JP2019172860A - Creaking sound prevention material - Google Patents

Creaking sound prevention material Download PDF

Info

Publication number
JP2019172860A
JP2019172860A JP2018063818A JP2018063818A JP2019172860A JP 2019172860 A JP2019172860 A JP 2019172860A JP 2018063818 A JP2018063818 A JP 2018063818A JP 2018063818 A JP2018063818 A JP 2018063818A JP 2019172860 A JP2019172860 A JP 2019172860A
Authority
JP
Japan
Prior art keywords
silica fine
fine particles
preventing material
parts
active energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018063818A
Other languages
Japanese (ja)
Inventor
翔太 伊地知
Shota Ijichi
翔太 伊地知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taika Corp
Original Assignee
Taika Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taika Corp filed Critical Taika Corp
Priority to JP2018063818A priority Critical patent/JP2019172860A/en
Publication of JP2019172860A publication Critical patent/JP2019172860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

To provide a creaking sound prevention material good in discharge property and shape retention property during un-curing, hardly being broken during engaging operation after curing, and excellent in adhesiveness.SOLUTION: A creaking sound prevention material contains an active energy ray curing resin composition (A) mainly containing silicone with E hardness of 30 to 45 at a curing state, and at least a silane coupling agent (B) having long chain aliphatic acid chain and a first silica fine particle with a particle diameter of 100 to 200 nm (C1) and a second silica fine particle with a particle diameter of 5 to 20 nm (C2), and has blended percentage of the first silica fine particle and the second silica fine particle of 10 to 80 pts.wt. and 0.5 to 10 pts.wt. respectively based on 100 pts.wt. of the active energy ray curing resin composition (A), viscosity at shear rate of 1 sat a state of un-curing of 50 to 1000 Pa s and E hardness (according to JIS K6253) at a cured state of 50 or more.SELECTED DRAWING: None

Description

本発明は、隣接する部品間の振動接触で発生する軋み音を防止する軋み音防止材であり、詳しくは、振動接触する部品表面に塗布し硬化して用いる軋み音防止材に関する。   The present invention relates to a squeaking noise preventing material that prevents squeaking noise generated by vibration contact between adjacent components, and more particularly to a squeaking noise preventing material that is applied to a surface of a component that is in contact with vibration and cured.

複数の部品で構成された構造物では、隣接する部品間に隙間が存在するため、構造物の変形や振動によって隣接する部品の壁面同士が擦れたり衝突することにより異音を発生することがある。特に自動車や列車などの乗り物では、走行時の振動により内装部品が擦れ合い、例えば、インスツルメントパネル部、シートモールドパッド部、ドアトリム部などにおいて軋み音の発生がみられ、車内の静粛性を持たせるため、この軋み音を防止する工夫がなされている。その工夫の一つとして、擦れる部分に軋み音を低減する不織布の貼付や薬剤(軋み音防止剤)の塗布がおこなわれている。   In a structure composed of a plurality of parts, there is a gap between adjacent parts, so that noise may be generated when the wall surfaces of adjacent parts rub or collide due to deformation or vibration of the structure. . Particularly in vehicles such as automobiles and trains, interior parts rub against each other due to vibration during running, and for example, squeaking noise is generated in the instrument panel, seat mold pad, door trim, etc. In order to make it have, it has been devised to prevent this itching sound. As one of the contrivances, a non-woven fabric is applied to the rubbing part to reduce squeaking noise, and a drug (smudge noise preventing agent) is applied.

しかし、不織布の貼付や薬剤(軋み音防止剤)の塗布する方法は、軋み防止音の防止効果は見られるものの、不織布を貼付する方法では、対象となる部品の形状や組付の状況に応じて、貼付する不織布にサイズ(幅と長さ)、厚さ、密度などの違いを生ぜざるを得ず、管理上煩雑極まりないものとなっており、さらにこの貼付作業は、機械による自動化が困難であるため人手で作業しなければならず、生産性に課題があった。また、ワックスなどの薬剤の塗布による方法では、薬剤を塗布した部品表面周辺がべたつく場合があるため、人が触れる箇所には適用できず、軋み音の防止性能の耐久性も劣っていた。   However, the method of applying non-woven fabric and applying medicine (anti-smacking agent) can prevent stagnation noise, but the method of applying non-woven fabric depends on the shape of the target part and the situation of assembly. In addition, the non-woven fabric to be affixed must be different in size (width and length), thickness, density, etc., and it is extremely difficult to manage. Further, this affixing operation is difficult to automate by a machine. For this reason, there was a problem in productivity because it was necessary to work manually. Further, in the method by applying a chemical such as wax, the periphery of the part surface to which the chemical is applied may be sticky, so that it cannot be applied to a part touched by a person, and the durability of the squeaking noise prevention performance is inferior.

そこで、軋み音防止性能と作業性を両立する技術として、部品表面に紫外線硬化型の液状活性樹脂をノズルから吐出塗布し、塗布直後に紫外線を照射して液状活性樹脂を硬化させて活性塗膜層を形成する方法(特許文献1)が提案されている。また、塗布後に紫外線硬化させる同様の方法において、紫外線硬化樹脂を主成分とし、かつシリコーン球体を含む球形のフィラーを1〜50重量%配合させることによって、軋み音防止性能を向上させた軋み音防止材が提案されている。(特許文献2)   Therefore, as a technology that achieves both squeaking noise prevention performance and workability, an ultraviolet curable liquid active resin is discharged and applied to the surface of the component from the nozzle, and immediately after application, the liquid active resin is cured by irradiating the ultraviolet ray to the active coating film A method of forming a layer (Patent Document 1) has been proposed. In addition, in the same method of UV curing after application, it is possible to improve the squeaking noise prevention performance by blending 1 to 50% by weight of a spherical filler containing a UV curable resin as a main component and containing silicone spheres. Materials have been proposed. (Patent Document 2)

特開平3−143574公報JP-A-3-143574 特許登録第2956982号公報Patent Registration No. 2959682

特許文献1や特許文献2のように、部品表面に紫外線硬化型の液状の軋み音防止材をノズルから吐出塗布し、塗布直後に紫外線を照射して硬化させて軋み音防止する硬化層を形成する方法においては、部品を取り外した状態で部品の軋み音発生箇所に硬化層を形成する加工を行い、その加工した部品を所定の位置に嵌め込むという工程で作業される。この嵌め込み作業において、形成した一方の硬化層を隣接した一方の部品表面に押しつけながら、他方の硬化層を隣接する他方の部品エッジ部と側面に接触通過させて嵌め込むため、硬化層に大きなせん断力がかかり、硬化層の破損や部品表面からの脱落が発生しやすく、改善の余地があった。また、所定箇所に所定の形状で硬化層を形成するためには、未硬化状態(液状)の軋み音防止材は、吐出塗布し易く、かつ塗工後の形状保持性に優れることが要求されていた。   As in Patent Document 1 and Patent Document 2, an ultraviolet curable liquid squeaking noise prevention material is applied to the surface of a component by discharging from a nozzle, and immediately after application, a cured layer is formed that is cured by irradiating with ultraviolet rays to prevent squeaking noise. In this method, a process is performed in which a hardened layer is formed at a part where a stagnation sound is generated with the part removed, and the processed part is fitted into a predetermined position. In this fitting operation, while pressing the formed one hardened layer against the surface of one adjacent part, the other hardened layer is fitted in contact with the other part edge and the side of the adjacent part, so that a large shear is applied to the hardened layer. Force was applied, and the hardened layer was easily damaged and dropped off from the surface of the component, leaving room for improvement. Moreover, in order to form a hardened layer in a predetermined shape at a predetermined location, an uncured (liquid) stagnation sound preventing material is required to be easily applied by ejection and excellent in shape retention after coating. It was.

従って、本発明は、従来技術の上述した問題点を解消するために成されたものであり、その目的は、未硬化時の吐工性と形状保持性が良好で、硬化後は嵌め込み作業時に破損しにくく、部品との密着性に優れ、かつ軋み音防止性に優れた軋み音防止材を提供することにある。また、別の目的は、その未硬化の軋み音防止材が充填された容器を提供することにある。   Therefore, the present invention was made to solve the above-mentioned problems of the prior art, and its purpose is good dischargeability and shape retention at the time of uncured, and at the time of fitting work after curing. An object of the present invention is to provide a squeaking noise preventing material that is not easily damaged, has excellent adhesion to parts, and has excellent squeaking noise prevention properties. Another object is to provide a container filled with the uncured squeaking noise prevention material.

上記課題を解決するため、本発明の軋み音防止材は、隣接する部品同士が互いに干渉し合う部分に塗布・硬化させて用いるものであり、シリコーンを主成分とする活性エネルギー線硬化性樹脂組成物(A)に少なくともシランカップリング剤(B)とシリカ微粒子(C)を含んでなり、活性エネルギー線硬化性樹脂組成物(A)の硬化状態におけるE硬度(JIS K6253準拠)が30〜45であり、シランカップリング剤(B)は長鎖脂肪酸鎖を有するものであり、シリカ微粒子(C)は、粒径が100〜200nmの第一のシリカ微粒子(C1)と粒径が5〜20nmの第二のシリカ微粒子(C2)とを含んでなり、第一のシリカ微粒子(C1)及び第二のシリカ微粒子(C2)の配合割合が活性エネルギー線硬化性樹脂組成物(A)100重量部に対してそれぞれ10〜80重量部、0.5〜10重量部であり、未硬化の状態において、せん断速度1s−1における粘度が50〜1000Pa・sであり、かつ硬化した状態において、E硬度(JIS K6253準拠)が50以上である。 In order to solve the above-mentioned problems, the squeaking noise preventing material of the present invention is used by applying and curing to a part where adjacent parts interfere with each other, and an active energy ray-curable resin composition mainly composed of silicone. The product (A) comprises at least a silane coupling agent (B) and silica fine particles (C), and the E energy (according to JIS K6253) in the cured state of the active energy ray-curable resin composition (A) is 30 to 45. The silane coupling agent (B) has a long chain fatty acid chain, and the silica fine particles (C) have a particle diameter of 5 to 20 nm with the first silica fine particles (C1) having a particle diameter of 100 to 200 nm. Second silica fine particles (C2), and the blend ratio of the first silica fine particles (C1) and the second silica fine particles (C2) is the active energy ray-curable resin composition (A). 10 to 80 parts by weight and 0.5 to 10 parts by weight with respect to 100 parts by weight, respectively, in an uncured state, the viscosity at a shear rate of 1 s −1 is 50 to 1000 Pa · s, and in a cured state , E hardness (according to JIS K6253) is 50 or more.

