JP2019169312A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2019169312A
JP2019169312A JP2018055229A JP2018055229A JP2019169312A JP 2019169312 A JP2019169312 A JP 2019169312A JP 2018055229 A JP2018055229 A JP 2018055229A JP 2018055229 A JP2018055229 A JP 2018055229A JP 2019169312 A JP2019169312 A JP 2019169312A
Authority
JP
Japan
Prior art keywords
solid
battery
active material
solid battery
state battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018055229A
Other languages
Japanese (ja)
Inventor
卓司 竹本
Takuji Takemoto
卓司 竹本
誠司 戸村
Seiji Tomura
誠司 戸村
知哉 鈴木
Tomoya Suzuki
知哉 鈴木
和夫 八十
Kazuo Yaso
和夫 八十
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018055229A priority Critical patent/JP2019169312A/en
Publication of JP2019169312A publication Critical patent/JP2019169312A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide an all-solid battery, and the all-solid battery in which the contact with an outer member such as a battery case or the like housing the all-solid battery at the time of charging is suppressed.SOLUTION: An all-solid battery 100 of the present invention has at least one unit all-solid battery, and the unit all-solid battery includes: a positive electrode collector layer; a positive active material layer; a solid-electrolyte layer; a negative active material layer; and a negative electrode collector layer in this order. The all-solid battery includes a substantially rectangular outer peripheral shape made from two long sides 10 opposite each other and two short sides 20 opposite each other in a surface direction. Each of the two long sides exists so as to be cross a region near an intersection point 42 of a substantially rectangular diagonal line 40 from a line connecting each of both ends 30 in respective long sides. Thus, the length in the short side direction in a central part 50 of the all-solid battery is formed so as to be shorter than that of the two short sides.SELECTED DRAWING: Figure 1

Description

本発明は、全固体電池に関する。   The present invention relates to an all solid state battery.

ハイブリッド自動車等の電動機を駆動するための電源として、全固体リチウムイオン電池等の全固体電池が注目されている。かかる全固体電池は、少なくとも1つの単位全固体電池を具備しており、ここで、この単位全固体電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で有する。   As a power source for driving an electric motor of a hybrid vehicle or the like, an all solid state battery such as an all solid state lithium ion battery has attracted attention. Such an all-solid battery comprises at least one unit all-solid battery, wherein the unit all-solid battery comprises a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and It has a negative electrode collector layer in this order.

特許文献1には、正極活物質を含む正極と、負極活物質を含む負極と、正極と負極とに介在する固体電解質とで構成され、実質的に直方体の形状を有し、隅部と稜部とに面取り形状、R面取り形状のいずれかが設けられた積層体と、積層体の側面を挟持するように積層体の両端に配置され、正極と負極の一方にそれぞれ接続された1対の外部集電体とを備えた、全固体リチウム二次電池が開示されている。   Patent Document 1 includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and a solid electrolyte interposed between the positive electrode and the negative electrode, and has a substantially rectangular parallelepiped shape. A pair of chamfered shapes and R-chamfered shapes provided on the portion, and a pair of layers disposed at both ends of the laminate so as to sandwich the side surfaces of the laminate and connected to one of the positive electrode and the negative electrode, respectively An all-solid lithium secondary battery comprising an external current collector is disclosed.

特許文献2には、金属箔で形成され、少なくとも片面に電極層が成膜されて電極体を構成する基体部と、基体部から引き出される集電用のリード部とを備える非水電解質電池用集電体であって、基体部とリード部とが一体形成されており、基体部は、電極層が成膜される成膜領域と、基体部の外周縁から内側に向かって成膜領域までの幅が1.5mm以下の余尺領域とを備え、余尺領域は、成膜時に集電体を保持する集電体ホルダに対する位置決め用に、複数の切欠部を有することを特徴とする、非水電解質電池用集電体が開示されている。   Patent Document 2 discloses a non-aqueous electrolyte battery that includes a base portion that is formed of a metal foil and has an electrode layer formed on at least one surface to form an electrode body, and a current collecting lead portion that is drawn from the base portion. A current collector, in which a base portion and a lead portion are integrally formed. The base portion includes a film formation region in which an electrode layer is formed and a film formation region from the outer peripheral edge to the inside of the base portion. A surplus region having a width of 1.5 mm or less, and the surplus region has a plurality of notches for positioning with respect to a current collector holder that holds the current collector during film formation, A current collector for a non-aqueous electrolyte battery is disclosed.

