JP2019190421A - Exhaust emission control device and vehicle - Google Patents

Exhaust emission control device and vehicle Download PDF

Info

Publication number
JP2019190421A
JP2019190421A JP2018085999A JP2018085999A JP2019190421A JP 2019190421 A JP2019190421 A JP 2019190421A JP 2018085999 A JP2018085999 A JP 2018085999A JP 2018085999 A JP2018085999 A JP 2018085999A JP 2019190421 A JP2019190421 A JP 2019190421A
Authority
JP
Japan
Prior art keywords
exhaust gas
nox
exhaust
downstream
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018085999A
Other languages
Japanese (ja)
Other versions
JP7063088B2 (en
Inventor
遊大 景山
Yudai Kageyama
遊大 景山
和貴 大石
Kazuki Oishi
和貴 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2018085999A priority Critical patent/JP7063088B2/en
Publication of JP2019190421A publication Critical patent/JP2019190421A/en
Application granted granted Critical
Publication of JP7063088B2 publication Critical patent/JP7063088B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

To provide an exhaust emission control device and a vehicle capable of preventing NOx from being discharged to atmospheric air at a low temperature region of an exhaust gas.SOLUTION: An exhaust emission control device includes a NOx selective reduction type catalyst disposed at a downstream side in an exhausting direction with respect to a turbine in an exhaust pipe, an upstream-side bypass passage portion connecting a region at an upstream side in an exhausting direction with respect to the turbine and a region between the turbine and the NOx selective reduction type catalyst in the exhaust direction in the exhaust pipe, a downstream-side bypass passage portion connecting a region between the turbine and the NOx selective reduction type catalyst in the exhausting direction, and a downstream side in the exhausting direction with respect to the NOx selective reduction type catalyst in the exhaust pipe, a NOx adsorption catalyst disposed in the downstream-side bypass passage portion to adsorb nitrogen oxide in the exhaust gas and then reduce the same, and a control portion for controlling an upstream-side adjustment portion and a downstream-side adjustment portion so that the exhaust gas flows to the downstream-side bypass passage portion through the upstream-side bypass passage portion in a case when a temperature of the exhaust gas is a temperature to desorb NOx adsorbed to the NOx adsorption catalyst, or more.SELECTED DRAWING: Figure 1

Description

本開示は、排気浄化装置および車両に関する。   The present disclosure relates to an exhaust purification device and a vehicle.

従来、内燃機関の排気系において、内燃機関から生じた排気ガス中の窒素酸化物(以下、「NOx」という)を、還元するNOx選択還元型触媒を有する排気浄化装置が知られている。   2. Description of the Related Art Conventionally, there has been known an exhaust purification apparatus having a NOx selective reduction type catalyst that reduces nitrogen oxide (hereinafter referred to as “NOx”) in exhaust gas generated from an internal combustion engine in an exhaust system of the internal combustion engine.

例えば、特許文献1には、内燃機関の排気管に配置された過給機の一部を構成するタービンと、排気管におけるタービンよりも排気方向の下流側に配置されたNOx選択還元型触媒とが開示されている。   For example, Patent Document 1 discloses a turbine that constitutes a part of a supercharger that is disposed in an exhaust pipe of an internal combustion engine, and a NOx selective reduction catalyst that is disposed downstream of the turbine in the exhaust pipe in the exhaust direction. Is disclosed.

特開2013−124610号公報JP2013-124610A

ところで、タービンにおいては、熱エネルギーが回収されるため、排気ガスの温度が低下する。排気ガスの温度がNOx選択還元型触媒の下限活性温度未満である場合、NOx選択還元型触媒は、NOxを適切に還元することができない。例えば、内燃機関が冷間始動し、排気ガスの温度が十分上昇するまでの間においては、排気ガス中のNOxが還元されずに排気系統から大気中へ放出されるおそれがある。   By the way, in a turbine, since thermal energy is recovered, the temperature of the exhaust gas decreases. When the temperature of the exhaust gas is lower than the lower limit activation temperature of the NOx selective reduction catalyst, the NOx selective reduction catalyst cannot appropriately reduce NOx. For example, during the period until the internal combustion engine is cold-started and the temperature of the exhaust gas sufficiently rises, NOx in the exhaust gas may be released from the exhaust system into the atmosphere without being reduced.

本開示の目的は、排気ガスの低温域におけるNOxの大気中の放出を抑制することが可能な排気浄化装置および車両を提供することである。   An object of the present disclosure is to provide an exhaust purification device and a vehicle that can suppress release of NOx into the atmosphere in a low temperature range of exhaust gas.

本開示の一態様に係る排気浄化装置は、
内燃機関から生じた排気ガスが流れ、過給機の一部を構成するタービンが配置される排気管と、
前記排気管における前記タービンよりも排気方向の下流側に配置され、排気ガス中の窒素酸化物を還元するNOx選択還元型触媒と、
前記排気管における、前記タービンよりも排気方向の上流側の部位と、排気方向で前記タービンと前記NOx選択還元型触媒との間の部位とを連結する上流側バイパス経路部と、
前記排気管における、排気方向で前記タービンと前記NOx選択還元型触媒との間の部位と、前記NOx選択還元型触媒よりも排気方向の下流側とを連結する下流側バイパス経路部と、
前記下流側バイパス経路部に配置され、排気ガス中の窒素酸化物を吸着し、後に還元するNOx吸着触媒と、
前記排気管と前記上流側バイパス経路部との間における排気ガスの流量を調整する上流側調整部と、
前記排気管と前記下流側バイパス経路部との間における排気ガスの流量を調整する下流側調整部と、
前記排気ガスの温度がNOx吸着触媒に吸着された窒素酸化物を脱離させる温度以上である場合、排気ガスを、前記上流側バイパス経路部を経由して前記下流側バイパス経路部に流すように、前記上流側調整部および前記下流側調整部を制御する制御部と、
を備える。
An exhaust emission control device according to an aspect of the present disclosure includes:
An exhaust pipe in which an exhaust gas generated from the internal combustion engine flows and a turbine constituting a part of the supercharger is disposed;
A NOx selective reduction type catalyst that is disposed downstream of the turbine in the exhaust pipe in the exhaust direction and reduces nitrogen oxides in the exhaust gas;
An upstream bypass path connecting the upstream portion of the exhaust pipe in the exhaust direction with respect to the turbine and the portion between the turbine and the NOx selective reduction catalyst in the exhaust direction;
A downstream bypass path portion connecting a portion between the turbine and the NOx selective reduction catalyst in the exhaust direction in the exhaust pipe and a downstream side in the exhaust direction from the NOx selective reduction catalyst;
A NOx adsorption catalyst that is disposed in the downstream bypass passage, adsorbs nitrogen oxide in exhaust gas, and later reduces the NOx adsorption catalyst;
An upstream side adjustment unit that adjusts the flow rate of the exhaust gas between the exhaust pipe and the upstream side bypass path unit;
A downstream adjustment unit that adjusts the flow rate of the exhaust gas between the exhaust pipe and the downstream bypass path unit;
When the temperature of the exhaust gas is equal to or higher than the temperature at which the nitrogen oxides adsorbed on the NOx adsorption catalyst are desorbed, the exhaust gas is caused to flow to the downstream bypass route portion via the upstream bypass route portion. A control unit for controlling the upstream adjustment unit and the downstream adjustment unit;
Is provided.

本開示の一態様に係る車両は、
上記排気浄化装置を備える。
A vehicle according to an aspect of the present disclosure is provided.
The exhaust purification apparatus is provided.

