JP2019173597A - Water turbine and small hydroelectric generator - Google Patents

Water turbine and small hydroelectric generator Download PDF

Info

Publication number
JP2019173597A
JP2019173597A JP2018060200A JP2018060200A JP2019173597A JP 2019173597 A JP2019173597 A JP 2019173597A JP 2018060200 A JP2018060200 A JP 2018060200A JP 2018060200 A JP2018060200 A JP 2018060200A JP 2019173597 A JP2019173597 A JP 2019173597A
Authority
JP
Japan
Prior art keywords
water
turbine blade
water turbine
adjusting component
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018060200A
Other languages
Japanese (ja)
Inventor
知美 後藤
Tomomi Goto
知美 後藤
近藤 博光
Hiromitsu Kondo
博光 近藤
浩氣 向井
Hiroki Mukai
浩氣 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2018060200A priority Critical patent/JP2019173597A/en
Priority to PCT/JP2019/012734 priority patent/WO2019189107A1/en
Publication of JP2019173597A publication Critical patent/JP2019173597A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

To provide a water turbine capable of obtaining rotational energy efficiently from an existing water channel, and a small hydroelectric generator capable of obtaining power generation efficiently.SOLUTION: A water turbine 1 has a water turbine blade 5 in which a plurality of vanes 5a are provided radially at equal intervals, and is installed along a rotation center axis O of the water turbine blade 5 in a flow direction of a water channel 3. The front shape of each vane 5a is a shape that spreads from a root to a tip. A flow velocity adjusting component 12 is provided on the front side of the water turbine blade 5 and at a radial center of the water turbine blade 5, for increasing the flow resistance at a center part of the water turbine blade to increase a flow velocity at an outer peripheral part of the water turbine in the water channel 3.SELECTED DRAWING: Figure 1

Description

この発明は、用水路等の水路に設置される小規模な水車、およびこの水車を備えた小水力発電機に関する。   The present invention relates to a small-scale water wheel installed in a water channel such as an irrigation channel, and a small hydroelectric generator including the water wheel.

従来、用水路等の水路の流れ等を用いて発電する小規模な発電機を有している小水力発電機が提案されている。
水力発電システムは、水のエネルギーを回転エネルギーに変換する水車、回転エネルギーを電気エネルギーに変える発電機、必要に応じて、水車の回転速度を増速して発電機に伝達する増速機、発電機を制御する制御装置から成る。
水車のエネルギー変換効率は、水力発電の重要な課題であり、特に等流速の用水路では環境条件( 流速、水位) が限られており、その中で高効率化するために、例えば、効率の良いエネルギー変換効率の効果が得られる水車の導水ダクトを提供するものがある(例えば特許文献1)。
2. Description of the Related Art Conventionally, a small hydroelectric generator having a small-scale generator that generates electric power using a flow of a waterway such as an irrigation canal has been proposed.
The hydroelectric power generation system consists of a turbine that converts water energy into rotational energy, a generator that converts rotational energy into electrical energy, and a gearbox that increases the rotational speed of the turbine and transmits it to the generator as needed. It consists of a control device that controls the machine.
The energy conversion efficiency of water turbines is an important issue for hydropower generation, and environmental conditions (flow velocity, water level) are limited, especially in irrigation channels with constant flow velocity. There is one that provides a water guide duct for a water turbine that can achieve an effect of energy conversion efficiency (for example, Patent Document 1).

特開2017−25831号公報JP 2017-25831 A

上記従来技術は、高くなる水圧を利用することのできる水車の導水ダクトを配設し、高効率化を図ろうとしている。具体的には、ダクト内形状を工夫し、コアンダ効果によって高流速を生じ、隘路効果を増大させている。
しかしながら、このようなダクトを設置するためには、(1) 用水路の水源を閉塞し、(2) ダクトを水路底面に固定し、その後、(3) 水車ダクト中央になるように調整配置する必要が有る等、設置に手間がかかる。特に水源を閉塞することは、技術的課題の他に、関係機関(例えば、水利組合) との調整を要し、容易ではない。
In the above-described conventional technique, a water guide duct of a water turbine that can use a high water pressure is arranged to increase the efficiency. Specifically, the shape in the duct is devised, a high flow rate is generated by the Coanda effect, and the bottleneck effect is increased.
However, in order to install such a duct, it is necessary to (1) block the water source of the irrigation canal, (2) fix the duct to the bottom of the canal, and then (3) adjust and arrange it so that it is in the middle of the turbine duct. It takes time and effort to install. In particular, closing the water source requires technical coordination and coordination with related organizations (for example, WUAs) and is not easy.

なお、図9,10は、提案例に係る水力発電機を示す。水車翼5は、放射状に並ぶ複数枚の羽根5aを有し、水のエネルギーで回転する。水車翼5は、ギヤボックス7で構成される増速機を介して、3相交流の発電機2に結合されており、水車翼5の水流抵抗の軽減効果のあるスピナ15を配置している。   9 and 10 show a hydroelectric generator according to the proposed example. The water turbine blade 5 has a plurality of blades 5a arranged in a radial pattern and is rotated by the energy of water. The water turbine blade 5 is coupled to the three-phase AC generator 2 via a gearbox 7 constituted by a gear box 7, and a spinner 15 that reduces the water flow resistance of the water turbine blade 5 is disposed. .

