JP2019167551A - Steel component excellent in rolling fatigue characteristics - Google Patents

Steel component excellent in rolling fatigue characteristics Download PDF

Info

Publication number
JP2019167551A
JP2019167551A JP2018053669A JP2018053669A JP2019167551A JP 2019167551 A JP2019167551 A JP 2019167551A JP 2018053669 A JP2018053669 A JP 2018053669A JP 2018053669 A JP2018053669 A JP 2018053669A JP 2019167551 A JP2019167551 A JP 2019167551A
Authority
JP
Japan
Prior art keywords
rolling fatigue
carbonitride
hardness
concentration
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018053669A
Other languages
Japanese (ja)
Other versions
JP6939670B2 (en
Inventor
孔明 牧野
Komei Makino
孔明 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2018053669A priority Critical patent/JP6939670B2/en
Publication of JP2019167551A publication Critical patent/JP2019167551A/en
Application granted granted Critical
Publication of JP6939670B2 publication Critical patent/JP6939670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

To provide a steel component having high surface hardness exceeding 800 HV, and capable of exhibiting excellent rolling fatigue characteristics even under an environment where a foreign matter such as abrasion powder may be mixed.SOLUTION: A steel component includes C:0.50 to 1.20%, Si:0.20 to 1.50%, Mn:0.20 to 1.50%, Cr:5.00 to 9.00%, Mo:0 to 1.00% (including 0%), V:0 to 1.00% (including 0%), and the balance made of Fe and inevitable impurities, and has a surface hardened layer. The surface characteristics satisfy (a) a retained austenite amount of 20 to 50% by area rate, (b) the major axis length of the maximum nitride of 15 μm or smaller, (c) the number of carbon nitride having a circle equivalent diameter of 0.1 to 2.0 μm of 400,000/mmor larger, (d) Cs of 1.5 to 3.4%, (e) Ns of 0.5% or smaller, and (f) the surface hardness exceeding 800 HV. Furthermore, the formula 1: 4×([Cs]+[Ns])-([Cr]+[Mo]+[V])<3, 6 is satisfied.SELECTED DRAWING: None

Description

本発明は、転動疲労特性に優れた鋼部品に関する。   The present invention relates to a steel part having excellent rolling fatigue characteristics.

たとえば、自動変速機(AT)ユニットに使用されているピニオンシャフトや軸受の軌道輪(内輪、外輪)は、球形状や円錐形状のころ(転動体)を受ける鋼部品であり、高い転動疲労特性が求められている。ATユニット内の油中には歯車などの摩耗粉等の異物が含まれており、この摩耗粉等の異物が、ころ等の転動体と上記鋼部品の間に噛み込んだ場合には、その噛み込み位置で上記鋼部品の表面が塑性変形することがある。塑性変形した位置は、いびつな形状となり、その位置をころ等の転動体が転動する際に応力が集中し、亀裂発生・破損に繋がる可能性がある。   For example, pinion shafts and bearing races (inner and outer rings) used in automatic transmission (AT) units are steel parts that receive spherical or conical rollers (rolling elements) and have high rolling fatigue. Characteristics are required. The oil in the AT unit contains foreign matters such as gears and other wear particles. If foreign particles such as wear particles get caught between the rolling elements such as rollers and the steel parts, The surface of the steel part may be plastically deformed at the biting position. The plastically deformed position has an irregular shape, and stress is concentrated when a rolling element such as a roller rolls at that position, which may lead to cracking or breakage.

転動疲労特性を高めるためには、材料特性として表面硬さを800HVを超える程度に十分に高くすることが有効であるが、摩耗粉等のいわゆる異物が生じうる環境で使用する場合には、それだけでは十分でなく、上述した塑性変形に起因する応力集中を抑制する対策を加える必要がある。   In order to enhance the rolling fatigue characteristics, it is effective to make the surface hardness sufficiently high to exceed 800 HV as a material characteristic, but when used in an environment where so-called foreign matter such as wear powder may be generated, That alone is not sufficient, and it is necessary to take measures to suppress stress concentration caused by the plastic deformation described above.