本開示によれば、排気ガスの低温域におけるNOxの大気中の放出を抑制することができる。   According to the present disclosure, it is possible to suppress the release of NOx in the air at a low temperature range.

本開示の実施の形態に係る排気浄化装置が適用された内燃機関の排気系を示す概略構成図Schematic configuration diagram showing an exhaust system of an internal combustion engine to which an exhaust emission control device according to an embodiment of the present disclosure is applied 本開示の実施の形態に係る排気浄化装置における排気ガスの流量調整制御の動作例を示すフローチャート8 is a flowchart showing an operation example of exhaust gas flow rate adjustment control in the exhaust emission control device according to the embodiment of the present disclosure. 変形例2に係る排気浄化装置における排気ガスの流量調整制御の動作例を示すフローチャートThe flowchart which shows the operation example of the flow volume adjustment control of the exhaust gas in the exhaust gas purification apparatus which concerns on the modification 2.

以下、本開示の実施の形態を図面に基づいて詳細に説明する。図1は、本開示の実施の形態に係る排気浄化装置が適用された内燃機関の排気系を示す概略構成図である。   Hereinafter, embodiments of the present disclosure will be described in detail based on the drawings. FIG. 1 is a schematic configuration diagram illustrating an exhaust system of an internal combustion engine to which an exhaust emission control device according to an embodiment of the present disclosure is applied.

図1に示すように、内燃機関1は、車両Vに搭載される、例えばディーゼルエンジンであり、内燃機関1で生じた排気ガスを大気中に導くための排気浄化装置100が設けられている。排気浄化装置100は、排気管110と、タービン120と、上流側バイパス経路部130と、上流側調整部140Aと、下流側調整部140Bと、温度検出部150と、下流側バイパス経路部160と、制御部300とを備えている。   As shown in FIG. 1, the internal combustion engine 1 is a diesel engine, for example, mounted on a vehicle V, and is provided with an exhaust purification device 100 for guiding exhaust gas generated in the internal combustion engine 1 into the atmosphere. The exhaust emission control device 100 includes an exhaust pipe 110, a turbine 120, an upstream bypass path section 130, an upstream side adjustment section 140A, a downstream side adjustment section 140B, a temperature detection section 150, and a downstream side bypass path section 160. The control unit 300 is provided.

排気管110は、内燃機関1から生じた排気ガスが流れる。排気管110には、排気ガスが流れる方向(図示左から右へ向かう方向、以下、「排気方向」という)の上流側から順に、タービン120、酸化触媒210、NOx選択還元型触媒220、アンモニアスリップ触媒230等が設けられている。   Exhaust gas generated from the internal combustion engine 1 flows through the exhaust pipe 110. In the exhaust pipe 110, the turbine 120, the oxidation catalyst 210, the NOx selective reduction catalyst 220, the ammonia slip are sequentially arranged from the upstream side in the direction in which the exhaust gas flows (the direction from the left to the right in the drawing, hereinafter referred to as “exhaust direction”) A catalyst 230 and the like are provided.

酸化触媒210は、排気ガス中の一酸化窒素(NO)等を酸化させて二酸化窒素(NO)を生成することで、NOX選択還元型触媒220の浄化性能を向上させる。 The oxidation catalyst 210 improves the purification performance of the NOX selective reduction catalyst 220 by oxidizing nitrogen monoxide (NO) or the like in the exhaust gas to generate nitrogen dioxide (NO 2 ).

NOx選択還元型触媒220は、排気管110における酸化触媒210の下流側に配置され、図示しない尿素水噴射部により噴射された尿素水に基づいて生成されたアンモニアを吸着する。NOx選択還元型触媒220は、排気ガスの温度が下限活性温度以上のとき、吸着したアンモニアと、自身を通過する排気ガス中に含まれるNOxとを反応させることで、当該NOxを還元する。活性温度は、NOx選択還元型触媒220が活性化領域となる温度である。   The NOx selective reduction catalyst 220 is disposed downstream of the oxidation catalyst 210 in the exhaust pipe 110 and adsorbs ammonia generated based on urea water injected by a urea water injection unit (not shown). When the temperature of the exhaust gas is equal to or higher than the lower limit activation temperature, the NOx selective reduction catalyst 220 reduces the NOx by causing the adsorbed ammonia to react with NOx contained in the exhaust gas passing through the NOx selective reduction catalyst 220. The activation temperature is a temperature at which the NOx selective reduction catalyst 220 becomes an activation region.

アンモニアスリップ触媒230は、排気方向におけるNOx選択還元型触媒220の下流側に位置しており、NOx選択還元型触媒220で使用されなかったアンモニアを分解して、アンモニアが車両V外に排出されるのを防止する。   The ammonia slip catalyst 230 is located downstream of the NOx selective reduction catalyst 220 in the exhaust direction, decomposes ammonia that has not been used in the NOx selective reduction catalyst 220, and the ammonia is discharged out of the vehicle V. To prevent.

タービン120は、過給機の一部を構成しており、排気管110に設けられている。タービン120は、図示しないタービンインペラが、内燃機関1から排出された排気ガスにより回転する。また、タービン120は、過給機の他部を構成する、図示しない圧縮機と接続されている。圧縮機のコンプレッサインペラとタービンインペラとがシャフトにより一体に回転することで、吸気管から送り込まれる外気がコンプレッサインペラの回転により過給されて内燃機関1に送り込まれる。   The turbine 120 constitutes a part of the supercharger and is provided in the exhaust pipe 110. In the turbine 120, a turbine impeller (not shown) is rotated by exhaust gas discharged from the internal combustion engine 1. The turbine 120 is connected to a compressor (not shown) that constitutes the other part of the supercharger. When the compressor impeller and the turbine impeller of the compressor are integrally rotated by the shaft, the outside air sent from the intake pipe is supercharged by the rotation of the compressor impeller and sent to the internal combustion engine 1.

上流側バイパス経路部130は、排気管110における、タービン120よりも排気方向の上流側の部位111と、タービン120とNOx選択還元型触媒220との間の部位112とを接続する。   The upstream bypass path 130 connects a portion 111 of the exhaust pipe 110 upstream of the turbine 120 in the exhaust direction and a portion 112 between the turbine 120 and the NOx selective reduction catalyst 220.

下流側バイパス経路部160は、排気管110における、NOx選択還元型触媒220よりも排気方向の上流側の部位112と、アンモニアスリップ触媒230よりも排気方向の下流側の部位113とを接続する。下流側バイパス経路部160には、NOx吸着触媒240が設けられている。   The downstream bypass passage 160 connects the upstream portion 112 in the exhaust direction of the exhaust pipe 110 with respect to the NOx selective reduction catalyst 220 and the downstream portion 113 in the exhaust direction of the ammonia slip catalyst 230. The downstream bypass passage 160 is provided with a NOx adsorption catalyst 240.

NOx吸着触媒240は、排気ガスの温度がNOx選択還元型触媒220の下限活性温度未満であっても、排気ガス中のNOxを吸着することが可能である。   The NOx adsorption catalyst 240 can adsorb NOx in the exhaust gas even if the temperature of the exhaust gas is lower than the lower limit activation temperature of the NOx selective reduction catalyst 220.

上流側調整部140Aは、上流側バイパス経路部130に流れる排気ガスのバイパス流量を調整可能なバルブである。制御部300が上流側調整部140Aを制御することで、排気管110の排気ガスが上流側バイパス経路部130に流れる。   The upstream adjustment unit 140 </ b> A is a valve that can adjust the bypass flow rate of the exhaust gas flowing through the upstream bypass path unit 130. The control unit 300 controls the upstream adjustment unit 140 </ b> A, so that the exhaust gas in the exhaust pipe 110 flows into the upstream bypass path unit 130.

