JP2019179663A - 高周波加熱装置および高周波加熱方法 - Google Patents

高周波加熱装置および高周波加熱方法 Download PDF

Info

Publication number
JP2019179663A
JP2019179663A JP2018068076A JP2018068076A JP2019179663A JP 2019179663 A JP2019179663 A JP 2019179663A JP 2018068076 A JP2018068076 A JP 2018068076A JP 2018068076 A JP2018068076 A JP 2018068076A JP 2019179663 A JP2019179663 A JP 2019179663A
Authority
JP
Japan
Prior art keywords
carbon fiber
heated
heating
frequency
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018068076A
Other languages
English (en)
Inventor
由起 喜多
Yuki Kita
由起 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Engineering Co Ltd
Original Assignee
Toray Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Engineering Co Ltd filed Critical Toray Engineering Co Ltd
Priority to JP2018068076A priority Critical patent/JP2019179663A/ja
Publication of JP2019179663A publication Critical patent/JP2019179663A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

【課題】炭素繊維複合材料など誘電体と導電体が混在する被加熱物の加熱において、電極間に高周波を印加したとき、電極と炭素繊維層間、或いは炭素繊維層間同志でスパークの発生を抑制する加熱装置及び加熱方法を提供する。【解決手段】誘電体層と導電体層が交互に積層された構造を有する平板状の被加熱物を、対向する一対の電極間に配置し、該電極間に高周波を印加することにより前記被加熱物を加熱する高周波加熱装置であって、前記被加熱物の積層方向に見て最外層が誘電体層であることを特長とする。【選択図】図6