この発明は、上記課題を解消するものであり、既存の水路から効率良く回転エネルギーを得ることができる水車、および効率良く発電電力が得られる小水力発電機を提供することを目的とする。   An object of the present invention is to solve the above-described problems, and to provide a water turbine capable of efficiently obtaining rotational energy from an existing water channel, and a small hydraulic power generator capable of efficiently obtaining generated power.

この発明の水車は、複数枚の羽根が放射状に等間隔で設けられた水車翼を有し、水路の流れ方向に前記水車翼の回転中心軸を沿わせて設置される水車であって、
前記水車翼の正面側に位置して前記水車翼の径方向の中心部に、水車翼中心部の水流抵抗を増加させて前記水路の水車翼外周部の流速を上昇させる流速調整部品を有することを特徴とする。
The water wheel of the present invention is a water wheel having a plurality of blades radially provided at equal intervals, and installed along the rotation center axis of the water wheel in the flow direction of the water channel.
It has a flow rate adjusting component that is located on the front side of the turbine blade and that increases the flow resistance of the outer periphery of the turbine channel by increasing the water flow resistance of the turbine blade center in the radial center of the turbine blade. It is characterized by.

水車翼を用水路に投入すると、水車翼が堰として作用し、水車翼の上流側の水位が上昇すると共に、流速が減少する。しかし、水路断面の流速分布の傾向は維持される。そこで、この発明は、水車翼の正面側に位置して水車翼の径方向の中心部に、水車翼中心部の水流抵抗を増加させる流速調整部品を設けている。この水車翼中心部の水流抵抗を増加させる流速調整部品を設けたことで、前記水路の水車翼外周部の流速が上昇する。水車翼外周部の流速が上昇することで、水車翼のトルクが増大し、既存の水路から効率良く回転エネルギーを得ることができる。このため、既存の水路で、導水ダクトの増設等による設置の手間がかからずに、高効率な水車となる。この水車を水力発電機に用いる場合は、発電の高効率化が達成される。
なお、前記流速調整部品は、水路抵抗の低減や水車翼中心部の保護に用いられるスピナとは異なり、水流抵抗を増加させる形状、大きさの部品である。
When the water turbine blade is introduced into the irrigation channel, the water turbine blade acts as a weir, the water level on the upstream side of the water turbine blade rises, and the flow velocity decreases. However, the trend of flow velocity distribution in the channel cross section is maintained. Therefore, according to the present invention, a flow rate adjusting component that increases the water flow resistance in the center portion of the water turbine blade is provided at the center portion in the radial direction of the water turbine blade located on the front side of the water turbine blade. By providing a flow rate adjusting component that increases the water flow resistance in the central portion of the water turbine blade, the flow velocity of the outer peripheral portion of the water turbine blade in the water channel increases. As the flow velocity at the outer periphery of the water turbine blade increases, the torque of the water turbine blade increases, and rotational energy can be efficiently obtained from the existing water channel. For this reason, it is an existing water channel, and it becomes a highly efficient water turbine without the installation effort by the addition of a water guide duct. When this turbine is used for a hydroelectric generator, high efficiency of power generation is achieved.
The flow velocity adjusting component is a component having a shape and a size that increase the water flow resistance, unlike a spinner used for reducing water channel resistance or protecting the center of the turbine blade.

前記流速調整部品は、例えば、正面形状が円形であって、直径が前記水車翼の直径に対して17%を超え、85パーセント未満とされる。
流速調整部品をこのように水車翼の直径に対して17%を超える大きさとすることで、従来のスピナとは異なり、水車翼中心部の水流抵抗を増加させて前記水路の水車翼外周部の流速を上昇させる機能が得られる。流速調整部品の直径が大きすぎると、水車翼の外周部で水流を受ける面積が減り、却って回転エネルギーが低下するが、85パーセント未満であれば、流速調整部品を設けたことによる回転エネルギー増加の効果が得られる。
For example, the flow rate adjusting component has a circular front shape and a diameter of more than 17% and less than 85% with respect to the diameter of the turbine blade.
Unlike the conventional spinner, by setting the flow velocity adjusting component to a size exceeding 17% of the diameter of the turbine blade, the water flow resistance at the center of the turbine blade is increased and the outer periphery of the turbine blade in the water channel is increased. The function of increasing the flow rate is obtained. If the diameter of the flow velocity adjustment component is too large, the area that receives the water flow at the outer periphery of the turbine blade decreases, and the rotational energy decreases. On the other hand, if it is less than 85%, the rotational energy increase due to the provision of the flow velocity adjustment component An effect is obtained.

前記水車翼は、前記各羽根の正面形状が、根元から先端に掛けて末広がり形状であってもよい。
水車翼の各羽根が先端側へ末広がり形状であると、水車翼外周部の流速が増加することと相まって、より効率良く回転エネルギーを得ることができる。
In the water turbine blade, the front shape of each blade may be widened from the root to the tip.
When each blade of the water turbine blade has a shape that spreads toward the tip, rotational energy can be obtained more efficiently in combination with an increase in the flow velocity of the outer periphery of the water turbine blade.