下流側調整部140Bは、下流側バイパス経路部160に流れる排気ガスのバイパス流量を調整可能なバルブである。制御部300が下流側調整部140Bを制御することで、排気管110の排気ガスが下流側バイパス経路部160に流れる。   The downstream adjustment unit 140 </ b> B is a valve that can adjust the bypass flow rate of the exhaust gas flowing through the downstream bypass path unit 160. The control unit 300 controls the downstream side adjustment unit 140 </ b> B, so that the exhaust gas in the exhaust pipe 110 flows into the downstream side bypass route unit 160.

温度検出部150は、排気管110の下流側調整部140BとNOx選択還元型触媒220との間の部位112に設けられ、排気方向におけるNOx選択還元型触媒220よりも上流側の排気ガスの温度を検出する。   The temperature detection unit 150 is provided in a portion 112 between the downstream side adjustment unit 140B of the exhaust pipe 110 and the NOx selective reduction catalyst 220, and the temperature of the exhaust gas upstream of the NOx selective reduction catalyst 220 in the exhaust direction. Is detected.

制御部300は、例えば電子制御ユニットであり、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)および入出力回路を備えている。制御部300は、予め設定されたプログラムに基づいて、上流側調整部140Aにおける排気ガスのバイパス流量を制御するように構成されている。同様に、制御部300は、予め設定されたプログラムに基づいて、下流側調整部140Bにおける排気ガスのバイパス流量を制御するように構成されている。   The control unit 300 is, for example, an electronic control unit, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output circuit (not shown). The control unit 300 is configured to control the exhaust gas bypass flow rate in the upstream adjustment unit 140A based on a preset program. Similarly, the control unit 300 is configured to control the exhaust gas bypass flow rate in the downstream side adjustment unit 140B based on a preset program.

制御部300は、排気ガスの温度に応じて、排気ガスを上流側バイパス経路部130に流すように上流側調整部140Aを制御し、かつ、排気ガスを下流側バイパス経路部160に流すように下流側調整部140Bを制御する。   The control unit 300 controls the upstream adjustment unit 140A to flow the exhaust gas to the upstream bypass path unit 130 according to the temperature of the exhaust gas, and causes the exhaust gas to flow to the downstream side bypass path unit 160. The downstream adjustment unit 140B is controlled.

以下、具体的に、上流側調整部140Aおよび下流側調整部140Bの制御について説明する。   Hereinafter, the control of the upstream adjustment unit 140A and the downstream adjustment unit 140B will be specifically described.

先ず、排気ガスの温度が予め定められた第一閾値未満の場合について説明する。ここでは、「第一閾値」を、NOx選択還元型触媒220の下限活性温度として説明する。   First, the case where the temperature of exhaust gas is less than a predetermined first threshold value will be described. Here, the “first threshold value” will be described as the lower limit activation temperature of the NOx selective reduction catalyst 220.

制御部300は、排気ガスの温度がNOx選択還元型触媒220の下限活性温度未満である場合、上流側バイパス経路部130に排気ガスを流すように上流側調整部140Aを制御し、かつ、下流側バイパス経路部160(NOx吸着触媒240)に排気ガスを流すように下流側調整部140Bを制御する。なお、このときの、上流側バイパス経路部130における排気ガスの流量は、タービン120側に流れる排気ガスの流量よりも多くなるように上流側調整部140Aが制御される。また、このときの、下流側バイパス経路部160における排気ガスの流量は、排気管110(NOx選択還元型触媒220)側に流れる排気ガスの流量よりも多くなるように下流側調整部140Bが制御される。ここで、タービン120側に流れる排気ガス流量は、タービン120の回転数が許容される下限値を下回らないために必要とされる流量である。   When the temperature of the exhaust gas is lower than the lower limit activation temperature of the NOx selective reduction catalyst 220, the control unit 300 controls the upstream adjustment unit 140A so that the exhaust gas flows through the upstream bypass passage unit 130, and the downstream side The downstream adjustment unit 140B is controlled so that the exhaust gas flows through the side bypass passage unit 160 (NOx adsorption catalyst 240). At this time, the upstream adjustment unit 140A is controlled so that the flow rate of the exhaust gas in the upstream bypass path 130 is larger than the flow rate of the exhaust gas flowing to the turbine 120 side. Further, at this time, the downstream adjustment unit 140B controls the flow rate of the exhaust gas in the downstream bypass passage 160 so as to be larger than the flow rate of the exhaust gas flowing to the exhaust pipe 110 (NOx selective reduction catalyst 220) side. Is done. Here, the flow rate of the exhaust gas flowing to the turbine 120 side is a flow rate that is necessary so that the rotational speed of the turbine 120 does not fall below the allowable lower limit value.

排気ガスの温度がNOx選択還元型触媒220の下限活性温度未満であると、NOx選択還元型触媒220における還元処理が行われにくいので、排気ガス中のNOxが大気に排出されやすくなる。例えば、内燃機関1が冷間始動し、排気ガスの温度が十分上昇するまでの間においては、NOxが還元されにくいので、排気ガス中のNOxが大気に排出されやすくなる。特に、タービン120を有する構成の場合、タービン120を排気ガスが通過することで、排気ガスの排気エネルギーがタービンインペラの回転エネルギーに変換されるので、排気ガスの温度が低下しやすい。   If the temperature of the exhaust gas is lower than the lower limit activation temperature of the NOx selective reduction catalyst 220, the reduction process in the NOx selective reduction catalyst 220 is difficult to be performed, so that NOx in the exhaust gas is easily discharged to the atmosphere. For example, since the internal combustion engine 1 is cold-started and the temperature of the exhaust gas sufficiently rises, NOx is not easily reduced, so that NOx in the exhaust gas is easily discharged to the atmosphere. In particular, in the case of the configuration having the turbine 120, the exhaust gas passes through the turbine 120, whereby the exhaust energy of the exhaust gas is converted into the rotational energy of the turbine impeller, so that the temperature of the exhaust gas tends to decrease.

そのため、本実施の形態では、排気ガスの温度が下限活性温度未満である場合、排気ガスを上流側バイパス経路部130に流すことによって排気ガスの温度低下を抑える。また、NOx吸着触媒240によって下流側バイパス経路部160を流れる排気ガス中に含まれるNOxを吸着する。これにより、排気ガスの温度がNOx選択還元型触媒220で還元処理し難い温度のときに、排気ガスをNOx吸着触媒240に流すことで、排気ガス中のNOxがNOx吸着触媒240に吸着されるので、NOxが大気に排出されることを抑制することができる。   Therefore, in the present embodiment, when the temperature of the exhaust gas is lower than the lower limit activation temperature, the exhaust gas is caused to flow through the upstream bypass path portion 130 to suppress the temperature decrease of the exhaust gas. Further, the NOx contained in the exhaust gas flowing through the downstream bypass passage 160 is adsorbed by the NOx adsorption catalyst 240. Thus, when the temperature of the exhaust gas is a temperature at which the NOx selective reduction catalyst 220 is difficult to reduce, NOx in the exhaust gas is adsorbed by the NOx adsorption catalyst 240 by flowing the exhaust gas to the NOx adsorption catalyst 240. Therefore, it can suppress that NOx is discharged | emitted by air | atmosphere.