Description

本発明は、高周波帯に属する電磁波によって、炭素繊維複合材料など誘電体と導電体が混在する被加熱物の加熱装置及び加熱方法にかかわるもので、特に平板状、シート状、フィルム状(総称して平板状とよぶ)のこれら被加熱物の加熱装置及び加熱方法に適する発明である。
高周波、マイクロ波など電磁波による加熱技術は、各種ハンドブック的書籍(非特許文献2)が発刊されていることからも分かるようにように、加熱、溶解、熱処理、接着、解凍などを目的に遍く用いられている加熱技術である。
なお、本明細書に於いては、高周波とは特に断らない限り10MHz〜100MHzの範囲の電磁波をいい、マイクロ波とは2.45GHzの電磁波のこととする。
高周波帯において、各種産業用途において加熱等の目的で使用される周波数は、日本国内においては実質的には13.56MHz、27.12MHz,40.68MHzの3周波数のみがその使用が認められている(いわゆるISMバンド周波数)。尚、この3周波数帯以外の周波数の高周波も漏洩電磁界強度が規定値以下となるような対策を施せば、産業用途として使用可能である。
高周波、マイクロ波など電磁波による加熱は、式(1)で示される電磁波と物質の相互作用によるものである。
P=πfεεr”|E|+πfμμr”|H|+(1/2)σ|E|
・・ (1)
ここで、
P:単位体積あたりのエネルギー損失(=発熱量)[W/m]
π:円周率
f:電磁波の周波数[s−1]
ε:真空の誘電率[F/m]
εr”:物質の誘電損失[F/m]
E:電磁波の電場[V/m]
μ:真空の透磁率[H/m]
μr”:物資の磁気損失[H/m]
H:電磁波の磁場[A/m]
σ:物質の電気伝導度[S/m]
である。
式(1)において、πfεεr”|E| と記されている第1項は誘電項とも呼ばれ、印加される電磁波の電界によって生じる誘電損失による発熱を示す。
また、πfμμr”|H| と記されている第2項は磁性項ともよばれ、印加される電磁波の交番磁界によって、多くは導電体である被加熱物に生じる渦電流のジュール発熱による誘導発熱を示す項である。
更に、(1/2)σ|E| と記されている第3項は電流項と呼ばれ、印加される電磁波の電界によって生じる静電誘導電流によるジュール発熱を表す。
第1項が支配的な場合を誘電加熱と呼び、第2項が支配的な場合を誘導加熱と呼ぶ場合もある。
誘電加熱は、被加熱物が絶縁体(誘電体)の場合に多く用いられ、プラスチック、木材、紙、接着剤等の加熱、乾燥などの目的で用いられることが多い。いわゆる電子レンジでの2.45GHzのマイクロ波による水分子の誘電加熱はその代表例である。
高周波を用いた誘電加熱装置の形態としては、図1に概略示すように、対向する一対の電極間に被加熱物を配置し、両電極間に高周波を印加して、被加熱物を高周波誘電加熱する形態のものが多い。電極形状は図1では略平板状となっているが、電極面を曲面等で構成する等、被加熱物の形状に合わせて、電極形状を変更することも可能である。
一方、誘導加熱は、被加熱物が導電体の場合が多く、鉄鋼材料への焼入れ等の熱処理、粉末冶金における材料の溶解、加熱などが代表的なものである。
尚、電磁波による加熱方法で、第3項(電流項)が支配的となっている応用例は少ない。
マイクロ波、高周波など電磁波による加熱の特徴として次の3点が考えられる。
特徴1:急速加熱
一般的な加熱方法は、輻射加熱を除けば加熱源からの熱エネルギーが伝導、対流によって、いわばゆっくりと伝播してくるのが普通である。これに対し、電磁波による加熱は加熱に要するエネルギーが電磁波の形態で空間を光速で伝達して来るとも表現でき、急速な加熱が出来るのが特徴のひとつである。
特徴2:内部加熱
電磁波は被加熱物の物性にも因るが、その内部に浸透、透過しながら被加熱物に吸収され、熱エネルギーに変換される。したがって、加熱を被加熱物の表面からだけでなく内部から行なうことも可能である。
特徴3:選択加熱
被加熱物の物性によって、吸収される電磁波の波長(周波数)選択性がある。よって、複数の物質の混合物であっても、電磁波の波長を選択すれば特定の物質だけを選択的に加熱することも可能である。
さて、このような高周波、マイクロ波などの電磁波により炭素繊維そのものや、炭素繊維複合材(いわゆるCFRP:Carbon Fiber Reinforced Plastic)を加熱しようとする試みがなされている。
