JP2019181773A - Method for manufacturing container made of polylactic acid - Google Patents

Method for manufacturing container made of polylactic acid Download PDF

Info

Publication number
JP2019181773A
JP2019181773A JP2018074408A JP2018074408A JP2019181773A JP 2019181773 A JP2019181773 A JP 2019181773A JP 2018074408 A JP2018074408 A JP 2018074408A JP 2018074408 A JP2018074408 A JP 2018074408A JP 2019181773 A JP2019181773 A JP 2019181773A
Authority
JP
Japan
Prior art keywords
polylactic acid
ppm
moisture content
water content
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018074408A
Other languages
Japanese (ja)
Other versions
JP7127338B2 (en
Inventor
伊藤 卓郎
Takuro Ito
卓郎 伊藤
宏希 國枝
Hiroki Kunieda
宏希 國枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Group Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Group Holdings Ltd filed Critical Toyo Seikan Group Holdings Ltd
Priority to JP2018074408A priority Critical patent/JP7127338B2/en
Publication of JP2019181773A publication Critical patent/JP2019181773A/en
Application granted granted Critical
Publication of JP7127338B2 publication Critical patent/JP7127338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Abstract

To provide the method for manufacturing the container made of polylactic acid, that can solve problems peculiar to polylactic acid generated when a container made of polylactic acid is manufactured by hot melt molding, such as degradation of a resin due to hydrolysis, generation of acetaldehyde (AA) that is estimated to be derived from end carboxyl groups, and decrease in crystallinity due to optically active isomer transition (racemization) of optically active isomers.SOLUTION: The method for manufacturing the container by the hot melt molding comprises using polylactic acid having an optically active isomer (D) content of 4% or less, wherein polylactic acid supplied to a hot melt molding process has a moisture content ranging from 20 ppm to 100 ppm.SELECTED DRAWING: None

Description

本発明は、ポリ乳酸から成る容器を熱溶融成形により成形する製造方法に関するものであり、より詳細には、ポリ乳酸の加水分解とアセトアルデヒド(AA)の生成を抑制可能であり、飲料用途に好適な容器の製造方法に関する。   The present invention relates to a production method for molding a container made of polylactic acid by hot melt molding. More specifically, the present invention can suppress hydrolysis of polylactic acid and generation of acetaldehyde (AA), and is suitable for beverage use. The present invention relates to a manufacturing method for a container.

地球温暖化がもたらすさまざまな環境問題を防止するため、大気中の温室効果ガス濃度を低減させる対策として、植物産生樹脂であるバイオプラスチックの運用が期待されている。従来の石油系プラスチックから植物産生プラスチック(バイオプラスチック)への転換と、その樹脂の再利用を目的としたリサイクル技術の検討が進められている。中でも、工業的に量産され、入手が容易な、バイオプラスチックとして、脂肪族ポリエステルであるポリ乳酸(PLLA)が注目されている。   In order to prevent various environmental problems caused by global warming, bioplastics, which are plant-produced resins, are expected to be used as measures to reduce the concentration of greenhouse gases in the atmosphere. A study of recycling technology for the purpose of conversion from conventional petroleum-based plastics to plant-produced plastics (bioplastics) and reuse of the resin is underway. Among them, polylactic acid (PLLA), which is an aliphatic polyester, has attracted attention as a bioplastic that is industrially mass-produced and easily available.

ポリ乳酸は、トウモロコシなどの穀物澱粉や、キャッサバなどの塊根類、ジャガイモなどの塊茎類、または、タロイモなどの球茎類の澱粉質の乳酸発酵物、L−乳酸をモノマーとして重合体したポリエステルである。一般に、L−乳酸の直接重縮合法やL−乳酸のダイマーであるラクタイドの開環重合法により製造される。従来の石油系プラスチックと異なり、資源の枯渇化の心配もなく、また、自然界に廃棄された場合でも、微生物分解により堆肥化が可能であり、また、最終的に水と炭酸ガスに分解されても、発生炭酸ガスは地上の植物に再度取り込まれるため、大気中へ炭酸ガスを蓄積することがない。そのため、ポリ乳酸は、植物から生まれ、植物に帰る、完全リサイクル型プラスチック素材として、その実用化が期待されている。   Polylactic acid is cereal starch such as corn, tuberous root such as cassava, tuber such as potato, or starchy lactic acid fermentation product of corms such as taro, and polyester obtained by polymerizing L-lactic acid as a monomer. . In general, it is produced by a direct polycondensation method of L-lactic acid or a ring-opening polymerization method of lactide which is a dimer of L-lactic acid. Unlike conventional petroleum-based plastics, there is no concern about depletion of resources, and even when it is disposed of in nature, it can be composted by microbial decomposition, and finally decomposed into water and carbon dioxide. However, since the generated carbon dioxide is taken up again by the plants on the ground, it does not accumulate in the atmosphere. Therefore, polylactic acid is expected to be put to practical use as a completely recyclable plastic material that is born from plants and returned to plants.

ポリ乳酸から成る容器も種々提案されており、例えば、下記特許文献1には、光学活性異性体(d)含有量が4.0%以下であるポリ乳酸の二軸延伸ブロー成形及び熱固定で形成された容器であって、側壁部における広角X線測定で求めた2θ=10乃至25°の回折ピークの半価幅(X)が0.624°乃至1.220°の範囲にあることを特徴とする二軸延伸ブロー熱固定成形容器が提案されている。   Various containers made of polylactic acid have also been proposed. For example, in Patent Document 1 below, polylactic acid having an optically active isomer (d) content of 4.0% or less is subjected to biaxial stretch blow molding and heat setting. The half-width (X) of the diffraction peak of 2θ = 10 to 25 ° determined by wide-angle X-ray measurement on the side wall portion is a range of 0.624 ° to 1.220 °. A featured biaxial stretch blow heat-fixed molded container has been proposed.

特許第4294475号公報Japanese Patent No. 4294475

しかしながら、ポリ乳酸は、熱溶融成形過程の加水分解性や、末端カルボキシル基に由来すると推定されるアセトアルデヒド(AA)の生成、並びに、光学活性異性体の光学活性異性転移(ラセミ化)による結晶性の低下など、熱成形時に解決しなければならないポリ乳酸に特有の課題が残されている。
従って本発明の目的は、ポリ乳酸から成る容器の熱溶融成形による製造方法において、加水分解とアセトアルデヒド(AA)の生成を抑制可能であり、飲料用途に好適な容器の製造方法に関する。
However, polylactic acid is hydrolyzable during the hot melt molding process, acetaldehyde (AA) presumed to be derived from the terminal carboxyl group, and crystallinity due to optically active isomerization transition (racemization) of optically active isomers. Problems such as a decrease in polylactic acid that must be solved during thermoforming remain.
Accordingly, an object of the present invention relates to a method for producing a container suitable for beverage use, which can suppress hydrolysis and production of acetaldehyde (AA) in a method for producing a container made of polylactic acid by hot melt molding.

本発明によれば、光学活性異性体(D)含有量が4%以下であるポリ乳酸を用い、熱溶融成形により容器を製造する方法において、含水率が20ppm〜100ppmの範囲にあるポリ乳酸を用いることを特徴とするポリ乳酸から成る容器の製造方法が提供される。   According to the present invention, in a method for producing a container by hot melt molding using polylactic acid having an optically active isomer (D) content of 4% or less, polylactic acid having a water content in the range of 20 ppm to 100 ppm is used. A method for producing a container made of polylactic acid is provided.