次に、排気ガスの温度がNOx選択還元型触媒220の下限活性温度以上かつ第二閾値未満の場合について説明する。ここで、「第二閾値」とは、排気管110を流れてNOx選択還元型触媒220に達した排気ガスの温度がNOx選択還元型触媒220の下限活性温度以上となる温度である。以下、「第二閾値」を、内燃機関1の高負荷時温度という。   Next, the case where the temperature of the exhaust gas is equal to or higher than the lower limit activation temperature of the NOx selective reduction catalyst 220 and lower than the second threshold value will be described. Here, the “second threshold value” is a temperature at which the temperature of the exhaust gas flowing through the exhaust pipe 110 and reaching the NOx selective reduction catalyst 220 is equal to or higher than the lower limit activation temperature of the NOx selective reduction catalyst 220. Hereinafter, the “second threshold value” is referred to as a high load temperature of the internal combustion engine 1.

制御部300は、排気ガスの温度がNOx選択還元型触媒220の下限活性温度以上かつ高負荷時温度未満である場合、上流側バイパス経路部130に排気ガスを流すように上流側調整部140Aを制御し、かつ、NOx選択還元型触媒220に排気ガスを流すように下流側調整部140Bを制御する。このときの、上流側バイパス経路部130における排気ガスの流量は、タービン120側に流れる排気ガスの流量よりも多くなるように上流側調整部140Aが制御される。また、このときの、排気管110(NOx選択還元型触媒220)側に流れる排気ガスの流量は、下流側バイパス経路部160における排気ガスの流量よりも多くなるように下流側調整部140Bが制御される。   When the temperature of the exhaust gas is equal to or higher than the lower limit activation temperature of the NOx selective reduction catalyst 220 and lower than the high load temperature, the control unit 300 controls the upstream adjustment unit 140A to flow the exhaust gas through the upstream bypass path unit 130. The downstream adjustment unit 140B is controlled so that the exhaust gas flows through the NOx selective reduction catalyst 220. At this time, the upstream adjustment unit 140A is controlled so that the flow rate of the exhaust gas in the upstream bypass path 130 is larger than the flow rate of the exhaust gas flowing to the turbine 120 side. Further, at this time, the downstream adjustment unit 140B controls the flow rate of the exhaust gas flowing to the exhaust pipe 110 (NOx selective reduction catalyst 220) side to be larger than the flow rate of the exhaust gas in the downstream bypass passage unit 160. Is done.

以上のようにすることで、排気ガスの温度低下を抑えつつ、NOx選択還元型触媒220における還元処理を促進させることができる。   By doing so, the reduction process in the NOx selective reduction catalyst 220 can be promoted while suppressing the temperature drop of the exhaust gas.

次に、排気ガスの温度が高負荷時温度以上の場合について説明する。   Next, the case where the exhaust gas temperature is equal to or higher than the high load temperature will be described.

制御部300は、排気ガスの温度が高負荷時温度以上である場合、排気管110に排気ガスを流すように上流側調整部140Aを制御し、かつ、NOx選択還元型触媒220に排気ガスを流すように下流側調整部140Bを制御する。このときの、タービン120側に流れる排気ガスの流量は、上流側バイパス経路部130における排気ガスの流量よりも多くなるように上流側調整部140Aが制御される。また、このときの、排気管110(NOx選択還元型触媒220)側に流れる排気ガスの流量は、下流側バイパス経路部160における排気ガスの流量よりも多くなるように下流側調整部140Bが制御される。   When the temperature of the exhaust gas is equal to or higher than the high load temperature, the control unit 300 controls the upstream adjustment unit 140A so that the exhaust gas flows through the exhaust pipe 110, and the exhaust gas is supplied to the NOx selective reduction catalyst 220. The downstream adjustment unit 140B is controlled to flow. At this time, the upstream adjustment unit 140 </ b> A is controlled so that the flow rate of the exhaust gas flowing to the turbine 120 side is larger than the flow rate of the exhaust gas in the upstream bypass path unit 130. Further, at this time, the downstream adjustment unit 140B controls the flow rate of the exhaust gas flowing to the exhaust pipe 110 (NOx selective reduction catalyst 220) side to be larger than the flow rate of the exhaust gas in the downstream bypass passage unit 160. Is done.

排気ガスの温度が高負荷時温度以上である場合、タービン120等が設けられた排気管110を排気ガスが流れて、排気ガスの温度が低下しても、低下した排気ガスの温度は、NOx選択還元型触媒220の下限活性温度以上である。このため、NOx選択還元型触媒220における還元処理を促進させることができる。   When the temperature of the exhaust gas is equal to or higher than the temperature at the time of high load, even if the exhaust gas flows through the exhaust pipe 110 provided with the turbine 120 or the like and the temperature of the exhaust gas decreases, the temperature of the exhaust gas that has decreased is It is equal to or higher than the lower limit active temperature of the selective catalytic reduction catalyst 220. For this reason, the reduction process in the NOx selective reduction catalyst 220 can be promoted.

以上のように構成された排気浄化装置100における排気ガスの流量調整制御の動作例について説明する。図2は、排気浄化装置100における排気ガスの流量調整制御の動作例を示すフローチャートである。図2の処理は、例えば、車両Vの走行中において、適宜実行される。   An operation example of the exhaust gas flow rate adjustment control in the exhaust purification apparatus 100 configured as described above will be described. FIG. 2 is a flowchart showing an operation example of the exhaust gas flow rate adjustment control in the exhaust purification apparatus 100. The process of FIG. 2 is appropriately executed while the vehicle V is traveling, for example.

図2に示すように、制御部300は、排気ガスの温度がNOx選択還元型触媒220の下限活性温度未満であるか否かについて判定する(ステップS100)。判定の結果、排気ガスの温度が下限活性温度以上である場合(ステップS100:NO)、処理はステップS120に遷移する。一方、排気ガスの温度が下限活性温度未満である場合(ステップS100:YES)、制御部300は、排気ガスを、上流側バイパス経路部130を経由して下流側バイパス経路部160に流すように、上流側調整部140Aおよび下流側調整部140Bを制御する(ステップS110)。ステップS110の後、処理は終了する。   As shown in FIG. 2, the controller 300 determines whether or not the temperature of the exhaust gas is lower than the lower limit activation temperature of the NOx selective reduction catalyst 220 (step S100). As a result of the determination, when the temperature of the exhaust gas is equal to or higher than the lower limit activation temperature (step S100: NO), the process transitions to step S120. On the other hand, when the temperature of the exhaust gas is lower than the lower limit activation temperature (step S100: YES), the control unit 300 causes the exhaust gas to flow to the downstream bypass path unit 160 via the upstream bypass path unit 130. The upstream adjustment unit 140A and the downstream adjustment unit 140B are controlled (step S110). After step S110, the process ends.

ステップS100でNOと判定された場合、制御部300は、排気ガスの温度が高負荷時温度未満であるか否かについて判定する(ステップS120)。判定の結果、排気ガスの温度が高負荷時温度未満である場合(ステップS120:YES)、制御部300は、排気ガスを、上流側バイパス経路部130を経由して排気管110に流すように、上流側調整部140Aおよび下流側調整部140Bを制御する(ステップS130)。ステップS130の後、処理は終了する。   When it determines with NO by step S100, the control part 300 determines whether the temperature of exhaust gas is less than the temperature at the time of high load (step S120). As a result of the determination, when the temperature of the exhaust gas is lower than the temperature at the time of high load (step S120: YES), the control unit 300 causes the exhaust gas to flow to the exhaust pipe 110 via the upstream bypass path unit 130. The upstream adjustment unit 140A and the downstream adjustment unit 140B are controlled (step S130). After step S130, the process ends.