炭素繊維及び炭素繊維複合材は、軽量、高強度、高剛性といった特性を生かして、航空宇宙、スポーツレジャーといった分野で主に用いられてきていた。この分野は、性能、機能優先のため材料コスト、生産コストが多少高くても通用する分野であったと言える。 現在、軽量化、それによる省エネルギーの観点から、自動車、エネルギー関連、一般産業機械といった分野への炭素繊維及び炭素繊維複合材の応用が期待されており、より低コストで大量生産が可能な炭素繊維複合材およびその製造、成型方法が求められている。炭素繊維複合材部品の低コスト、大量生産に当たってはその生産速度、成型速度の向上が必須であり、その解決策のひとつとして期待されているのが熱可塑性樹脂の採用である。
従来の炭素繊維複合材は、エポキシ等に代表されるマトリクス樹脂としての熱硬化性樹脂中に炭素繊維を分散等させて内包させた形態が主流であり、機械的強度や剛性に優れるものの、それを用いた部品製造に当たっては、人手が主流の成型工程、オートクレーブと称する焼成炉内で数時間にも渡る加熱工程が必要であるなど、自動車、エネルギー関連、一般産業機械といった分野に対しては、必ずしもその生産コスト、生産性は十分なものではなかった。
一方、熱可塑性樹脂による炭素繊維複合材料は、機械的強度や剛性はやや劣るものの、熱可塑性であることから特に成型性、成型速度に優れ、さらに、既存の射出、押出、プレスといった成型方法や装置がそのまま、或いは軽度の変更で使用可能であるといった特長も有する。
特に大量生産が要求される自動車及び自動車部品用途において、既存の射出成型方法、装置やプレス成型方法、装置が転用等できるメリットは大きく、そこそこの強度で済む部材の熱可塑性炭素繊維複合材の適用検討が進んでいる。
熱可塑性炭素繊維複合材の成型方法の一つとしてとして、あらかじめ軟化点温度以上に加熱した平板状の熱可塑性炭素繊維複合材を公知のプレス成型方法で成型して、既存の板金プレス加工のごとく所望の形状に成型する方法がある。尚、成型前の炭素繊維複合材を中間素材と呼ぶことも多い。
平板状の熱可塑性炭素繊維複合材の中間素材や、その成型方法として、スタンパブルシート、熱可塑性SMC(Sheet Molding Compound)、LFT−D(Long Fiber Thremo−Direct)などと呼ばれるものが知られている。
平板状の熱可塑性炭素繊維複合材の中間素材の製法として、平板状の熱可塑性樹脂(本明細書に言う誘電体層)と炭素繊維層(本明細書に言う導電体層)を交互に積層し、この状態で加熱及び/又は加圧することで炭素繊維間に溶融した熱可塑性樹脂を含浸させ、平板状の熱可塑性炭素繊維複合材、正しくはその中間素材を製造する方法がある。
尚、ここでいう「交互」とは平板状の熱可塑性樹脂と炭素繊維層が1層ごとに交互に積層された形態だけを指すのではない。例えば、平板状の熱可塑性樹脂が2層と炭素繊維層が1層の組み合わせが順次積層される形態など、熱可塑性樹脂と炭素繊維層が周期的に積層された形態を指すものとする。
炭素繊維層としては、炭素繊維或いは炭素繊維束を織り、編みにより布帛状としたもの、炭素繊維が一方向に並列に配列されている形態のもの (一方向材、UD:Uni-Direction材などとも称する)、その一方向材がさらに並列に配列されて平板状となったもの、炭素繊維は不織布状にシート状となったもの、大凡所定長さに切断された炭素繊維がランダムに積層された形態のもの、等がある。
特開2017−105095号公報 国際公開WO2017/170480号公報
石川県工業技術試験所 平成24年度研究方向vol.24 エレクトロヒートハンドブック 一般社団法人日本エレクトロヒートセンター編 第1版第1冊 2015.9.25刊 公益法人日本化学会主催 日本化学会秋季事業 第4回CSJ化学フェスタ2014予行集講演番号H2−08
平板状の被加熱物を高周波で加熱する場合、対向する一対の略平面を有する電極間に被加熱物を配置し、両電極間に高周波を印加して被加熱物を加熱する形態が通例である。
よって、高周波加熱を平板状の熱可塑性炭素繊維複合材の中間素材の製造に適用する場合でも、交互に積層された平板状の熱可塑性樹脂と炭素繊維層を電極間に配置し、高周波を印加、加熱する形態が最も一般的となる。尚、対向した電極の一方を可動とするのも一般的であり、プレス装置のように、電極でもって被加熱物を加圧することも原理的には可能である。
さて、このような形態の場合、被加熱物に導電体である炭素繊維層が含まれており、電極間に高周波を印加したとき、状況によっては電極と炭素繊維層間、或いは炭素繊維層同士の間でスパークが発生する場合がある。