特許文献3には、正極活物質層、固体電解質層、及び負極活物質層がこの順に積層された全固体電池用積層体であって、積層体の端部の少なくとも一部が面取りされた形状を有する、全固体電池用積層体が開示されている。   Patent Document 3 discloses a laminate for an all-solid battery in which a positive electrode active material layer, a solid electrolyte layer, and a negative electrode active material layer are laminated in this order, and at least a part of the end of the laminate is chamfered. A laminate for an all-solid-state battery is disclosed.

特開2007−080812号公報JP 2007-080812 A 特開2011−198625号公報JP2011-198625A 特開2015−050153号公報Japanese Patent Application Laid-Open No. 2015-0500153

単位全固体電池を有する全固体電池は、充電時の活物質層の不均一な膨張によって、面方向において、中央部の膨張量が、両端部の膨張量よりも大きくなる。かかる不均一な膨張によって、全固体電池を収納している電池ケース等の外部部材と、全固体電池の中央部とが接触し、それによって全固体電池の性能が劣化する虞があった。この膨張は、特に負極活物質として合金系負極を用いた場合に顕著に現れていた。   In the all solid state battery having the unit all solid state battery, the expansion amount of the central portion is larger than the expansion amount of both end portions in the plane direction due to the non-uniform expansion of the active material layer during charging. Due to such non-uniform expansion, an external member such as a battery case housing the all-solid battery is brought into contact with the central portion of the all-solid battery, which may deteriorate the performance of the all-solid battery. This expansion was particularly noticeable when an alloy-based negative electrode was used as the negative electrode active material.

そこで、全固体電池と、それを収納している電池ケース等の外部部材との充電時における接触が抑制された、全固体電池を提供する必要性が存在する。   Therefore, there is a need to provide an all solid state battery in which contact between the all solid state battery and an external member such as a battery case storing the all solid state battery is suppressed.

本発明者らは、鋭意検討したところ、以下の手段により上記課題を解決できることを見出して、本発明を完成させた。すなわち、本発明は、下記のとおりである:
〈態様1〉少なくとも1つの単位全固体電池を有する全固体電池であって、
前記単位全固体電池が、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で有し、
前記全固体電池が、面方向において、互いに対向している2本の長辺、及び互いに対向している2本の短辺からなる略方形の外周形状を有しており、2本の前記長辺のそれぞれが、それぞれの前記長辺の両端を結ぶ線分よりも、前記略方形の対角線の交点に近い領域を横断するように存在しており、それによって、前記全固体電池の中央部における短辺方向の長さが、2本の前記短辺のいずれの長さよりも短くなるようにされている、
全固体電池。
As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have completed the present invention. That is, the present invention is as follows:
<Aspect 1> An all-solid battery having at least one unit all-solid battery,
The unit all solid state battery has a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order,
The all-solid-state battery has a substantially rectangular outer peripheral shape composed of two long sides facing each other and two short sides facing each other in the surface direction, and the two long sides Each of the sides exists so as to cross a region closer to the intersection of the substantially rectangular diagonal lines than a line segment connecting both ends of each of the long sides, thereby, in the central portion of the all solid state battery. The length in the short side direction is shorter than any of the two short sides,
All solid battery.

本発明によれば、全固体電池と、それを収納している電池ケース等の外部部材との充電時における接触が抑制された、全固体電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the all-solid-state battery with which the contact at the time of charge with an all-solid-state battery and external members, such as a battery case which accommodates it was suppressed can be provided.

