係る地中レーダーシステム200は、第1実施形態の地中レーダーシステム100の変形例であり、地中レーダー装置30についての取り扱いを除いて同様であるので、全体の構成について、共通する構成要素については同じ符号を付し、詳細な説明は省略する。
本実施形態の地中レーダーシステム200においても、第1実施形態の地中レーダーシステム100の場合と同様に、複数の地中レーダー装置30間での電波の送受信を利用した同期が行われる。すなわち、図10(A)において例示するように、第1〜第4地中レーダー装置30A〜30Dのうち、第1地中レーダー装置30Aをマスターである地中レーダー装置30Mとし、他の第2〜第4地中レーダー装置30B〜30Dをスレーブとする。この場合、マスターである第1地中レーダー装置30Aを基準として、スレーブである第2〜第4地中レーダー装置30B〜30Dを同期させることで、複数の地中レーダー装置30間での同期をとることになる。この場合において、例えば、一方の端に配置されているマスターの地中レーダー装置30M(第1地中レーダー装置30A)と、他方の端に配置されているスレーブの地中レーダー装置30S(第4地中レーダー装置30D)とでは、その配置関係から電波があまり届かず、電波の授受があまりうまくいかない、といったことも生じ得る。このような場合、第1実施形態においても例示して説明したように(図8のステップS314)、スレーブの地中レーダー装置30Sの1つである第4地中レーダー装置30Dでの同期がとれなくなってしまうことになる。そこで、本実施形態では、このような場合において、複数の地中レーダー装置30間において、マスターの役割とスレーブの役割とを入れ替えることで、対応可能な構成としている。
なお、以下では、スレーブである第2〜第4地中レーダー装置30B〜30Dのうち、第4地中レーダー装置30D以外の第2及び第3地中レーダー装置30B,30Cでは、第1地中レーダー装置30Aとの同期が完了しているものとする。
以上のような場合において、図10(B)に示すように、例えば同期が完了している第2及び第3地中レーダー装置30B,30Cのうちの一方を、新たなマスターである地中レーダー装置30Mとし(図示の場合、第2地中レーダー装置30Bを新たなマスタ―としている)、他の地中レーダー装置を、スレーブである地中レーダー装置30Sとして取り扱い、再度、同期をとり直すようにすることが考えられる。すなわち、全体制御部50において、複数の地中レーダー装置30における同期が完了しない場合、複数の地中レーダー装置30のうち送信信号である早期用の送信波S1を送信するマスターの地中レーダー装置を変更することで、同期を完了させることが可能になるようにする。
以上のように、本実施形態における一態様の地中レーダーシステム200においても、複数の地中レーダー装置30の間での同期をとるに際して、各地中レーダー装置30が個々に有する電波の送受信機能を利用することにより、高精度な同期動作が可能となる。また、例えば地中レーダー装置30の数を増減させたり、配置を変えたりといった場合においても、配線等の煩雑な準備を必要とすること無く同期をとることができるので、簡易かつ迅速な対応が可能となる。さらに、本実施形態の場合、必要に応じてマスターとスレーブとの役割を入れ替えることで、一部に同期ができない場合においても簡易かつ迅速な対処が可能になる。
〔その他〕
この発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様で実施することが可能である。
まず、上記各実施形態において、同期の完了後の本動作である地中探査の動作については、種々の方法を適用することができる。例えば、全体制御部50からの指令信号に従い、各地中レーダー装置30が順次地中探査を行っていくことで、混信を回避させつつ確実に探査を行うことができる。なお、この際、例えば、高精度に時刻合わせされている時間情報に応じて各地中レーダー装置30での送信受信のタイミングを定めることが考えられる。
また、例えば上記では、図9の例示において、地中レーダー装置30の配列を一列あるいは千鳥型としているが、これに限らず、種々の配置とすることができる。また、例えば各地中レーダー装置30の間隔を一定とする場合に限らず、間隔を適宜変更してもよい。また、移動体として、自動車を例示しているが、これに限らず、列車や、あるいは手押し車等のようにユーザー(オペレーター)が手動で移動させることができるもの等、種々のタイプの移動体において本願の地中レーダーシステムを搭載させることができる。
なお、以上の各実施形態で説明された構造、形状、大きさ及び配置関係については、本発明を理解及び実施できる程度に概略的に示したものに過ぎない。したがたって、本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。
10…アンテナ装置、20…制御部、21…送受信制御部、21a…クロック調整部、21b…タイマー、22a…送信部、22b…受信部、30,30M,30S,30A−30D…地中レーダー装置、50…全体制御部、100…地中レーダーシステム、200…地中レーダーシステム、AC…非同期接続、AJ1−AJ3…調整区間、AR,AR1,AR3,AR6…矢印、C1−C3…指令信号、ES…地表、H1,H2…方向、IP…反転パルス送信、PS…パルス送信、RO…道路、Rx…受信アンテナ、S1…送信波、S2…応答波、SW…スイッチ回路、T1−T5…時刻、Tx…送信アンテナ、VE…車両、α−δ…チャート

Claims (9)