本発明者の検討によれば、炭素繊維層単独を高周波加熱するよりも、そのスパークの発生頻度が高い傾向が認められる。これは、導電体である炭素繊維層と誘電体である樹脂層が積層された構造の為、両者が一種のコンデンサーを形成し、そこに蓄積される電荷による局所的な電位上昇が関係しているものと推定される。
さらに、スパークはおそらく電界が集中するためであろうと考えられるが、炭素繊維層の辺縁部、端部において発生しやすく、さらに、いわゆる「ケバ」、「ほつれ」等と呼ばれる、集合体としての炭素繊維でなく単糸状あるいはそれに近い状態となった箇所で発生しやすい傾向も認められた。
高周波加熱は前記したように高周波の電界と被加熱物の相互作用により発熱するものであるが、スパークは電界ではなく局所的な電流による短絡であり、被加熱物全体の加熱には全く寄与しない現象である。
スパークが発生すると、瞬間的に大電流が流れるため、高周波加熱装置の電源にとって過剰な負荷となり、電源の破損等につながる場合もある。この為、高周波加熱装置においては、スパークの検出機構を設け(過剰電流検出やスパーク時の閃光の検出などの方式が多い)、スパークが発生すると、高周波電源の瞬時遮断や出力降下を行うのが通例である。いずれにせよスパークが発生すると被加熱物の加熱は停止もしくはその効率低下は避けられない。
さらに、スパークが発生すると発生個所やその周辺の炭素繊維層や熱可塑性樹脂が局所的に焼損(焦げ、灰化など)する場合がほとんどで、局所的とはいえ炭素繊維複合材の中間素材として好ましくない欠陥が生成される。
前記課題を解決するために、本発明によれば誘電体層と導電体層が交互に積層された構造を有する平板状の被加熱物を、対向する一対の電極間に配置し、該電極間に高周波を印加することにより前記被加熱物を加熱する高周波加熱装置であって、前記被加熱物の積層方向に見て最外層が誘電体層であることを特長とする高周波加熱装置が提供される。
本発明の好ましい態様においては、前記積層方向に見た透視図において、前記誘電体層の少なくとも前記最外層の辺縁は、前記導電体層の辺縁よりも外側に存在することを特長とする高周波加熱装置が提供される。
本発明のさらに好ましい態様においては、前記積層方向に見た透視図において、前記誘電体層の少なくとも前記最外層の辺縁は、前記電極の辺縁よりも外側に存在することを特長とする高周波加熱装置が提供される。
本発明のさらに好ましい態様においては、前記積層方向に見た透視図において、前記導電体層の辺縁は、前記電極の辺縁よりも内側に存在することを特長とする高周波加熱装置が提供される。
本発明の別の態様においては、前記導電体層が炭素繊維を含むものであることを特長とする高周波加熱装置が提供される。
本発明の別の好ましい態様においては、前記誘電体層が、熱可塑性樹脂を含むものであることを特長とする高周波加熱装置が提供される。
本発明の別の態様においては、前記高周波の周波数が13MHz以上41MHz以下の範囲のものであることを特徴とする高周波加熱装置が提供される。
本発明のさらに別の態様においては、誘電体層と導電体層が交互に積層された構造を有する平板状の被加熱物を、対向する一対の電極間に配置し、該電極間に高周波を印加することにより前記被加熱物を加熱する高周波加熱方法において、前記積層方向に見た透視図において、前記誘電体層の少なくとも最外層の辺縁が、前記導電体層の辺縁よりも外側に存在する状態で前記被加熱物を加熱することを特長とする高周波加熱方法が提供される。
上述したように、交互に積層された平板状の熱可塑性樹脂と炭素繊維層を電極間に配置し、高周波を印加、加熱する場合、スパークは電極と炭素繊維層間、或いは炭素繊維層同士の間で、なおかつ、その辺縁において発生する場合が多い。
したがって、少なくとも最外層を誘電体層とすることで、電極と各炭素繊維層間でのスパークを抑制することが可能となり、さらに最外層の誘電体層を電極よりも大きくすることで、電極と各炭素繊維層間でのスパークをさらに抑制することが可能となる。
また、誘電体層の大きさを炭素繊維層よりも大きくすることにより、炭素繊維層間で起こるスパークの発生も抑制できる。
請求項に於ける、積層方向に見た透視図における前記誘電体層や導電体層の辺縁の内外関係の記載は、図4〜9に示すように、電極、誘電体層、導電体層の各層の平面的大きさの比較を述べている。
高周波加熱装置の概略図である。 炭素繊維プライを示す図である。 フィルム、炭素繊維プライ、電極の大小関係による加熱実験結果を示す 従来技術によるフィルム、炭素繊維プライ、電極の大小関係を示す図である。 従来技術によるフィルム、炭素繊維プライ、電極の大小関係を示す図である。 本願発明によるフィルム、炭素繊維プライ、電極の大小関係を示す図である。 本願発明によるフィルム、炭素繊維プライ、電極の大小関係を示す図である。 本願発明によるフィルム、炭素繊維プライ、電極の大小関係を示す図である。 従来技術によるフィルム、炭素繊維プライ、電極の大小関係を示す図である。
