JP2019168227A - 軸受異常判定装置 - Google Patents

軸受異常判定装置 Download PDF

Info

Publication number
JP2019168227A
JP2019168227A JP2018053810A JP2018053810A JP2019168227A JP 2019168227 A JP2019168227 A JP 2019168227A JP 2018053810 A JP2018053810 A JP 2018053810A JP 2018053810 A JP2018053810 A JP 2018053810A JP 2019168227 A JP2019168227 A JP 2019168227A
Authority
JP
Japan
Prior art keywords
bearing
abnormality determination
unit
row
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018053810A
Other languages
English (en)
Inventor
康隆 真木
Yasutaka Maki
康隆 真木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2018053810A priority Critical patent/JP2019168227A/ja
Publication of JP2019168227A publication Critical patent/JP2019168227A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

【課題】軸受異常判定装置において、軸箱体上のA列軸受及びB列軸受のそれぞれの直上に加速度センサを設置して測定及び検出精度を向上させると共に、省電力化を実現することができる軸受異常判定装置を提供する。【解決手段】鉄道車両の軸受を構成するA列軸受およびB列軸受のそれぞれの振動データを計測する第1の加速度センサおよび第2の加速度センサを備える振動取得部と、前記鉄道車両の速度データを取得する速度取得部と、前記振動データと前記速度データに基づいて前記軸受に異常が生じているかを判定する異常判定部と、を備え、前記異常判定部は、前記A列軸受又は前記B列軸受のうち、いずれの振動データを取得するか決定する軸受選択手段を備える。【選択図】図4