従来の高い転動疲労特性を確保しようとした技術としては、軸受け部品の軌道輪に関して、例えば、特許文献1〜3に記載されたものがある。しかしながら、これらの文献に記載された軸受け部品が有する転動疲労特性は、必ずしも十分であるとは言えない。   As a technique which tried to ensure the conventional high rolling fatigue characteristic, there exist some which were described in patent documents 1-3 regarding the bearing ring of a bearing component, for example. However, the rolling fatigue characteristics of the bearing components described in these documents are not necessarily sufficient.

まず、特許文献1に記載の転がり軸受用軌道輪は、靭性を重視し、表面硬さの上限を64HRC以下(約800HV以下)としており、基本的な特性が本願において求められるレベルに達しないものである。   First, the bearing ring for rolling bearing described in Patent Document 1 emphasizes toughness, and the upper limit of the surface hardness is 64 HRC or less (about 800 HV or less), and the basic characteristics do not reach the level required in the present application. It is.

次に、特許文献2に記載の転がり軸受は、実施例の記載から、特許文献1と同様にその大半が表面硬さ64HRC以下であるだけでなく、特許文献1に記載のような浸炭、浸窒といった表面硬化処理による寿命改善の検討が全くされていないものである。   Next, from the description of the examples, the rolling bearing described in Patent Document 2 not only has a surface hardness of 64 HRC or less as in Patent Document 1, but also carburized and carburized as described in Patent Document 1. No study has been made on the improvement of service life by surface hardening treatment such as nitrogen.

また、特許文献3の転がり軸受は、表6に記載の軌道輪の実施例に硬さの記載がなく、残留オーステナイト量も10%固定となっており、Cr含有率5%超で表面硬化処理を行った場合の高寿命達成のための条件最適化が不十分である。   In addition, the rolling bearing of Patent Document 3 has no description of hardness in the examples of the bearing rings shown in Table 6, the amount of retained austenite is fixed at 10%, and the surface hardening treatment is performed when the Cr content exceeds 5%. The optimization of conditions for achieving a long service life is insufficient.

特開2003−343577号公報JP 2003-343577 A 特開2001−221238号公報JP 2001-221238 A 特開2008−255399号公報JP 2008-255399 A

本発明は、かかる背景に鑑みてなされたものであり、800HVを超える高い表面硬さを有し、かつ、摩耗粉等の異物が混入しうる環境下においても優れた転動疲労特性を発揮しうる転動疲労特性の優れた鋼部品を提供しようとするものである。   The present invention has been made in view of such a background, has a high surface hardness exceeding 800 HV, and exhibits excellent rolling fatigue characteristics even in an environment where foreign matter such as wear powder can be mixed. The present invention aims to provide a steel part having excellent rolling fatigue characteristics.

本発明の一態様は、質量比で、C:0.50〜1.20%、Si:0.20〜1.50%、Mn:0.20〜1.50%、Cr:5.00〜9.00%、Mo:0〜1.00%(0%を含む)、V:0〜1.00%(0%を含む)を含有し、残部がFeおよび不可避不純物からなり、
浸炭層又は浸炭浸窒層を含む表面硬化層を有し、
表面特性として、以下の(a)〜(f)を具備し、
(a)残留オーステナイト量が面積率で20〜50%、
(b)最大炭窒化物の長軸長さが15μm以下、
(c)円相当径0.1〜2.0μmの炭窒化物の個数が400,000個/mm2以上、
(d)Cs(C濃度)が1.5〜3.4%、
(e)Ns(N濃度)が0.5%以下、
(f)表面硬さが800HVを超え、かつ、
下記式1を満足する、転動疲労特性の優れた鋼部品にある。
式1:4×([Cs]+[Ns])−([Cr]+[Mo]+[V])<3.6、
(但し、式中における[Cs]は上記(d)のCsの値、[Ns]は上記(e)のNsの値、[Cr]、[Mo]及び[V]はCr、Mo及びVの含有率(質量%)を示す。)
One embodiment of the present invention has a mass ratio of C: 0.50 to 1.20%, Si: 0.20 to 1.50%, Mn: 0.20 to 1.50%, Cr: 5.00 9.00%, Mo: 0 to 1.00% (including 0%), V: 0 to 1.00% (including 0%), with the balance being Fe and inevitable impurities,
Having a hardened surface layer including a carburized layer or a carburized and nitrocarburized layer;
As surface characteristics, the following (a) to (f) are provided,
(A) The amount of retained austenite is 20 to 50% in area ratio,
(B) The long axis length of the maximum carbonitride is 15 μm or less,
(C) The number of carbonitrides having an equivalent circle diameter of 0.1 to 2.0 μm is 400,000 pieces / mm 2 or more,
(D) Cs (C concentration) is 1.5 to 3.4%,
(E) Ns (N concentration) is 0.5% or less,
(F) the surface hardness exceeds 800 HV, and
The steel parts satisfy the following formula 1 and have excellent rolling fatigue characteristics.
Formula 1: 4 × ([Cs] + [Ns]) − ([Cr] + [Mo] + [V]) <3.6,
(In the formula, [Cs] is the value of Cs in (d) above, [Ns] is the value of Ns in (e), [Cr], [Mo] and [V] are the values of Cr, Mo and V (The content (% by mass) is indicated.)