シリコーンを主成分とする活性エネルギー線硬化性樹脂組成物(A)として、硬化状態におけるE硬度(JIS K6253準拠)を30〜45とすることにより、十分な強度を有した硬化物を得ることができる。また、シランカップリング剤(B)が長鎖脂肪酸鎖を有することにより、十分な基材との密着性を得ることができる。さらに、シリカ微粒子(C)は、粒径が100〜200nmの第一のシリカ微粒子(C1)と粒径が5〜20nmの第二のシリカ微粒子(C2)とを含んでなり、第一のシリカ微粒子(C1)及び第二のシリカ微粒子(C2)の配合割合が、活性エネルギー線硬化性樹脂組成物(A)100重量部に対してそれぞれ10〜80重量部、0.5〜10重量部とすることにより、硬化時には表面滑り性と強度とが両立されることによって、嵌め込み作業時に破損し難く、かつ未硬化時には塗工しやすく形状保持性に好適な粘度が得られる。また、未硬化の状態において、せん断速度1s−1における粘度が50〜1000Pa・sとすることにより、未硬化状態において塗工性と塗工形状精度に優れた軋み音防止材が得られる。そして、本発明の各構成を備えた軋み音防止材は、活性エネルギー線を照射して硬化させることにより、E硬度(JIS K6253準拠)が50以上であり、十分な強度および優れた密着性を備えた硬化物を形成することができる。 As the active energy ray-curable resin composition (A) mainly composed of silicone, a cured product having sufficient strength can be obtained by setting the E hardness (conforming to JIS K6253) in a cured state to 30 to 45. it can. Moreover, sufficient adhesiveness with a base material can be obtained because a silane coupling agent (B) has a long-chain fatty acid chain. Further, the silica fine particles (C) comprise first silica fine particles (C1) having a particle size of 100 to 200 nm and second silica fine particles (C2) having a particle size of 5 to 20 nm, The blending ratio of the fine particles (C1) and the second silica fine particles (C2) is 10 to 80 parts by weight and 0.5 to 10 parts by weight, respectively, with respect to 100 parts by weight of the active energy ray-curable resin composition (A). By doing so, the surface slipperiness and the strength are compatible at the time of curing, so that it is difficult to break during the fitting operation, and it is easy to apply the coating when not cured, and a viscosity suitable for shape retention is obtained. Further, when the viscosity at a shear rate of 1 s −1 is 50 to 1000 Pa · s in an uncured state, a squeaking noise preventing material excellent in coating property and coating shape accuracy in an uncured state can be obtained. And the squeaking noise preventing material having each configuration of the present invention has an E hardness (conforming to JIS K6253) of 50 or more by irradiating and curing an active energy ray, and has sufficient strength and excellent adhesion. The provided cured product can be formed.

本発明の軋み音防止材のシランカップリング剤(B)は、エポキシ系シランカップリング剤であることも好ましい。これにより、活性エネルギー線を照射して硬化したときに優れた密着性を備えた軋み音防止材が得られる。   It is also preferable that the silane coupling agent (B) of the squeaking noise preventing material of the present invention is an epoxy silane coupling agent. As a result, a squeaking noise preventing material having excellent adhesion when irradiated with active energy rays and cured is obtained.

また、本発明の軋み音防止材のエポキシ系シランカップリング剤は、グリシドキシオクチルトリメトキシシランであることも好ましい。これによりさらに優れた密着性を備えた軋み音防止材が得られる。   Moreover, it is also preferable that the epoxy-type silane coupling agent of the squeaking noise preventing material of the present invention is glycidoxyoctyltrimethoxysilane. As a result, a squeaking noise preventing material having even better adhesion can be obtained.

また、本発明の軋み音防止材のシランカップリング剤(B)の含有量は、シリコーンを主成分とする活性エネルギー線硬化性樹脂組成物(A)100重量部に対して0.5〜10重量部であることが好ましい。これにより、安定した密着性を備えた軋み音防止材が得られる。   Moreover, content of the silane coupling agent (B) of the squeaking sound prevention material of this invention is 0.5-10 with respect to 100 weight part of active energy ray-curable resin compositions (A) which have silicone as a main component. It is preferable that it is a weight part. Thereby, the squeaking noise preventing material having stable adhesion can be obtained.

さらに、本発明の軋み音防止材のシリカ微粒子(C)の第一のシリカ微粒子(C1)及び第二のシリカ微粒子(C2)の炭素含有量は0.5質量%未満であることが好ましい。これにより、未硬化の状態で塗工性と形状精度がさらに優れ、硬化時に十分な強度を備えた軋み音防止材が得られる。   Furthermore, it is preferable that the carbon content of the first silica fine particles (C1) and the second silica fine particles (C2) of the silica fine particles (C) of the squeaking noise preventing material of the present invention is less than 0.5% by mass. Thereby, the applicability | paintability and shape accuracy are further excellent in the uncured state, and the squeaking sound preventing material having sufficient strength at the time of curing can be obtained.

本発明の容器は、上記の何れかの未硬化状態の軋み音防止材が充填されてなる。容器は遮光性であることが好ましく、このような構成とすることで、軋み音防止材を未硬化の状態で安定的に保管できるため、容器から未硬化状態の軋み音防止材を吐出して安定的に塗工することができる。   The container of the present invention is filled with any of the above-mentioned uncured squeaking noise prevention materials. The container is preferably light-shielding, and with this configuration, the stagnation sound prevention material can be stably stored in an uncured state. It can be applied stably.

本発明の軋み音防止材は、硬化状態においてE硬度(JIS K6253準拠)が30〜45となるシリコーンを主成分とする活性エネルギー線硬化性樹脂組成物(A)をベースとして、長鎖脂肪酸鎖を有するシランカップリング剤(B)を含むことによって、硬化後の軋み音防止材と部品との密着性が向上し、粒径が100〜200nmの第一のシリカ微粒子(C1)と粒径が5〜20nmの第二のシリカ微粒子(C2)とを活性エネルギー線硬化性樹脂組成物(A)100重量部に対してそれぞれ10〜80重量部、0.5〜10重量部を含み、未硬化の状態において、せん断速度1s−1における粘度が50〜1000Pa・s、かつ硬化した状態において、E硬度(JIS K6253準拠)が50以上とすることで、未硬化状態での形状保持性と塗工性とを良好に両立でき、硬化後は部品の嵌め込み作業時に破損しにくい強度を有し、かつ優れた防振性と緩衝性を発揮するので、作業性と品質信頼性を向上させながら軋み音を防止することができる。 The squeaking noise preventing material of the present invention is based on an active energy ray-curable resin composition (A) mainly composed of silicone having an E hardness (conforming to JIS K6253) of 30 to 45 in a cured state, and a long chain fatty acid chain. By including the silane coupling agent (B) having the above, the adhesion between the squeaking noise preventing material after curing and the component is improved, and the first silica fine particles (C1) having a particle size of 100 to 200 nm and the particle size are increased. 5 to 20 nm of second silica fine particles (C2) and 10 to 80 parts by weight and 0.5 to 10 parts by weight, respectively, with respect to 100 parts by weight of the active energy ray-curable resin composition (A), uncured in the state, the viscosity at a shear rate of 1s -1 is 50~1000Pa · s, and in the cured state, by E hardness (JIS K6253 compliant) is 50 or more, in the uncured state It is possible to achieve both good state retention and coating properties, and after curing, it has the strength to prevent breakage during fitting of parts, and exhibits excellent vibration proofing and buffering properties, so workability and quality reliability It is possible to prevent stagnation noise while improving

実施例における未硬化時の塗工性と形状保持性の試験用ビード状吐出体の塗布パターンを示す模式図である。It is a schematic diagram which shows the application pattern of the bead discharge body for a test of the applicability | paintability at the time of non-hardening in an Example, and shape retention property. 実施例及び比較例における密着性試験の方法を説明する模式図である。It is a schematic diagram explaining the method of the adhesive test in an Example and a comparative example.

本発明の軋み音防止材は、シリコーンを主成分とする活性エネルギー線硬化性樹脂組成物(A)(以下、単に活性エネルギー線硬化性樹脂組成物(A)と称す)に少なくとも特定のシランカップリング剤(B)と特定のシリカ微粒子(C)とを含有していることを特徴とする。   The squeaking noise preventing material of the present invention comprises at least a specific silane cup in an active energy ray curable resin composition (A) (hereinafter, simply referred to as an active energy ray curable resin composition (A)) containing silicone as a main component. It contains a ring agent (B) and specific silica fine particles (C).

本発明の軋み音防止材に用いられる活性エネルギー線硬化性樹脂組成物(A)は、シリコーンを主成分としてなり、活性エネルギー線による硬化が可能な重合性官能基を有し、硬化状態におけるE硬度(JIS K6253準拠)が30〜45である。硬化状態におけるE硬度が30未満の場合、軋み音防止材として十分な強度が得られず、E硬度が45を超えると、軋み音防止材の硬化後の硬度が硬くなりすぎて、十分な軋み音を防止する効果が得られない。   The active energy ray-curable resin composition (A) used for the squeaking noise preventing material of the present invention has a polymerizable functional group which is mainly composed of silicone and can be cured by active energy rays, and is E in a cured state. Hardness (based on JIS K6253) is 30-45. When the E hardness in the cured state is less than 30, sufficient strength as a squeaking noise preventing material cannot be obtained, and when the E hardness exceeds 45, the hardness after curing of the squeaking noise preventing material becomes too hard and sufficient stagnation The effect of preventing sound cannot be obtained.