本発明のポリ乳酸から成る容器の製造方法においては、
(1)前記熱溶融成形工程の前にポリ乳酸の調湿工程を有すること、
(2)前記調湿工程が乾燥装置を備えており、下記式(1)
K=[Ln(Miw)/(Mpw]/(Tip)・・・(1)
式中、Miwは、調湿工程における空気中の初期水分量であり、Mpwは、一定乾燥時間(Tip)後の空気中の水分量である、
から算出される前記乾燥装置の乾燥速度定数(K)を用い、ポリ乳酸の含水率を20〜100ppmの範囲内に到達するために必要な乾燥時間(t)を、下記式(2)
t=[Ln(Mo/Mt)]/K・・・(2)
式中、Moはポリ乳酸の初期含水率(ppm)であり、Mtは調湿後の目的とするポリ乳酸の到達含水率(20〜100ppmの範囲)である、
から算出して、ポリ乳酸の含水率を調整すること、
(3)前記ポリ乳酸の初期含水率を、ポリ乳酸の到達飽和含水率である3500ppmに調整して調湿工程に導入すること、
が好適である。
In the method for producing a container comprising the polylactic acid of the present invention,
(1) having a humidity control step of polylactic acid before the hot melt molding step;
(2) The humidity control step includes a drying device, and the following formula (1)
K = [Ln (Miw) / (Mpw] / (Tip) (1)
In the formula, Miw is the initial moisture content in the air in the humidity control step, and Mpw is the moisture content in the air after a certain drying time (Tip).
The drying time constant (t) required to reach the water content of polylactic acid within the range of 20 to 100 ppm using the drying rate constant (K) of the drying apparatus calculated from the following formula (2)
t = [Ln (Mo / Mt)] / K (2)
In the formula, Mo is the initial moisture content (ppm) of polylactic acid, and Mt is the ultimate moisture content of the target polylactic acid after humidity adjustment (range of 20 to 100 ppm).
Calculating from the above, adjusting the water content of polylactic acid,
(3) adjusting the initial moisture content of the polylactic acid to 3500 ppm, which is the ultimate saturated moisture content of the polylactic acid, and introducing it into the humidity control step;
Is preferred.

本発明のポリ乳酸から成る容器の製造方法においては、熱溶融成形工程に供給されるポリ乳酸の含水率を20〜100ppmの範囲に調整しておくことにより、熱溶融成形工程における加水分解を抑制できると共に、アセトアルデヒド(AA)の発生を抑制することができ、フレーバー性を損なうことなく、ポリ乳酸から成る容器を成形することができる。
また本発明の製造方法においては、ポリ乳酸の含水率を効率よく調整することができることから、生産性及び経済性に優れている。
In the method for producing a container made of polylactic acid according to the present invention, hydrolysis in the hot melt molding process is suppressed by adjusting the water content of polylactic acid supplied to the hot melt molding process to a range of 20 to 100 ppm. In addition, the generation of acetaldehyde (AA) can be suppressed, and a container made of polylactic acid can be formed without impairing the flavor properties.
Moreover, in the manufacturing method of this invention, since the moisture content of polylactic acid can be adjusted efficiently, it is excellent in productivity and economical efficiency.

本発明のポリ乳酸から成る容器の製造方法においては、ポリ乳酸として光学活性異性体(D)含有量が4%以下であるポリ乳酸を使用すること、及び熱溶融成形工程に供する際のポリ乳酸の含率が20〜100ppmの範囲にあることが重要な特徴である。
すなわち、ポリ乳酸は、光学活性異性体樹脂であり、その機械的強度や耐熱性は光学活性異性体(D%)組成量に依存し、光学活性異性体(D)の含有量が低い高純度ポリ乳酸は高い結晶性を示し、融点を有すると共に、延伸により機械的強度が向上するが、光学活性異性体(D)の含有量が高いポリ乳酸は、非晶性であり、耐熱性と機械的強度が低下する。
本発明においては、光学異性体(D)の含有量が4%以下のポリ乳酸を使用することによって、機械的強度に優れた容器を製造することが可能になる。
In the method for producing a container comprising polylactic acid according to the present invention, polylactic acid having an optically active isomer (D) content of 4% or less is used as polylactic acid, and polylactic acid used in the hot melt molding step It is an important feature that the content of is in the range of 20 to 100 ppm.
That is, polylactic acid is an optically active isomer resin, and its mechanical strength and heat resistance depend on the optically active isomer (D%) composition amount, and the content of optically active isomer (D) is low and high purity. Polylactic acid exhibits high crystallinity, has a melting point, and improves mechanical strength by stretching. However, polylactic acid having a high content of optically active isomer (D) is amorphous and has heat resistance and mechanical properties. The mechanical strength is reduced.
In the present invention, it is possible to produce a container having excellent mechanical strength by using polylactic acid having an optical isomer (D) content of 4% or less.

その一方、ポリ乳酸は高温で光学活性異性転移(ラセミ化)を生じることから、たとえ高純度のL−ポリ乳酸を用いて熱成形しても、熱成形過程で、光学活性異性転移が生じ、光学純度の低下と機械的強度や耐熱性能が低下する場合がある。
すなわち、結晶性ポリ乳酸は、分子内水素結合を形成した剛直なヘリックスコイル構造であることから、溶融初期段階は、比較的流動性の悪い剛直な構造であり、剪断発熱を起こしやすい。そのため、乾燥すればするほど(絶乾状態に近づくほど)、溶融成形時の剪断発熱にてラジカルが発生し、結果的にゲレーション(ゲル化)を起こしやすい。また、この剪断発熱によりアセトアルデヒド(AA)生成量も増加する傾向にある。一方、ポリ乳酸の含水率が高いとポリ乳酸が加水分解されやすく、カルボキシル基末端数が増加するため、やはりアセトアルデヒド(AA)の発生量が増加する。そのため、ポリ乳酸を用いた熱溶融成形工程においては、樹脂の流動特性を考慮した含水率に調湿する必要がある。
本発明においては、熱溶融成形工程に供されるポリ乳酸の含水率を20〜100ppmに調整することにより、上記のような不都合を生じることなく、機械的強度、耐熱性、及びフレーバー性に優れた容器を製造することを見出した。
On the other hand, since polylactic acid undergoes optically active isomerization transition (racemization) at high temperature, even if thermoformed using high-purity L-polylactic acid, optically active isomerism transition occurs during the thermoforming process, There is a case where the optical purity is lowered and the mechanical strength and heat resistance are lowered.
That is, since crystalline polylactic acid has a rigid helix coil structure in which intramolecular hydrogen bonds are formed, the initial stage of melting is a rigid structure with relatively poor fluidity and is likely to cause shearing heat generation. Therefore, radicals are generated by shearing heat generation at the time of melt molding, and the gelation (gelation) is liable to occur as the drying proceeds (closer to the dry state). Further, the amount of acetaldehyde (AA) produced tends to increase due to this shearing heat generation. On the other hand, when the water content of polylactic acid is high, polylactic acid is easily hydrolyzed and the number of carboxyl group ends increases, so the amount of acetaldehyde (AA) generated also increases. Therefore, in the hot melt molding process using polylactic acid, it is necessary to adjust the moisture content to take into account the flow characteristics of the resin.
In the present invention, by adjusting the water content of the polylactic acid subjected to the hot melt molding process to 20 to 100 ppm, the mechanical strength, heat resistance, and flavor properties are excellent without causing the above disadvantages. We have found that we can make a container.