前記流速調整部品は、例えば、前記水車翼に対し、軸受を介して相対回転自在に支持されていてもよい。
流速調整部品を水車翼に対し回転自在として、静止状態を維持させることで、流速分布を乱さず、水車翼外周部の水流の流速がより一層向上し、さらに回転エネルギーの増加の効果が得られる。
For example, the flow velocity adjusting component may be supported so as to be relatively rotatable with respect to the water turbine blade via a bearing.
By maintaining the stationary state by making the flow velocity adjustment part rotatable with respect to the water turbine blade, the flow velocity distribution is further improved without disturbing the flow velocity distribution, and the effect of increasing the rotational energy can be obtained. .

前記水車翼は、前記各羽根の先端にウイングレットを有していてもよい。
ウイングレットが設けられていると、羽根の先端の渦損失を抑制する効果が得られ、より一層、回転エネルギー増加の効果が得られる。
The water turbine blade may have a winglet at the tip of each blade.
When the winglet is provided, the effect of suppressing the vortex loss at the tip of the blade is obtained, and the effect of increasing the rotational energy is further obtained.

前記流速調整部品の具体的形状は、前記水車翼中心部の水流抵抗を増加させて前記水路の水車翼外周部の流速を上昇させる作用が得られる形状であればよいが、例えば、水路上流側に突出する山形であって、頂き部が平面であってもよい。
このように頂き部を平面形状とすることで、水車翼中心部の水流抵抗を増加させて水路の水車翼外周部の流速を上昇させる作用が、より効果的に得られる。
The specific shape of the flow rate adjusting component may be any shape that can increase the water flow resistance of the water turbine blade central portion and increase the flow velocity of the water turbine blade outer peripheral portion of the water channel. The hook portion may be a flat surface.
Thus, by making the receiving part into a planar shape, the action of increasing the water flow resistance at the center of the turbine blade and increasing the flow velocity of the outer periphery of the turbine blade in the water channel can be obtained more effectively.

この発明において、前記流速調整部品の材質は、例えば、繊維強化プラスチックであってもよい。
繊維強化プラスチック製であると、軽量で強度にも優れる。
In the present invention, the material of the flow rate adjusting component may be, for example, a fiber reinforced plastic.
If it is made of fiber reinforced plastic, it is lightweight and excellent in strength.

この発明において、前記流速調整部品の材質は、金属材であってもよい。ただし、前記流速調整部品と接する部品である接触部品、例えば水車翼や固定用ボルトが、前記流速調整部品と異種の金属材である場合は、前記流速調整部品および前記接触部品のいずれか一方が、耐食処理されていることが好ましい。これにより、異種金属の接触部に水が介在することによる電食が防止される。   In this invention, the material of the flow rate adjusting component may be a metal material. However, when a contact part that is in contact with the flow rate adjustment part, such as a turbine blade or a fixing bolt, is a metal material different from the flow rate adjustment part, either the flow rate adjustment part or the contact part is The anticorrosion treatment is preferred. Thereby, the electrolytic corrosion by water interposing in the contact part of a dissimilar metal is prevented.

この発明の水車において、前記水車翼の前記回転中心軸が水平であってもよい。この発明の水車は、水平軸型である場合に、その水車翼の外周部の流速を高める作用が、より効果的に得られる。   In the water wheel of the present invention, the rotation center axis of the water wheel may be horizontal. When the water turbine of the present invention is a horizontal shaft type, the effect of increasing the flow velocity of the outer peripheral portion of the water turbine blade can be obtained more effectively.

この発明の小水力発電機は、この発明の上記いずれかの構成の水車と、この水車の回転エネルギーを電気エネルギーに変換する発電機とを有する。
この構成の水力発電機によると、この発明の水車により効率良く回転エネルギーが得られるため、既存の水路から効率良く発電電力が得られる。
A small hydroelectric generator of the present invention includes the water wheel having any one of the above-described structures of the present invention, and a generator that converts rotational energy of the water wheel into electric energy.
According to the hydroelectric generator having this configuration, since the rotational energy can be efficiently obtained by the water wheel of the present invention, the generated power can be efficiently obtained from the existing water channel.

この発明の水車は、複数枚の羽根が放射状に等間隔で設けられた水車翼を有し、水路の流れ方向に前記水車翼の回転中心軸を沿わせて設置される水車であって、前記水車翼の正面側に位置して前記水車翼の径方向の中心部に、水車翼中心部の水流抵抗を増加させて前記水路の水車翼外周部の流速を上昇させる流速調整部品を有するため、既存の水路から効率良く回転エネルギーを得ることができる。   The water wheel of the present invention is a water wheel having a plurality of blades provided with blades provided radially at equal intervals, and installed along the rotation center axis of the water wheel in the flow direction of the water channel, Because it has a flow rate adjusting component that increases the flow resistance of the water turbine blade outer peripheral portion of the water channel by increasing the water flow resistance of the water turbine blade central portion at the radial center of the water turbine blade located on the front side of the water turbine blade. Rotational energy can be obtained efficiently from existing waterways.