図1は、本発明の全固体電池の概念図である。FIG. 1 is a conceptual diagram of an all-solid battery of the present invention. 図2は、充電前後の本発明の全固体電池の概念図である。図2(a)は、充電前の状態を示しており、図2(b)は、充電後の状態を示している。FIG. 2 is a conceptual diagram of the all solid state battery of the present invention before and after charging. FIG. 2 (a) shows a state before charging, and FIG. 2 (b) shows a state after charging. 図3は、充電前後の従来の全固体電池の概念図である。図3(a)は、充電前の状態を示しており、図3(b)は、充電後の状態を示している。FIG. 3 is a conceptual diagram of a conventional all solid state battery before and after charging. FIG. 3A shows a state before charging, and FIG. 3B shows a state after charging.

《全固体電池》
図1に示すように、本発明の全固体電池100は、少なくとも1つの単位全固体電池を有する全固体電池であって、
単位全固体電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で具備しており、
全固体電池が、面方向において、互いに対向している2本の長辺10、及び互いに対向している2本の短辺20からなる略方形の外周形状を有しており、2本の長辺10のそれぞれが、それぞれの長辺10の両端30を結ぶ線分よりも、略方形の対角線40の交点42に近い領域を横断するように存在しており、それによって、全固体電池の中央部50における短辺方向の長さが、2本の短辺20のいずれの長さよりも短くなるようにされている。
<All-solid battery>
As shown in FIG. 1, an all solid state battery 100 of the present invention is an all solid state battery having at least one unit all solid state battery,
The unit all solid state battery includes a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order.
The all-solid-state battery has a substantially rectangular outer peripheral shape composed of two long sides 10 facing each other and two short sides 20 facing each other in the plane direction, and has two long sides Each of the sides 10 exists so as to cross a region closer to the intersection 42 of the substantially rectangular diagonal line 40 than the line segment connecting the both ends 30 of each long side 10, and thereby the center of the all-solid-state battery. The length of the portion 50 in the short side direction is set to be shorter than any length of the two short sides 20.

ここで、本発明において、「略方形」とは、各頂点を結ぶ直線が方形を形成する形状であって、2本の長辺のそれぞれが、それぞれの長辺の両端を結ぶ線分よりも、略方形の対角線の交点に近い領域を横断するように存在しており、それによって、この略方形の中央部における短辺方向の長さが、2本の短辺のいずれの長さよりも短くなるようにされている点で、方形と異なる形状を意味するものである。かかる形状は、例えばレーザーを用いた全固体電池用積層体の切断により得ることができる。   Here, in the present invention, the “substantially square” is a shape in which a straight line connecting each vertex forms a square, and each of the two long sides is more than a line segment connecting both ends of each long side. , And exists so as to cross a region near the intersection of diagonal lines of a substantially rectangular shape, whereby the length in the short side direction at the center of the substantially rectangular shape is shorter than the length of any of the two short sides. In other words, it means a shape different from a square. Such a shape can be obtained, for example, by cutting an all-solid battery laminate using a laser.

全固体電池を面方向について見た場合、すなわち全固体電池をその各層の積層方向から見た場合、全固体電池を充電すると、全固体電池は、不均一に膨張する。特に、全固体電池の面方向の形状が図3(a)に示す長方形である場合には、図3(b)に示すように、全固体電池の中央部付近において短辺方向の膨張が大きくなる。なお、膨張の状態に関しては、差異を明確にするために誇張して示しているものであり、実際の縮尺とは必ずしも一致していないことに留意されたい。   When the all solid state battery is viewed in the plane direction, that is, when the all solid state battery is viewed from the stacking direction of each layer, when the all solid state battery is charged, the all solid state battery expands unevenly. In particular, when the shape of the all-solid battery in the surface direction is the rectangle shown in FIG. 3A, the expansion in the short side direction is large near the center of the all-solid battery as shown in FIG. 3B. Become. It should be noted that the state of expansion is exaggerated to clarify the difference and does not necessarily match the actual scale.