  1. 送信信号を送信する送信部と受信信号を受信する受信部とをそれぞれ備えて探査を行う複数の地中レーダー装置を備え、
    前記複数の地中レーダー装置のうち一の地中レーダー装置の送信部から送信された送信信号を、他の地中レーダー装置の受信部において受信して、前記複数の地中レーダー装置の間での同期をとる、地中レーダーシステム。
  2. 前記複数の地中レーダー装置は、探査における時刻を計測するための時計をそれぞれ有し、
    前記一の地中レーダー装置から送信される時刻設定用の送信信号を受信することで、各地中レーダー装置に設けた前記時計の間での時刻合わせを行う、請求項1に記載の地中レーダーシステム。
  3. 前記他の地中レーダー装置は、前記一の地中レーダー装置の送信部から送信された送信信号の受信を行う間、自己の送信部による送信を停止する又はゼロ信号送信とする、請求項1及び2のいずれか一項に記載の地中レーダーシステム。
  4. 前記複数の地中レーダー装置と接続し、前記複数の地中レーダー装置の動作を統括制御する全体制御部を備える、請求項1〜3のいずれか一項に記載の地中レーダーシステム。
  5. 前記複数の地中レーダー装置は、同期の完了を前記全体制御部にそれぞれ通知し、
    前記全体制御部は、前記複数の地中レーダー装置の全てから通知を受けた後、前記複数の地中レーダー装置による探査を開始する、請求項4に記載の地中レーダーシステム。
  6. 前記全体制御部は、前記複数の地中レーダー装置における同期が完了しない場合、前記複数の地中レーダー装置のうち送信信号を送信する地中レーダー装置を変更する、請求項5に記載の地中レーダーシステム。
  7. 前記他の地中レーダー装置は、前記一の地中レーダー装置の送信部から送信された送信信号の受信タイミングに基づいて、自己の受信可能期間を調整して前記一の地中レーダー装置と同期受信させる、請求項1〜6のいずれか一項に記載の地中レーダーシステム。
  8. 前記他の地中レーダー装置は、前記一の地中レーダー装置の送信部から送信された送信信号のうち地表ではね返る第1反射成分を同期用の信号として受信する、請求項1〜7のいずれか一項に記載の地中レーダーシステム。
  9. 前記複数の地中レーダー装置の間での同期を、探査開始前の起動時ごとにとる、請求項1〜8のいずれか一項に記載の地中レーダーシステム。
JP2018084353A 2018-04-25 2018-04-25 地中レーダーシステム Active JP7086697B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018084353A JP7086697B2 (ja) 2018-04-25 2018-04-25 地中レーダーシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018084353A JP7086697B2 (ja) 2018-04-25 2018-04-25 地中レーダーシステム

Publications (2)

Publication Number Publication Date
JP2019191001A true JP2019191001A (ja) 2019-10-31
JP7086697B2 JP7086697B2 (ja) 2022-06-20

Family

ID=68390055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018084353A Active JP7086697B2 (ja) 2018-04-25 2018-04-25 地中レーダーシステム

Country Status (1)

Country Link
JP (1) JP7086697B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257082A (ja) * 1989-03-30 1990-10-17 Komatsu Ltd 地中探査装置
US20120146833A1 (en) * 2009-06-12 2012-06-14 Thales Deutschland Holding Gmbh Secondary Surveillance Radar System for Air Traffic Control
JP2012137461A (ja) * 2010-12-28 2012-07-19 Oyo Corp 車載型地中レーダ計測装置のシステム同期方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02257082A (ja) * 1989-03-30 1990-10-17 Komatsu Ltd 地中探査装置
US20120146833A1 (en) * 2009-06-12 2012-06-14 Thales Deutschland Holding Gmbh Secondary Surveillance Radar System for Air Traffic Control
JP2012137461A (ja) * 2010-12-28 2012-07-19 Oyo Corp 車載型地中レーダ計測装置のシステム同期方法

Also Published As

Publication number Publication date
JP7086697B2 (ja) 2022-06-20

Similar Documents

Publication Publication Date Title
US7357027B2 (en) Ultrasonic sensor system for web-guiding apparatus
JP5056785B2 (ja) 航空機位置測定システム、受信局、航空機位置測定方法およびプログラム
JP4664411B2 (ja) 展開可能アンテナシステムにおける位相補正
CA2372843C (en) Improvements in or relating to object location
US20130181861A1 (en) System and method for enhanced point-to-point direction finding
JP2005507085A5 (ja)
CA2582184A1 (en) Mobile object information sharing system
JP2008538818A5 (ja)
US20170067993A1 (en) Underwater acoustic tracking and two way messaging system
EP2788788B1 (en) Method of determining distance and speed of fmcw radar terminals
WO2014102931A1 (ja) 測位システム、移動局および基地局
CN101467063A (zh) 位置识别方法及系统
JP2010019597A (ja) 測位システムおよび測位基地局群
GB2434060A (en) Collaboration among two or more nodes that reduces multiple re-synchronization preambles and minimises energy consumption at each node
CN103647628A (zh) 一种时间同步方法、装置及系统
JP2019191001A (ja) 地中レーダーシステム
CN109188444A (zh) 基于同步信号体制的海底水声应答式定位方法及其系统
US9693187B2 (en) Geo-location of a WLAN device
CN105548965A (zh) 一种超声波信号同步发送系统及方法
JP3474942B2 (ja) 位置標定システム
WO2017022390A1 (ja) 測位装置、測位方法、および、測位プログラム
KR102288269B1 (ko) 수중 이동체의 위치를 측정하는 방법, 장치 및 프로그램과 수중 이동체의 위치를 측정하는 시스템
WO2021021249A1 (en) One-way time-of-flight localization using sonic and electromagnetic signals for mobile ad hoc networks
CN103684650A (zh) 一种时间同步方法、装置及系统
CN116184449B (zh) 一种基于单星分时的时差定位方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220608

R150 Certificate of patent or registration of utility model

Ref document number: 7086697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150