活性エネルギー線硬化性樹脂組成物(A)は、例えば、次式[1](式[1]中、Rは、水素又はアルキル基を、Rは、(CHを示し、1≦n≦20である。)で示されるアクリル基又はメタアクリロイル基を分子中に少なくとも1以上有するオルガノポリシロキサンと、 The active energy ray-curable resin composition (A) has, for example, the following formula [1] (in the formula [1], R 1 represents hydrogen or an alkyl group, R n represents (CH 2 ) n , 1 ≦ n ≦ 20.) Organopolysiloxane having at least one acrylic group or methacryloyl group represented by

次式[2](式[2]中、Rは、水素又はアルキル基を、Rは、(CHを示し、0≦n≦10である)で示される不飽和二重結合を含有するオルガノポリシロキサンと、 Unsaturated double bond represented by the following formula [2] (in formula [2], R 1 represents hydrogen or an alkyl group, R n represents (CH 2 ) n , and 0 ≦ n ≦ 10). An organopolysiloxane containing

次式[3](式[3]中、Rは、(CHを示し、0≦n≦10である。)で示されるメルカプトアルキル基を分子中に少なくとも2以上含有するオルガノポリシロキサンを混合して作製される。 Organopoly having at least two mercaptoalkyl groups represented by the following formula [3] (in formula [3], R n represents (CH 2 ) n , and 0 ≦ n ≦ 10)) Made by mixing siloxane.

ここで、上記の活性エネルギー線とは、赤外線、可視光線、紫外線、X線、電子線、アルファ線、ベータ線又はガンマ線等をいい、特に紫外線が好適に用いられる。本発明における紫外線には、近紫外線(near UV、波長200〜380nm)、遠紫外線(波長10〜200nm)及び極端紫外線(extreme UV、波長1〜10nm)が含まれる。また、これら活性エネルギー線は、1種単独で使用することも、2種以上を同時に使用することも可能である。これらの活性エネルギー線の線源としては、未硬化の軋み音防止材を被塗布基体にコーティング又は塗布後、短時間で硬化させることができればよく、特に限定されないが、例えば、低圧水銀ランプ、高圧水銀ランプ、エキシマ紫外線(エキシマUV)ランプ、ハライドランプ、LEDライト又はレーザー等の公知の発生手段のものを利用することができる。また、赤外線の線源としては、例えば、ランプ、抵抗加熱板又はレーザー等が挙げられ、可視光線の線源としては、例えば、直射日光、ランプ、蛍光灯、LEDライト又はレーザー等が挙げられ、電子線の線源としては、例えば、市販されているタングステンフィラメントから発生する熱電子を利用する方式の装置、金属に高電圧パルスを通じて発生させる冷陰極方式およびイオン化したガス状分子と金属電極との衝突により発生する2次電子を利用する2次電子方式の装置等が挙げられる。さらに、アルファ線、ベータ線およびガンマ線の線源としては、例えば、Co60等の核分裂物質が挙げられ、ガンマ線については、加速電子を陽極へ衝突させる真空管等を利用することができる。これら活性エネルギー線は、単独もしくは2種以上を同時に照射してもよい。   Here, the above-mentioned active energy rays refer to infrared rays, visible rays, ultraviolet rays, X-rays, electron rays, alpha rays, beta rays, or gamma rays, and ultraviolet rays are particularly preferably used. The ultraviolet rays in the present invention include near ultraviolet rays (near UV, wavelength 200 to 380 nm), far ultraviolet rays (wavelength 10 to 200 nm), and extreme ultraviolet rays (extreme UV, wavelength 1 to 10 nm). These active energy rays can be used alone or in combination of two or more. The source of these active energy rays is not particularly limited as long as it can be cured in a short time after coating or application of an uncured stagnation sound preventing material to the substrate to be coated. For example, a low pressure mercury lamp, a high pressure A known generation means such as a mercury lamp, an excimer ultraviolet (excimer UV) lamp, a halide lamp, an LED light, or a laser can be used. Examples of the infrared ray source include a lamp, a resistance heating plate, or a laser. Examples of the visible ray source include direct sunlight, a lamp, a fluorescent lamp, an LED light, and a laser. As an electron beam source, for example, a system using a thermoelectron generated from a commercially available tungsten filament, a cold cathode system that generates a metal through a high voltage pulse, and an ionized gaseous molecule and a metal electrode Examples include secondary electron type devices that utilize secondary electrons generated by collision. Furthermore, as a source of alpha rays, beta rays, and gamma rays, for example, a fission material such as Co60 can be cited. For gamma rays, a vacuum tube that collides accelerated electrons with the anode can be used. These active energy rays may be irradiated alone or in combination of two or more.

本発明の軋み音防止材に用いられるシランカップリング剤(B)は、有機官能基とシラノール骨格のSiとが長鎖脂肪酸鎖を介した構造を有している。この長鎖脂肪酸鎖を介した構造によって、有機官能基の自由度が大きく、反応性が高いため、硬化後の軋み音防止材と部品表面との密着性向上に寄与する。長鎖脂肪酸鎖の炭素数は8個以上が好ましく、炭素数が7個未満であると密着性が不足する場合がある。末端の有機官能基は、エポキシ基、アミノ基、ビニル基、アクリル基などが適用でき、密着性の観点からエポキシ基が特に好ましい。長鎖脂肪鎖を有するエポキシ系シランカップリング剤としては、公知のものが適用できるが、密着性の観点からグリシドキシオクチルトリメトキシシランが特に好ましい。グリシドキシオクチルトリメトキシシランとしては、信越シリコーン社製KBM−4803などが適用できる。   The silane coupling agent (B) used for the squeaking noise preventing material of the present invention has a structure in which an organic functional group and Si having a silanol skeleton are interposed via a long-chain fatty acid chain. Due to the structure through the long fatty acid chain, the degree of freedom of the organic functional group is large and the reactivity is high, which contributes to improving the adhesion between the squeaking noise preventing material after curing and the part surface. The long chain fatty acid chain preferably has 8 or more carbon atoms, and if the carbon number is less than 7, the adhesion may be insufficient. As the terminal organic functional group, an epoxy group, an amino group, a vinyl group, an acrylic group or the like can be applied, and an epoxy group is particularly preferable from the viewpoint of adhesion. As the epoxy-based silane coupling agent having a long-chain fatty chain, known ones can be applied, but glycidoxyoctyltrimethoxysilane is particularly preferable from the viewpoint of adhesion. As glycidoxyoctyltrimethoxysilane, KBM-4803 manufactured by Shin-Etsu Silicone Co., Ltd. can be applied.

シランカップリング剤(B)の含有量は、活性エネルギー線硬化性樹脂組成物(A)100重量部に対して0.5〜10重量部であることが好ましく、1〜5重量部であることがさらに好ましい。シランカップリング剤(B)の含有量が0.5重量部未満であると、密着性が十分得られない場合があり、10重量部を超えると硬化状態における軋み音防止材のE硬度が小さくなって、強度が不十分となる場合があるので、上記範囲が好ましいのである。   The content of the silane coupling agent (B) is preferably 0.5 to 10 parts by weight, and 1 to 5 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin composition (A). Is more preferable. If the content of the silane coupling agent (B) is less than 0.5 parts by weight, sufficient adhesion may not be obtained. If it exceeds 10 parts by weight, the E hardness of the squeaking noise preventing material in the cured state is small. Since the strength may be insufficient, the above range is preferable.

本発明の軋み音防止材に用いられるシリカ微粒子(C)は、粒径が100〜200nmの第一のシリカ微粒子(C1)と粒径が5〜20nmの第二のシリカ微粒子(C2)とを含んでなるものである。第一のシリカ微粒子(C1)は、硬化した軋み音防止材の柔軟性を維持しつつ強度を向上させる成分である。第二のシリカ微粒子(C2)は、未硬化状態の軋み音防止材の粘度を調整するための成分であり、塗工性と塗工物の形状保持性とに寄与する。   The silica fine particles (C) used for the squeaking noise preventing material of the present invention are composed of first silica fine particles (C1) having a particle size of 100 to 200 nm and second silica fine particles (C2) having a particle size of 5 to 20 nm. It contains. The first silica fine particles (C1) are components that improve the strength while maintaining the flexibility of the cured squeaking noise preventing material. The second silica fine particle (C2) is a component for adjusting the viscosity of the uncured stagnation sound preventing material and contributes to the coating property and the shape retention of the coated material.

第一のシリカ微粒子(C1)は、100〜200nmの粒径からなる。第一のシリカ微粒子(C1)の粒径が上記範囲から外れると十分な強度が得られない場合がある。第一のシリカ微粒子の配合割合は、活性エネルギー線硬化性樹脂組成物(A)100重量部に対して10〜80重量部であり、25〜50重量部であることが好ましい。第一のシリカ微粒子の配合割合が10重量部未満であると、硬化状態における軋み音防止材のE硬度が小さくなり十分な強度が得られず、80重量部を超えると当該E硬度が大きくなりすぎて十分な軋み音防止効果が得られないため好ましくない。   The first silica fine particles (C1) have a particle diameter of 100 to 200 nm. If the particle size of the first silica fine particles (C1) is out of the above range, sufficient strength may not be obtained. The mixing ratio of the first silica fine particles is 10 to 80 parts by weight, preferably 25 to 50 parts by weight, based on 100 parts by weight of the active energy ray-curable resin composition (A). When the blending ratio of the first silica fine particles is less than 10 parts by weight, the E hardness of the squeaking noise preventing material in the cured state becomes small and sufficient strength cannot be obtained, and when it exceeds 80 parts by weight, the E hardness increases. This is not preferable because a sufficient squeaking noise prevention effect cannot be obtained.