Description

本発明は、鉄道車両に搭載される軸受異常判定装置に関する。
一般に、軸受転動面の剥離傷の検出には、転動体が剥離傷上を通過する際に生じるインパルス状の振動の周期性を利用した振動加速度のエンベロープ解析を適用し、欠陥にともない発生するピーク周波数が倍数になることを利用してスペクトル振幅に閾値を設けることなどが行われている。例えば、風車など定置で使用される装置に組み込まれた軸受へ上述したエンベロープ解析を適用する場合には、供給電源が潤沢であることから演算装置を連続稼働させることで、周波数分解能を高めるために解析データ長も多大にでき、連続したエンベロープ解析は容易である。
これに対し、鉄道車両においても特許文献1に記載されるように、車軸軸受の近辺にセンサ及びデータロガーを設置し、無線で車上や外部端末に伝送する例や、特許文献2に記載されるように、軸受本体にICチップを埋め込み、外部端末から読み出す機能を有する例が知られている。ただし、これらの例によれば、収集したデータの解析はオフライン処理で別途形態端末や計算機で実行することが前提となっているため、収集タイミングが自動化されても、当該データを解析するステップは人手に頼ることとなり、必然的に定期的な人手による作業が必要となっている。
また、解析の対象となる振動加速度の周波数帯域は2〜3kHzとなるため、離散化のためのデータサンプリング周波数も高くなり、処理するデータ量もこれに比例して増加する。さらに、この離散データをそのまま処理せずにロガーに記録した場合、大きな記憶領域を必要とし、またこれを外部に伝送する場合にも伝送トラフィックの増加を招く。特許文献1に記載された例においても、センサからの出力は高周波数帯域を含む信号である必要から、無線のトラフィックは高密度となる。併せて、エンベロープ解析に関しては、局所的な剥離傷に加えて転動面全周にわたり傷が発生した場合には、周波数帯域は広範囲にわたりスペクトル振幅が増幅し、これに伴い欠陥周波数における振動スペクトル振幅もかさ上げされることになり、誤検知の要因となりうるという問題があった。
更に、鉄道車両の軸受回りには、装置を搭載するための充分なスペースが確保されていない可能性があり、軸受異常判定装置の設置自由度を確保するために、電力供給源である発電装置や蓄電装置を鉄道車両の電力供給源とは別個に備えることが求められている。このため、軸受異常判定装置の消費電力はできる限り小さくすることが求められる。これについて、特許文献3に記載されているように、小さい消費電力で鉄道車両の軸受の異常の有無を判定することができる軸受異常判定装置が知られている。
特開2013−257265号公報 特開2013−151975号公報 特開2016−99118号公報
鉄道車両の車軸軸受は、A列軸受及びB列軸受と呼ばれる2列の転動体で構成されている。従来の軸受異常判定装置では、軸受の転動面に剥離傷が発生した場合、軸箱体上に一つの加速度センサを設置することで振動を捉え、軸受内部の異常を検出しているという構成であるため、より近接した位置に設置した加速度センサによるデータが精度よく測定及び検出されることが確認された。
このため、A列軸受及びB列軸受のいずれについても精度よくモニタリングするには、軸箱体上のA列軸受及びB列軸受のそれぞれの直上に加速度センサをそれぞれ配置する必要が生じる。
しかしながら、データの解析には高周波帯域のデータの離散化処理にともなう大容量のデータを格納する記憶領域が必要となるものの、軸受異常判定装置は、上述したように設計自由度を確保するために小型化される必要があることからメモリ容量の上限値は通常の計算機よりも小さくなってしまう。さらに、2つの加速度センサによってモニタリング及び信号前処理のためのアナログ回路の起動にともなう消費電力は、同時に稼動させる箇所に比例して増大するという課題を有している。
そこで、本発明の目的は、上述した課題を解決するためになされたものであり、軸受異常判定装置において、軸箱体上のA列軸受及びB列軸受のそれぞれの直上に加速度センサを設置して測定及び検出精度を向上させると共に、省電力化を実現することができる軸受異常判定装置を提供することにある。
本発明に係る軸受異常判定装置は、鉄道車両の軸受を構成するA列軸受およびB列軸受のそれぞれの振動データを計測する第1の加速度センサおよび第2の加速度センサを備える振動取得部と、前記鉄道車両の速度データを取得する速度取得部と、前記振動データと前記速度データに基づいて前記軸受に異常が生じているかを判定する異常判定部と、を備え、前記異常判定部は、前記A列軸受又は前記B列軸受のうち、いずれの振動データを取得するか決定する軸受選択手段を備えることを特徴とする。
また、本発明に係る軸受異常判定装置において、前記軸受選択手段は、前記A列軸受および前記B列軸受を交互に選択すると好適である。
また、本発明に係る軸受異常判定装置において、前記軸受選択手段は、前回の判定結果から選択の重み付けを行う重み付け手段を備え、該重み付けに応じて前記A列軸受又は前記B列軸受を選択すると好適である。
また、本発明に係る軸受異常判定装置において、前記異常判定部は、前記速度データに応じたバンドパスフィルタを選択するフィルタ選択手段を備えると好適である。
また、本発明に係る軸受異常判定装置において、前記速度取得部は、前記振動取得部によって得られた加速度データから速度データを演算すると好適である。
本発明によれば、A列軸受又はB列軸受のうち、いずれの振動データを取得するか決定する軸受選択手段を備えているので、同時にこれらの加速度センサを稼動させる場合に比べて消費電力を抑制することができると共に、測定データを格納する記憶領域の容量を低減することができる。
また、本発明によれば、軸受選択手段は、A列軸受及びB列軸受を交互に選択することができるので、A列軸受及びB列軸受を均等に測定及び検出することが可能である。
また、本発明によれば、軸受選択手段は、前回の判定結果から選択の重み付けを行う重み付け手段を備え、該重み付けに応じてA列軸受又はB列軸受を選択することができるので、前回の判定結果に応じてより測定及び検出が必要と判断された軸受を優先的に測定及び検出することができ、判定精度を向上させることができる。
また、本発明によれば、異常判定部が速度データに応じたバンドパスフィルタを選択するフィルタ選択手段を備えているので、データ解析に使用するバンドパスフィルタの通過周波数帯域を走行速度に応じて最適な通過周波数帯域とすることができるので、より正確なエンベロープ解析によって剥離傷などの欠陥に起因するスペクトルピークの検出が可能となり、見過ごしや誤検知といったエラーを防止することができる。
また、本発明によれば、速度取得部は振動取得部によって得られた加速度データを演算することで速度データを得ることができるので、装置構成を簡略化することができる。