この発明の小水力発電機は、この発明の水車を備えるため、既存の水路から効率良く発電電力を得することができる。   Since the small hydroelectric generator of this invention is equipped with the water wheel of this invention, it can obtain electric power generation efficiently from the existing waterway.

この発明の第1の実施形態に係る小水力発電機の正面図である。It is a front view of the small hydraulic power generator concerning a 1st embodiment of this invention. 同小水力発電機の側面図である。It is a side view of the small hydroelectric generator. 流速調整部品を設置しない場合および設置した場合における水路断面の流速分布の説明図である。It is explanatory drawing of the flow-velocity distribution of the cross section of a water channel in the case where the flow velocity adjustment component is not installed and when it is installed. この発明の他の実施形態に係る小水力発電機における水車翼の正面図である。It is a front view of the water turbine blade in the small hydropower generator concerning other embodiments of this invention. 同水車翼の側面図である。It is a side view of the water turbine blade. この発明の他のさらに実施形態に係る小水力発電機における水車翼の正面図である。It is a front view of the turbine blade in the small hydraulic power generator concerning other further embodiments of this invention. 同水車翼の側面である。This is the side of the turbine blade. 同水車翼の一部破断側面図である。It is a partially broken side view of the water turbine blade. 提案例に係る小水力発電機の正面図である。It is a front view of the small hydroelectric generator concerning a proposal example. 同提案例に係る小水力発電機の側面図である。It is a side view of the small hydroelectric generator concerning the example of the proposal.

この発明の第1の実施形態を、図1ないし図3と共に説明する。図1は、小水力発電機の全体の正面図である。この小水力発電機は、水車1と発電機2とでなる。水車1は、水路3に設置される架台4と、この架台4に支持された水車翼5とを有する。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a front view of the entire small hydroelectric generator. This small hydroelectric generator is composed of a water turbine 1 and a generator 2. The water turbine 1 includes a gantry 4 installed in the water channel 3 and a water turbine blade 5 supported by the gantry 4.

水路3は、上面が開口した農業用や工業用等の用水路であり、両側の側壁3a,3aがコンクリート製等の水路壁とされている。底壁3bは、コンクリート製または地盤表層とされている。
架台4は、架台本体4aが、水路3の両側の側壁3a,3a間に掛け渡して設置され、架台本体4aの中央台部4b上に前記発電機2が設置されている。発電機2は、同期型または誘導型等の3相または単相の交流発電機である。
The water channel 3 is an agricultural or industrial water channel having an open upper surface, and the side walls 3a, 3a on both sides are made of concrete or the like. The bottom wall 3b is made of concrete or the ground surface layer.
In the gantry 4, the gantry body 4 a is installed across the side walls 3 a, 3 a on both sides of the water channel 3, and the generator 2 is installed on the central base part 4 b of the gantry body 4 a. The generator 2 is a three-phase or single-phase AC generator such as a synchronous type or an induction type.

水車翼5は、複数枚(図示の例では5枚)の羽根5aが放射状に等間隔で設けられ、水路3の流れ方向A(図2)に回転中心軸Oを沿わせて設置される。回転中心軸Oは、例えば水平とされる。水車翼5は、架台本体4aの幅方向の中央から垂下させた支柱6の下端に、図2のように、ギヤボックス7を介して設置されている。
水車翼5の中心に、水車翼5と一体に回転する主軸8が設けられ、ギヤボックス7内に設けられた軸受(図示せず)により主軸8を両持ち状に回転自在に支持している。これにより水車翼5がギヤボックス7および支柱6を介して架台本体4aに支持されている。主軸8の回転は、ギヤボックス7内のベベルギヤ等のギヤ列、および支柱6内の伝達軸9を介して発電機2に伝達される。発電機2の入力軸2aと前記伝達軸9とは、カップリング10で連結されている。ギヤボックス7は、例えば増速機を構成する。
In the water turbine blade 5, a plurality of blades 5a (five in the illustrated example) are provided radially at equal intervals, and are installed along the rotation center axis O in the flow direction A (FIG. 2) of the water channel 3. The rotation center axis O is, for example, horizontal. As shown in FIG. 2, the water turbine blade 5 is installed via a gear box 7 at the lower end of a support column 6 suspended from the center in the width direction of the gantry body 4 a.
A main shaft 8 that rotates integrally with the water turbine blade 5 is provided at the center of the water turbine blade 5, and the main shaft 8 is rotatably supported by a bearing (not shown) provided in the gear box 7. . As a result, the water turbine blade 5 is supported by the gantry body 4 a via the gear box 7 and the support column 6. The rotation of the main shaft 8 is transmitted to the generator 2 through a gear train such as a bevel gear in the gear box 7 and a transmission shaft 9 in the support 6. The input shaft 2 a of the generator 2 and the transmission shaft 9 are connected by a coupling 10. The gear box 7 constitutes a speed up gear, for example.