(ポリ乳酸)
本発明に用いるポリ乳酸は、下記式(I)
−[−O−C(CH)H−CO−] ・・・(I)
で表される反復単位から成り、構成単位が実質上L−乳酸から成り、光学異性体であるD−乳酸の含有量が4.0%以下のものである。
(Polylactic acid)
The polylactic acid used in the present invention has the following formula (I)
— [— O—C (CH 3 ) H—CO—] (I)
The structural unit is substantially composed of L-lactic acid, and the content of D-lactic acid, which is an optical isomer, is 4.0% or less.

本発明に用いるポリ乳酸は、勿論これに限定されないが、10000〜300000、特に20000〜250000の範囲の重量平均分子量(Mw)を有することが好ましい。また密度1.26〜1.20g/cm、融点160〜200℃、メルトフローレート(ASTM D1238,190℃)2〜20g/10分の範囲にあることが好ましい。 Of course, the polylactic acid used in the present invention is not limited to this, but preferably has a weight average molecular weight (Mw) in the range of 10,000 to 300,000, particularly 20,000 to 250,000. The density is preferably in the range of 1.26 to 1.20 g / cm 3 , the melting point 160 to 200 ° C., and the melt flow rate (ASTM D1238, 190 ° C.) 2 to 20 g / 10 minutes.

容器製造に用いられるポリ乳酸には、その用途に応じて、各種着色剤、充填剤、無機系或いは有機系の補強剤、滑剤、アンチブロッキング剤、可塑剤、レベリング剤、界面活性剤、増粘剤、減粘剤、安定剤、抗酸化剤、紫外線吸収剤等を、公知の処方に従って配合することができる。   The polylactic acid used for container manufacture has various colorants, fillers, inorganic or organic reinforcing agents, lubricants, antiblocking agents, plasticizers, leveling agents, surfactants, thickeners, depending on the application. Agents, thickeners, stabilizers, antioxidants, UV absorbers, and the like can be blended according to known formulations.

また、本発明の製造方法により成形されるポリ乳酸から成る容器では、上記ポリ乳酸を単層で使用することもできるし、内容物の性状に応じて、他の樹脂との積層体で用いることもできる。例えば、酸素に対するバリアー性が要求される用途には、エチレン・ビニルアルコール共重合体、メタキシリレンアジパミド(MXD6)のようなガスバリアー性樹脂が積層体の形で使用され、また、水蒸気に対するガスバリアー性が要求される用途には、環状オレフィン共重合体等の水蒸気バリアー性樹脂が積層体の形で使用される。更に、本発明の成形体には、ガスバリアー性を向上させるために、金属酸化物等の被覆層を設けることも可能である。   In addition, in a container made of polylactic acid formed by the production method of the present invention, the polylactic acid can be used in a single layer, or used in a laminate with other resins depending on the properties of the contents. You can also. For example, for applications requiring barrier properties against oxygen, gas barrier resins such as ethylene / vinyl alcohol copolymer and metaxylylene adipamide (MXD6) are used in the form of a laminate, For applications where gas barrier properties are required, a water vapor barrier resin such as a cyclic olefin copolymer is used in the form of a laminate. Furthermore, in order to improve gas barrier properties, the molded article of the present invention can be provided with a coating layer such as a metal oxide.

(製造方法)
本発明は、光学活性異性体(D)含有量が4%以下であり、含水率が20〜100ppm、特に50〜100ppmの範囲にあるポリ乳酸を用いることが重要な特徴であり、ポリ乳酸の含水率が上記範囲にある限り、調湿工程に付する必要はないが、熱溶融成形工程に供する直前にポリ乳酸を乾燥除湿して上記範囲の含水率のポリ乳酸とし、その含水率を維持したまま熱溶融成形工程に供給し、これを熱溶融成形することにより容器を製造することが重要な特徴である。
このため本発明のポリ乳酸から成る容器の製造方法においては、熱溶融成形工程の直前にポリ乳酸の含水率を上記範囲に調整するための調湿工程を備えていることが望ましい。
(Production method)
In the present invention, it is important to use polylactic acid having an optically active isomer (D) content of 4% or less and a water content of 20 to 100 ppm, particularly 50 to 100 ppm. As long as the moisture content is in the above range, it is not necessary to be subjected to the humidity conditioning process, but the polylactic acid is dried and dehumidified immediately before being subjected to the hot melt molding process to obtain a polylactic acid having a moisture content in the above range, and the moisture content is maintained. It is an important feature that the container is manufactured by supplying it to the hot melt molding process as it is and hot melt molding it.
For this reason, in the manufacturing method of the container which consists of polylactic acid of this invention, it is desirable to provide the humidity control process for adjusting the moisture content of polylactic acid in the said range immediately before a hot-melt-molding process.

[調湿工程]
前述したとおり、ポリ乳酸は絶乾状態に近い状態で熱溶融成形に供給されると、熱溶融成形工程においてペレット同士の摩擦や剪断発熱にてラジカルが発生して樹脂のゲル化が生じると共に、剪断発熱によりアセトアルデヒド(AA)が発生することから、ポリ乳酸は少なくとも20ppmの含水率を有することが必要である。その一方、含水率が100ppmよりも高いと、熱溶融成形工程で樹脂が加水分解すると共に、やはりアセトアルデヒド(AA)量を増加させてしまう。
調湿工程においては、熱風乾燥装置や真空乾燥装置等の従来公知の乾燥装置を用いて、ポリ乳酸のペレットの含水率を上記範囲になるように調整する。
調湿に際しては、乾燥温度・風量・露点温度・樹脂量・乾燥タンク容量/形状が異なる場合は、乾燥途中でポリ乳酸ペレットの含水率をその都度測定し、目標到達湿度となった時に、乾燥を終了させることになる。しかし、前出乾燥条件の一部が異なっても、乾燥時に用いる乾燥機の乾燥能力が確認できれば、その乾燥能力から、乾燥時間を把握することができ、結果、適性乾燥条件の樹脂を適時に成形機に供給することができる。
一般に調湿工程で使用する乾燥装置は、乾燥温度、風量、風速、露点温度等の条件が決まれば、乾燥速度定数(K)が一定になる。使用する乾燥装置の乾燥速度定数(K)が乾燥過程で求められれば、乾燥装置への導入前ポリ乳酸の初期含水率(Mo)から、目的とする到達含水率(Mt)に至る必要乾燥時間(t)を求めることができ、より正確な調湿が可能となる。
[Humidity control process]
As described above, when polylactic acid is supplied to hot melt molding in a nearly dry state, radicals are generated due to friction between the pellets and shear heat generation in the hot melt molding process, resulting in resin gelation, Since acetaldehyde (AA) is generated by shearing heat generation, the polylactic acid needs to have a water content of at least 20 ppm. On the other hand, if the water content is higher than 100 ppm, the resin is hydrolyzed in the hot melt molding step and the amount of acetaldehyde (AA) is also increased.
In the humidity control step, the moisture content of the polylactic acid pellets is adjusted to fall within the above range using a conventionally known drying device such as a hot air drying device or a vacuum drying device.
When adjusting the humidity, if the drying temperature, air volume, dew point temperature, resin volume, drying tank capacity / shape are different, measure the moisture content of the polylactic acid pellets each time during drying, and dry when the target humidity is reached. Will be terminated. However, even if some of the above drying conditions are different, if the drying capacity of the dryer used for drying can be confirmed, the drying time can be determined from the drying capacity. It can be supplied to a molding machine.
In general, a drying apparatus used in a humidity control process has a constant drying rate constant (K) if conditions such as drying temperature, air volume, wind speed, and dew point temperature are determined. If the drying rate constant (K) of the drying apparatus to be used is obtained in the drying process, the required drying time from the initial moisture content (Mo) of the polylactic acid before introduction into the drying apparatus to the target moisture content (Mt) (T) can be calculated | required and more exact humidity control is attained.