本発明の実施形態に係る軸受異常判定装置を備えた鉄道車両の概要図。 本発明の実施形態に係る軸受異常判定装置の監視モジュールにおける電源供給部の構成を説明するためのブロック図。 本発明の実施形態に係る軸受異常判定装置の監視モジュールにおける信号処理部の構成を説明するためのブロック図。 本発明の実施形態に係る軸受異常判定装置の動作を説明するためのフロー図。
以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
本発明の実施形態に係る軸受異常判定装置を備えた鉄道車両の概要図であり、図2は、本発明の実施形態に係る軸受異常判定装置の監視モジュールにおける電源供給部の構成を説明するためのブロック図であり、図3は、本発明の実施形態に係る軸受異常判定装置の監視モジュールにおける信号処理部の構成を説明するためのブロック図であり、図4は、本発明の実施形態に係る軸受異常判定装置の動作を説明するためのフロー図である。
図1から図3に示すように、本実施形態による軸受異常判定装置10は、鉄道車両1の台車2の監視対象となる軸受やその他の部位に設置されるセンサ部30と、親機13および子機となる無線部18を有する監視モジュール14と、該監視モジュール14の電源供給部14aに電源を供給する一次電池11及び振動発電装置12とを備えている。振動発電装置12は、圧電素子に作用する振動を電圧に変換するものであり、圧電素子を取り付けた長尺の板部、台車2に固定されて板部を支持する支持部および板部上に載置可能な錘などを備えている構成や、筺体に固定される弾性部材と、第1の方向に振動可能な振動子と振動子の内部に位置するコイルを備え、前記振動子は、第1の磁石と、前記第1の磁石と前記第1の方向に並び反発するように配置された第2の磁石と、前記第1の磁石および前記第2の磁石に対して環状に配置された第3の磁石と、前記第1乃至第3の磁石を囲む第1の磁性体と、を有し、前記コイルは、前記第1の磁石および前記第2の磁石と前記第3の磁石の間に位置する構成、などが好適である。
なお、本実施形態に係る軸受異常判定装置10は、監視する軸受毎に電源を確保し、異常を判定しており、監視部と鉄道車両1の車上とを無線伝送で結合することにより自律した構成となっている。
このため、鉄道車両1の車体側に1台の親機13を設置し、台車2の監視部ごとに子機となる無線部18を有する監視モジュール14が複数配置されている。なお、親機13は、総合判断部40に接続され、親機13は、上位システムからの走行速度や時刻情報を、各監視モジュール14に対して定期的に送信し、監視モジュール14は、センサ部30によるデータを所定の頻度でサンプリングし、演算処理部21において、各監視項目毎のロジックで判定し、判定結果などに情報を集約した上で、親機13に無線部18を介して無線伝送している。
図1に示すように、センサ部30および監視モジュール14は、近接した状態で台車2の監視対象となる部位に設置され、振動発電装置12は、センサ部30および監視モジュール14の近傍に設置されている。
このような、軸受異常判定装置10は、例えば、軸箱の上下加速度を測定し、これらの数値をもとに台車2の軸受の損傷を監視可能に構成されている。
なお、センサ部30は振動取得部としての圧電式加速度センサ31a、31bと自律型温度センサ32とから構成されている。圧電式加速度センサ31a、31bは、軸受剥離損傷検出用に設置されており、車軸回転時に損傷部で発生する振動加速度の周波数を考慮して圧電式を適用すると好適である。また、圧電式加速度センサ31a、31bは、軸箱のA列軸受およびB列軸受のそれぞれの振動の大きさを測定することができるように、A列軸受及びB列軸受の直上に配置された第1の加速度センサ31a及び第2の加速度センサ31bを備えている。自律型温度センサ32は、例えば2段階の温度閾値を設定することができると好適であり、軸箱体表面との電気的な絶縁を確保するために伝熱性のシリコンなどの絶縁体を介して軸箱体表面に密着固定されている。
図2および3に示すように、監視モジュール14は、一次電池11および振動発電装置12からの電力を処理する電源供給部14aと、電源供給部14aから供給された電源によって駆動される信号処理部14bとを備えている。
図2に示すように、電源供給部14aは、容量の異なる第1のキャパシタ20aと第2のキャパシタ20bとを備えた蓄電装置20に台車枠上に設置した振動発電装置12からの電力を一旦蓄電し、信号処理部14bへ供給している。なお、第1のキャパシタ20a及び第2のキャパシタ20bはそれぞれ電気二重層キャパシタで構成されると好適である。
また、電源供給部14aは、一次電池11が接続されており、振動発電装置12からの電力入力をトリガとして、一次電池11からのゲート部15を入れることで、振動発電装置12からの電力入力の有無でゲート部15を開閉させて、鉄道車両の走行中のみ電池エネルギを信号処理部14bへ供給している。この構成によって、車両基地など長時間留置される場合はゲート部15が開くことで一次電池11からの供給は停止し、これに合わせて監視モジュール14も停止状態とすることができる。なお、第1のキャパシタ20a、第2のキャパシタ20b及びゲート部15はそれぞれ並列に接続されているので、鉄道車両1の走行中は、一次電池11、第1のキャパシタ20a及び第2のキャパシタ20bのうち電位が高いほうから電力を供給することができるように構成されている。このように電源供給部14aは、振動発電装置12による発電エネルギと一次電池11を併用している。
図3に示すように、信号処理部14bは、電源供給部14aから供給された電力によって駆動しており、アナログ信号処理部19と演算処理部21を備えている。アナログ信号処理部19は、第1の加速度センサ31a及び第2の加速度センサ31bからの信号をローパスフィルタ41aを介して演算処理部21のインターフェイス部16に接続されている。なお、第1の加速度センサ31a及び第2の加速度センサ31bを用いる軸受剥離損傷検出は間欠で行われるため、アナログ信号処理部19への通電は演算処理部21でのA/D変換時に限定するように電源供給ラインにスイッチ回路41bを設置して制御している。同様に自律型温度センサ32も電源供給ラインにスイッチ回路34bを介して接続されている。
演算処理部21は、異常判定部17、振動取得部17a、速度取得部17b、インターフェイス部16および無線部18を備えている。異常判定部17は、種々の信号の演算処理を行うCPU(Central Processing Unit)や記憶装置としてのSDRAM(Synchronous Dynamic Random Access Memory)で構成されている。
振動取得部17aは、加速度センサ31a,31bが計測したセンサデータを取得する。また、速度取得部17bは、総合判断部40が取得した鉄道車両の速度データを取得する。