本発明に関わる、高周波加熱装置1(以下、単に加熱装置とも言う)の該略図を図1に示す。
対向する一対の加熱電極10間に被加熱物11が配置される。加熱電極10は導電材料からなり、一方(図では下側)の加熱電極(下電極2)は加熱装置1の筐体12と電気的に絶縁され接地されている。他方の電極(上電極3と呼ぶ)も、加熱装置1の筐体12等からは電気的に絶縁され、マッチング装置5を介して高周波電源6(高周波発生源)に接続される。加熱電極10の導電材料としてはアルミニウム系合金、ステンレスなどが使用できる。ステンレスは非磁性のものが好ましい。
下電極2は加熱装置1の筐体12に絶縁部材4を介して固定されており、上電極3は電極昇降装置9よって下電極2に対し図中矢印Aで示すように上下動作可能となっている。
上電極3、下電極2とも内部にヒータ及び温度度測定素子を有し(ともに図示せず)、温度制御装置(図示せず)によって電極全体を所望の温度に加熱、維持することができる。
被加熱物11は下電極2上に載置される。次いで上電極3が電極昇降装置9によって降下し被加熱物11を挟持する。同時に高周波電源6から高周波が発振される。被加熱物11は印加された高周波による加熱と、上電極3、下電極2からの熱伝達によっても加熱される。
もちろん、下電極2および上電極3のヒータを稼働させず、高周波だけによる被加熱物11の加熱も可能である。また、上電極3は被加熱物11と軽く接触する程度でよく、被加熱物11の種類によっては、被加熱物11と若干の空隙を設けても、高周波による加熱は可能である。また、逆に被加熱物11を積極的に圧縮させつつ高周波を印加して加熱することも可能である。
所定の加熱時間経過後、或いは、別途設けた被加熱物11の温度測定装置(図示せず)の測定結果より、被加熱物11が目標加熱温度或いは時間に到達すると、上電極3を上方に離間させ同時に高周波の発振も停止させる。
以下に、本発明の実施例を述べる。
加熱装置として山本ビニター株式会社製、コンパクト型高周波ウェルダーYRP−400T−RCを改造した装置を用いた。該装置の高周波発振周波数は40.68MHz、最大出力400Wである。
加熱電極はアルミニウム製、横85mm×縦55mm×厚み15mmの大きさで、内部にシーズヒータ(200W)及び温度センサを内蔵し、加熱表面温度最大300℃に維持可能である。上電極はロボシリンダ(登録商標)に直結され、スタート位置、ストップ位置、及びそれらにタイミング、移動速度などを任意に設定して上下動作できるようになっている。尚、本装置の構成は図1とほぼ同等であり、以下の説明においても図1を用いて行う。
被加熱物11は、誘電体層である厚み150μmのナイロン66製フィルム20(以下単にフィルム20とする)と、導電体層(炭素繊維層)である炭素繊維プライ21が交互に積層された構造である。炭素繊維プライ21は、図2に示すように薄く開繊された炭素繊維束19(厚み約200μm、幅約5mm)が平織されたもので、両者を積層して加熱及び加圧することで、溶融したフィルム20が炭素繊維プライ21中に含浸していき、熱可塑性炭素繊維複合材の中間素材を製造することが可能なものである。
この、フィルム20、炭素繊維プライ21、下電極2および上電極3相互の大小関係を変えて加熱装置1による加熱実験を行った。加熱実験の条件は以下の通りである。
14枚のフィルム20と、13枚の炭素繊維プライ21を交互に積層した被加熱物11を作る。これを下電極2上に載置し、高周波出力100W、加熱時間(高周波印加時間)30秒で加熱を行った。
フィルム20の厚み150μmでそれが14枚であるので、150μm×14枚=2100μm。炭素繊維プライ21は、開繊された炭素繊維束19の厚みが約100μmなので、単純計算では100μm×2(経糸、緯糸)×13枚=2600μm、両者合わせて4700μmとなるが、若干の余裕を見て上電極3と下電極2の距離は5mmに設定した。
1条件について20回の試行を行い、20回中、スパークの発生した回数でその発生頻度を評価し、スパークの発生しなかった場合の炭素繊維プライ21の、室温からの温度上昇分を加熱温度として加熱の度合いを評価した。尚スパークが発生した場合は、その時点で高周波の印加を止めているため、加熱時間が一定でなく加熱温度の比較は行い難い。