すなわち、調湿工程で使用する乾燥装置における乾燥速度定数(K)を下記式(1)
K=[Ln(Miw)/(Mpw]/(Tip)・・・(1)
式中、Miwは、調湿工程における乾燥装置内の空気中の初期水分量であり、Mpwは、一定乾燥時間(Tip)(hr)後の乾燥装置内の空気中の水分量である、
から算出する。尚、乾燥装置内の空気中の水分量測定については後述する。
次いで、この乾燥速度定数(K)を用い、調湿工程において初期含水率(Mo)のポリ乳酸が、目的とする到達含水率(Mt)になるために必要な乾燥時間(t)を、下記式(2)
t=[Ln(Mo/Mt)]/K・・・(2)
式中、Moはポリ乳酸の初期含水率(ppm)である、
から算出する。
これにより、初期含水率(Mo)のポリ乳酸を使用した場合、調湿工程において(t)時間乾燥することにより、ポリ乳酸の含水率を目的とする、20〜100ppmの到達含水率(Mt)に調湿できる。
That is, the drying rate constant (K) in the drying apparatus used in the humidity control step is expressed by the following formula (1)
K = [Ln (Miw) / (Mpw] / (Tip) (1)
In the formula, Miw is the initial moisture content in the air in the drying device in the humidity control step, and Mpw is the moisture content in the air in the drying device after a certain drying time (Tip) (hr).
Calculate from The measurement of the amount of moisture in the air in the drying device will be described later.
Next, using this drying rate constant (K), the drying time (t) required for the polylactic acid having the initial moisture content (Mo) in the humidity control step to reach the intended ultimate moisture content (Mt) is as follows: Formula (2)
t = [Ln (Mo / Mt)] / K (2)
Where Mo is the initial moisture content (ppm) of polylactic acid,
Calculate from
Thereby, when polylactic acid having an initial moisture content (Mo) is used, 20 to 100 ppm attainable moisture content (Mt) for the purpose of moisture content of polylactic acid by drying for (t) hours in the humidity control step. Can be conditioned.

また上記調湿方法においては、調湿工程に供給するポリ乳酸の初期含水率を飽和含水率となるように、加湿しておくことも好適である。初期含水率未知のポリ乳酸を用いた場合、ポリ乳酸の初期含水率を測定してから調湿工程に供給する必要があるが、ポリ乳酸の初期含水率を飽和含水率に加湿することで、初期含水率の測定が省略できる。
すなわち、ポリ乳酸の平衡吸湿率は一般に0.2〜0.3%とされているが、我々の経験上では飽和含水率は3500ppmであることが知られており、適宜条件で容易に飽和含水率まで加湿することができる。
これにより、例えば目的とする到達含水率を100ppmとした場合には、上記式(2)は
t=[Ln(3500/100)]/K・・・(2‘)
となり、飽和含水率3500ppmに調湿されたポリ乳酸を用いることにより、乾燥速度定数(K)だけで調湿に必要な時間を容易に算出できる。
Moreover, in the said humidity control method, it is also suitable to humidify so that the initial water content of the polylactic acid supplied to a humidity control process may turn into a saturated water content. When using polylactic acid whose initial moisture content is unknown, it is necessary to supply the humidity control step after measuring the initial moisture content of polylactic acid, but by humidifying the initial moisture content of polylactic acid to the saturated moisture content, Measurement of initial moisture content can be omitted.
In other words, the equilibrium moisture absorption rate of polylactic acid is generally 0.2 to 0.3%, but our experience has shown that the saturated moisture content is 3500 ppm. Can be humidified to the rate.
Thereby, for example, when the target moisture content is 100 ppm, the above equation (2) is expressed as t = [Ln (3500/100)] / K (2 ′)
Thus, by using polylactic acid conditioned to a saturated water content of 3500 ppm, it is possible to easily calculate the time required for conditioning with only the drying rate constant (K).

ポリ乳酸の含水率を飽和含水率である3500ppmに調整する方法としては、特に限定されない。高湿度条件下への保管、水分の噴霧、水中への浸漬等の方法で行うこともできるが、過剰な水分の供給はポリ乳酸の加水分解を促進させるおそれがあるので、好適には、RH80%以上の高湿度環境下で24〜48時間保管にて吸湿させることが好ましい。
尚、ポリ乳酸の含水率は、カールフィッシャー電量滴定法等公知の方法で測定することができる。
The method for adjusting the water content of polylactic acid to 3500 ppm which is the saturated water content is not particularly limited. Although it can be carried out by methods such as storage under high humidity conditions, spraying of water, immersion in water, etc., supply of excess water may promote hydrolysis of polylactic acid. It is preferable to absorb moisture by storage for 24 to 48 hours in a high humidity environment of at least%.
The water content of polylactic acid can be measured by a known method such as Karl Fischer coulometric titration.

[熱溶融成形工程]
前記調湿工程で含水率が調整されたポリ乳酸は、その含水率が維持されたまま熱溶融成形工程に供給される。
熱溶融成形としては、射出成形、押出成形、圧縮成形等、樹脂を加熱溶融して成形する従来公知の成形法を採用できる。本発明においては、これらの成形法から直接容器を製造するものであってもよいし、射出成形或いは押出成形によりパイプ状のパリソンを成形し、これをブロー成形した後、ピンチオフして底部を形成するダイレクトブロー成形や、射出成形や圧縮成形等により成形した有底プリフォームを用いた二軸延伸ブロー成形、或いは押出成形により成形されたシートの圧空成形等により成形することもできる。
ポリ乳酸から成る容器は、延伸により配向結晶を付与し、熱固定することによって、耐熱性及び機械的強度や透明性が顕著に向上することから、上記記成形法の中でも、二軸延伸ブロー成形によることが特に好ましい。
[Hot melt molding process]
The polylactic acid whose water content is adjusted in the humidity control step is supplied to the hot melt molding step while maintaining the water content.
As the hot melt molding, a conventionally known molding method in which resin is heated and melted, such as injection molding, extrusion molding, compression molding, or the like, can be employed. In the present invention, the container may be manufactured directly from these molding methods, or a pipe-shaped parison is formed by injection molding or extrusion molding, blow molded, and then pinched off to form the bottom. It can also be formed by direct blow molding, biaxial stretch blow molding using a bottomed preform molded by injection molding, compression molding, or the like, or pressure forming of a sheet molded by extrusion molding.
A container made of polylactic acid is provided with oriented crystals by stretching and heat-fixed to significantly improve heat resistance, mechanical strength, and transparency. Among the above molding methods, biaxial stretch blow molding Is particularly preferred.