第二のシリカ微粒子(C2)は、5〜20nmの粒径からなる。第二のシリカ微粒子(C2)の粒径が上記範囲から外れると塗布性に問題が生じる場合がある。第二のシリカ微粒子(C2)の配合割合は、活性エネルギー線硬化性樹脂組成物(A)100重量部に対して0.5〜10重量部であり、2〜5重量部であることが好ましい。第二のシリカ微粒子の配合割合が0.5重量部未満であると、粘度が低く塗布性が問題となり、10重量部以上となると、粘度が高くなりすぎてニードルから吐出することが困難になるため好ましくない。   The second silica fine particles (C2) have a particle diameter of 5 to 20 nm. If the particle size of the second silica fine particles (C2) is out of the above range, there may be a problem in coating properties. The blending ratio of the second silica fine particles (C2) is 0.5 to 10 parts by weight, preferably 2 to 5 parts by weight, based on 100 parts by weight of the active energy ray-curable resin composition (A). . If the blending ratio of the second silica fine particles is less than 0.5 parts by weight, the viscosity is low and applicability becomes a problem, and if it is 10 parts by weight or more, the viscosity becomes too high to be discharged from the needle. Therefore, it is not preferable.

ここで、上記第一のシリカ微粒子(C1)及び第二のシリカ微粒子(C2)の粒径は一次粒径であり、SEM又はTEM(透過型電子顕微鏡)で一次粒子が視認できる倍率の画像において、ランダムに選択した1000個の微粒子の一次粒子画像のそれぞれ輪郭の最長径を測定し、相加平均して得られた数値である。なお、該一次粒径に対応する比表面積(DIN66131準拠BET法)は、シリカ微粒子の密度を2.0g/cmとして、第一のシリカ微粒子(C1)の比表面積は15〜30m/gであり、第二のシリカ微粒子(C2)の比表面積は15〜600m/gである。 Here, the particle diameters of the first silica fine particles (C1) and the second silica fine particles (C2) are primary particle diameters, and in an image with a magnification at which the primary particles can be visually recognized with an SEM or a TEM (transmission electron microscope). This is a numerical value obtained by measuring the longest diameter of each of the primary particle images of 1000 randomly selected fine particles and arithmetically averaging them. The specific surface area (DIN 66131 compliant BET method) corresponding to the primary particle size is that the density of the silica fine particles is 2.0 g / cm 3 and the specific surface area of the first silica fine particles (C1) is 15 to 30 m 2 / g. The specific surface area of the second silica fine particles (C2) is 15 to 600 m 2 / g.

第一のシリカ微粒子(C1)と第二のシリカ微粒子(C2)は、上述の粒径範囲と作用効果を発揮するものであれば公知のシリカ微粒子を適用できるが、上記作用効果をより得やすいフュームドシリカが好ましい。また、フュームドシリカのうち、疎水性処理がなされていない親水性のシリカ微粒子が特に好ましい。親水性のシリカ微粒子を用いることによって、硬化後の密着性を備えつつ、強度および表面滑り性を得ることができる。ここでフュームドシリカとは、シラン化合物を高温雰囲気で処理する事で得られる凝集体の総称であり、得られた凝集体はガラスと同様に、ケイ素、酸素及び水素からなる化合物であり、一般的に親水性シリカと呼ばれている。また、フュームドシリカは、工業的に多方面で使用されており、その用途や製法に応じて疎水化と呼ばれる処理が行われる場合がある。この疎水性処理とは、親水性シリカを、炭素を含む有機官能基を有する化合物で処理することにより行われ、それゆえ疎水性シリカ微粒子は炭素成分を含有する。よって、親水性を有する観点から、シリカ微粒子の炭素含有量は低いことが好ましく、具体的には第一のシリカ微粒子(C1)と第二のシリカ微粒子(C2)の炭素含有量は、シリカ微粒子粒子全体に対して0.5質量%未満であり、より好ましくは0.3質量%以下であり、さらに好ましくは0.1質量%以下であり、炭素成分を含まないことが特に好ましい。第一のシリカ微粒子(C1)と第二のシリカ微粒子(C2)として適用できるシリカ微粒子の具体例としては、日本アエロジル社のAEROSIL(登録商標)やトクヤマ社のREOLOSIL(登録商標)、CABOT社のCAB−O−SIL(登録商標)、旭化成ワッカー社製WACKER HDK(登録商標)に代表されるヒュームドシリカ、日本シリカ工業社のNIPSIL(登録商標)、富士シリシア社のSylisia(登録商標)、トクヤマ社のTOKUSIL(登録商標)などが挙げられる。   As the first silica fine particles (C1) and the second silica fine particles (C2), known silica fine particles can be applied as long as they exhibit the above-mentioned particle size range and operational effects, but the above-mentioned operational effects are more easily obtained. Fumed silica is preferred. Of the fumed silica, hydrophilic silica fine particles not subjected to hydrophobic treatment are particularly preferable. By using hydrophilic silica fine particles, strength and surface slipperiness can be obtained while providing adhesion after curing. Here, fumed silica is a general term for aggregates obtained by treating a silane compound in a high-temperature atmosphere, and the obtained aggregates are compounds composed of silicon, oxygen and hydrogen in the same way as glass. In particular, it is called hydrophilic silica. In addition, fumed silica is industrially used in many fields, and a process called hydrophobization may be performed depending on its application and production method. The hydrophobic treatment is performed by treating hydrophilic silica with a compound having an organic functional group containing carbon, and therefore the hydrophobic silica fine particles contain a carbon component. Therefore, from the viewpoint of having hydrophilicity, the carbon content of the silica fine particles is preferably low. Specifically, the carbon content of the first silica fine particles (C1) and the second silica fine particles (C2) is the silica fine particles. It is less than 0.5 mass% with respect to the whole particle | grains, More preferably, it is 0.3 mass% or less, More preferably, it is 0.1 mass% or less, and it is especially preferable that a carbon component is not included. Specific examples of silica fine particles that can be used as the first silica fine particles (C1) and the second silica fine particles (C2) include AEROSIL (registered trademark) of Nippon Aerosil Co., Ltd., REOLOSIL (registered trademark) of Tokuyama Co., Ltd., and CABOT. CAB-O-SIL (registered trademark), fumed silica typified by WACKER HDK (registered trademark) manufactured by Asahi Kasei Wacker, NIPSIL (registered trademark) of Nippon Silica Kogyo Co., Ltd. TOKUSIL (registered trademark) of the company.

本発明の軋み音防止材には、必要に応じて、本発明の効果を損なわない範囲においてその他の添加剤を配合してもよい。その他の添加剤としては、例えば、充填剤が挙げられ、粉末充填剤のみならず、導電剤、除電剤、難燃剤、緩衝性改良剤及び着色剤なども含まれる。これらの一例を挙げると、粉末充填剤としては、結晶性シリカ、熔融シリカ、炭酸カルシウム、タルク、マイカ、アルミナ、水酸化アルミニウム又はホワイトカーボンなどが挙げられる。また、導電性や除電性の付与にはカーボンブラック、膨張黒鉛粉末、粉末状グラファイト又は金属微粒子などを用いることができる。難燃剤としては、粉末状有機ハロゲン化合物、赤リン、三酸化アンチモン、膨張黒鉛、マグネタイト又は水酸化アルミニウムなどを用いることができる。緩衝性改良剤としては、有機殻を有する中空フィラー(例えば、日本フィライト社製エクスパンセル(登録商標)など)を用いることができる。着色剤としては、各種の顔料や染料を挙げることができ、これら添加剤は、用途により適宜選択して使用すればよい。   If necessary, the squeaking noise preventing material of the present invention may be blended with other additives as long as the effects of the present invention are not impaired. Other additives include, for example, fillers, and include not only powder fillers but also conductive agents, static eliminating agents, flame retardants, buffering improvers, colorants, and the like. Examples of these powder fillers include crystalline silica, fused silica, calcium carbonate, talc, mica, alumina, aluminum hydroxide, and white carbon. Moreover, carbon black, expanded graphite powder, powdered graphite, metal fine particles, or the like can be used for imparting electrical conductivity or charge removal. As the flame retardant, a powdery organic halogen compound, red phosphorus, antimony trioxide, expanded graphite, magnetite, aluminum hydroxide, or the like can be used. As the buffering property improving agent, a hollow filler having an organic shell (for example, EXPANCEL (registered trademark) manufactured by Nippon Philite Co., Ltd.) can be used. Examples of the colorant include various pigments and dyes, and these additives may be appropriately selected and used depending on the application.

本発明の軋み音防止材は、未硬化状態において、せん断速度1s−1における粘度が50〜1000Pa・sである。粘度が50Pa・s未満であると、ニードル等から吐出した後に流動しすぎて形状保持性に劣り、1000Pa・sを超えると、ニードル等からの吐出が困難になり、塗布時の引張応力に対して切れ易くなったり、径膨張が起こり易くなったりするので、好ましくない。なお、本発明の軋み音防止材は、未硬化状態において非ニュートン流体の特性を示すため、本発明における粘度とは、見かけ粘度であり(以下、単に粘度と称する)、JIS Z8803(1991)における「円錐−平板形回転粘度計による粘度測定方法」に従い、25℃条件下で測定された値である。また、未硬化状態とは、活性エネルギー線硬化性樹脂組成物に対し、硬化させるための活性エネルギー線が照射されていない状態である。 The squeaking noise preventing material of the present invention has a viscosity at a shear rate of 1 s −1 of 50 to 1000 Pa · s in an uncured state. If the viscosity is less than 50 Pa · s, it will flow too much after being ejected from the needle, etc., resulting in poor shape retention, and if it exceeds 1000 Pa · s, it will be difficult to eject from the needle, etc. This is not preferable because it tends to be cut easily and radial expansion is likely to occur. In addition, since the squeaking noise preventing material of the present invention exhibits the characteristics of a non-Newtonian fluid in an uncured state, the viscosity in the present invention is an apparent viscosity (hereinafter simply referred to as viscosity), and is based on JIS Z8803 (1991). It is a value measured under the condition of 25 ° C. according to “Viscosity Measurement Method Using Cone-Plate Rotational Viscometer”. Moreover, an uncured state is a state in which the active energy ray curable resin composition is not irradiated with an active energy ray for curing.