図1に示すように、水車翼5は、各羽根5aの正面形状が、根元から先端に掛けて末広がり形状であり、各羽根5aの先端には、正面側に折れ曲がる形状のウイングレット5aaが設けられている。また、水車翼5の正面側に位置して、径方向の中心部に流速調整部品12が設けられている。   As shown in FIG. 1, in the water turbine blade 5, the front shape of each blade 5 a is a shape that spreads from the root to the tip, and a winglet 5 aa that is bent to the front side is provided at the tip of each blade 5 a. ing. In addition, a flow rate adjusting component 12 is provided at the center in the radial direction, located on the front side of the water turbine blade 5.

流速調整部品12は、水車翼中心部の水流抵抗を増加させて水路3の水車翼外周部の流速を上昇させる機能を持つ部品である。流速調整部品12は、この実施形態では、水車翼5に固定されている。
流速調整部品12は、この実施形態では、正面形状が回転中心軸Oと同心の円形であって、図2のように回転中心軸Oの位置が最も水路上流側に突出する山形とされている。すなわち、頂部付近がなだらかとなる曲線の平面図形を回転中心軸O回りに回転させた回転体形状とされている。
流速調整部品12の直径D1は、水車翼5の直径D0の17%を超え、85%未満であることが好ましく、図1の例では36%とされている。
The flow velocity adjusting component 12 is a component having a function of increasing the flow velocity at the outer peripheral portion of the water turbine blade of the water channel 3 by increasing the water flow resistance at the center portion of the water turbine blade. The flow velocity adjusting component 12 is fixed to the water turbine blade 5 in this embodiment.
In this embodiment, the flow velocity adjusting component 12 has a front shape that is concentric with the rotation center axis O, and has a mountain shape in which the position of the rotation center axis O projects to the most upstream side as shown in FIG. . In other words, the shape of the rotating body is obtained by rotating a curved plane figure with a gentle vicinity in the vicinity of the top about the rotation center axis O.
The diameter D1 of the flow velocity adjusting component 12 is preferably more than 17% and less than 85% of the diameter D0 of the water turbine blade 5, and is 36% in the example of FIG.

流速調整部品12の材質は、例えば、繊維強化プラスチック製、または鋼アルミニウムアルミ合金等の金属製とされるが、流速調整部品12と、これに接触する接触部品、例えば前記水車翼5および主軸8との両方が金属製であって、かつ互いに異種の金属製とされる場合は、流速調整部品12と前記接触部品のいずれか一方に耐食処理を施すことが好ましい。前記耐食処理としては、例えば、流速調整部品12がアルミ合金の場合、SUS304製ボルトを介して前記部品が水車翼5に固定されるが、この組合せでは流速調整部品12に陽極酸化皮膜(アルマイト皮膜)が適用できる。 The material of the flow rate adjusting component 12 is made of, for example, a fiber reinforced plastic or a metal such as steel , aluminum, or an aluminum alloy. The flow rate adjusting component 12 and contact parts that contact the flow adjusting component 12 such as the water turbine blade 5 and the like When both the main shafts 8 are made of metal and are made of different metals, it is preferable to subject the flow rate adjusting component 12 and the contact component to corrosion resistance. As the corrosion resistance treatment, for example, when the flow rate adjusting component 12 is an aluminum alloy, the component is fixed to the water turbine blade 5 through a bolt made of SUS304. In this combination, the anodized film (alumite film) is applied to the flow rate adjusting component 12. ) Is applicable.

この構成の小水力発電機によると、流速調整部品12により水路3における水車翼5の外周部の流速を速め、かつ根元から先端にかけて末広がり形状の羽根5aの形状により、水車翼中心から離れた水車翼先端に水の力を集める。また、各羽根5aの先端のウイングレット5aaにより、羽根5a先端の渦損失を抑制するため、水流を効率良く水車翼5の回転に変換できる。これらの結果、発電トルクが上昇し、発電電力が高められる。 According to the small hydraulic power generator of this configuration, the water turbine away from the center of the water turbine blade is formed by increasing the flow velocity of the outer peripheral portion of the water turbine blade 5 in the water channel 3 by the flow velocity adjusting component 12 and by the shape of the blade 5a having a divergent shape from the root to the tip. Collect the power of water at the tip of the wing. Further, since the winglet 5aa at the tip of each blade 5a suppresses vortex loss at the tip of the blade 5a , the water flow can be efficiently converted into rotation of the water turbine blade 5. As a result, the generated torque increases and the generated power is increased.