温度の測定は、非接触の放射温度計(TASCO社製、THI−500)を用い、加熱直後、上電極3が離間した直後のほぼ中央層の炭素繊維プライ21の温度を測定した。
図3に結果をまとめる。
まず条件1は図4に模式的に示す配置であり、高周波加熱ではごく一般的な下電極2および上電極3と被加熱物11の大小関係である。すなわちこれは従来技術による加熱条件である。図4(b)は各々の大小関係を横方向から見た図を、図4(a)はフィルム20と炭素繊維プライ21の積層方向に見た透視図として、それらの大小関係を示している。尚、図4以降におけるフィルム20と炭素繊維プライ21の枚数は、図が煩雑とならぬよう枚数を省略して描いており、必ずしも実際の実験時の積層枚数とは一致していない。図4(a)に示すように、下電極2および上電極3の電極辺縁13よりもフィルム20のフィルム辺縁22、炭素繊維プライ21の炭素繊維プライ辺縁23が内側に存在する、すなわちフィルム20と炭素繊維プライ21の大きさが同じで、かつ、下電極2および上電極3より小さい条件である。この条件ではスパークの発生が最も多い。但し、数少ないがスパークの発生しなかった場合は十分に加熱できている。
次に条件2(図5)は、フィルム20、炭素繊維プライ21が同じ大きさで、かつ、下電極2および上電極3よりも大きい場合である。この条件では、スパークの発生頻度は下がるものの加熱温度も低下する。この原因は定かでないが、炭素繊維プライ21を単独で加熱する場合でも、下電極2および上電極3の大きさより被加熱物(炭素繊維プライ21)の方が大きい場合には加熱効率が下がる傾向が認められた。推定ではあるが、電極の外側に位置する(導電体である)炭素繊維プライ21がアンテナとして機能し、印加された高周波を散逸さしているモデルが推定される。
次に条件3(図6)は、フィルム20、炭素繊維プライ21ともに下電極2および上電極3より小さく、かつ最外層のフィルム20aのみ炭素繊維プライ21よりも大きくした構成である。最外層のフィルム20aとは、下電極2および上電極3と直接接触する(図6では最上下層の)フィルム20の事である。条件1とほぼ同等の加熱温度でかつ、スパークの発生頻度が下がっている。
条件4(図7)は、下電極2および上電極3>フィルム20>炭素繊維プライ21の順にその大きさを設定したものでさらに条件3に比べさらにスパークの発生頻度が下がる。これは条件3に比べ、炭素繊維プライ21間での辺縁部のスパークが、その辺縁より外側に延在して介在するフィルム20により抑制されているものと推定される。
最後に、条件5(図8)は、条件4において最外層のフィルム20aを下電極2および上電極3よりも大きくしたもので、これらの条件の中では最もスパークの発生頻度が低い。条件4に比べ、下電極2および上電極3から炭素繊維プライ21へのスパークがフィルム20aによりさらに抑制された効果であると推定できる。
尚、条件6(図9)は、下電極2および上電極3、フィルム20、炭素繊維プライ21の大小関係は条件1と同じであるが、その積層枚数をフィルム20が13枚、炭素繊維プライ21を14枚と逆にして、炭素繊維プライ21が直接下電極2および上電極3と接触する状態とした場合である。この時は連続10回の試行ですべてスパークが発生した為、その時点で試行を打ち切った。前述したように、炭素繊維プライ21単独ではスパークの発生なく加熱できることが多く、フィルム20との積層とすることで、スパークの発生頻度が上がるものと推定される。
以上の結果より、フィルム20(誘電体層)と炭素繊維プライ21(炭素繊維層、導電体層)が交互に積層された被加熱物11においても、下電極2および上電極3、フィルム20、炭素繊維プライ21の大小関係を最適化することにより、スパークの発生を抑制し、当該被加熱物11を高周波により加熱することが可能であるという、本願発明の効果が示されている
尚、本実施例においては誘電体層として熱可塑性のフィルム20を用いているが、勿論本発明の効果は熱可塑性樹脂に限定されるものではなく、熱硬化性樹脂含め各種の誘電体(絶縁性)材料の加熱にもその効果を発揮できるものである。
1 加熱装置
2 下電極
3 上電極
4 絶縁部材
5 マッチング装置
6 高周波電源
7 上電極ベース
8 連結部材
9 電極昇降装置
10 加熱電極
11 被加熱物
12 筐体
13 電極辺縁
19 開繊された炭素繊維束
20 フィルム
20a 最外層のフィルム
21 炭素繊維プライ
22 フィルム辺縁
22a 最外層のフィルムの辺縁
23 炭素繊維プライ辺縁