上記鋼部品は、上記の化学成分組成を有し、表面特性として上記(a)〜(f)を具備し、かつ、式1を満足するものである。列挙したこれらの要件をすべて具備することによって、非常に高い表面硬度を有しながら、潤滑油中に摩耗粉等の異物が含まれる環境でころ等の転動体と高い圧力が負荷された状態で接触しつつ使用しても、優れた寿命を確保することが可能となる。   The steel part has the chemical composition described above, has the above-described (a) to (f) as surface characteristics, and satisfies Formula 1. By having all of these requirements listed, while having a very high surface hardness, in a state where high pressure is loaded with rolling elements such as rollers in an environment where foreign matter such as wear powder is contained in the lubricating oil. Even if it is used in contact, it is possible to ensure an excellent life.

異物を噛み込んだ際には、その表面が変形し、それが寿命低下の原因となるが、異物噛込みに起因する寿命低下の影響を小さく抑えるためには、異物が噛込んだ際に生じる表面の形状(塑性変形形状)が応力集中を抑制しやすい形状となるよう制御することが重要である。これには、異物噛み込みが生じる表面層の部分に、軟らかい残留オーステナイト(γ)相を分散させておくことが有効である。これは、適切な量の残留オーステナイト相の分散により、耐異物噛み込み時の塑性変形形状を、比較的滑らかな輪郭形状とすることができ、応力集中を抑制しうる形状に抑制可能なためである。   When a foreign object is bitten, the surface is deformed, which causes a decrease in the life. To suppress the influence of the decrease in the life due to the biting of the foreign object, it occurs when the foreign object is bitten. It is important to control the surface shape (plastic deformation shape) so that the stress concentration is easily suppressed. For this purpose, it is effective to disperse the soft retained austenite (γ) phase in the portion of the surface layer where foreign matter biting occurs. This is because an appropriate amount of retained austenite phase can be dispersed to make the plastic deformation shape when the foreign object is bitten into a relatively smooth contour shape, which can be suppressed to a shape that can suppress stress concentration. is there.

しかし、軟らかい残留オーステナイト相を有することは、表面硬さの低下につながるため、表面硬さの維持と、残留オーステナイト相の分散による異物噛込みによる塑性変形形状制御とは、背反する要件であり、特に硬さを800HV超とした場合には、両者を両立するための具体的方策の提案は非常に難しい。   However, since having a soft retained austenite phase leads to a decrease in surface hardness, maintaining the surface hardness and controlling the plastic deformation shape by biting foreign matter due to dispersion of the retained austenite phase are contradictory requirements. In particular, when the hardness is over 800 HV, it is very difficult to propose specific measures for achieving both.

ここで、表面硬さを高くすることは、高い転動疲労特性を得るために欠かせない要件であるところ、塑性変形形状制御のために比較的柔らかい残留オーステナイト相を適度に分散させたうえで、高硬度の炭窒化物を適度に分散させることで、全体としては高い硬さを確保することができる条件を見出す必要がある。   Here, increasing the surface hardness is an indispensable requirement for obtaining high rolling fatigue characteristics, but after appropriately dispersing the relatively soft retained austenite phase for plastic deformation shape control. It is necessary to find a condition capable of ensuring high hardness as a whole by appropriately dispersing high-hardness carbonitrides.