次に、図4を参照して本実施形態に係る軸受異常判定装置10の動作について説明を行う。まず、間欠起床用タイマによって所定の判定間隔ごと(例えば、30分毎)に演算処理部21を起動させる。次に総合判断部40から鉄道車両の速度の走行信号を受信したか否かを判定する(ステップ1)。ここで、走行信号を受信できなかった場合(ステップ1:No)には、処理をステップ1に戻し、再度、総合判断部40からの鉄道車両の速度の受信を行う。
他方、総合判断部40から鉄道車両の速度を受信した場合(ステップ1:Yes)、速度取得部17bが取得した速度が所定の速度より大きいか否かを判定する(ステップ2)。速度取得部17bが取得した速度が所定の速度以下である場合(ステップ2:No)、演算処理部21は、CPUの動作モードをスリープモードに遷移させ、処理を終了する。つまり、軸受異常判定装置10は、鉄道車両の速度が所定の速度以下である場合、異常の有無の判定を行わない。これは、走行速度が徐行程度である場合、軸受軌道面の欠陥に伴う振動加速度の実効値が低いために解析が困難となり、異常判定の精度が低くなるためである。そして、軸受異常判定装置10は、鉄道車両の速度が所定の速度以下である場合、異常の有無の判定を行わずに、CPUへの電力供給を断つことで、消費電力を低減することができる。
他方、速度取得部17bが取得した速度が所定の速度より大きい場合(ステップ2:Yes)、軸受選択手段(ステップ3)によってA列軸受及びB列軸受の何れの測定を行うか判定する。軸受選択手段(ステップ3)は、例えばA列軸受及びB列軸受を交互に測定するようにしても構わないし、加速度計選択カウンタをA列軸受及びB列軸受それぞれに設け、異常検知カウンタの値を元に第1の加速度センサ31a又は第2の加速度センサ31bの重み付けを行う重み付け手段によって選択頻度を決定しても構わない。このように軸受選択手段(ステップ3)によって、A列軸受及びB列軸受の何れか一方の測定のみを行うことで、加速度センサに供給する消費電力を低減することができる。
次に、12kHzタイマを起動してA/D変換を開始する(ステップ4)。また、物理量変換ゲインを電圧データに乗じて加速度に換算し、(ステップ5)データを所定回数バッファリングした後、フィルタ関係の初期化を行ってエンベロープ解析を行う。
このとき、異常判定部17は、得られた速度データに応じたバンドパスフィルタを選択するフィルタ選択手段を行う(ステップ6)。また、フィルタ選択手段は、速度データに応じたバンドパスフィルタの選択に変えて、2種類のバンドパスフィルタを交互に選択するように構成しても構わない。
また、選択されたフィルタを用いて、記録された時間領域の振動波形に対し、バンドパス処理を施す(ステップS7)。当該バンドパス処理は、軸受の転動体が軌道面の傷を通過する際に発生する加速度の周波数を通過させるような周波数帯域を通過させる処理である。次に、異常判定部17は、バンドパス処理を施した時間領域の振動波形について、絶対値処理を施す(ステップS8)。次に、異常判定部17は、バンドパス処理および絶対値処理を施した時間領域の振動波形について、ローパス処理を施す(ステップS9)。これにより、異常判定部17は、記憶する時間領域の振動波形の包絡線を得ることができる。
次に、異常判定部17は、バンドパス処理、絶対値処理およびローパス処理を施した時間領域の振動波形から、オーバラップ区間を有する複数の区間(例えば3つ)を抽出し、それぞれの区間の波形に対して所定の窓関数を乗じる。窓関数としては、例えば、ハミングウインドウなどが挙げられる(ステップ10)。次に、異常判定部17は、抽出した各区間の時間領域の振動波形について、周波数変換処理を施す(ステップS11)。これにより、異常判定部17は、複数の周波数領域の振動波形を生成する。
次に、異常判定部17は、生成した複数の周波数領域の振動波形を平均化する(ステップS12)。次に、生成した周波数領域の平均振動波形から、周波数スペクトルにおける加速度の平均値を算出する。
また、異常判定部17は、取得した鉄道車両の速度に基づいて、軸受の軌道面の傷に基づく振動の周波数である複数の欠陥周波数を特定する(ステップS13)。
次に、異常判定部17は、欠陥周波数での抽出窓関数をFFT結果に乗算したのち、抽出結果からスペクトル平均値の除去を行う(ステップ14)。次に、抽出結果の平均値を算出し(ステップ15)、この平均値が所定の閾値を越えているかを判定する(ステップ16)。ここで、所定の閾値を越えていない場合には、スリープに移行し、所定の閾値を超えている場合には、異常検知カウンタ値を加算する(ステップ17)。また、異常検知カウンタ値が上限を超えているかを判定し(ステップ18)、異常検知カウンタ値が上限を超えている場合には、異常検知カウンタをリセットした後スリープへ移行する。また、異常検知カウンタ値が上限を超えていない場合には、そのままスリープへ移行する。
このように、本実施形態に係る軸受異常判定装置10は、A列軸受及びB列軸受のいずれか一方の所定の計測時間の間に計測した振動の大きさに係る物理量に基づいて、軸受の異常の有無を判定する。つまり軸受異常判定装置10は、A列軸受及びB列軸受をそれぞれ独立して稼動させることで一回当たりのセンシング、信号前処理及び解析に必要となる消費電力が半減することとなるので、供給電源に制限のある軸受異常判定装置に適用することで、省電力化を図ることが可能となる。
また、フィルタ選択手段において、2種類のバンドパスフィルタを交互もしくは、走行速度に応じて選択しているので、より正確なエンベロープ解析による欠陥に起因するスペクトルピークの検出が可能となり、見過ごしや誤検知のエラーを防止することができる。ここで、バンドパスフィルタの通過周波数帯域を広くとることも考えられるが、広帯域のスペクトルピークの平均値をとって判定する場合、閾値が低くなることから、上述した誤検知や見過ごしのエラーの可能性が高まるため好ましくない。
なお、上述した実施形態において、センサ部に圧電式加速度センサや自律型温度センサを適用した場合について説明を行ったが、測定が必要な条件に応じて適宜センサを適用しても構わない。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれうることが、特許請求の範囲の記載から明らかである。
1 鉄道車両
2 台車
10 軸受異常判定装置
11 一次電池
12 振動発電装置
13 親機
14 監視モジュール
14a 電源供給部
14b 信号処理部
15 ゲート部
16 インターフェイス部
17 異常判定部
17a 振動取得部
17b 速度取得部
18 無線部
19 アナログ信号処理部
20 蓄電装置
20a 第1のキャパシタ
20b 第2のキャパシタ
21 演算処理部
30 センサ部
31 圧電式加速度センサ
32 自律型温度センサ
40 総合判断部