これに対し、図2(a)に示すように、全固体電池の中央部における短辺方向の長さが、2本の短辺のいずれの長さよりも短くなるようにした場合、充電による膨張が生じた際にも、図2(b)に示すように、略方形の外延を有意に逸脱することを抑制でき、その結果、全固体電池の側面に外部部材が配置されたとき、例えば全固体電池を電池ケースに収納したときに、全固体電池と外部部材との意図しない接触を防止できる。なお、本発明において、略方形の外延は、略方形の各頂点30を直線で結んで得られる方形の領域として定義される。   On the other hand, as shown in FIG. 2A, when the length in the short side direction in the central portion of the all-solid-state battery is shorter than any of the two short sides, the expansion due to charging is performed. 2b, as shown in FIG. 2 (b), it is possible to suppress the departure from the substantially rectangular extension, and as a result, when an external member is disposed on the side surface of the all-solid-state battery, for example, When the solid battery is stored in the battery case, unintentional contact between the all solid battery and the external member can be prevented. In the present invention, the substantially square extension is defined as a square region obtained by connecting the apexes 30 of the substantially square with straight lines.

以下では、本発明の全固体電池の面方向での外周形状である「略方形」について、より具体的に説明する。   Hereinafter, the “substantially rectangular shape” that is the outer peripheral shape in the surface direction of the all solid state battery of the present invention will be described more specifically.

略方形の短辺方向の長さは、中央部の随意の位置において最短になっていてよい。図1に示すように、中央部50は、短辺20と平行でありかつ2本の短辺20からそれぞれ長辺方向の長さの1/4の長さで離れている2本の線分52と、2本の長辺とで包囲された領域として定義することができる。   The length of the substantially square in the short side direction may be the shortest at an arbitrary position in the central portion. As shown in FIG. 1, the central portion 50 has two line segments that are parallel to the short side 20 and separated from the two short sides 20 by a length that is ¼ of the length in the long side direction. 52 and the area surrounded by two long sides.

短辺方向の長さが最短となる位置での短辺方向の長さは、2本の短辺の長さの99.8%以下、99.5%以下、99.3%以下、又は99.0%以下であることが、略方形の外延を、充電時において逸脱しにくくする観点から好ましい。この短辺方向の長さは、2本の短辺の長さの97.0%以上、97.5%以上、又は98.0%以上であることが、電池容量を過剰に損なわない観点から好ましい。かかる短辺方向の長さは、図1に示すように、例えば略方形における2本の長辺10のそれぞれの中点12を結ぶ線分12aの長さと一致していてよい。   The length in the short side direction at the position where the length in the short side direction is the shortest is 99.8% or less, 99.5% or less, 99.3% or less, or 99 of the length of the two short sides. 0.0% or less is preferable from the viewpoint of making it difficult to deviate the substantially rectangular extension during charging. The length in the short side direction is 97.0% or more, 97.5% or more, or 98.0% or more of the length of the two short sides, from the viewpoint of not impairing the battery capacity excessively. preferable. As shown in FIG. 1, the length in the short side direction may coincide with the length of a line segment 12a that connects the midpoints 12 of the two long sides 10 in a substantially square shape, for example.

長辺の両端からそれぞれ短辺方向の長さが最短となる位置まで延びる変曲点のない一対の連続的な曲線又は直線により、2本の長辺がそれぞれ構成されていてよい。特に、長辺がかかる一対の曲線で構成されている場合、これらの曲線は、一体として変曲点のない連続的な曲線を構成していてよい。   The two long sides may each be constituted by a pair of continuous curves or straight lines having no inflection points extending from both ends of the long side to the position where the length in the short side direction is the shortest. In particular, when the long side is composed of a pair of curves, these curves may form a continuous curve with no inflection point as a unit.

2本の長辺は、図1に示すように、短辺の中点を互いに結んだ線分である長軸60について対称であってもよく、又は非対称であってもよいが、対称であることが、製造の容易さの観点から好ましい。   As shown in FIG. 1, the two long sides may be symmetric with respect to the long axis 60, which is a line segment connecting the midpoints of the short sides, or may be asymmetric, but are symmetric. It is preferable from the viewpoint of ease of manufacture.