本発明の軋み音防止材は、未硬化状態では液状であり、活性エネルギー線を照射することによって硬化する。硬化した軋み音防止材は、E硬度(JIS K6253準拠)が50以上である。E硬度が50未満であると、部品嵌め込み時のせん断応力で破損しやすくなり好ましくない。E硬度の上限は、軋み音防止性が得られる範囲であれば制限はないが、E硬度が大きくなりすぎると部品の振動エネルギーを吸収し難くなるため、部品が歪んで軋み音を生じる場合があるので、目安として80以下であることが好ましい。したがって、E硬度を50〜80範囲とすることで、軋み音防止材は十分な強度を備えつつ防振性をより良好に発揮する。   The squeaking noise preventing material of the present invention is liquid in an uncured state and is cured by irradiation with active energy rays. The cured squeaking noise preventing material has an E hardness (based on JIS K6253) of 50 or more. If the E hardness is less than 50, it is not preferred because it easily breaks due to the shear stress at the time of component fitting. The upper limit of E hardness is not limited as long as it can prevent squeaking noise, but if E hardness becomes too high, it becomes difficult to absorb the vibration energy of the component. Therefore, it is preferably 80 or less as a guide. Therefore, by setting the E hardness in the range of 50 to 80, the squeaking noise preventing material exhibits a sufficient anti-vibration property while having sufficient strength.

本発明の軋み音防止材は、公知の樹脂組成物の製造方法により製造される。具体的には、一例として、単軸押出機、二軸押出機、ニーダー、バンバリーミキサー又はロールミル等の混練機を用いて活性エネルギー線硬化性樹脂組成物(A)とシランカップリング剤(B)を混練した樹脂材料に、シリカ微粒子(C)を添加し、均一に分散することにより製造される。   The squeaking noise preventing material of the present invention is produced by a known method for producing a resin composition. Specifically, as an example, an active energy ray-curable resin composition (A) and a silane coupling agent (B) using a kneader such as a single screw extruder, a twin screw extruder, a kneader, a Banbury mixer, or a roll mill. It is manufactured by adding silica fine particles (C) to a resin material kneaded and uniformly dispersing.

本発明の軋み音防止材を、ニードル状塗工部から加圧手段によってビード状またはドット状に吐出して吐出体とし、同時もしくは続いて、前記吐出体に活性エネルギー線を照射して硬化させることによって、所望の箇所に軋み音防止材を形成することができる。本発明の軋み音防止材は、良好な防振性を有するとともに、十分な強度と表面滑り性および部品表面との密着性を有していることから、部品の嵌め込み作業時や部品と軋み音防止材が擦れあった際も軋み音防止材の破損や部品表面からの剥離が発生することなく、安定的に軋み音防止効果を発揮することができる。   The squeaking noise preventing material of the present invention is ejected in a bead shape or a dot shape from a needle-like coating portion by a pressurizing means to form a discharge body, and simultaneously or subsequently, the discharge body is irradiated with active energy rays and cured. Thus, it is possible to form a squeaking noise preventing material at a desired location. The squeaking noise preventing material of the present invention has a good vibration proofing property, and has sufficient strength, surface slipperiness, and adhesion to the component surface. Even when the preventive material is rubbed, it is possible to stably exhibit a squeaking noise preventing effect without causing damage to the squeaking noise preventing material or peeling from the surface of the component.

以下、本発明を実施例により具体的に説明するが、本発明は、これらの実施例に特に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not particularly limited to these examples.

以下の実施例及び比較例における物性の測定方法及び効果の評価方法は、下記の通りである。   The measurement methods of physical properties and the evaluation methods of effects in the following examples and comparative examples are as follows.

(1)粘度
JIS Z8803(円錐−平板形回転粘度計)に準じて、ブルックフィールド社製のコーンプレート型粘度計DT−3Tを使用して、25℃におけるせん断速度1.0s−1にて粘度を測定した。
(1) Viscosity Viscosity at a shear rate of 1.0 s −1 at 25 ° C. using a corn-plate viscometer DT-3T manufactured by Brookfield according to JIS Z8803 (cone-plate rotational viscometer). Was measured.

(2)硬度(E硬度)
未硬化状態の軋み音防止材をφ13mm、高さ6.3mmとなる透明な樹脂型に注型し、天面及び底面から365nmの紫外線をそれぞれ2J/cmずつ照射して硬化させたものを測定サンプルとした。測定は、JIS K6253に準じたタイプEデュロメータを用いてE硬度を測定した。
(2) Hardness (E hardness)
An uncured squeaking noise prevention material is cast into a transparent resin mold having a diameter of 13 mm and a height of 6.3 mm, and cured by irradiating 365 nm ultraviolet rays from the top and bottom surfaces of 2 J / cm 2 each. A measurement sample was obtained. In the measurement, E hardness was measured using a type E durometer according to JIS K6253.

(3)塗工性(吐出性)
吐出口の断面形状が円形で内径φ1.1mmのニードルが装着された遮光性シリンジに未硬化状態の軋み音防止材を充填した容器を、紫外線照射装置を附属させたエアー加圧式ディスペンシング装置(武蔵エンジニアリング社製 型式ショットマスター(登録商標)200DS)に装着した。容器内に任意の空気圧を印加して、内径φ1.1mmのニードルから未硬化状態の軋み音防止材を16mm/sでビード状に吐出するとともに、ニードルを15mm/sの速度で移動させながら、図1に示すパターンのビード状吐出体を形成した。このとき、未硬化状態の軋み音防止材をニードルから16mm/sで吐出可能な場合に塗工性が「○」(合格:良)、吐出可能であるがニードル移動速度(15mm/s)よりも吐出速度が遅く、ビード状吐出体が伸び易い組成物を塗工性が「△」(合格:可)、著しく吐出速度が小さいか、吐出困難な組成物を塗工性が「×」(不合格)とした。
(3) Coating properties (dischargeability)
An air-pressurized dispensing device with an ultraviolet irradiation device attached to a container filled with an uncured stagnation sound prevention material in a light-shielding syringe equipped with a needle having an inner diameter φ1.1 mm and a circular discharge port cross-sectional shape ( It was mounted on a model Shotmaster (registered trademark) 200DS manufactured by Musashi Engineering Co., Ltd. While applying arbitrary air pressure in the container and discharging the uncured stagnation sound preventing material from the needle having an inner diameter of φ1.1 mm in a bead shape at 16 mm / s, while moving the needle at a speed of 15 mm / s, A bead-shaped discharge body having the pattern shown in FIG. 1 was formed. At this time, when the uncured stagnation sound preventing material can be discharged from the needle at 16 mm / s, the coating property is “◯” (pass: good), and the discharge is possible, but the needle moving speed (15 mm / s) In addition, a composition in which the discharge speed is slow and the bead-shaped discharge body is easy to extend has a coating property of “△” (pass: acceptable), and a composition in which the discharge speed is extremely low or difficult to discharge is “×” ( Failed).

(4)ビード状吐出体の未硬化状態での形状保持性
吐出口の断面形状が円形で内径φ1.1mmのニードルが装着された遮光性シリンジに未硬化状態の軋み音防止材を充填した容器を、紫外線照射装置を附属させたエアー加圧式ディスペンシング装置(武蔵エンジニアリング社製 型式ショットマスター(登録商標)200DS)に装着した。内径φ1.1mmのニードルからの未硬化状態の軋み音防止材の吐出速度とニードルの移動速度とを同じにして、ガラス板(平岡ガラス社製、ソーダガラス)上にビード状吐出体を形成した。ビード状吐出体を30秒間自然放置して、ビード状吐出体の形状変化(ダレの程度)を観察した。ビード状吐出体の幅と高さを、顕微鏡(ニコン製 MM−800−LFA)を用いて測定し、線高さと線幅との比(高さ/幅)が0.7〜1の場合に形状保持性が「○」(合格:良好)、0.5〜0.7未満の場合に形状保持性が「△」(合格:可)、0.5未満の場合に形状保持性が「×」(不合格)とした。
(4) Shape retention property of bead-shaped discharge body in uncured state Container filled with uncured stagnation sound prevention material in light-shielding syringe with a circular cross-sectional shape of discharge port and a needle having an inner diameter of φ1.1 mm Was attached to an air pressure type dispensing device (model Shotmaster (registered trademark) 200DS manufactured by Musashi Engineering Co., Ltd.) to which an ultraviolet irradiation device was attached. A bead-like discharge body was formed on a glass plate (manufactured by Hiraoka Glass Co., Ltd., soda glass) with the same discharge speed of the uncured stagnation sound preventing material from the needle having an inner diameter of φ1.1 mm and the moving speed of the needle. . The bead-shaped discharge body was left to stand for 30 seconds, and the shape change (degree of sagging) of the bead-shaped discharge body was observed. When the width and height of the bead-shaped ejector are measured using a microscope (Nikon MM-800-LFA), and the ratio of the line height to the line width (height / width) is 0.7 to 1 Shape retention is “◯” (pass: good), shape retention is “△” (pass: acceptable) when less than 0.5 to 0.7, shape retention is “×” when less than 0.5 "(Fail).