判定の結果、排気ガスの温度が高負荷時温度以上である場合(ステップS120:NO)、制御部300は、排気ガスを、上流側バイパス経路部130および下流側バイパス経路部160を経由せずに、排気管110に流すように、上流側調整部140Aおよび下流側調整部140Bを制御する(ステップS140)。ステップS140の後、処理は終了する。   As a result of the determination, when the temperature of the exhaust gas is equal to or higher than the temperature at the time of high load (step S120: NO), the control unit 300 does not pass the exhaust gas through the upstream bypass path unit 130 and the downstream bypass path unit 160. Then, the upstream adjustment unit 140A and the downstream adjustment unit 140B are controlled so as to flow through the exhaust pipe 110 (step S140). After step S140, the process ends.

以上のように、上記実施の形態に係る排気浄化装置100によれば、排気ガスの温度がNOx選択還元型触媒220の下限活性温度未満の場合、排気ガスを、上流側バイパス経路部130を経由して下流側バイパス経路部160に流すように、上流側調整部140Aおよび下流側調整部140Bを制御する制御部300を備える。   As described above, according to the exhaust gas purification apparatus 100 according to the above embodiment, when the temperature of the exhaust gas is lower than the lower limit activation temperature of the NOx selective reduction catalyst 220, the exhaust gas is routed through the upstream bypass passage 130. Then, the control unit 300 is provided to control the upstream adjustment unit 140A and the downstream adjustment unit 140B so as to flow to the downstream bypass path unit 160.

排気ガスを上流側バイパス経路部130に流すことにより、排気ガスの温度低下を抑えることができる。また、排気ガスの温度がNOx選択還元型触媒220の下限活性温度未満であっても、排気ガスを下流側バイパス経路部160に流すことで、NOx吸着触媒240においてNOxを吸着することができる。その結果、排気ガスの低温域におけるNOxの大気中の放出を抑制することができる。   By causing the exhaust gas to flow through the upstream bypass passage portion 130, it is possible to suppress the temperature drop of the exhaust gas. Further, even if the temperature of the exhaust gas is lower than the lower limit activation temperature of the NOx selective reduction catalyst 220, NOx can be adsorbed by the NOx adsorption catalyst 240 by flowing the exhaust gas to the downstream bypass path portion 160. As a result, it is possible to suppress the release of NOx in the atmosphere at a low temperature range of the exhaust gas.

また、上記実施の形態に係る排気浄化装置100によれば、排気ガスの温度がNOx選択還元型触媒220の下限活性温度以上かつ内燃機関1の高負荷時温度未満である場合、排気ガスを、上流側バイパス経路部130を経由して排気管110に流すように、上流側調整部140Aおよび下流側調整部140Bを制御する制御部300を備える。   Further, according to the exhaust purification apparatus 100 according to the above embodiment, when the temperature of the exhaust gas is equal to or higher than the lower limit activation temperature of the NOx selective reduction catalyst 220 and lower than the high load temperature of the internal combustion engine 1, the exhaust gas is A control unit 300 that controls the upstream adjustment unit 140A and the downstream adjustment unit 140B is provided so as to flow to the exhaust pipe 110 via the upstream bypass path unit 130.

排気ガスを上流側バイパス経路部130に流すことにより、排気ガスの温度を下限活性温度以上に維持することができる。また、下限活性温度以上の排気ガスを排気管110に流すことで、NOx選択還元型触媒220において、NOxを浄化することができる。その結果、排気ガスの中温域におけるNOxの大気中の放出を抑制することができる。   By causing the exhaust gas to flow through the upstream bypass passage 130, the temperature of the exhaust gas can be maintained above the lower limit activation temperature. Further, NOx can be purified in the NOx selective reduction catalyst 220 by flowing exhaust gas having a temperature equal to or higher than the lower limit activation temperature to the exhaust pipe 110. As a result, it is possible to suppress the release of NOx into the atmosphere in the middle temperature range of the exhaust gas.

また、上記実施の形態に係る排気浄化装置100によれば、排気ガスの温度が内燃機関1の高負荷時温度以上である場合、排気ガスを、上流側バイパス経路部130および下流側バイパス経路部160を経由せずに、排気管110に流すように、上流側調整部140Aおよび下流側調整部140Bを制御する制御部300を備える。   Further, according to the exhaust gas purification apparatus 100 according to the above-described embodiment, when the temperature of the exhaust gas is equal to or higher than the high load temperature of the internal combustion engine 1, the exhaust gas is separated from the upstream bypass path portion 130 and the downstream bypass path portion. A control unit 300 that controls the upstream side adjustment unit 140A and the downstream side adjustment unit 140B is provided so as to flow through the exhaust pipe 110 without passing through the 160.

これにより、排気管110(タービン120)を通った排気ガスの温度が下限活性温度以上の高負荷時温度であるため、排気ガスを、上流側バイパス経路部130および下流側バイパス経路部160を経由せずに、排気管110に流しても、NOx選択還元型触媒220において、排気ガス中のNOxを浄化することができる。その結果、排気ガスの高温域におけるNOxの大気中の放出を抑制することができる。   Thereby, since the temperature of the exhaust gas that has passed through the exhaust pipe 110 (the turbine 120) is a high load temperature that is equal to or higher than the lower limit activation temperature, the exhaust gas passes through the upstream bypass route portion 130 and the downstream bypass route portion 160. Even if the NOx is selectively supplied to the exhaust pipe 110, the NOx selective reduction catalyst 220 can purify NOx in the exhaust gas. As a result, it is possible to suppress the release of NOx in the atmosphere of the exhaust gas at a high temperature.

つまり、本実施の形態に係る排気浄化装置100によれば、低温域を含め広い温域においてNOxの大気中の放出を抑制することができる。   That is, according to the exhaust purification apparatus 100 according to the present embodiment, NOx release into the atmosphere can be suppressed in a wide temperature range including a low temperature range.

<変形例1>
上記実施の形態においては、下流側バイパス経路部160と、下流側バイパス経路部160に配置されるNOx吸着触媒240とを備え、排気ガスの温度が下限活性温度未満(低温域)である場合、排気ガスを下流側バイパス経路部160に流して、NOx吸着触媒240でNOxを吸着し、後にNOxを還元する。
<Modification 1>
In the above embodiment, when the downstream bypass path 160 and the NOx adsorption catalyst 240 disposed in the downstream bypass path 160 are provided, and the temperature of the exhaust gas is less than the lower limit active temperature (low temperature range), Exhaust gas is allowed to flow through the downstream bypass passage 160, NOx is adsorbed by the NOx adsorption catalyst 240, and NOx is reduced later.

ところで、NOx吸着触媒240のNOx吸着量には限度があるため、NOx吸着触媒240に吸着されているNOxを適宜脱離させる必要がある。しかしながら、排気ガスの温度が下限活性温度未満(低温域)では、NOxを脱離させることが困難となる。換言すれば、NOxを脱離させるには、排気ガスの温度が下限活性温度以上(具体的には、NOx脱離温度以上)である必要がある。   Incidentally, since the NOx adsorption amount of the NOx adsorption catalyst 240 is limited, it is necessary to appropriately desorb NOx adsorbed on the NOx adsorption catalyst 240. However, when the temperature of the exhaust gas is lower than the lower limit activation temperature (low temperature range), it is difficult to desorb NOx. In other words, in order to desorb NOx, the temperature of the exhaust gas needs to be higher than the lower limit activation temperature (specifically, higher than the NOx desorption temperature).

そこで、変形例1に係る排気浄化装置100では、NOx吸着触媒240に吸着されているNOxを脱離させるための手段を備える。なお、変形例1における排気浄化装置100の構成は、上記実施の形態における排気浄化装置100の構成と同じである。   In view of this, the exhaust purification apparatus 100 according to Modification 1 includes means for desorbing NOx adsorbed on the NOx adsorption catalyst 240. Note that the configuration of the exhaust purification apparatus 100 in the first modification is the same as the configuration of the exhaust purification apparatus 100 in the above embodiment.