炭窒化物の分散量を高めれば、硬さは向上するが、炭窒化物量を増やそうとするとそれらが粗大化しやすくなる。粗大な炭窒化物が存在すると、これが鋼部品の使用中(応力負荷時)に応力集中の起点となり、き裂発生・破損の原因となって転動疲労特性を低下させるおそれがある。そのため、炭窒化物を分散させるに当たっては、粗大な炭窒化物を増加させることなく、トータルの炭窒化物量を増やす必要があり、微細な炭窒化物を多量に析出させるための条件の最適化が重要となる。   If the amount of carbonitride dispersed is increased, the hardness will improve, but if the amount of carbonitride is increased, they will become coarser. If coarse carbonitride is present, this becomes the starting point of stress concentration during use of the steel part (when stress is applied), which may cause cracking and breakage and reduce rolling fatigue characteristics. Therefore, when dispersing carbonitride, it is necessary to increase the total amount of carbonitride without increasing coarse carbonitride, and optimization of conditions for depositing a large amount of fine carbonitride is necessary. It becomes important.

本発明者等は、上記構成を満足する鋼部品を提案することにより、残留オーステナイト相を適度に分散させつつ、微細な炭窒化物の適度な分散をも実現することによって、上述する背反する要件を成立させることに成功した。そして、これにより、800HVを超える高い表面硬さを有し、かつ、摩耗粉等の異物が混入しうる環境下においても優れた転動疲労特性を発揮しうる鋼部品を得ることができた。   The present inventors propose a steel part that satisfies the above-described configuration, thereby realizing the appropriate dispersion of fine carbonitrides while appropriately dispersing the retained austenite phase, and thus the contradictory requirements described above. Was successfully established. As a result, it was possible to obtain a steel part having a high surface hardness exceeding 800 HV and capable of exhibiting excellent rolling fatigue characteristics even in an environment where foreign matter such as wear powder can be mixed.

<化学成分>
上記転動疲労特性に優れた鋼部品は、質量比で、C:0.50〜1.20%、Si:0.20〜1.50%、Mn:0.20〜1.50%、Cr:5.00〜9.00%、Mo:0〜1.00%(0%を含む)、V:0〜1.00%(0%を含む)を含有し、残部がFeおよび不可避不純物からなる。これらの各元素の含有範囲の限定理由は以下の通りである。
<Chemical component>
The steel parts having excellent rolling fatigue characteristics are, by mass ratio, C: 0.50 to 1.20%, Si: 0.20 to 1.50%, Mn: 0.20 to 1.50%, Cr : 5.00 to 9.00%, Mo: 0 to 1.00% (including 0%), V: 0 to 1.00% (including 0%), the balance from Fe and inevitable impurities Become. The reasons for limiting the content ranges of these elements are as follows.

C:0.50〜1.20%、
C(炭素)は、焼入れ処理後の硬さを向上させ、強度確保のための内部硬さを得るために必要な元素である。C含有率が、0.50%未満の場合には、焼入れ後の内部硬さが低くなり、曲げ疲労強度が低下するおそれがあり、一方、1.20%を超える場合には、粗大な炭窒化物が生成しやすくなり、転動疲労強度や曲げ疲労強度低下の原因となると共に、加工性も低下するおそれがある。
C: 0.50 to 1.20%
C (carbon) is an element necessary for improving the hardness after quenching and obtaining internal hardness for ensuring strength. When the C content is less than 0.50%, the internal hardness after quenching is lowered, and the bending fatigue strength may be lowered. On the other hand, when it exceeds 1.20%, coarse carbon Nitride is likely to be generated, which causes a decrease in rolling fatigue strength and bending fatigue strength, and there is a concern that workability may also be reduced.

Si:0.20〜1.50%、
Si(ケイ素)は、製鋼時の脱酸剤として不可欠な元素であるとともに、焼もどし時に炭窒化物の生成を抑え、焼もどし軟化抵抗性を向上させる元素である。Si含有率が、0.20%未満の場合には、焼もどし軟化抵抗に関し、狙いのレベルを確保しにくくなり800HV超えの表面硬さを得ることができないおそれがあり、一方、1.50%を超える場合には、焼なまし後の硬さが上昇し、所定形状への加工性が低下するおそれがある。
Si: 0.20 to 1.50%,
Si (silicon) is an element indispensable as a deoxidizer during steelmaking, and is an element that suppresses the formation of carbonitrides during tempering and improves tempering softening resistance. When the Si content is less than 0.20%, it is difficult to secure a target level with respect to temper softening resistance, and a surface hardness exceeding 800 HV may not be obtained. If it exceeds 1, the hardness after annealing increases, and the workability to a predetermined shape may be reduced.