(5)密着性
吐出口の断面形状が円形で内径φ1.9mmのニードルが装着された遮光性シリンジに未硬化状態の軋み音防止材を充填した容器を、紫外線照射装置を附属させたエアー加圧式ディスペンシング装置(武蔵エンジニアリング社製 型式ショットマスター(登録商標)200DS)に装着した。内径φ1.9mmのニードルからの未硬化状態の軋み音防止材の吐出速度とニードルの移動速度とを同じにして、100mm×200mm×厚さ3mmのABS樹脂製の平板(ユーエムジー・エービーエス株式会社製 TM20)上に50mmのビード状吐出体を直線状に形成して、365nmの紫外線を2J/cm照射して硬化させて、高さ約2mmのビード状硬化物を形成したものを評価サンプルとした。評価は、図2(a)のように、評価サンプルを形成したABS樹脂製の平板表面に対して水平移動する治具4に100mm×200mm×厚さ3mmのABS樹脂製の平板2(ユーエムジー・エービーエス株式会社製 TM20)を固定して掻き取りヘラ(スクレイパー3)とし、図2(b)の通り直線状のビード状硬化物111に対して配置し、図2(c)の通りスクレイパー3の先端エッジ辺ELがビード状硬化物111に接触した状態からビード状硬化物方向へ0.1mm/sの速度で0.5mm移動させた時の硬化物の剥がれの有無を確認し、3回の繰り返し試験で剥がれがみられなかった場合を「○」(合格:良好)、硬化物に一部剥がれがみられた場合を「△」(合格:可)、平板との接触部が完全に剥がれた場合を「×」(不合格)とした。
(5) Adhesiveness A container filled with an uncured stagnation sound prevention material in a light-shielding syringe with a circular cross-sectional shape of the discharge outlet and a needle having an inner diameter of 1.9 mm is attached to an air heater with an ultraviolet irradiation device attached. It was attached to a pressure type dispensing device (Model Shot Master (registered trademark) 200DS manufactured by Musashi Engineering Co., Ltd.). A flat plate made of ABS resin of 100 mm × 200 mm × thickness 3 mm with the discharge speed of the uncured squeak noise prevention material from the needle having an inner diameter of 1.9 mm and the moving speed of the needle being the same (manufactured by UMG ABS Co., Ltd.) TM20) a 50 mm bead-shaped discharge body formed linearly, cured by irradiation with 365 nm ultraviolet rays at 2 J / cm 2, and a bead-shaped cured product having a height of about 2 mm was formed as an evaluation sample. did. As shown in FIG. 2 (a), the ABS resin flat plate 2 (100 mm × 200 mm × thickness 3 mm) is moved to a jig 4 that moves horizontally with respect to the ABS resin flat plate surface on which the evaluation sample is formed. TM20) manufactured by ABS Co., Ltd. is fixed to form a scraping spatula (scraper 3), which is placed on the linear bead-shaped cured product 111 as shown in FIG. 2 (b), and the scraper 3 as shown in FIG. 2 (c). Check the presence or absence of peeling of the cured product when it is moved 0.5 mm at a speed of 0.1 mm / s from the state in which the leading edge EL is in contact with the bead-shaped cured product 111 to the bead-shaped cured product. “○” indicates that no peeling was observed in the repeated test (pass: good), “△” indicates that the cured product was partially peeled (pass: acceptable), and the contact portion with the flat plate was completely peeled off “×” (failed) ).

(6)強度(硬化物)
(2)のE硬度から強度を評価判定した。E硬度50以上が「○」(合格:良)、E硬度が50未満の場合に「×」(不合格)と判断した。
(6) Strength (cured product)
The strength was evaluated from the E hardness of (2). An E hardness of 50 or more was judged as “◯” (pass: good), and an E hardness of less than 50 was judged as “x” (failed).

以下の実施例及び比較例で使用したシランカップリング剤(B)の仕様を表1に、第一のシリカ微粒子(C1)及び第二のシリカ微粒子(C2)の仕様を表2に示す。なお、表2中のハイプレシカ及びAEROSILは登録商標である。   The specifications of the silane coupling agent (B) used in the following examples and comparative examples are shown in Table 1, and the specifications of the first silica fine particles (C1) and the second silica fine particles (C2) are shown in Table 2. In Table 2, high plesica and AEROSIL are registered trademarks.

[実施例1]
蓋付きプラスチック容器に、未硬化状態の活性エネルギー線硬化型シリコーン樹脂(モメンティブ社製 TUV7110−CT:硬化時のE硬度が20)100重量部に対してメルカプト変性シリコーンオイル(信越化学工業社製 KF2001)4.5重量部を添加して混合し、硬化時のE硬度が40となるよう調整した活性エネルギー線硬化性樹脂組成物(A)を100重量部、シランカップリング剤(B)としてグリシドキシオクチルトリメトキシシラン(表1中 記号b1)を3重量部、第一のシリカ微粒子(C1)として粒径が120nmのフュームドシリカ(球状ナノシリカFUME:表中記号c12)を35重量部、第二のシリカ微粒子(C2)として粒径が12nmのフュームドシリカ(AEROSIL200:表1中 記号c22)を3重量部、をそれぞれ秤量して投入して蓋で密閉した後、自転・公転ミキサー(製品名:あわとり錬太郎(登録商標)ARE−250、株式会社シンキー社製品)にセットし、2000rpmにて3分間混練して軋み音防止材を得た。この軋み音防止材の一部を内容量50mLの遮光シリンジに充填し、シリンジ用遠心脱泡機(製品名:アワトロン(登録商標)AW−50、武蔵エンジニアリング株式会社製品)を用いて脱泡処理を行い、軋み音防止材が充填された容器を作製し、塗工性及びビード状吐出体の形状保持性の評価用サンプルとした。一方、遮光シリンジに充填しなかった残りの軋み音防止材は、粘度及び硬度の測定用サンプルとした。これらサンプルを用いて、実施例1で得られた軋み音防止材の物性測定及び評価を行った。
[Example 1]
Mercapto-modified silicone oil (KF2001 manufactured by Shin-Etsu Chemical Co., Ltd.) with 100 parts by weight of uncured active energy ray-curable silicone resin (Momentive TUV7110-CT: E hardness 20 when cured) in a plastic container with a lid ) Add 4.5 parts by weight and mix, 100 parts by weight of the active energy ray-curable resin composition (A) adjusted so that E hardness at the time of curing is 40, and as a silane coupling agent (B) 3 parts by weight of cidoxyoctyltrimethoxysilane (symbol b1 in Table 1), 35 parts by weight of fumed silica (spherical nanosilica FUME: symbol c12 in the table) having a particle size of 120 nm as the first silica fine particles (C1), Fumed silica having a particle size of 12 nm (AEROSIL200: in Table 1, symbol c2) as the second silica fine particles (C2) 2) 3 parts by weight of each are weighed in and sealed with a lid, and then set in a rotating / revolving mixer (product name: Awatori Rentaro (registered trademark) ARE-250, product of Sinky Corporation). The kneading sound preventing material was obtained by kneading for 3 minutes at 2000 rpm. Part of this squeaking noise prevention material is filled in a 50 mL light-shielding syringe and defoamed using a centrifugal defoamer for syringes (Product name: AWATRON (registered trademark) AW-50, product of Musashi Engineering Co., Ltd.). Then, a container filled with a squeaking noise preventing material was prepared and used as a sample for evaluating the coatability and the shape retaining property of the bead-shaped discharge body. On the other hand, the remaining squeaking noise preventing material that was not filled in the light-shielding syringe was used as a sample for measuring viscosity and hardness. Using these samples, the physical property measurement and evaluation of the squeaking sound preventing material obtained in Example 1 were performed.

[実施例2]
未硬化状態の活性エネルギー線硬化型シリコーン樹脂(モメンティブ社製 TUV7110−CT:硬化時のE硬度が20)100重量部に対してメルカプト変性シリコーンオイル(信越化学工業社製 KF2001)2.3重量部を添加して混合し、硬化時のE硬度が30となるよう調整した活性エネルギー線硬化性樹脂組成物(A)を用いて、表3に示す配合とした以外は実施例1と同様の方法で、実施例2の軋み音防止材及びそれが充填された容器を得た。実施例1と同様にして、実施例2で得られた各軋み音防止材の物性測定及び評価を行った。
[Example 2]
An active energy ray-curable silicone resin in an uncured state (TUV7110-CT manufactured by Momentive, Inc .: E hardness at curing: 20) 100 parts by weight of mercapto-modified silicone oil (KF2001 manufactured by Shin-Etsu Chemical Co., Ltd.) 2.3 parts by weight The active energy ray-curable resin composition (A) adjusted to have an E hardness of 30 upon curing was used, and the same method as in Example 1 except that the formulation shown in Table 3 was used. Thus, the squeaking noise preventing material of Example 2 and the container filled with it were obtained. In the same manner as in Example 1, physical property measurement and evaluation of each squeaking sound preventing material obtained in Example 2 were performed.

[実施例3]
未硬化状態の活性エネルギー線硬化型シリコーン樹脂(モメンティブ社製 TUV7110−CT:硬化時のE硬度が20)100重量部に対してメルカプト変性シリコーンオイル(信越化学工業社製 KF2001)5.7重量部を添加して混合し、硬化時のE硬度が45となるよう調整した活性エネルギー線硬化性樹脂組成物(A)を使用し、表3に示す配合とした以外は、実施例1と同様の方法で実施例3の軋み音防止材及びそれが充填された容器を得た。実施例1と同様にして、実施例3で得られた各軋み音防止材の物性の測定及び評価を行った。
[Example 3]
5.7 parts by weight of mercapto-modified silicone oil (KF2001, Shin-Etsu Chemical Co., Ltd.) with respect to 100 parts by weight of uncured active energy ray-curable silicone resin (Momentive TUV7110-CT: E hardness at curing 20) The active energy ray-curable resin composition (A) adjusted to have an E hardness of 45 at the time of curing was used, and the same formulation as shown in Table 3 was used except that the formulation shown in Table 3 was used. By the method, the squeaking noise preventing material of Example 3 and a container filled with it were obtained. In the same manner as in Example 1, the physical properties of each squeaking sound preventing material obtained in Example 3 were measured and evaluated.