制御部300は、排気ガスの温度がNOx脱離温度以上の場合、排気ガスを、上流側バイパス経路部130を経由して下流側バイパス経路部160(NOx吸着触媒240)に流すように、上流側調整部140Aおよび下流側調整部140Bを制御する。ここで、「NOx脱離温度」とは、NOx吸着触媒240に吸着されているNOxを脱離させることが可能な温度である。   When the temperature of the exhaust gas is equal to or higher than the NOx desorption temperature, the control unit 300 allows the exhaust gas to flow to the downstream bypass path 160 (NOx adsorption catalyst 240) via the upstream bypass path 130. The side adjustment unit 140A and the downstream side adjustment unit 140B are controlled. Here, the “NOx desorption temperature” is a temperature at which NOx adsorbed on the NOx adsorption catalyst 240 can be desorbed.

上流側バイパス経路部130を経由して、NOx脱離温度以上の排気ガスを下流側バイパス経路部160(NOx吸着触媒240)に流すことにより、NOx吸着触媒240に吸着されているNOxを脱離させるNOxのパージが実行される。なお、このときの、上流側バイパス経路部130における排気ガスの流量は、タービン120側に流れる排気ガスの流量よりも多くなるように上流側調整部140Aが制御される。また、このときの、下流側バイパス経路部160における排気ガスの流量は、排気管110(NOx選択還元型触媒220)側に流れる排気ガスの流量よりも多くなるように下流側調整部140Bが制御される。   NOx adsorbed on the NOx adsorption catalyst 240 is desorbed by flowing exhaust gas having a temperature equal to or higher than the NOx desorption temperature to the downstream bypass path portion 160 (NOx adsorption catalyst 240) via the upstream bypass passage portion 130. The NOx purge is performed. At this time, the upstream adjustment unit 140A is controlled so that the flow rate of the exhaust gas in the upstream bypass path 130 is larger than the flow rate of the exhaust gas flowing to the turbine 120 side. Further, at this time, the downstream adjustment unit 140B controls the flow rate of the exhaust gas in the downstream bypass passage 160 so as to be larger than the flow rate of the exhaust gas flowing to the exhaust pipe 110 (NOx selective reduction catalyst 220) side. Is done.

変形例1に係る排気浄化装置100によれば、排気ガスの温度がNOx脱離温度以上の場合、排気ガスを、上流側バイパス経路部130を経由して下流側バイパス経路部160に流す。これにより、下流側バイパス経路部160に配置されたNOx吸着触媒240においても、NOxのパージを適宜実行することが可能となる。   According to the exhaust gas purification apparatus 100 according to the first modification, when the temperature of the exhaust gas is equal to or higher than the NOx desorption temperature, the exhaust gas is caused to flow to the downstream bypass route portion 160 via the upstream bypass route portion 130. As a result, even in the NOx adsorption catalyst 240 disposed in the downstream bypass passage 160, it is possible to appropriately perform the purge of NOx.

制御部300は、排気ガスの温度がNOx脱離温度未満の場合、排気ガスを、上流側バイパス経路部130を経由して排気管110(NOx選択還元型触媒220)に流すように、上流側調整部140Aおよび下流側調整部140Bを制御してもよい。これにより、例えば、排気ガスの中温域におけるNOxの浄化が可能となる。   When the temperature of the exhaust gas is lower than the NOx desorption temperature, the control unit 300 allows the exhaust gas to flow to the exhaust pipe 110 (NOx selective reduction catalyst 220) via the upstream bypass path unit 130. The adjustment unit 140A and the downstream adjustment unit 140B may be controlled. Thereby, for example, it becomes possible to purify NOx in the middle temperature range of the exhaust gas.

なお、制御部300は、排気ガスの温度がNOx脱離温度より高いSOx脱離度以上の場合、排気ガスを、上流側バイパス経路部130を経由して排気管110(NOx選択還元型触媒220)に流すように、上流側調整部140Aおよび下流側調整部140Bを制御してもよい。排気ガスをNOx選択還元型触媒220に流すことにより、NOx選択還元型触媒220のSOxパージが実行される。これにより、NOx選択還元型触媒220をSOx被毒から回復させることができる。   When the temperature of the exhaust gas is equal to or higher than the degree of SOx desorption higher than the NOx desorption temperature, the control unit 300 transmits the exhaust gas to the exhaust pipe 110 (NOx selective reduction catalyst 220 via the upstream bypass path unit 130). ), The upstream side adjustment unit 140A and the downstream side adjustment unit 140B may be controlled. By flowing the exhaust gas through the NOx selective reduction catalyst 220, the SOx purge of the NOx selective reduction catalyst 220 is executed. As a result, the NOx selective reduction catalyst 220 can be recovered from SOx poisoning.

<変形例2>
変形例1においては、排気ガスの温度がNOx脱離温度以上である場合、排気ガスをNOx吸着触媒240に流すことにより、NOxのパージが実行される。ところが、排気ガスの温度条件(例えば、排気ガスの温度がNOx脱離温度以上に上昇しない)等によっては、NOxのパージが長時間にわたって実行されない場合がある。
<Modification 2>
In the first modification, when the temperature of the exhaust gas is equal to or higher than the NOx desorption temperature, the NOx purge is executed by flowing the exhaust gas through the NOx adsorption catalyst 240. However, depending on the temperature condition of the exhaust gas (for example, the temperature of the exhaust gas does not rise above the NOx desorption temperature), the NOx purge may not be executed for a long time.

そこで、変形例2に係る排気浄化装置100では、NOxを強制的にパージする手段を備える。   Therefore, the exhaust emission control device 100 according to the modified example 2 includes means for forcibly purging NOx.

次に、変形例2に係る排気浄化装置100について説明する。なお、変形例2における排気浄化装置100の構成も、上記実施の形態における排気浄化装置100の構成と同じである。   Next, the exhaust emission control device 100 according to Modification 2 will be described. The configuration of the exhaust purification device 100 in the second modification is also the same as the configuration of the exhaust purification device 100 in the above embodiment.

変形例2においては、制御部300は、NOx吸着触媒240に吸着されているNOx吸着量に基づいて、NOxを脱離させる必要があるか否かについて判断する。制御部300は、NOxを脱離させる必要があると判断した場合、排気ガスを、上流側バイパス経路部130を経由して下流側バイパス経路部160(NOx吸着触媒240)に流すように、上流側調整部140Aおよび下流側調整部140Bを制御する。ここで、「NOxを脱離させる必要がある場合」とは、例えば、NOx吸着触媒240におけるNOxの吸着量が最大吸着量に達した場合である。NOxの吸着量が最大吸着量に達した場合、NOx吸着能力が低下する。NOx吸着能力を回復するために、NOx吸着触媒240に吸着されているNOxを脱離させる必要がある。   In the second modification, the control unit 300 determines whether or not it is necessary to desorb NOx based on the NOx adsorption amount adsorbed on the NOx adsorption catalyst 240. When the control unit 300 determines that it is necessary to desorb NOx, the control unit 300 causes the exhaust gas to flow to the downstream side bypass route unit 160 (NOx adsorption catalyst 240) via the upstream side bypass route unit 130 so as to flow upstream. The side adjustment unit 140A and the downstream side adjustment unit 140B are controlled. Here, “when it is necessary to desorb NOx” is, for example, a case where the NOx adsorption amount in the NOx adsorption catalyst 240 reaches the maximum adsorption amount. When the adsorption amount of NOx reaches the maximum adsorption amount, the NOx adsorption capacity decreases. In order to recover the NOx adsorption capacity, it is necessary to desorb NOx adsorbed on the NOx adsorption catalyst 240.