次に、本発明の全固体電池における全固体電池用積層体を構成する各層について説明する。   Next, each layer which comprises the laminated body for all-solid-state batteries in the all-solid-state battery of this invention is demonstrated.

なお、本発明において、以下で言及する「正極集電体層」とは、少なくとも一方の面が正極活物質層と接している層であることを意味するものであり、正極活物質層のみが接している集電体層であってもよく、又は正極活物質層と負極活物質層とが共有できる集電体層であってよい。同様に、以下で言及する「負極集電体層」は、負極活物質層のみが接している集電体層であってもよく、又は正極活物質層と負極活物質層とが共有できる集電体層であってよい。   In the present invention, the “positive electrode current collector layer” referred to below means that at least one surface is in contact with the positive electrode active material layer, and only the positive electrode active material layer is present. The current collector layer may be in contact, or may be a current collector layer that can be shared by the positive electrode active material layer and the negative electrode active material layer. Similarly, the “negative electrode current collector layer” referred to below may be a current collector layer in contact with only the negative electrode active material layer, or a current collector that can be shared by the positive electrode active material layer and the negative electrode active material layer. It may be an electrical layer.

〈正極集電体層〉
正極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できる公知のものを適宜採用されうる。例えば、ステンレス(SUS)、アルミニウム、銅、ニッケル、鉄、チタン、及びカーボンなどが挙げられる。
<Positive electrode current collector layer>
The conductive material used for the positive electrode current collector layer is not particularly limited, and any known material that can be used for an all-solid battery can be appropriately employed. Examples include stainless steel (SUS), aluminum, copper, nickel, iron, titanium, and carbon.

本開示にかかる正極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。   The shape of the positive electrode current collector layer according to the present disclosure is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Among these, a foil shape is preferable.

〈正極活物質層〉
正極活物質層は、少なくとも正極活物質を含有しており、好ましくは後述する固体電解質を更に含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の正極活物質層に用いられる添加剤を含むことができる。
<Positive electrode active material layer>
The positive electrode active material layer contains at least a positive electrode active material, and preferably further includes a solid electrolyte described later. In addition, an additive used for a positive electrode active material layer of an all-solid battery, such as a conductive additive or a binder, can be included in accordance with the intended use or intended purpose.

本開示において、用いられる正極活物質材料として、特に限定されず、公知のものが用いられる。例えば、硫黄(S)、硫化リチウム(LiS)、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMn)、LiCo1/3Ni1/3Mn1/3、Li1+xMn2−x−y(Mは、Al、Mg、Co、Fe、Ni、及びZnから選ばれる1種以上の金属元素)で表される組成の異種元素置換Li−Mnスピネルなどが挙げられるが、これらに限定されない。 In the present disclosure, the positive electrode active material used is not particularly limited, and a known material is used. For example, sulfur (S), lithium sulfide (Li 2 S), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMn 2 O 4 ), LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , Li 1 + x Mn 2−xy M y O 4 (M is one or more metal elements selected from Al, Mg, Co, Fe, Ni, and Zn) Examples include, but are not limited to, heteroelement-substituted Li—Mn spinel.

導電助剤としては、特に限定されず、公知のものが用いられる。例えば、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)及びカーボンナノ繊維などの炭素材並びに金属材などが挙げられるが、これらに限定されない。   The conductive auxiliary agent is not particularly limited, and known ones are used. Examples thereof include, but are not limited to, carbon materials such as VGCF (vapor-grown carbon fiber, Vapor Carbon Carbon Fiber) and carbon nanofibers, and metal materials.

バインダーとしては、特に限定されず、公知のものが用いられる。例えば、ポリフッ化ビニリデン(PVdF)、カルボキシメチルセルロース(CMC)、ブタジエンゴム(BR)若しくはスチレンブタジエンゴム(SBR)などの材料又はこれらの組合せを挙げることができるが、これらに限定されない。   It does not specifically limit as a binder, A well-known thing is used. Examples include, but are not limited to, materials such as polyvinylidene fluoride (PVdF), carboxymethylcellulose (CMC), butadiene rubber (BR), styrene butadiene rubber (SBR), or combinations thereof.