前述した調湿工程で含水率が20〜100ppmの範囲内に調整されたポリ乳酸は、この含水率を維持したまま押出機などに投入されて溶融混練される。この際、溶融混練の温度(押出機の設定温度)を180〜210℃の温度とすることが好適である。上記範囲よりも溶融混練の温度が低い場合には、充分溶融混練することができない。一方上記範囲よりも溶融混練温度が高い場合も剪断発熱により光学活性異性転移(ラセミ化)が生じて、耐熱性が低下すると共にアセトアルデヒド(AA)発生量が増加する。
溶融混練されたポリ乳酸は、射出成形では射出機から射出されて、最終容器に対応する口頚部を備えた非晶質の有底プリフォームとして成形される。尚、二軸延伸ブロー成形に使用する有底プリフォームの成形は、従来公知の方法により行うことができる。
延伸のためのプリフォームの加熱温度(延伸温度)は、一般に70〜150℃、特に80〜120℃の範囲にあることが好ましい。
ボトル等への二軸延伸ブロー成形は従来公知の方法で行うことができ、一段ブロー成形の他、二段ブロー成形により行うことができる。
延伸温度にあるプリフォームをブロー成形金型内でボトル軸方向に引っ張り延伸すると共に、流体吹き込みによりボトル周方向に膨張延伸させる。延伸倍率はこれに限定されないが、軸方向延伸倍率を1.5〜5.0倍、特に2〜3倍、周方向延伸倍率を1.5〜5.0倍、特に2〜3倍、面積延伸倍率を2.25〜9.0倍、特に4〜7倍として二軸延伸ブロー成形を行うのが好ましい。
ポリ乳酸から成る容器は耐熱性に劣ることから、熱固定を行うことが望ましい。一段ブロー成形の場合は、最終容器形状に対応するキャビティ型の表面温度を熱固定温度に維持し、延伸ブロー成形と熱固定とが一つのモールド内で行われるようにする。熱固定温度は一般に、70〜150℃、特に90〜120℃の範囲にあることが好ましい。熱固定温度が高い方が配向結晶化の程度は高くなるが、型からの取り出し性(取り出しの際の変形防止)の点で上記範囲内にあることが好ましい。
The polylactic acid whose water content is adjusted in the range of 20 to 100 ppm in the humidity control step described above is put into an extruder or the like while maintaining this water content, and melt kneaded. At this time, it is preferable that the melt kneading temperature (set temperature of the extruder) is set to a temperature of 180 to 210 ° C. When the temperature of the melt kneading is lower than the above range, the melt kneading cannot be sufficiently performed. On the other hand, even when the melt kneading temperature is higher than the above range, optically active isomerization transition (racematization) occurs due to shearing heat generation, heat resistance is lowered and acetaldehyde (AA) generation amount is increased.
In the injection molding, the melted and kneaded polylactic acid is injected from an injection machine, and is molded as an amorphous bottomed preform having a mouth and neck corresponding to the final container. In addition, shaping | molding of the bottomed preform used for biaxial stretch blow molding can be performed by a conventionally well-known method.
The heating temperature (stretching temperature) of the preform for stretching is generally in the range of 70 to 150 ° C, particularly 80 to 120 ° C.
Biaxial stretch blow molding into a bottle or the like can be performed by a conventionally known method, and can be performed by two-stage blow molding in addition to single-stage blow molding.
The preform at the stretching temperature is stretched and stretched in the blow mold in the bottle axial direction, and is expanded and stretched in the bottle circumferential direction by blowing fluid. The stretching ratio is not limited to this, but the axial stretching ratio is 1.5 to 5.0 times, particularly 2 to 3 times, the circumferential stretching ratio is 1.5 to 5.0 times, particularly 2 to 3 times, and the area. Biaxial stretch blow molding is preferably performed at a draw ratio of 2.25 to 9.0 times, particularly 4 to 7 times.
Since a container made of polylactic acid is inferior in heat resistance, it is desirable to perform heat setting. In the case of single-stage blow molding, the surface temperature of the cavity mold corresponding to the final container shape is maintained at the heat setting temperature so that stretch blow molding and heat setting are performed in one mold. In general, the heat setting temperature is preferably in the range of 70 to 150 ° C, particularly 90 to 120 ° C. The higher the heat setting temperature, the higher the degree of orientation crystallization, but it is preferably within the above range from the viewpoint of removal from the mold (preventing deformation during removal).

[ポリ乳酸から成る容器]
本発明の製造方法により製造されるポリ乳酸から成る容器は、含水率が調整されたポリ乳酸を用いて成形されていることから、成形性に優れていると共に、アセトアルデヒド(AA)の発生が抑制され、フレーバー性に優れている。また二軸延伸ブロー成形及び熱固定を経た容器とすることにより優れた耐熱性及び透明性を備えることができる。
[Container made of polylactic acid]
Since the container made of polylactic acid produced by the production method of the present invention is molded using polylactic acid with adjusted moisture content, it has excellent moldability and suppresses the generation of acetaldehyde (AA). Is excellent in flavor. Moreover, it can be equipped with the outstanding heat resistance and transparency by setting it as the container which passed through biaxial stretch blow molding and heat setting.

本発明を以下の実施例により説明するが、本発明は、実施例の範囲に限定されるものではない。   The present invention is illustrated by the following examples, but the present invention is not limited to the scope of the examples.

(使用するポリ乳酸)
ポリ乳酸A:重量平均分子量(MW)がMW=20,950で、且つ、光学活性異性体(d)比率が1.5%のポリ−L−乳酸(PLLA)樹脂を用いた。
ポリ乳酸B:重量平均分子量(MW)がMW=214,500で、且つ、光学活性異性体(d)比率が5.0%のポリ−L−乳酸(PLLA)樹脂を用いた。
(Polylactic acid used)
Polylactic acid A: A poly-L-lactic acid (PLLA) resin having a weight average molecular weight (MW) of MW = 20,950 and an optically active isomer (d) ratio of 1.5% was used.
Polylactic acid B: A poly-L-lactic acid (PLLA) resin having a weight average molecular weight (MW) of MW = 214,500 and an optically active isomer (d) ratio of 5.0% was used.

(ポリ乳酸の乾燥前処理)
ポリ乳酸を、40℃RH85%条件下に7日放置し吸湿させた、日中は2時間おきに樹脂の重量測定し(夜間測定は行なっていない)、その重量変化から平衡吸水状態に至る時間を求めた。重量が平衡値に達した樹脂を、カールフィッシャー電量滴定法、三菱化学社製、VP06A Water Vaperizerを用い、120℃−30min条件で含水率を測定した。
(Pre-drying treatment of polylactic acid)
Polylactic acid was allowed to stand and absorb moisture for 7 days under conditions of RH 85% at 40 ° C. During the day, the weight of the resin was measured every 2 hours (no measurement at night), and the time from the change in weight to the equilibrium water absorption state Asked. The resin whose weight reached the equilibrium value was measured for moisture content under the conditions of 120 ° C. for 30 min using Karl Fischer coulometric titration method, VP06A Water Vaporizer, manufactured by Mitsubishi Chemical Corporation.