Claims (8)

  1. 誘電体層と導電体層が交互に積層された構造を有する平板状の被加熱物を、対向する一対の電極間に配置し、該電極間に高周波を印加することにより前記被加熱物を加熱する高周波加熱装置であって、前記被加熱物の積層方向に見て最外層が誘電体層であることを特長とする高周波加熱装置。
  2. 前記積層方向に見た透視図において、前記誘電体層の少なくとも前記最外層の辺縁は、前記導電体層の辺縁よりも外側に存在することを特長とする請求項1に記載の高周波加熱装置。
  3. 前記積層方向に見た透視図において、前記誘電体層の少なくとも前記最外層の辺縁は、前記電極の辺縁よりも外側に存在することを特長とする請求項2に記載の高周波加熱装置。
  4. 前記積層方向に見た透視図において、前記導電体層の辺縁は、前記電極の辺縁よりも内側に存在することを特長とする請求項2又は3に記載の高周波加熱装置。
  5. 前記導電体層が炭素繊維を含むものであることを特長とする請求項1乃至4のいずれかに記載の高周波加熱装置。
  6. 前記誘電体層が、熱可塑性樹脂を含むものであることを特長とする請求項1乃至5のいずれかに記載の高周波加熱装置。
  7. 前記高周波の周波数が13MHz以上41MHz以下の範囲のものであることを特徴とする請求項1乃至6のいずれかに記載の高周波加熱装置。
  8. 誘電体層と導電体層が交互に積層された構造を有する平板状の被加熱物を、対向する一対の電極間に配置し、該電極間に高周波を印加することにより前記被加熱物を加熱する高周波加熱方法において、前記積層方向に見た透視図において、前記誘電体層の少なくとも最外層の辺縁が、前記導電体層の辺縁よりも外側に存在する状態で前記被加熱物を加熱することを特長とする高周波加熱方法。
JP2018068076A 2018-03-30 2018-03-30 高周波加熱装置および高周波加熱方法 Pending JP2019179663A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018068076A JP2019179663A (ja) 2018-03-30 2018-03-30 高周波加熱装置および高周波加熱方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018068076A JP2019179663A (ja) 2018-03-30 2018-03-30 高周波加熱装置および高周波加熱方法