〈固体電解質層〉
固体電解質層は、少なくとも固体電解質を含む。固体電解質として、特に限定されず、全固体電池の固体電解質として利用可能な材料を用いることができる。例えば、硫化物固体電解質、酸化物固体電解質、及びポリマー電解質等を用いることができる。
<Solid electrolyte layer>
The solid electrolyte layer includes at least a solid electrolyte. The solid electrolyte is not particularly limited, and a material that can be used as a solid electrolyte of an all-solid battery can be used. For example, a sulfide solid electrolyte, an oxide solid electrolyte, a polymer electrolyte, or the like can be used.

硫化物固体電解質の例として、例えば、LiS−SiS、LiI−LiS−SiS、LiI−LiS−P、LiI−LiBr−LiS−P、LiS−P−LiI−LiBr、LiS−P−GeS、LiI−LiS−P、LiI−LiPO−P、及びLiS−P等;硫化物系結晶質固体電解質、例えば、Li10GeP12、Li11、LiPS、及びLi3.250.75等;並びにこれらの組合せを挙げることができる。 Examples of the sulfide solid electrolyte include, for example, Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI—Li 2 S—P 2 S 5 , LiI—LiBr—Li 2 S—P 2 S 5 , Li 2 S-P 2 S 5 -LiI-LiBr, Li 2 S-P 2 S 5 -GeS 2, LiI-Li 2 S-P 2 O 5, LiI-Li 3 PO 4 -P 2 S 5, and Li 2 S-P 2 S 5 and the like; sulfide-based crystalline solid electrolytes such as Li 10 GeP 2 S 12 , Li 7 P 3 S 11 , Li 3 PS 4 , and Li 3.25 P 0.75 S 4 As well as combinations thereof.

酸化物固体電解質の例として、LiO−B−P、LiO−SiO、LiO−P等の酸化物非晶質固体電解質、LiLaTa12、LiLaZr12、LiBaLaTa12、LiPO(4−3/2w)(w<1)、Li3.6Si0.60.4等の酸化物結晶質固体電解質などが挙げられるが、これらに限定されない。 Examples of oxide solid electrolytes include Li 2 O—B 2 O 3 —P 2 O 3 , Li 2 O—SiO 2 , Li 2 O—P 2 O 5 and other oxide amorphous solid electrolytes, Li 5 La 3 Ta 2 O 12 , Li 7 La 3 Zr 2 O 12 , Li 6 BaLa 2 Ta 2 O 12 , Li 3 PO (4-3 / 2w) N w (w <1), Li 3.6 Si 0.6 Examples thereof include, but are not limited to, oxide crystalline solid electrolytes such as P 0.4 O 4 .

硫化物固体電解質又は酸化物固体電解質は、ガラスであっても、結晶化ガラス(ガラスセラミック)であってもよい。   The sulfide solid electrolyte or oxide solid electrolyte may be glass or crystallized glass (glass ceramic).

ポリマー電解質としては、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)などが挙げられるが、これらに限定されない。   Examples of the polymer electrolyte include, but are not limited to, polyethylene oxide (PEO) and polypropylene oxide (PPO).

また、固体電解質層は、上述した固体電解質以外に、必要に応じてバインダーなどを含んでもよい。具体例として、上述の「正極活物質層」で列挙された「バインダー」と同様であり、ここでは説明を省略する。   Further, the solid electrolyte layer may contain a binder or the like as necessary in addition to the above-described solid electrolyte. A specific example is the same as the “binder” listed in the “positive electrode active material layer” described above, and a description thereof is omitted here.

〈負極活物質層〉
負極活物質層は、少なくとも負極活物質を含み、好ましくは上述した固体電解質を更に含む。そのほか、使用用途や使用目的などに合わせて、例えば、導電助剤又はバインダーなどの全固体電池の負極活物質層に用いられる添加剤を含むことができる。
<Negative electrode active material layer>
The negative electrode active material layer includes at least a negative electrode active material, and preferably further includes the solid electrolyte described above. In addition, an additive used for the negative electrode active material layer of the all-solid-state battery, such as a conductive additive or a binder, can be included in accordance with the intended use or intended purpose.