(乾燥条件の算出)
カワタ(株)製温風循環型乾燥機を用いた。温風循環型乾燥機の樹脂投入タンクへ温風を導入する温風導入口と、樹脂を通気後の温風の出口に、露点温度計(温風温度と相対湿度を計測)を設置し、応答速度60secで温度と相対湿度を計測した。
次にパーソナルコンピューターを用い、計測した相対湿度を下記式(3)及び(4)にて絶対湿度に換算した。
温度t(℃)における飽和水蒸気量(A(t))を下記式(3)で計算する、
A(t)=217・e(t)/(t+273.15)・・・(3)
次に、温度(t℃)のワグナー式である下記式(4)で近似した飽和水蒸気圧e(t)を上記式(3)に代入した。
e(t)=Pc・exp[(A・x+B・x1.5+c・x+D・x)/(1−x)] ・・・(4)
式中、Pc=221200[hPa]
Tc=647.3[K]
x=1−(t+273.15)/Tc
A=−7.76451
B=1.45838
C=−2.7758
D=−1.23303
上記式(3)及び(4)で求めた水分量を用い、前記式(1)及び(2)から、乾燥機の乾燥速度定数(K)と含水率100ppmに到達する時間(t)を算出した。
(Calculation of drying conditions)
A warm air circulating dryer manufactured by Kawata Corporation was used. A dew point thermometer (measures the hot air temperature and relative humidity) is installed at the hot air inlet port for introducing hot air into the resin charging tank of the hot air circulation dryer, and at the outlet of the hot air after ventilating the resin. Temperature and relative humidity were measured at a response speed of 60 sec.
Next, using a personal computer, the measured relative humidity was converted to absolute humidity by the following formulas (3) and (4).
The saturated water vapor amount (A (t)) at the temperature t (° C.) is calculated by the following formula (3)
A (t) = 217 · e (t) / (t + 273.15) (3)
Next, the saturated water vapor pressure e (t) approximated by the following equation (4), which is the Wagner equation of temperature (t ° C.), was substituted into the above equation (3).
e (t) = Pc · exp [(A · x + B · x 1.5 + c · x 3 + D · x 6 ) / (1-x)] (4)
In the formula, Pc = 221200 [hPa]
Tc = 647.3 [K]
x = 1- (t + 273.15) / Tc
A = −7.76451
B = 1.45838
C = −2.7758
D = −1.23303
Using the water content obtained in the above formulas (3) and (4), the drying rate constant (K) of the dryer and the time (t) to reach a moisture content of 100 ppm are calculated from the formulas (1) and (2). did.

(プリフォーム成形)
バレル温度を180℃〜210℃とする温度条件下、スクリュウー回転数180rpm、金型温度15℃の金型を用い、口径28mmφのポリ乳酸製プリフォームを作成した。尚、比較のため、バレル温度を210℃〜230℃の成形試験も行った。
(Preform molding)
A polylactic acid preform having a diameter of 28 mmφ was prepared using a mold having a screw rotation speed of 180 rpm and a mold temperature of 15 ° C. under a temperature condition in which the barrel temperature was 180 ° C. to 210 ° C. For comparison, a molding test was performed at a barrel temperature of 210 ° C to 230 ° C.

(二軸延伸ブローボトルの成形)
上記ポリ乳酸製のプリフォームを、一旦、冷却後、赤外線加熱ヒーターで90℃に再加熱後、金型温度85℃のブロー金型を用い、初期ブロー圧力1.5MPa、メインブロー圧力3MPaにて、500ml容のボトルにブロー成形した。
(Molding of biaxial stretch blow bottle)
The polylactic acid preform is once cooled, reheated to 90 ° C. with an infrared heater, and then used with a blow mold with a mold temperature of 85 ° C. at an initial blow pressure of 1.5 MPa and a main blow pressure of 3 MPa. And blow molded into a 500 ml bottle.

(評価方法)
[ゲレーション]
成形されたポリ乳酸ボトルの表面の外観観察から、ゲルによる凹凸が確認された場合、ゲルの生成がありとして×とした。延伸成形ボトルの外表面がなだらかなボトルについては○とした。
(Evaluation methods)
[Geration]
When the unevenness | corrugation by a gel was confirmed from the external appearance observation of the surface of the shape | molded polylactic acid bottle, it was set as x as there existed production | generation of a gel. The bottle with a smooth outer surface of the stretch-molded bottle was marked with “◯”.

[重量平均分子量の測定]
成形されたポリ乳酸ボトルの胴部からサンプルを切り出し、10mgを精秤後、CHCLに溶解し、0.45μmフィルターで濾過後、濾液10μlを、東ソー(株)社製)HLC−8129GPC(Gel Permiation)でTSK Guard colume、H−Hカラムを用い、カラム温度40℃、展開溶媒CHCl(溶出量:0.6ml/min)、UV検出器を用い分子量を測定した。
[Measurement of weight average molecular weight]
A sample was cut out from the body of the molded polylactic acid bottle, 10 mg was precisely weighed, dissolved in CHCL 3 , filtered through a 0.45 μm filter, and 10 μl of the filtrate was made by Tosoh Corporation) HLC-8129GPC (Gel The molecular weight was measured using a TSK Guard column, HH column at Permeation, a column temperature of 40 ° C., a developing solvent CHCl 3 (elution amount: 0.6 ml / min), and a UV detector.

[光学活性異性体量の測定]
成形されたポリ乳酸ボトルの胴部からサンプルを切り出し、20mgを精秤後、1N−NaOH・1mlに入れ、密封後、100℃に1時間放置し加水分解した。蒸留水8mlを添加後、1N―CuSOを1,ml添加した、0.45μmフィルターで濾過後、島津製作所(株)製、高速液体クロマトグラフィーLC−VPシステムで、三菱化学社(株)製MCT−GEL 10Wカラムを用い、UV―VIS検出器で、硫酸銅水溶液を展開溶媒とした測定を行った。
[Measurement of optically active isomer content]
A sample was cut out from the body of the molded polylactic acid bottle, 20 mg was precisely weighed, placed in 1N-NaOH · 1 ml, sealed, and allowed to stand at 100 ° C. for 1 hour for hydrolysis. 8 ml of distilled water was added, 1 ml of 1N-CuSO 4 was added, filtered through a 0.45 μm filter, and then a high performance liquid chromatography LC-VP system manufactured by Shimadzu Corporation, manufactured by Mitsubishi Chemical Corporation. Using an MCT-GEL 10W column, measurement was performed with a UV-VIS detector using an aqueous copper sulfate solution as a developing solvent.

[アセトアルデヒド(AA)溶出性試験]
成形されたポリ乳酸ボトルに保存した水を1ml採取し、濃度0.1%の2,4−ジニトロフェニルヒドラジンンリン酸溶液を0.2ml添加した。30分後、液を0.45μmフィルターで濾過後、高速液体クロマトグラフィー(アジレントテクノロジー(株)製Agilent 1200 Infinity)で測定した。測定検出限界は5ppbである。
アセトアルデヒド(AA)溶出量が10ppb未満であるものを○とし、10ppb以上40ppb未満の物を△、40ppb以上を×とした。
[Acetaldehyde (AA) dissolution test]
1 ml of water stored in the molded polylactic acid bottle was collected, and 0.2 ml of 2,4-dinitrophenylhydrazine phosphate solution having a concentration of 0.1% was added. After 30 minutes, the solution was filtered through a 0.45 μm filter and then measured by high performance liquid chromatography (Agilent 1200 Infinity manufactured by Agilent Technologies). The measurement detection limit is 5 ppb.
An acetaldehyde (AA) elution amount of less than 10 ppb was marked with ◯, a product of 10 ppb or more and less than 40 ppb was marked with Δ, and a value of 40 ppb or more was marked with ×.

(熱収縮性)
成形されたポリ乳酸ボトルの満注入内容量(g)を20℃水道水充填量から求めた。次にボトルを55℃恒温槽に18日保存し、再度満注内容量(g)を測定した。ここで、経時後の満注内容量W1(g)と初期満注内容量W0(g)から、下記式(5)
熱収縮率(%)=(W0−W1)/W0×100・・・(5)
により熱収縮率を求めた。
熱収縮率が6%未満のボトルを○、熱収縮率が6%以上のボトルを×とした。
(Heat shrinkage)
The fully filled inner volume (g) of the molded polylactic acid bottle was determined from the 20 ° C. tap water filling amount. Next, the bottle was stored in a constant temperature bath at 55 ° C. for 18 days, and the full injection volume (g) was measured again. Here, from the full internal capacity W1 (g) after the passage of time and the initial internal full capacity W0 (g), the following formula (5)
Thermal contraction rate (%) = (W0−W1) / W0 × 100 (5)
Was used to determine the thermal shrinkage.
A bottle with a heat shrinkage rate of less than 6% was marked with ◯, and a bottle with a heat shrinkage rate of 6% or more was marked with x.