[実施例4〜6]
実施例1〜3で使用した活性エネルギー線硬化性樹脂組成物(A)をそれぞれ用いて、シランカップリング剤(B)、第一のシリカ微粒子(C1)、第二のシリカ微粒子(C2)を表3の配合とした以外は、実施例1と同様の方法で実施例4〜6の軋み音防止材及びそれが充填された容器を得た。実施例1と同様にして、実施例4〜6で得られた各軋み音防止材の物性の測定及び評価を行った。
[Examples 4 to 6]
Using the active energy ray-curable resin composition (A) used in Examples 1 to 3, the silane coupling agent (B), the first silica fine particles (C1), and the second silica fine particles (C2) are obtained. A squeaking noise preventing material of Examples 4 to 6 and a container filled with it were obtained in the same manner as in Example 1 except that the composition shown in Table 3 was used. In the same manner as in Example 1, the physical properties of the squeaking noise preventing materials obtained in Examples 4 to 6 were measured and evaluated.

[実施例7]
未硬化状態の活性エネルギー線硬化型シリコーン樹脂(モメンティブ社製 TUV7110−CT:硬化時のE硬度が20)100重量部に対してメルカプト変性シリコーンオイル(信越化学工業社製 KF2001)3.4重量部を添加して混合し、硬化時のE硬度が35となるよう調整した活性エネルギー線硬化性樹脂組成物(A)を使用し、表3に示す配合とした以外は、実施例1と同様の方法で実施例7の軋み音防止材及びそれが充填された容器を得た。実施例1と同様にして、実施例7で得られた各軋み音防止材の物性測定及び評価を行った。
[Example 7]
3.4 parts by weight of mercapto-modified silicone oil (KF2001 manufactured by Shin-Etsu Chemical Co., Ltd.) with respect to 100 parts by weight of uncured active energy ray-curable silicone resin (TUV7110-CT manufactured by Momentive, which has an E hardness of 20 when cured) The active energy ray-curable resin composition (A) adjusted to have an E hardness of 35 at the time of curing was used, and the same formulation as shown in Table 3 was used except that the formulation shown in Table 3 was used. By the method, a squeaking noise preventing material of Example 7 and a container filled with it were obtained. In the same manner as in Example 1, physical property measurement and evaluation of each squeaking sound preventing material obtained in Example 7 were performed.

[実施例8〜11]
各構成成分を表4に示す配合とした以外は、実施例1と同様の方法で実施例8〜11の軋み音防止材及びそれが充填された容器を得た。実施例1と同様にして、実施例8〜11で得られた各軋み音防止材の物性測定及び評価を行った。
[Examples 8 to 11]
Except for the components shown in Table 4, the squeaking noise preventing materials of Examples 8 to 11 and a container filled with the same were obtained in the same manner as in Example 1. In the same manner as in Example 1, physical property measurement and evaluation of each squeaking sound preventing material obtained in Examples 8 to 11 were performed.

[実施例12〜13]
シランカップリング剤(B)として、表1のオクテニルトリメトキシシラン(記号b2)およびメタクリロキシオクチルトリメトキシシラン(記号b3)をそれぞれ用いて、表4に示す配合とした以外は、実施例1と同様の方法で、実施例12及び13の軋み音防止材及びそれが充填された容器を得た。実施例1と同様にして、実施例12及び13で得られた各軋み音防止材の物性の測定及び評価を行った。
[Examples 12 to 13]
Example 1 except that octenyltrimethoxysilane (symbol b2) and methacryloxyoctyltrimethoxysilane (symbol b3) in Table 1 were used as the silane coupling agent (B), respectively, and the formulation shown in Table 4 was used. By the same method, the squeaking noise preventing material of Examples 12 and 13 and the container filled with it were obtained. In the same manner as in Example 1, the physical properties of the squeaking noise preventing materials obtained in Examples 12 and 13 were measured and evaluated.

[実施例14〜17]
主に第一のシリカ微粒子(C1)の粒径及び/又は配合を変えて、各構成成分を表5に示す配合とした以外は、実施例1と同様の方法で、実施例14〜17の軋み音防止材及びそれが充填された容器を得た。実施例1と同様にして、実施例14〜17で得られた各軋み音防止材の物性の測定及び評価を行った。なお、実施例15で用いた活性エネルギー線硬化性樹脂組成物(A)は、実施例2で使用したものと同じである。
[Examples 14 to 17]
Except for mainly changing the particle diameter and / or the composition of the first silica fine particles (C1) to make the respective components shown in Table 5, the same procedures as in Example 1 were followed. A squeaking noise prevention material and a container filled with it were obtained. In the same manner as in Example 1, the physical properties of each squeaking sound preventing material obtained in Examples 14 to 17 were measured and evaluated. In addition, the active energy ray-curable resin composition (A) used in Example 15 is the same as that used in Example 2.

[実施例18〜20]
主に第二のシリカ微粒子(C2)の粒径及び/又は配合を変えて、各構成成分を表5に示す配合とした以外は、実施例1と同様の方法で実施例18〜20の軋み音防止材及びそれが充填された容器を得た。実施例1と同様に実施例18〜20で得られた各軋み音防止材の物性の測定及び評価を行った。
[Examples 18 to 20]
It is the stagnation of Examples 18 to 20 in the same manner as in Example 1 except that the particle diameter and / or the composition of the second silica fine particles (C2) are mainly changed and the respective components are blended as shown in Table 5. A soundproofing material and a container filled with it were obtained. In the same manner as in Example 1, the physical properties of each squeaking sound preventing material obtained in Examples 18 to 20 were measured and evaluated.

実施例1〜7、実施例8〜13、実施例14〜20の軋み音防止材の物性測定及び評価結果を表3、表4、表5にそれぞれ示した。   Tables 3, 4 and 5 show the physical property measurements and evaluation results of the squeaking noise preventing materials of Examples 1 to 7, Examples 8 to 13, and Examples 14 to 20, respectively.

[比較例1]
各構成成分を表6に示す配合とした以外は、実施例1と同様の方法で、未硬化状態における粘度が30Pa・Sである比較例1の軋み音防止材及びそれが充填された容器を得た。実施例1と同様に比較例1で得られた各軋み音防止材の物性の測定及び評価を行った。
[Comparative Example 1]
A squeaking sound preventing material of Comparative Example 1 having a viscosity in an uncured state of 30 Pa · S and a container filled with the same, except that the respective components are blended as shown in Table 6 in the same manner as in Example 1. Obtained. Similarly to Example 1, the physical properties of each squeaking sound preventing material obtained in Comparative Example 1 were measured and evaluated.

[比較例2]
各構成成分を表6に示す配合とした以外は、実施例1と同様の方法で、未硬化状態における粘度が2000Pa・Sである比較例2の軋み音防止材及びそれが充填された容器を得た。実施例1と同様に比較例2で得られた各軋み音防止材の物性の測定及び評価を行った。
[Comparative Example 2]
A squeaking sound preventing material of Comparative Example 2 having a viscosity in an uncured state of 2000 Pa · S and a container filled with the same, except that each component is blended as shown in Table 6 in the same manner as in Example 1. Obtained. Similarly to Example 1, the physical properties of each squeaking sound preventing material obtained in Comparative Example 2 were measured and evaluated.

[比較例3]
活性エネルギー線硬化性樹脂組成物(A)として硬化時のE硬度が20となる活性エネルギー線硬化型シリコーン樹脂(モメンティブ社製 TUV7110−CT)を用いて、表6に示す配合とした以外は、実施例1と同様の方法で、比較例3の軋み音防止材及びそれが充填された容器を得た。実施例1と同様に比較例3で得られた各軋み音防止材の物性の測定及び評価を行った。
[Comparative Example 3]
Except for using the active energy ray-curable silicone resin (TUV7110-CT, manufactured by Momentive) having an E hardness of 20 as the active energy ray-curable resin composition (A), the formulation shown in Table 6 was used. In the same manner as in Example 1, the squeaking noise preventing material of Comparative Example 3 and a container filled with it were obtained. In the same manner as in Example 1, the physical properties of each squeaking sound preventing material obtained in Comparative Example 3 were measured and evaluated.

[比較例4]
シランカップリング剤(B)として、表1の長鎖脂肪酸鎖を有さないグリシドキシプロピルトリメトキシシラン(記号b4)を用い、表6に示す配合とした以外は、実施例1と同様の方法で、比較例4の軋み音防止材及びそれが充填された容器を得た。実施例1と同様に比較例4で得られた各軋み音防止材の物性の測定及び評価を行った。
[Comparative Example 4]
As silane coupling agent (B), glycidoxypropyltrimethoxysilane (symbol b4) having no long-chain fatty acid chain shown in Table 1 was used, and the composition shown in Table 6 was used. By the method, the squeaking noise preventing material of Comparative Example 4 and a container filled with it were obtained. In the same manner as in Example 1, the physical properties of each squeaking sound preventing material obtained in Comparative Example 4 were measured and evaluated.

比較例1〜4の軋み音防止材の物性及び評価結果を表6に示した。   Table 6 shows the physical properties and evaluation results of the squeaking noise preventing materials of Comparative Examples 1 to 4.

表3〜表5に示した実施例1〜20の評価結果から、本発明の軋み音防止材は未硬化状態の塗工性及び形状保持性に優れるとともに、その硬化物はE硬度が50以上の物性を有しており、強度、基材との密着性に優れていることがわかった。本発明の構成とその作用効果について、本実施例及び比較例を参照しながら記述する。   From the evaluation results of Examples 1 to 20 shown in Tables 3 to 5, the squeaking noise preventing material of the present invention is excellent in uncured coating properties and shape retention, and the cured product has an E hardness of 50 or more. It was found that the material has excellent strength and adhesion to the substrate. The configuration of the present invention and the operation and effect thereof will be described with reference to the examples and comparative examples.

実施例1〜20と比較例1〜2との評価結果の比較から、未硬化の状態において、軋み音防止材のせん断速度1s−1における粘度が50〜1000Pa・sの範囲を外れると、軋み音防止材の塗工性とビード状吐出体の形状保持性が低下するため、本発明の範囲とすることが必要であることがわかった。 From the comparison of the evaluation results of Examples 1 to 20 and Comparative Examples 1 and 2, in the uncured state, if the viscosity at the shear rate of 1 s −1 of the squeaking noise preventing material is out of the range of 50 to 1000 Pa · s, itching It has been found that it is necessary to be within the scope of the present invention because the coating property of the sound-preventing material and the shape retaining property of the bead-like discharge body are lowered.