本開示において、用いられる負極活物質材料として、特に限定されず、リチウムイオンなどの金属イオンを吸蔵及び放出可能であればよい。例えば、Li、Sn、Si若しくはInなどの金属、リチウムとチタンとの合金、又はハードカーボン、ソフトカーボン若しくはグラファイトなどの炭素材料などが挙げられるが、これらに限定されない。   In the present disclosure, the negative electrode active material used is not particularly limited as long as it can occlude and release metal ions such as lithium ions. Examples include, but are not limited to, metals such as Li, Sn, Si, or In, alloys of lithium and titanium, or carbon materials such as hard carbon, soft carbon, or graphite.

中でも、負極活物質材料として、Li、Sn、Si、In、Tiからなる群より選択される2種以上の金属を含有している合金系負極活物質、特にSiを含有している合金系負極活物質を負極活物質材料として用いた場合には、全固体電池が充電により膨張しやすくなるため、本発明の構成がより有益となる。   Among these, as a negative electrode active material, an alloy-based negative electrode active material containing two or more metals selected from the group consisting of Li, Sn, Si, In, and Ti, particularly an alloy-based negative electrode containing Si When the active material is used as the negative electrode active material, the configuration of the present invention is more useful because the all solid state battery is easily expanded by charging.

負極活物質層に用いられる固体電解質、導電助剤、バインダーなどその他の添加剤については、上述した「正極活物質層」及び「固体電解質層」の項目で説明したものを適宜採用することができる。   As other additives such as a solid electrolyte, a conductive additive, and a binder used in the negative electrode active material layer, those described in the above-mentioned items of “positive electrode active material layer” and “solid electrolyte layer” can be appropriately employed. .

〈負極集電体層〉
負極集電体層に用いられる導電性材料は、特に限定されず、全固体電池に使用できる公知のものを適宜採用されうる。例えば、ステンレス(SUS)、アルミニウム、銅、ニッケル、鉄、チタン、及びカーボンなどが挙げられる。
<Negative electrode current collector layer>
The conductive material used for the negative electrode current collector layer is not particularly limited, and a known material that can be used for an all-solid battery can be appropriately employed. Examples include stainless steel (SUS), aluminum, copper, nickel, iron, titanium, and carbon.

本開示にかかる負極集電体層の形状として、特に限定されず、例えば、箔状、板状、メッシュ状などを挙げることができる。これらの中で、箔状が好ましい。   The shape of the negative electrode current collector layer according to the present disclosure is not particularly limited, and examples thereof include a foil shape, a plate shape, and a mesh shape. Among these, a foil shape is preferable.

10 長辺
12 長辺の中点
12a 長辺のそれぞれの中点を結ぶ線分
20 短辺
30 長辺の両端(略方形の頂点)
40 対角線
42 対角線の交点
50 中央部
52 短辺から長辺方向の寸法の1/4離れている線分
60 長軸
100 本発明の全固体電池
200 従来の全固体電池
10 Long side 12 Mid point of long side 12a Line segment connecting mid points of long side 20 Short side 30 Both ends of long side (vertex of approximately square)
40 Diagonal line 42 Intersection of diagonal lines 50 Center part 52 Line segment that is 1/4 of the dimension in the long side direction from the short side 60 Long axis 100 All solid state battery of the present invention 200 Conventional all solid state battery

Claims (1)