(実施例1)
ポリ−L−乳酸(PLLA)として前記ポリ乳酸Aを用いた、40℃・RH85%に2日間放置後、100℃の温風循環乾燥装置を用い、樹脂投入1時間後と2時間後の空気中の水分量を(空気中)絶対湿度に換算後、(Miw:1時間後)、(Mpw:2時間後)から、前記式(1)を用い、乾燥速度定数(K)を求めた。この場合の乾燥速度係数(K)は K=0.7282 となった。次に、この乾燥速度定数(K)から前記式(2)を用い、乾燥時間(t)を算出後、温風循環乾燥装置にポリ乳酸を投入した時間を起点に算出した(t)時間後、乾燥ポリ乳酸を射出成形機に投入した。乾燥樹脂の一部を採取し、カールフィッシャー電量滴定法で含水率を求めたところ、95ppmであった。バレル温度を180℃〜210℃として射出成形を行った。
得られたプリフォームを、二軸延伸ブロー成形し、500ml容のポリ乳酸ボトルを作成した。このボトルにつき、外観検査からのゲレーション有無判定、GPCによる重量平均分子量(Mw)測定から加水分解性を判断、HPLC(高速液体クロマトグラフィー)による光学活性異性転移(ラセミ化)の確認、及び、HPLC(高速液体クロマトグラフィー)によるアセトアルデヒド(AA)溶出量の測定を行った。
Example 1
After using polylactic acid A as poly-L-lactic acid (PLLA) for 2 days at 40 ° C. and RH 85%, using a 100 ° C. hot air circulating drying device, air after 1 hour and 2 hours after resin charging After converting the moisture content in the air into (in the air) absolute humidity, the drying rate constant (K) was determined from (Miw: 1 hour later) and (Mpw: 2 hours later) using the above formula (1). The drying rate coefficient (K) in this case was K = 0.7282. Next, after calculating the drying time (t) from the drying rate constant (K) using the above formula (2), the time after adding the polylactic acid to the hot air circulating dryer was calculated (t) The dried polylactic acid was charged into an injection molding machine. A part of the dried resin was collected and the water content was determined by Karl Fischer coulometric titration to be 95 ppm. Injection molding was performed at a barrel temperature of 180 ° C to 210 ° C.
The obtained preform was biaxially stretch blow molded to produce a 500 ml polylactic acid bottle. About this bottle, determination of presence or absence of gelation from appearance inspection, determination of hydrolyzability from weight average molecular weight (Mw) measurement by GPC, confirmation of optically active isomerization transition (racemization) by HPLC (high performance liquid chromatography), and The acetaldehyde (AA) elution amount was measured by HPLC (high performance liquid chromatography).

(実施例2)
50℃の温風循環乾燥装置を用いた以外は実施例1と同様にしてポリ乳酸ボトルを作成した。また、この場合の乾燥速度係数(K)は K=0.1107 となった。乾燥樹脂の一部を採取し、カールフィッシャー電量滴定法で求めた含水率は、95ppmであった。
(Example 2)
A polylactic acid bottle was prepared in the same manner as in Example 1 except that a 50 ° C. hot air circulating dryer was used. In this case, the drying rate coefficient (K) was K = 0.1107. A portion of the dried resin was sampled and the water content determined by Karl Fischer coulometric titration was 95 ppm.

(実施例3)
ポリ乳酸の含水率が100ppmになる乾燥時間+3時間後に、乾燥樹脂を熱成形機に供給した以外は実施例1と同様にした。また、この場合の乾燥速度係数(K)は実施例1同様 K=0.7266 であった。乾燥樹脂の一部を採取し、カールフィッシャー電量滴定法で求めた含水率は、30ppmであった。
(Example 3)
The same procedure as in Example 1 was conducted except that the dry resin was supplied to the thermoforming machine after 3 hours of drying time when the water content of polylactic acid was 100 ppm. The drying rate coefficient (K) in this case was K = 0.7266 as in Example 1. A portion of the dried resin was sampled and the water content determined by Karl Fischer coulometric titration was 30 ppm.

(比較例1)
ポリ乳酸Aに代えて前記ポリ乳酸Bを用いた以外は実施例1と同様にしてポリ乳酸ボトルを作成した。また、この場合の乾燥速度係数(K)は実施例1同様 K=0.7258 であった。更にポリ乳酸の含水率が100ppmになる乾燥時間(t)後に熱成形機に供給した。乾燥樹脂の一部を採取し、カールフィッシャー電量滴定法で求めた含水率は、90ppmであった。
(Comparative Example 1)
A polylactic acid bottle was prepared in the same manner as in Example 1 except that the polylactic acid B was used in place of the polylactic acid A. In this case, the drying rate coefficient (K) was K = 0.7258 as in Example 1. Further, the polylactic acid was supplied to the thermoforming machine after a drying time (t) when the water content of the polylactic acid became 100 ppm. A portion of the dried resin was collected, and the water content determined by Karl Fischer coulometric titration was 90 ppm.

(比較例2)
ポリ乳酸の含水率が100ppmになる乾燥時間(t)−2時間後に乾燥樹脂を熱成形機に供給した以外は実施例1と同様にした。また、この場合の乾燥速度係数(K)は実施例1同様 K=0.7288 であった。乾燥樹脂の一部を採取し、カールフィッシャー電量滴定法で求めた含水率は、124ppmであった。
(Comparative Example 2)
The same procedure as in Example 1 was conducted except that the dry resin was supplied to the thermoforming machine after the drying time (t) -2 hours when the water content of polylactic acid was 100 ppm. The drying rate coefficient (K) in this case was K = 0.7288 as in Example 1. A portion of the dried resin was collected and the water content determined by Karl Fischer coulometric titration was 124 ppm.

(比較例3)
ポリ乳酸の含水率が100ppmになる乾燥時間(t)+6時間後に乾燥樹脂を熱成形機に供給した以外は実施例1と同様にした。また、この場合の乾燥速度係数(K)は実施例1同様 K=0.7279 であった。乾燥樹脂の一部を採取し、カールフィッシャー電量滴定法で求めた含水率は、18ppmであった。
(Comparative Example 3)
Example 1 was repeated except that the dry resin was supplied to the thermoforming machine after the drying time (t) +6 hours when the water content of polylactic acid was 100 ppm. The drying rate coefficient (K) in this case was K = 0.7279 as in Example 1. A portion of the dried resin was collected, and the water content determined by Karl Fischer coulometric titration was 18 ppm.

(比較例4)
射出成形機のバレル温度を210〜230℃にし、ポリ乳酸の含水率が100ppmになる乾燥時間(t)+6時間後に乾燥樹脂を熱成形機に供給した以外は、実施例1と同様にした。また、この場合の乾燥速度係数(K)は実施例1同様 K=0.7268 であった。乾燥樹脂の一部を採取し、カールフィッシャー電量滴定法で求めた含水率は、18ppmであった。
(Comparative Example 4)
The same procedure as in Example 1 was conducted except that the barrel temperature of the injection molding machine was 210 to 230 ° C., and the dry resin was supplied to the thermoforming machine after the drying time (t) +6 hours when the water content of polylactic acid became 100 ppm. In this case, the drying rate coefficient (K) was K = 0.7268 as in Example 1. A portion of the dried resin was collected, and the water content determined by Karl Fischer coulometric titration was 18 ppm.