具体的に上記作用を説明する。水車1の水車翼5を水路3に投入すると、水車翼5が堰として作用し、水車翼5の上流側の水位が上昇すると共に、流速が減少する。しかし、水路3の断面の流速分布の傾向は維持される。
そこで、この実施形態は、水車翼5の正面側に位置して水車翼5の径方向の中心部に、図10の提案例の水流抵抗低減用のスピナ15に代えて、水車翼中心部の水流抵抗を増加させる流速調整部品12を設けている。このような流速調整部品12を設けたことで、水路3の水車翼外周部の流速が上昇する。
図で概略的に示すと、通常では用水路等の水路3内の流速分布は、水路幅方向の中央における、水面Sから下方の位置(底面Bから高さHの位置)(図3(A)の速度分布曲線a参照)の流速が最も速く、これは実際の水路で計測した結果からも検証されている。この状況に対して、流速調整部品12を配置すると、水車翼中心部の流速が低下するが、水路3の断面の全体の流量は維持されるため、図3(B)の速度分布曲線bのように水車翼外周部の流速が上昇する。
このように水車翼外周部の流速が上昇することで、水車翼5のトルクが増大し、既存の水路3から効率良く回転エネルギーを得ることができる。また、各羽根5aが先端側へ末広がり形状であるため、水車翼外周部の流速が増加することと相まって、より効率良く回転エネルギーを得ることができる。このため、既存の水路3で、導水ダクトの増設等による設置の手間がかからずに、高効率な水車1となる。この水車1を水力発電機に用いる場合は、発電電力の高効率化が達成される。
なお、前記流速調整部品12は、図9,10の提案例における流水抵抗の低減や水車翼中心部の保護に用いられるスピナ15とは異なり、水流抵抗を増加させる形状の部品であるため、上記の水車翼外周部の流速増加の作用が得られる。
The above operation will be specifically described. When the water turbine blade 5 of the water turbine 1 is introduced into the water channel 3, the water turbine blade 5 acts as a weir, the water level on the upstream side of the water turbine blade 5 rises, and the flow velocity decreases. However, the tendency of the flow velocity distribution in the cross section of the water channel 3 is maintained.
Therefore, this embodiment is located on the front side of the water turbine blade 5 in the central portion in the radial direction of the water turbine blade 5, instead of the spinner 15 for reducing water flow resistance in the proposed example of FIG. 10. A flow rate adjusting component 12 for increasing the water flow resistance is provided. By providing such a flow velocity adjusting component 12, the flow velocity of the outer peripheral portion of the water turbine blade of the water channel 3 is increased.
When schematically shown in the drawing, the flow velocity distribution in the water channel 3 such as a water channel is usually a position below the water surface S (a position from the bottom surface B to the height H) at the center in the width direction of the water channel (FIG. 3A). The velocity of the velocity distribution curve a) is the fastest, and this is also verified from the result of measurement in an actual water channel. In this situation, when the flow velocity adjusting component 12 is arranged, the flow velocity at the center of the water turbine blade is reduced, but the entire flow rate in the cross section of the water channel 3 is maintained, so that the velocity distribution curve b in FIG. Thus, the flow velocity of the outer peripheral portion of the water turbine blade increases.
As the flow velocity of the outer peripheral portion of the water turbine blade increases in this way, the torque of the water turbine blade 5 increases, and rotational energy can be efficiently obtained from the existing water channel 3. Moreover, since each blade | wing 5a is a shape which spreads toward the front end side, a rotational energy can be obtained more efficiently combined with the increase in the flow velocity of a water turbine blade outer peripheral part. For this reason, the existing water channel 3 does not require the trouble of installation due to the addition of a water guide duct, and the water turbine 1 is highly efficient. When this water turbine 1 is used for a hydroelectric generator, high efficiency of generated power is achieved.
Unlike the spinner 15 used for reducing the flowing water resistance and protecting the turbine blade central portion in the proposed examples of FIGS. 9 and 10, the flow rate adjusting component 12 is a component having a shape that increases the water flow resistance. The effect of increasing the flow velocity at the outer periphery of the turbine blade is obtained.

図4,5は、他の実施形態を示す。この実施形態は、流速調整部品12の直径D1を大きくし、水車翼5の直径D0の70%としている。流速調整部品12の流路方向高さは、図1の実施形態と同じである。
その他の構成は、図1〜図3と共に前述した第1の実施形態と同様である。
このように流速調整部品12の直径を大きくすると、流路中心部の流れの抵抗がより大きくなるため、水車翼5の外周部の水流の流速がより速くなり、さらに発電の効率が向上する。
4 and 5 show another embodiment. In this embodiment, the diameter D1 of the flow velocity adjusting component 12 is increased to 70% of the diameter D0 of the water turbine blade 5. The flow direction height of the flow rate adjusting component 12 is the same as that in the embodiment of FIG.
Other configurations are the same as those of the first embodiment described above with reference to FIGS.
When the diameter of the flow rate adjusting component 12 is increased in this way, the flow resistance at the center of the flow path becomes larger, so the flow velocity of the water flow at the outer peripheral portion of the water turbine blade 5 becomes faster, and the power generation efficiency is further improved.

速調整部品12の大きさは、直径D1が水車翼5の直径D0に対して17%を超え、85パーセント未満とすることが好ましい。
流速調整部品12をこのように水車翼5の直径D0に対して17%を超える大きさとすることで、従来のスピナとは異なり、水車翼中心部の水流抵抗を増加させて前記水路3の水車翼外周部の流速を上昇させる機能が得られる。流速調整部品12の直径が大きくなり過ぎると、水車翼5の外周部で水流を受ける面積が減り、却って回転エネルギーが低下するが、85パーセント未満であれば、流速調整部品を設けたことによる回転エネルギー増加の効果が得られる。
The size of the speed adjusting component 12 is preferably such that the diameter D1 exceeds 17% and less than 85% with respect to the diameter D0 of the water turbine blade 5.
Unlike the conventional spinner, by setting the flow velocity adjusting component 12 to a size exceeding 17% with respect to the diameter D0 of the turbine blade 5, the water flow resistance at the center of the turbine blade is increased and the turbine of the water channel 3 is increased. A function of increasing the flow velocity of the outer peripheral portion of the blade is obtained. If the diameter of the flow velocity adjusting component 12 becomes too large, the area that receives the water flow at the outer peripheral portion of the water turbine blade 5 decreases and the rotational energy decreases. However, if it is less than 85%, the rotation due to the provision of the flow velocity adjusting component The effect of increasing energy is obtained.