NOx吸着触媒240に吸着されているNOxの吸着量は、内燃機関1の運転状態に基づいて算出されるNOx排出量や、下流側バイパス経路部160への排気ガスの流量(流通時間)等から推定される。   The amount of NOx adsorbed on the NOx adsorption catalyst 240 is determined from the NOx emission amount calculated based on the operating state of the internal combustion engine 1, the flow rate (circulation time) of exhaust gas to the downstream bypass passage 160, and the like. Presumed.

排気ガスを、上流側バイパス経路部130を経由して下流側バイパス経路部160(NOx吸着触媒240)に流すことにより、NOxのパージが実行される。このときの、上流側バイパス経路部130における排気ガスの流量は、タービン120側に流れる排気ガスの流量よりも多くなるように上流側調整部140Aが制御される。また、このときの、下流側バイパス経路部160における排気ガスの流量は、排気管110(NOx選択還元型触媒220)側に流れる排気ガスの流量よりも多くなるように下流側調整部140Bが制御される。   The exhaust gas is passed through the upstream bypass passage portion 130 to the downstream bypass passage portion 160 (NOx adsorption catalyst 240), whereby NOx purge is executed. At this time, the upstream adjustment unit 140A is controlled so that the flow rate of the exhaust gas in the upstream bypass path 130 is larger than the flow rate of the exhaust gas flowing to the turbine 120 side. Further, at this time, the downstream adjustment unit 140B controls the flow rate of the exhaust gas in the downstream bypass passage 160 so as to be larger than the flow rate of the exhaust gas flowing to the exhaust pipe 110 (NOx selective reduction catalyst 220) side. Is done.

ところで、排気ガスを、下流側バイパス経路部160(NOx吸着触媒240)に流しても、排気ガスの温度がNOxの脱離温度未満の場合、NOxを脱離させることは困難となる。   By the way, even if the exhaust gas flows through the downstream bypass passage 160 (NOx adsorption catalyst 240), it is difficult to desorb NOx if the temperature of the exhaust gas is lower than the NOx desorption temperature.

そこで、変形例2では、制御部300は、排気ガスの温度がNOxの脱離温度未満の場合、排気ガスの温度をNOxの脱離温度以上に上昇させるように昇温部を制御する。具体的には、制御部300は、NOx吸着触媒240よりも排気方向の上流側に配置されている酸化触媒210に図示しない燃料供給装置から燃料を供給させ、このときの酸化作用により、排気ガスの温度をNOxの脱離温度以上に上昇させる。なお、昇温部としては、上記の酸化触媒210および燃料供給装置に限らず、例えば、排気ガスの温度を上昇させるヒーターなどの公知の手段であってもよい。   Thus, in the second modification, when the temperature of the exhaust gas is lower than the NOx desorption temperature, the control unit 300 controls the temperature raising unit so as to raise the temperature of the exhaust gas to be higher than the NOx desorption temperature. Specifically, the control unit 300 causes the oxidation catalyst 210 disposed upstream of the NOx adsorption catalyst 240 in the exhaust direction to supply fuel from a fuel supply device (not shown), and the exhaust gas is generated by the oxidation action at this time. Is raised above the NOx desorption temperature. The temperature raising unit is not limited to the oxidation catalyst 210 and the fuel supply device described above, and may be a known means such as a heater for raising the temperature of the exhaust gas.

次に、排気浄化装置100における排気ガスの流量調整制御の動作例について、図3を参照して説明する。図3は、変形例2に係る排気浄化装置100における排気ガスの流量調整制御の動作例を示すフローチャートである。図3の処理は、例えば、車両Vの走行中において、適宜実行される。   Next, an operation example of the exhaust gas flow rate adjustment control in the exhaust purification apparatus 100 will be described with reference to FIG. FIG. 3 is a flowchart showing an operation example of the exhaust gas flow rate adjustment control in the exhaust purification apparatus 100 according to the second modification. The process in FIG. 3 is appropriately executed while the vehicle V is traveling, for example.

図3に示すように、制御部300は、NOx吸着触媒240のNOx吸着量が最大吸着量に達したか否かについて判定する(ステップS200)。判定の結果、NOx吸着量が最大吸着量に達している場合(ステップS200:YES)、制御部300は、排気ガスの温度がNOx脱離温度以上であるか否かについて判定する(ステップS210)。一方、NOx吸着量が最大吸着量に達していない場合(ステップS200:NO)、処理は終了する。   As shown in FIG. 3, the controller 300 determines whether or not the NOx adsorption amount of the NOx adsorption catalyst 240 has reached the maximum adsorption amount (step S200). As a result of the determination, when the NOx adsorption amount has reached the maximum adsorption amount (step S200: YES), the control unit 300 determines whether or not the temperature of the exhaust gas is equal to or higher than the NOx desorption temperature (step S210). . On the other hand, when the NOx adsorption amount does not reach the maximum adsorption amount (step S200: NO), the process ends.

ステップS210でYESと判定された場合、制御部300は、排気ガスを、上流側バイパス経路部130を経由して下流側バイパス経路部160に流すように、上流側調整部140Aおよび下流側調整部140Bを制御する(ステップS220)。   When it is determined YES in step S210, the control unit 300 causes the upstream adjustment unit 140A and the downstream adjustment unit to flow the exhaust gas to the downstream bypass route unit 160 via the upstream bypass route unit 130. 140B is controlled (step S220).

ステップS210でNOと判定された場合、制御部300は、排気ガスの温度をNOx脱離温度以上に上げる制御を行う(ステップS230)。ステップS230の後、処理はステップS210の前に遷移する。   When it is determined NO in step S210, the control unit 300 performs control to increase the temperature of the exhaust gas to be equal to or higher than the NOx desorption temperature (step S230). After step S230, the process transitions before step S210.

変形例2に係る排気浄化装置100によれば、NOx吸着触媒240の吸着量が最大吸着量に達した場合、排気ガスを、上流側バイパス経路部130を経由して下流側バイパス経路部160(NOx吸着触媒240)に流す。これにより、NOxのパージが強制的に実行されるため、NOx吸着能力を回復させることが可能となる。   According to the exhaust gas purification apparatus 100 according to the modified example 2, when the adsorption amount of the NOx adsorption catalyst 240 reaches the maximum adsorption amount, the exhaust gas is passed through the upstream bypass passage portion 130 and the downstream bypass passage portion 160 ( The NOx adsorption catalyst 240). Thereby, the purge of NOx is forcibly executed, so that the NOx adsorption capacity can be recovered.

本開示の排気浄化装置は、排気ガスの低温域におけるNOxの大気中の放出を抑制することが要求される内燃機関を搭載する車両用として有用である。   The exhaust emission control device of the present disclosure is useful for a vehicle equipped with an internal combustion engine that is required to suppress NOx emission in the atmosphere in a low temperature range.