Publications (1)

Publication Number Publication Date
JP2019179663A true JP2019179663A (ja) 2019-10-17

Family

ID=68278786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018068076A Pending JP2019179663A (ja) 2018-03-30 2018-03-30 高周波加熱装置および高周波加熱方法

Country Status (1)

Country Link
JP (1) JP2019179663A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942928A (ja) * 1982-09-03 1984-03-09 Mitsubishi Rayon Co Ltd 複合材料の製造方法
JPH032228A (ja) * 1989-03-31 1991-01-08 General Electric Co <Ge> 樹脂含浸ガラス繊維複合製品の製造方法
JPH1148397A (ja) * 1997-08-06 1999-02-23 Nitta Ind Corp 積層体の製造方法及び製造装置
JPH1148396A (ja) * 1997-08-06 1999-02-23 Nitta Ind Corp 積層体の予熱方法
JP2007234535A (ja) * 2006-03-03 2007-09-13 Nitta Ind Corp 高周波誘電加熱装置、高周波誘電加熱方法、及び副資材
JP2013158988A (ja) * 2012-02-03 2013-08-19 Sumitomo Forestry Co Ltd 木質材の製造方法
JP2016112779A (ja) * 2014-12-15 2016-06-23 株式会社ジェイテクト 連続繊維強化樹脂部材および連続繊維強化樹脂部材の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942928A (ja) * 1982-09-03 1984-03-09 Mitsubishi Rayon Co Ltd 複合材料の製造方法
JPH032228A (ja) * 1989-03-31 1991-01-08 General Electric Co <Ge> 樹脂含浸ガラス繊維複合製品の製造方法
JPH1148397A (ja) * 1997-08-06 1999-02-23 Nitta Ind Corp 積層体の製造方法及び製造装置
JPH1148396A (ja) * 1997-08-06 1999-02-23 Nitta Ind Corp 積層体の予熱方法
JP2007234535A (ja) * 2006-03-03 2007-09-13 Nitta Ind Corp 高周波誘電加熱装置、高周波誘電加熱方法、及び副資材
JP2013158988A (ja) * 2012-02-03 2013-08-19 Sumitomo Forestry Co Ltd 木質材の製造方法
JP2016112779A (ja) * 2014-12-15 2016-06-23 株式会社ジェイテクト 連続繊維強化樹脂部材および連続繊維強化樹脂部材の製造方法

Similar Documents

Publication Publication Date Title
US20110097505A1 (en) Device and method for impregnating a porous material with powder
CN111726899B (zh) 石墨烯发热片及其制备方法
US20220279629A1 (en) Microwave band induction heating device
CN102761994A (zh) 纳米陶瓷电热涂层装置及其制造方法
JP2019179663A (ja) 高周波加熱装置および高周波加熱方法
JP2020017519A (ja) バイメタル誘導加熱ブランケット
JP2019067769A (ja) ヒーター装置および制御可能な加熱プロセス
KR102001294B1 (ko) 면상 발열체용 열선 패턴구조 및 면상 발열체
WO2014122820A1 (ja) 誘導加熱コイルおよびこれを用いた誘導加熱装置
JPWO2017170480A1 (ja) 高周波加熱装置および高周波加熱方法
CN108966381B (zh) 陶瓷加热片结构
CN202160293U (zh) 纳米陶瓷电热涂层装置
JP6865945B2 (ja) ヒータ
CN204516376U (zh) 一种软连接母排
JP6684086B2 (ja) 加熱装置及び加熱方法
CN107135558B (zh) 一种适用于曲面加热的新型ptc陶瓷加热元件
CN214592031U (zh) 一种加热板
CN114220655B (zh) 一种自愈式电容器元件及自愈式电容器
CN108848588A (zh) 高效节能挤出机加热装置
CN201758456U (zh) 远红外纳米合金电热圈
CN106131980A (zh) 一种电制热器
CN114126107B (zh) 一种可分区加热的层合结构及成型模具
CN220653627U (zh) 加热装置
CN220307417U (zh) 一种平面感应加热装置
CN107421103A (zh) 流体快速电磁加热器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220916