図8はさらに他の実施形態を示す。この実施形態では、流速調整部品12を主軸8に対して軸受13を介して回転自在に支持し、水車翼5の回転と流速調整部品12の回転とを切り離すようにしている。また、流速調整部品12は、水路上流側に突出する山形であって、頂き部12aが平面とされている。その他の構成は、図1〜図3と共に前述した第1の実施形態と同様である。
この構成の場合、水車翼5が回転しても、流速調整部品12は停止状態を維持することができる。そのため、流速調整部品12で流速分布を乱さず、水車翼外周部の流速が一層上昇する。また、流速調整部品12の頂き部12aを平面形状としたため、水車翼中心部の水流抵抗を増加させて水路3の水車翼外周部の流速を上昇させる作用が、より効果的に得られる。これらのため、より高効率な水車1および水力発電機となる。
FIG. 8 shows still another embodiment. In this embodiment, the flow velocity adjusting component 12 is rotatably supported with respect to the main shaft 8 via a bearing 13 so that the rotation of the water turbine blade 5 and the rotation of the flow velocity adjusting component 12 are separated. Moreover, the flow velocity adjustment component 12 is a mountain shape protruding to the upstream side of the water channel, and the receiving portion 12a is a flat surface. Other configurations are the same as those of the first embodiment described above with reference to FIGS.
In the case of this configuration, even if the water turbine blade 5 rotates, the flow rate adjusting component 12 can maintain the stopped state. Therefore, the flow velocity adjustment component 12 does not disturb the flow velocity distribution, and the flow velocity at the outer periphery of the water turbine blade further increases. In addition, since the receiving portion 12a of the flow velocity adjusting component 12 has a planar shape, the effect of increasing the water flow resistance at the central portion of the water turbine blade and increasing the flow velocity at the outer peripheral portion of the water turbine blade of the water channel 3 can be obtained more effectively. For these reasons, the water turbine 1 and the hydroelectric generator are more efficient.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1…水車
2…発電機
3…水路
4…架台
5…水車翼
5a…羽根
5aa…ウイングレット
7…ギヤボックス
8…主軸
12…流速調整部品
15…軸受
O…回転中心軸
DESCRIPTION OF SYMBOLS 1 ... Turbine 2 ... Generator 3 ... Waterway 4 ... Mount 5 ... Turbine blade 5a ... Blade 5aa ... Winglet 7 ... Gear box 8 ... Main shaft 12 ... Flow rate adjustment component 15 ... Bearing O ... Rotation center shaft

Claims (10)

複数枚の羽根が放射状に等間隔で設けられた水車翼を有し、水路の流れ方向に前記水車翼の回転中心軸を沿わせて設置される水車であって、
前記水車翼の正面側に位置して前記水車翼の径方向の中心部に、水車翼中心部の水流抵抗を増加させて前記水路の水車翼外周部の流速を上昇させる流速調整部品を有することを特徴とする水車。
A water turbine having a plurality of blades radially provided at equal intervals and a water wheel installed along the rotation center axis of the water wheel in the flow direction of the water channel,
It has a flow rate adjusting component that is located on the front side of the turbine blade and that increases the flow resistance of the outer periphery of the turbine channel by increasing the water flow resistance of the turbine blade center in the radial center of the turbine blade. A water wheel characterized by.
請求項1に記載の水車において、前記流速調整部品の正面形状が円形であって、この流速調整部品の直径が前記水車翼の直径に対して17%を超え、85パーセント未満である水車。   The water turbine according to claim 1, wherein a front shape of the flow rate adjusting component is circular, and a diameter of the flow rate adjusting component is greater than 17% and less than 85% with respect to a diameter of the turbine blade. 請求項1または請求項2に記載の水車において、前記各羽根の正面形状が、根元から先端に掛けて末広がり形状である水車。   3. The water wheel according to claim 1, wherein a front shape of each blade is a divergent shape extending from a root to a tip. 4. 請求項1ないし請求項3のいずれか1項に記載の水車において、前記流速調整部品が、前記水車翼に対し、軸受を介して相対回転自在に支持される水車。   The water turbine according to any one of claims 1 to 3, wherein the flow velocity adjusting component is supported relative to the water turbine blade through a bearing so as to be relatively rotatable. 請求項1ないし請求項4のいずれか1項に記載の水車において、前記水車翼が、前記各羽根の先端にウイングレットを有する水車。   The water turbine according to any one of claims 1 to 4, wherein the water turbine blade has a winglet at a tip of each blade. 請求項1ないし請求項5のいずれか1項に記載の水車において、前記流速調整部品が水路上流側に突出する山形であって、頂き部が平面である水車。   The water turbine according to any one of claims 1 to 5, wherein the flow rate adjusting component is a mountain shape protruding to the upstream side of the water channel, and the hook portion is a flat surface. 請求項1ないし請求項6のいずれか1項に記載の水車において、前記流速調整部品が繊維強化プラスチック製である水車。   The water wheel according to any one of claims 1 to 6, wherein the flow rate adjusting component is made of fiber reinforced plastic. 請求項1ないし請求項7のいずれか1項に記載の水車において、前記流速調整部品が金属材、前記流速調整部品と接する部品である接触部品が前記流速調整部品と異種金属材であり、前記流速調整部品および前記接触部品のいずれか一方が、耐食処理されている水車。   The water wheel according to any one of claims 1 to 7, wherein the flow rate adjusting component is a metal material, and a contact component that is a component in contact with the flow rate adjusting component is the flow rate adjusting component and a dissimilar metal material, A water turbine in which any one of the flow rate adjusting component and the contact component is subjected to corrosion resistance treatment. 請求項1ないし請求項8のいずれか1項に記載の水車において、前記水車翼の前記回転中心軸が水平である水車。   The water turbine according to any one of claims 1 to 8, wherein the rotation center axis of the turbine blade is horizontal. 請求項1ないし請求項9のいずれか1項に記載の水車と、この水車の回転エネルギーを電気エネルギーに変換する発電機とを有する小水力発電機。   A small hydroelectric generator comprising: the water turbine according to any one of claims 1 to 9; and a generator that converts rotational energy of the water turbine into electric energy.
JP2018060200A 2018-03-27 2018-03-27 Water turbine and small hydroelectric generator Pending JP2019173597A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018060200A JP2019173597A (en) 2018-03-27 2018-03-27 Water turbine and small hydroelectric generator
PCT/JP2019/012734 WO2019189107A1 (en) 2018-03-27 2019-03-26 Water turbine and small hydroelectric generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018060200A JP2019173597A (en) 2018-03-27 2018-03-27 Water turbine and small hydroelectric generator