Claims (5)

  1. 鉄道車両の軸受を構成するA列軸受およびB列軸受のそれぞれの振動データを計測する第1の加速度センサおよび第2の加速度センサを備える振動取得部と、
    前記鉄道車両の速度データを取得する速度取得部と、
    前記振動データと前記速度データに基づいて前記軸受に異常が生じているかを判定する異常判定部と、を備え、
    前記異常判定部は、前記A列軸受又は前記B列軸受のうち、いずれの振動データを取得するか決定する軸受選択手段を備えることを特徴とする軸受異常判定装置。
  2. 請求項1に記載の軸受異常判定装置において、
    前記軸受選択手段は、前記A列軸受および前記B列軸受を交互に選択することを特徴とする軸受異常判定装置。
  3. 請求項1に記載の軸受異常判定装置において、
    前記軸受選択手段は、前回の判定結果から選択の重み付けを行う重み付け手段を備え、該重み付けに応じて前記A列軸受又は前記B列軸受を選択することを特徴とする軸受異常判定装置。
  4. 請求項1から3のいずれか1項に記載の軸受異常判定装置において、
    前記異常判定部は、前記速度データに応じたバンドパスフィルタを選択するフィルタ選択手段を備えることを特徴とする軸受異常判定装置。
  5. 請求項1から4のいずれか1項に記載の軸受異常判定装置において、
    前記速度取得部は、前記振動取得部によって得られた加速度データから速度データを演算することを特徴とする軸受異常判定装置。
JP2018053810A 2018-03-22 2018-03-22 軸受異常判定装置 Pending JP2019168227A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018053810A JP2019168227A (ja) 2018-03-22 2018-03-22 軸受異常判定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018053810A JP2019168227A (ja) 2018-03-22 2018-03-22 軸受異常判定装置