また、実施例1〜20と比較例3との評価結果の比較から、硬化した状態において、E硬度が50未満であると強度が低下するため、E硬度は50以上とすることが必要であることがわかった。   Further, from the comparison of the evaluation results of Examples 1 to 20 and Comparative Example 3, in the cured state, when the E hardness is less than 50, the strength decreases, so the E hardness needs to be 50 or more. I understood it.

実施例1〜20と比較例4との評価結果の比較から、長鎖脂肪酸鎖を有するシランカップリング剤(B)を用いることで優れた密着性が得られることがわかった。また、実施例5と実施例12〜13の評価結果の比較から、シランカップリング剤(B)は、密着性の観点からエポキシ系シランカップリング剤であることが好ましいことがわかった。   From comparison of the evaluation results of Examples 1 to 20 and Comparative Example 4, it was found that excellent adhesion was obtained by using the silane coupling agent (B) having a long-chain fatty acid chain. Moreover, it turned out that it is preferable that a silane coupling agent (B) is an epoxy-type silane coupling agent from an adhesive viewpoint from the comparison of the evaluation result of Example 5 and Examples 12-13.

実施例8〜11の評価結果から、シランカップリング剤(B)の配合割合は、密着性の観点から活性エネルギー線硬化性樹脂組成物(A)100重量部に対して0.5重量部以上であることがより好ましいことがわかった。また、表3〜表6の評価の欄には記載していないが、硬化した軋み音防止材の表面タック性を触指観察したところ、実施例10の軋み音防止材に比べて実施例11で得られた軋み音防止材は表面にべたつきが生じていたことから、シランカップリング剤(B)が一定割合以上になると硬化表面にタック性が増してくることがわかった。この結果から、表面タック性を抑制する観点も考慮すると、シランカップリング剤の配合割合は、活性エネルギー線硬化性樹脂組成物(A)100重量部に対して、0.5〜10重量部であることがより好ましいことがわかった。   From the evaluation results of Examples 8 to 11, the blending ratio of the silane coupling agent (B) is 0.5 parts by weight or more with respect to 100 parts by weight of the active energy ray-curable resin composition (A) from the viewpoint of adhesion. It turned out that it is more preferable. Moreover, although not described in the evaluation column of Tables 3 to 6, when the surface tackiness of the cured squeaking noise preventing material was observed with the finger, Example 11 was compared with the squeaking noise preventing material of Example 10. Since the squeaking noise preventing material obtained in (1) was sticky on the surface, it was found that when the silane coupling agent (B) exceeds a certain ratio, tackiness increases on the cured surface. From this result, considering the viewpoint of suppressing the surface tackiness, the blending ratio of the silane coupling agent is 0.5 to 10 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin composition (A). It turned out to be more preferable.

本発明の軋み音防止材は、強度が優れていると共に、基材との密着性が優れているため、部品の嵌め込み時に軋み音防止材の破損や剥がれが生じずに軋み音を防止することができるので品質の向上に貢献することができるので、自動車などの複数の部品で構成された構造物の軋み音防止材として有用である。   The stagnation sound preventing material of the present invention is excellent in strength and has excellent adhesion to the base material, so that it is possible to prevent squeaking noise without causing damage or peeling of the squeaking sound preventing material when fitting parts. Therefore, it can contribute to the improvement of quality, and is useful as a material for preventing squeaking of a structure composed of a plurality of parts such as an automobile.

10 ビード状吐出体(未硬化物)
11、111 軋み音防止材(硬化物)
2 平板
3 スクレイパー(へら)
4 治具
10 Bead discharger (uncured product)
11, 111 Itching prevention material (cured material)
2 Flat plate 3 Scraper
4 Jig

Claims (6)

シリコーンを主成分とする活性エネルギー線硬化性樹脂組成物(A)に少なくともシランカップリング剤(B)とシリカ微粒子(C)を含んでなり、隣接する部品同士が互いに干渉し合う部分に塗布・硬化させて用いる軋み音防止材であって、前記活性エネルギー線硬化性樹脂組成物(A)の硬化状態におけるE硬度(JIS K6253準拠)が30〜45であり、前記シランカップリング剤(B)は長鎖脂肪酸鎖を有するものであり、前記シリカ微粒子(C)は粒径が100〜200nmの第一のシリカ微粒子(C1)と粒径が5〜20nmの第二のシリカ微粒子(C2)とを含んでなり、該第一のシリカ微粒子(C1)及び該第二のシリカ微粒子(C2)の配合割合が前記活性エネルギー線硬化性樹脂組成物(A)100重量部に対してそれぞれ10〜80重量部、0.5〜10重量部であり、未硬化の状態において、せん断速度1s−1における粘度が50〜1000Pa・sであり、かつ硬化した状態において、E硬度(JIS K6253準拠)が50以上であることを特徴とする軋み音防止材。 The active energy ray-curable resin composition (A) mainly composed of silicone contains at least a silane coupling agent (B) and silica fine particles (C), and is applied to a portion where adjacent parts interfere with each other. It is a stagnation sound preventing material used by curing, and the E energy (based on JIS K6253) in the cured state of the active energy ray-curable resin composition (A) is 30 to 45, and the silane coupling agent (B) Has a long chain fatty acid chain, and the silica fine particles (C) are first silica fine particles (C1) having a particle size of 100 to 200 nm and second silica fine particles (C2) having a particle size of 5 to 20 nm. The mixing ratio of the first silica fine particles (C1) and the second silica fine particles (C2) is 100 parts by weight of the active energy ray-curable resin composition (A). 10 to 80 parts by weight and 0.5 to 10 parts by weight, respectively, in an uncured state, the viscosity at a shear rate of 1 s −1 is 50 to 1000 Pa · s, and in the cured state, E hardness (JIS K6253 (Compliance) is 50 or more. 前記シランカップリング剤(B)がエポキシ系シランカップリング剤であることを特徴とする請求項1に記載の軋み音防止材。   The stagnation sound preventing material according to claim 1, wherein the silane coupling agent (B) is an epoxy silane coupling agent. 前記エポキシ系シランカップリング剤がグリシドキシオクチルトリメトキシシランであることを特徴とする請求項2に記載の軋み音防止材。   The squeaking noise preventing material according to claim 2, wherein the epoxy-based silane coupling agent is glycidoxyoctyltrimethoxysilane. 前記シランカップリング剤(B)の含有量が前記活性エネルギー線硬化性樹脂組成物(A)100重量部に対して0.5〜10重量部であることを特徴とする請求項1から3のいずれか1項に記載の軋み音防止材。   The content of the silane coupling agent (B) is 0.5 to 10 parts by weight with respect to 100 parts by weight of the active energy ray-curable resin composition (A). The squeaking noise preventing material according to any one of the above items. 前記第一のシリカ微粒子(C1)及び前記第二のシリカ微粒子(C2)の炭素含有量が0.5質量%未満であることを特徴とする請求項1から4のいずれか1項に記載の軋み音防止材。   The carbon content of the first silica fine particles (C1) and the second silica fine particles (C2) is less than 0.5% by mass, according to any one of claims 1 to 4. Anti-smacking material. 請求項1〜5のいずれか1項に記載の未硬化状態の軋み音防止材が充填された容器。
A container filled with the uncured stagnation sound preventing material according to any one of claims 1 to 5.
JP2018063818A 2018-03-29 2018-03-29 Creaking sound prevention material Pending JP2019172860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018063818A JP2019172860A (en) 2018-03-29 2018-03-29 Creaking sound prevention material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018063818A JP2019172860A (en) 2018-03-29 2018-03-29 Creaking sound prevention material

Publications (1)

Publication Number Publication Date
JP2019172860A true JP2019172860A (en) 2019-10-10

Family

ID=68168172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018063818A Pending JP2019172860A (en) 2018-03-29 2018-03-29 Creaking sound prevention material

Country Status (1)

Country Link
JP (1) JP2019172860A (en)

Similar Documents

Publication Publication Date Title
EP2799510B1 (en) Active energy ray curing resin composition, method for manufacturing same, and seal material using same
WO2019230969A1 (en) Heat dissipation composition, heat dissipation member, and filler aggregate for heat dissipation member
EP2826799A1 (en) Photosensitive resin composition, cured product thereof, and optical component
JP2015126124A (en) Semiconductor package manufacturing method
WO2019230168A1 (en) Ultraviolet-curable liquid organopolysiloxane composition for image display device, curing method for same, adhesion method for image display device member, and image display device
EP3058932B1 (en) Silicone elastomer composition for use as dental impression material
WO2022138336A1 (en) Curable silicone composition, cured product of same, and laminate
JP2019172860A (en) Creaking sound prevention material
JPWO2015178373A1 (en) Epoxy resin composition and cured product thereof
JP2012211232A (en) Silicone rubber-based curing composition
JP6763612B2 (en) Active energy ray-curable resin composition, sealing material and cushioning material made of the cured product
JP7285238B2 (en) Silicone adhesive composition and cured silicone rubber
JP4937410B2 (en) Sealant for dye-sensitized solar cell and dye-sensitized solar cell
WO2022004463A1 (en) Curable organopolysiloxane composition and use therefor
TWI810310B (en) Liquid hygroscopic agent and method for manufacturing electronic device
JP6714414B2 (en) Active energy ray curable resin composition, sealing material and cushioning material made of the cured product
KR20060045477A (en) Room temperature curable organopolysiloxane composition
JP2001302936A (en) Heat-conductive resin composition
JP2006273964A (en) Flame-retardant silicone rubber composition and fixation member
JP2008049495A (en) Printing blanket
JP4033257B2 (en) Liquid sealing resin composition and semiconductor sealing device
KR19980064619A (en) A filled curable additive composition with reduced gas evolution and increased storage stability
JP2008179690A (en) Adhesive composition for glass
WO2022138335A1 (en) Method for manufacturing laminate
WO2023189699A1 (en) Thermally conductive silicone composition