Publications (1)

Publication Number Publication Date
JP2019173597A true JP2019173597A (en) 2019-10-10

Family

ID=68061794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018060200A Pending JP2019173597A (en) 2018-03-27 2018-03-27 Water turbine and small hydroelectric generator

Country Status (2)

Country Link
JP (1) JP2019173597A (en)
WO (1) WO2019189107A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6426869B1 (en) * 2018-06-08 2018-11-21 株式会社グローバルエナジー Horizontal axis rotor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2598162Y2 (en) * 1992-11-13 1999-08-03 東芝エンジニアリング株式会社 Runner blade operating device for movable blade water turbine
KR20110107885A (en) * 2010-03-26 2011-10-05 홍문표 Generator of the water propeller in water flow
JP2012041920A (en) * 2010-07-22 2012-03-01 Toshiba Corp Ocean-current power generation system
FR2965591B1 (en) * 2010-09-30 2012-08-31 Alstom Hydro France BEAM FOR SUPPORTING A HYDROLIENNE AND HYDROLIAN CARENAGE COMPRISING SUCH A BEAM
JP6670052B2 (en) * 2015-07-08 2020-03-18 Ntn株式会社 Propeller for feng shui

Also Published As

Publication number Publication date
WO2019189107A1 (en) 2019-10-03

Similar Documents

Publication Publication Date Title
US9989033B2 (en) Horizontal axis wind or water turbine with forked or multi-blade upper segments
AU2017204260A1 (en) Blade for a wind turbine having a guide vane
KR102471788B1 (en) rotor for electric generator
KR101035321B1 (en) Electric power plant use wind and water
WO2019189107A1 (en) Water turbine and small hydroelectric generator
JPS6346699Y2 (en)
JPS59147879A (en) Down wind type wind force generator
EP2942518B1 (en) Double-regulated turbine, installation for converting hydraulic energy and process for the rehabilitation of a double-regulated turbine
JP6282236B2 (en) Hydroelectric generator
JP7274895B2 (en) Water collecting device for hydroelectric power plant and hydroelectric power plant
JP6531152B2 (en) Vertical axis type hydroelectric generator, vertical axis type hydroelectric unit, blade for vertical axis type hydroelectric generation
KR20220097484A (en) Enhanced Wind Turbine Wake Mixing
WO2020060387A1 (en) Impulse hydro turbine system
NL2025800B1 (en) A horizontal axis wind turbine and method for generating electrical energy
JP2013189888A (en) Small hydraulic power generating apparatus
US10774806B1 (en) Hydropower system
EP3329116B1 (en) Water turbine arrangements
JP2018071487A (en) Tidal power generation device
KR101372250B1 (en) Wind power generation tower with giromill
KR101374050B1 (en) Wind power generation tower with giromill
KR101372253B1 (en) Wind power generation tower with giromill
KR101372251B1 (en) Wind power generation tower with giromill
WO2016203710A1 (en) Vertical axis-type hydroelectric power generating device and vertical axis-type hydroelectric power generating unit
JP2019074024A (en) Wind power generating system
CN106593746A (en) Blade and water turbine