少なくとも1つの単位全固体電池を有する全固体電池であって、
前記単位全固体電池は、正極集電体層、正極活物質層、固体電解質層、負極活物質層、及び負極集電体層をこの順で具備しており、
前記全固体電池が、面方向において、互いに対向している2本の長辺、及び互いに対向している2本の短辺からなる略方形の外周形状を有しており、2本の前記長辺のそれぞれが、それぞれの前記長辺の両端を結ぶ線分よりも、前記略方形の対角線の交点に近い領域を横断するように存在しており、それによって、前記全固体電池の中央部における短辺方向の長さが、2本の前記短辺のいずれの長さよりも短くなるようにされている、
全固体電池。
An all solid state battery having at least one unit all solid state battery,
The unit all solid state battery includes a positive electrode current collector layer, a positive electrode active material layer, a solid electrolyte layer, a negative electrode active material layer, and a negative electrode current collector layer in this order.
The all-solid-state battery has a substantially rectangular outer peripheral shape composed of two long sides facing each other and two short sides facing each other in the surface direction, and the two long sides Each of the sides exists so as to cross a region closer to the intersection of the substantially rectangular diagonal lines than a line segment connecting both ends of each of the long sides, thereby, in the central portion of the all solid state battery. The length in the short side direction is shorter than any of the two short sides,
All solid battery.
JP2018055229A 2018-03-22 2018-03-22 All-solid battery Pending JP2019169312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018055229A JP2019169312A (en) 2018-03-22 2018-03-22 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018055229A JP2019169312A (en) 2018-03-22 2018-03-22 All-solid battery

Publications (1)

Publication Number Publication Date
JP2019169312A true JP2019169312A (en) 2019-10-03

Family

ID=68107529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018055229A Pending JP2019169312A (en) 2018-03-22 2018-03-22 All-solid battery

Country Status (1)

Country Link
JP (1) JP2019169312A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090208832A1 (en) * 2008-02-17 2009-08-20 Porous Power Technologies, Llc Lamination Configurations for Battery Applications Using PVDF Highly Porous Film
WO2011118032A1 (en) * 2010-03-26 2011-09-29 トヨタ自動車株式会社 Lithium ion secondary battery, vehicle, and device equipped with battery
KR20120094693A (en) * 2011-02-17 2012-08-27 주식회사 엘지화학 Prismatic secondary battery employed with safety plate
JP2015133178A (en) * 2014-01-09 2015-07-23 日産自動車株式会社 Electrode, and battery having electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090208832A1 (en) * 2008-02-17 2009-08-20 Porous Power Technologies, Llc Lamination Configurations for Battery Applications Using PVDF Highly Porous Film
WO2011118032A1 (en) * 2010-03-26 2011-09-29 トヨタ自動車株式会社 Lithium ion secondary battery, vehicle, and device equipped with battery
KR20120094693A (en) * 2011-02-17 2012-08-27 주식회사 엘지화학 Prismatic secondary battery employed with safety plate
JP2015133178A (en) * 2014-01-09 2015-07-23 日産自動車株式会社 Electrode, and battery having electrode

Similar Documents

Publication Publication Date Title
JP6885309B2 (en) Series stacked all-solid-state battery
US9960453B2 (en) Lithium ion secondary battery and system using same
JP4519796B2 (en) Square lithium secondary battery
KR102557725B1 (en) Composite anode active material, anode including the material, and lithium secondary battery including the anode
JP2015050153A (en) Laminate for all-solid state battery
JP2014532955A (en) Secondary battery
JP2018073644A (en) Secondary battery
JP6051038B2 (en) Foil for positive electrode current collector of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US20140370379A1 (en) Secondary battery and manufacturing method thereof
JP2013110049A (en) Positive electrode collector foil for lithium ion secondary battery, and lithium ion secondary battery
JP2019145285A (en) All-solid battery
JP7010102B2 (en) All solid state battery
JP6004088B2 (en) Nonaqueous electrolyte secondary battery
WO2019098056A1 (en) Lithium ion secondary battery
JP2017045594A (en) All-solid-state battery
CN111435729B (en) Lithium ion secondary battery
JP2019169312A (en) All-solid battery
JP7311304B2 (en) power storage device
JP7040331B2 (en) Manufacturing method of series-stacked all-solid-state battery
JP7025308B2 (en) Lithium ion secondary battery
JP2004234994A (en) Lithium secondary battery, battery pack of same, and electrode of same
JP5673307B2 (en) Nonaqueous electrolyte secondary battery
JP2020145064A (en) battery
JP2019153514A (en) All-solid battery
US20200295340A1 (en) Sealed battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211116