Publications (1)

Publication Number Publication Date
JP2019168227A true JP2019168227A (ja) 2019-10-03

Family

ID=68106653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018053810A Pending JP2019168227A (ja) 2018-03-22 2018-03-22 軸受異常判定装置

Country Status (1)

Country Link
JP (1) JP2019168227A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865369A1 (en) * 2020-02-12 2021-08-18 ALSTOM Transport Technologies Wheel lubrication controlling device, associated wheel lubrication system, railway vehicle, method for controlling wheel lubrication and method of parametrizing a wheel lubrication controlling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3865369A1 (en) * 2020-02-12 2021-08-18 ALSTOM Transport Technologies Wheel lubrication controlling device, associated wheel lubrication system, railway vehicle, method for controlling wheel lubrication and method of parametrizing a wheel lubrication controlling device

Similar Documents

Publication Publication Date Title
US7693673B2 (en) Apparatus and method for identifying a defect and/or operating characteristic of a system
RU2526319C2 (ru) Модуль подшипника с сенсорным устройством
CN102549406B (zh) 用于监控轨道车辆的行驶状态的方法和装置
JP4935165B2 (ja) 異常診断装置及び異常診断方法
CN207485607U (zh) 一种风力机变桨轴承故障检测系统
JP4929810B2 (ja) 異常診断装置及び異常診断方法
JP2018155494A (ja) 軸受異常診断システム及び軸受異常診断方法
JP2017026421A (ja) 軸受異常診断装置
JP2009300401A (ja) プラント監視システムおよびプラント監視方法
KR20190083029A (ko) 철도 차량 부품들의 결함을 진단하는 방법 및 장치
JP2007241583A (ja) 力学量測定装置及び方法
CN103733034A (zh) 用于监控发电机的绕组头振动的方法和设备
CN204255494U (zh) 桥梁振动监测装置
JP4424515B2 (ja) ころがり軸受における固体伝導音の検出方法
JP2019168227A (ja) 軸受異常判定装置
JP4730166B2 (ja) 機械設備の異常診断装置及び異常診断方法
JP2016099118A (ja) 軸受異常判定装置、軸受異常判定システムおよび軸受異常判定プログラム
US11959825B2 (en) Method and a condition monitoring device for monitoring a rotating equipment
WO2019081772A1 (en) CONTROL OF RAILWAY TRACK
CN107923789A (zh) 振动分析器和异常诊断系统
JP5476413B2 (ja) 回転機械の健全性診断方法
CN110058117B (zh) 一种基于外包封振动分布的电抗器匝间短路故障检测方法
CN104165683A (zh) 一种电力电容器振动在线监测装置
JP7367535B2 (ja) 回転軸受けの診断方法および装置
KR101387018B1 (ko) Hbd 전자랙의 차축 온도 검출 장치 및 그 방법