本発明のポリ乳酸から成る容器の製造方法においては、含水率が20〜100ppmのポリ乳酸を用いて熱溶融成形を行うことにより、加水分解とアセトアルデヒドの生成を抑制可能であり、フレーバー性に優れていることから、特に飲料用容器の製造に好適に使用できる。   In the method for producing a container comprising the polylactic acid of the present invention, hydrolysis and acetaldehyde production can be suppressed by performing hot melt molding using polylactic acid having a water content of 20 to 100 ppm, and excellent in flavor properties. Therefore, it can be suitably used particularly for the production of beverage containers.

Claims (4)

光学活性異性体(D)含有量が4%以下であるポリ乳酸を用い、熱溶融成形により容器を製造する方法において、
前記熱溶融成形工程に供給されるポリ乳酸の含水率が20ppm〜100ppm範囲にあることを特徴とするポリ乳酸から成る容器の製造方法。
In a method for producing a container by hot melt molding using polylactic acid having an optically active isomer (D) content of 4% or less,
A method for producing a container made of polylactic acid, wherein the water content of polylactic acid supplied to the hot-melt molding step is in the range of 20 ppm to 100 ppm.
前記熱溶融成形工程の前にポリ乳酸の調湿工程を有する請求項1記載のポリ乳酸から成る容器の製造方法。   2. The method for producing a container made of polylactic acid according to claim 1, further comprising a humidity control step of polylactic acid before the hot melt molding step. 前記調湿工程が乾燥装置を備えており、下記式
K=[Ln(Miw)/(Mpw]/(Tip)
式中、Miwは、調湿工程における空気中の初期水分量であり、Mpwは、一定乾燥時間(Tip)後の空気中の水分量である、
から算出される前記乾燥装置の乾燥速度定数(K)を用い、ポリ乳酸の含水率を20〜100ppmの範囲内に到達するために必要な乾燥時間(t)を、下記式
t=[Ln(Mo/Mt)]/K
式中、Moはポリ乳酸の初期含水率(ppm)であり、Mtは調湿後の目的とするポリ乳酸の到達含水率(20〜100ppmの範囲)である、
から算出して、ポリ乳酸の含水率を調整する請求項2記載のポリ乳酸から成る容器の製造方法。
The humidity control step includes a drying device, and the following formula K = [Ln (Miw) / (Mpw] / (Tip)
In the formula, Miw is the initial moisture content in the air in the humidity control step, and Mpw is the moisture content in the air after a certain drying time (Tip).
Using the drying rate constant (K) of the drying device calculated from the following formula, the drying time (t) required to reach the water content of polylactic acid within the range of 20 to 100 ppm is expressed by the following formula t = [Ln ( Mo / Mt)] / K
In the formula, Mo is the initial moisture content (ppm) of polylactic acid, and Mt is the ultimate moisture content of the target polylactic acid after humidity adjustment (range of 20 to 100 ppm).
The method for producing a container made of polylactic acid according to claim 2, wherein the water content of the polylactic acid is adjusted by calculating from the above.
前記ポリ乳酸の初期含水率を、ポリ乳酸の到達飽和含水率である3500ppmに調整して調湿工程に導入する請求項2又は3記載のポリ乳酸から成る容器の製造方法。   The method for producing a container made of polylactic acid according to claim 2 or 3, wherein the initial water content of the polylactic acid is adjusted to 3500 ppm which is the ultimate saturated water content of the polylactic acid and is introduced into the humidity control step.
JP2018074408A 2018-04-09 2018-04-09 Method for manufacturing container made of polylactic acid Active JP7127338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018074408A JP7127338B2 (en) 2018-04-09 2018-04-09 Method for manufacturing container made of polylactic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018074408A JP7127338B2 (en) 2018-04-09 2018-04-09 Method for manufacturing container made of polylactic acid

Publications (2)

Publication Number Publication Date
JP2019181773A true JP2019181773A (en) 2019-10-24
JP7127338B2 JP7127338B2 (en) 2022-08-30

Family

ID=68338920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018074408A Active JP7127338B2 (en) 2018-04-09 2018-04-09 Method for manufacturing container made of polylactic acid

Country Status (1)

Country Link
JP (1) JP7127338B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017170A (en) * 2000-07-11 2002-01-22 Tokai Kasei Corp Planting container for culturing mat and greening method
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
JP2007118350A (en) * 2005-10-27 2007-05-17 Dainippon Ink & Chem Inc Laminated sheet for molding
JP2009073955A (en) * 2007-09-21 2009-04-09 Toray Ind Inc Polylactic acid resin foam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002017170A (en) * 2000-07-11 2002-01-22 Tokai Kasei Corp Planting container for culturing mat and greening method
WO2003008178A1 (en) * 2001-07-19 2003-01-30 Toyo Seikan Kaisha, Ltd. Molded object obtained through stretching and thermal fixing and process for producing the same
JP2007118350A (en) * 2005-10-27 2007-05-17 Dainippon Ink & Chem Inc Laminated sheet for molding
JP2009073955A (en) * 2007-09-21 2009-04-09 Toray Ind Inc Polylactic acid resin foam

Also Published As

Publication number Publication date
JP7127338B2 (en) 2022-08-30

Similar Documents

Publication Publication Date Title
JP5447241B2 (en) Method for producing polyethylene terephthalate resin and polyester resin molding
JP6056755B2 (en) Ethylene terephthalate polyester resin for container molding and method for producing the same
JP6970909B2 (en) Multi-layer container and its manufacturing method
WO1988001563A1 (en) Production of polyester hollow molded article
JP5439692B2 (en) Biomass-derived laminated plastic molded body and method for producing the same
JP2012036273A (en) Thermally shrinkable polyester-based film
JPH10337772A (en) Stretching blown container and its manufacture
JP2019181773A (en) Method for manufacturing container made of polylactic acid
JP5239480B2 (en) Polyethylene terephthalate bottle
JP4999524B2 (en) Polylactic acid film
JP6761284B2 (en) Thermoplastic polyester resin composition and its molded product
JP7124412B2 (en) Polylactic acid biaxially stretched heat-set container with transparency, heat resistance and barrier properties
JPS5856335B2 (en) Method for manufacturing polyester containers
JP2010150488A (en) Ethylene terephthalate based polyester resin for molding heat-resistant container and preform consisting of the resin
JPS62263250A (en) Polyester resin composition
JP3726682B2 (en) Stretch molded container
JPH10249925A (en) Lactate polymer container and its manufacture
JP6490976B2 (en) Two-layer preform and blow molded body
JP2010150487A (en) Ethylene terephthalate-based polyester resin for molding container and method for manufacturing the same
JP2022066285A (en) Laminate and packaging product containing the same
JP2003291209A (en) Method for manufacturing biodegradable polyester stretched molding
JP5111891B2 (en) Resin material and method for producing molded body
JPS6147337A (en) Plastic vessel having excellent gas barrier property
JP2002114892A (en) Polyester resin composition
JPS61268753A (en) Polyester packaging material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R150 Certificate of patent or registration of utility model

Ref document number: 7127338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150