1 内燃機関
100 排気浄化装置
110 排気管
120 タービン
130 上流側バイパス経路部
140A 上流側調整部
140B 下流側調整部
150 温度検出部
160 下流側バイパス経路部
210 酸化触媒
220 NOx選択還元型触媒
230 アンモニアスリップ触媒
240 NOx吸着触媒
300 制御部
V 車両
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 100 Exhaust gas purification device 110 Exhaust pipe 120 Turbine 130 Upstream bypass path part 140A Upstream side adjustment part 140B Downstream side adjustment part 150 Temperature detection part 160 Downstream side bypass path part 210 Oxidation catalyst 220 NOx selective reduction type catalyst 230 Ammonia slip Catalyst 240 NOx adsorption catalyst 300 Control unit V Vehicle

Claims (3)

内燃機関から生じた排気ガスが流れ、過給機の一部を構成するタービンが配置される排気管と、
前記排気管における前記タービンよりも排気方向の下流側に配置され、排気ガス中の窒素酸化物を還元するNOx選択還元型触媒と、
前記排気管における、前記タービンよりも排気方向の上流側の部位と、排気方向で前記タービンと前記NOx選択還元型触媒との間の部位とを連結する上流側バイパス経路部と、
前記排気管における、排気方向で前記タービンと前記NOx選択還元型触媒との間の部位と、前記NOx選択還元型触媒よりも排気方向の下流側とを連結する下流側バイパス経路部と、
前記下流側バイパス経路部に配置され、排気ガス中の窒素酸化物を吸着し、後に還元するNOx吸着触媒と、
前記排気管と前記上流側バイパス経路部との間における排気ガスの流量を調整する上流側調整部と、
前記排気管と前記下流側バイパス経路部との間における排気ガスの流量を調整する下流側調整部と、
前記排気ガスの温度がNOx吸着触媒に吸着された窒素酸化物を脱離させる温度以上である場合、排気ガスを、前記上流側バイパス経路部を経由して前記下流側バイパス経路部に流すように、前記上流側調整部および前記下流側調整部を制御する制御部と、
を備える、
排気浄化装置。
An exhaust pipe in which an exhaust gas generated from the internal combustion engine flows and a turbine constituting a part of the supercharger is disposed;
A NOx selective reduction type catalyst that is disposed downstream of the turbine in the exhaust pipe in the exhaust direction and reduces nitrogen oxides in the exhaust gas;
An upstream bypass path connecting the upstream portion of the exhaust pipe in the exhaust direction with respect to the turbine and the portion between the turbine and the NOx selective reduction catalyst in the exhaust direction;
A downstream bypass path portion connecting a portion between the turbine and the NOx selective reduction catalyst in the exhaust direction in the exhaust pipe and a downstream side in the exhaust direction from the NOx selective reduction catalyst;
A NOx adsorption catalyst that is disposed in the downstream bypass passage, adsorbs nitrogen oxide in exhaust gas, and later reduces the NOx adsorption catalyst;
An upstream side adjustment unit that adjusts the flow rate of the exhaust gas between the exhaust pipe and the upstream side bypass path unit;
A downstream adjustment unit that adjusts the flow rate of the exhaust gas between the exhaust pipe and the downstream bypass path unit;
When the temperature of the exhaust gas is equal to or higher than the temperature at which the nitrogen oxides adsorbed on the NOx adsorption catalyst are desorbed, the exhaust gas is caused to flow to the downstream bypass route portion via the upstream bypass route portion. A control unit for controlling the upstream adjustment unit and the downstream adjustment unit;
Comprising
Exhaust purification device.
前記制御部は、前記排気ガスの温度が前記NOx選択還元型触媒に吸着されたSOxを脱離させる温度以上である場合、排気ガスを、前記上流側バイパス経路部を経由して前記排気管に流すように、前記上流側調整部および前記下流側調整部を制御する、
請求項1に記載の排気浄化装置。
When the temperature of the exhaust gas is equal to or higher than the temperature at which the SOx adsorbed on the NOx selective reduction catalyst is desorbed, the control unit sends the exhaust gas to the exhaust pipe via the upstream bypass path. Controlling the upstream adjustment unit and the downstream adjustment unit to flow,
The exhaust emission control device according to claim 1.
請求項1または2に記載の排気浄化装置を備える、
車両。
The exhaust emission control device according to claim 1 or 2 is provided.
vehicle.
JP2018085999A 2018-04-27 2018-04-27 Exhaust purification equipment and vehicles Active JP7063088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018085999A JP7063088B2 (en) 2018-04-27 2018-04-27 Exhaust purification equipment and vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018085999A JP7063088B2 (en) 2018-04-27 2018-04-27 Exhaust purification equipment and vehicles

Publications (2)

Publication Number Publication Date
JP2019190421A true JP2019190421A (en) 2019-10-31
JP7063088B2 JP7063088B2 (en) 2022-05-09

Family

ID=68388981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018085999A Active JP7063088B2 (en) 2018-04-27 2018-04-27 Exhaust purification equipment and vehicles

Country Status (1)

Country Link
JP (1) JP7063088B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107722A (en) * 1999-10-06 2001-04-17 Fuji Heavy Ind Ltd Exhaust device of engine with turbo superchager
JP2009270535A (en) * 2008-05-09 2009-11-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US20110088373A1 (en) * 2009-10-20 2011-04-21 Ford Global Technologies, Llc METHOD AND AFTERTREATMENT CONFIGURATION TO REDUCE ENGINE COLD-START NOx EMISSIONS
JP2013002355A (en) * 2011-06-16 2013-01-07 Ihi Corp Denitration device
JP2013124610A (en) * 2011-12-15 2013-06-24 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107722A (en) * 1999-10-06 2001-04-17 Fuji Heavy Ind Ltd Exhaust device of engine with turbo superchager
JP2009270535A (en) * 2008-05-09 2009-11-19 Toyota Motor Corp Exhaust emission control device for internal combustion engine
US20110088373A1 (en) * 2009-10-20 2011-04-21 Ford Global Technologies, Llc METHOD AND AFTERTREATMENT CONFIGURATION TO REDUCE ENGINE COLD-START NOx EMISSIONS
JP2013002355A (en) * 2011-06-16 2013-01-07 Ihi Corp Denitration device
JP2013124610A (en) * 2011-12-15 2013-06-24 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine

Also Published As

Publication number Publication date
JP7063088B2 (en) 2022-05-09

Similar Documents

Publication Publication Date Title
JP4706659B2 (en) Method for estimating N2O generation amount in ammonia oxidation catalyst and exhaust gas purification system for internal combustion engine
JP5163754B2 (en) Exhaust gas purification device for internal combustion engine
JP5158214B2 (en) Exhaust gas purification device for internal combustion engine
JP6133183B2 (en) Engine exhaust purification system
JP5146547B2 (en) Exhaust gas purification device for internal combustion engine
JP2010209737A (en) Exhaust emission control device for internal combustion engine
JP5983438B2 (en) Exhaust gas purification device for internal combustion engine
JP2008303836A (en) Exhaust emission control device for internal combustion engine
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP7063088B2 (en) Exhaust purification equipment and vehicles
JP7063089B2 (en) Exhaust purification equipment and vehicles
JP2006348905A (en) Exhaust emission control system for internal combustion engine
JP2019190420A (en) Exhaust emission control device and vehicle
WO2019172357A1 (en) Exhaust purification device, vehicle, and exhaust purification control device
JP6052146B2 (en) Exhaust gas purification device for internal combustion engine
JP2019190417A (en) Exhaust emission control device and vehicle
JP2019190416A (en) Exhaust emission control device and vehicle
JP2019190414A (en) Exhaust emission control device and vehicle
JP2009103044A (en) Control device of internal combustion engine
JP2016205351A (en) Exhaust emission control system of internal combustion engine
JP2019190415A (en) Exhaust emission control device and vehicle
JP2017031940A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP4665830B2 (en) Exhaust gas purification system for internal combustion engine
JP2019190419A (en) Exhaust emission control device and vehicle
JP2019190418A (en) Exhaust emission control device and vehicle

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190612

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210331

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220404

R150 Certificate of patent or registration of utility model

Ref document number: 7063088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150