Mn:0.20〜1.50%、
Mn(マンガン)は製鋼時の脱酸剤として作用する元素であるとともに、焼入れ性向上に有効である元素である。Mn含有率が、0.20%未満の場合には、焼入れ性が低下し、硬さが低下するおそれがあり、一方、1.50%を超える場合には、焼なまし後の硬さが上昇し、加工性が低下するおそれがある。
Mn: 0.20 to 1.50%,
Mn (manganese) is an element that acts as a deoxidizer during steelmaking and is an element that is effective in improving hardenability. If the Mn content is less than 0.20%, the hardenability may decrease and the hardness may decrease. On the other hand, if it exceeds 1.50%, the hardness after annealing may decrease. There is a risk that the processability is lowered.

Cr:5.00〜9.00%、
Cr(クロム)は、焼入れ性を高めるとともに、微細な炭窒化物を生成させやすくする元素である。Cr含有率が、5.00%未満の場合には、炭窒化物が充分に生成せずに表面硬さが低下するおそれがあり、一方、9.00%を超える場合には、粗大な炭窒化物が生成し、転動疲労強度や曲げ疲労強度が低下するおそれがある。
Cr: 5.00 to 9.00%,
Cr (chromium) is an element that enhances hardenability and facilitates formation of fine carbonitrides. If the Cr content is less than 5.00%, carbonitrides may not be sufficiently formed and the surface hardness may decrease. On the other hand, if it exceeds 9.00%, coarse carbon Nitride is generated, and rolling fatigue strength and bending fatigue strength may be reduced.

Mo:0〜1.00%(0%を含む)、
Mo(モリブデン)は、任意添加元素であるので必ずしも添加する必要はない。ただし、Moは、CrよりもCとの親和力の強い元素であり、微細な炭窒化物を生成させやすくするため、熱処理後の表面微細炭窒化物量を増加させ、硬度を上昇させるために重要な元素である。従って、適量含有させる方が好ましい。Moを含有する場合、少量であっても上記効果が得られるが、好ましくは0.05%以上とするのがよく、より好ましくは0.10%以上とするのがよい。一方、Mo含有率が1.00%を超える場合には、効果が飽和するとともに、コスト高になるという問題がある。
なお、スクラップを原料として電気炉で製造する場合には、通常Moは、0.05%未満の範囲で不純物として含有される。
Mo: 0 to 1.00% (including 0%),
Since Mo (molybdenum) is an optional additive element, it is not always necessary to add it. However, Mo is an element having a stronger affinity with C than Cr, and is important for increasing the amount of surface fine carbonitride after heat treatment and increasing hardness in order to facilitate the formation of fine carbonitride. It is an element. Therefore, it is preferable to contain an appropriate amount. When Mo is contained, the above effect can be obtained even with a small amount, but it is preferably 0.05% or more, and more preferably 0.10% or more. On the other hand, when the Mo content exceeds 1.00%, the effect is saturated and the cost is increased.
In addition, when manufacturing scrap with an electric furnace as a raw material, Mo is normally contained as an impurity in the range below 0.05%.

V:0〜1.00%(0%を含む)、
V(バナジウム)は、任意添加元素であるので必ずしも添加する必要はない。ただし、Vは、Cとの親和力が非常に強い元素であり、微細な炭窒化物を生成させやすくするため、熱処理後の表面微細炭窒化物量を増加させ、硬度を上昇させるために重要な元素であるため、添加する方が好ましい。Vを含有する場合、少量であっても上記効果が得られるが、好ましくは0.01%以上とするのがよく、より好ましくは0.05%以上、さらに好ましく、0.10%以上とするのがよい。一方、V含有率が1.00%を超える場合には、効果が飽和するとともに、コスト高になるという問題がある。
V: 0 to 1.00% (including 0%),
V (vanadium) is an optional additive element and thus does not necessarily have to be added. However, V is an element having an extremely strong affinity with C, and is an element important for increasing the amount of surface fine carbonitride after heat treatment and increasing the hardness in order to easily generate fine carbonitride. Therefore, it is preferable to add. When V is contained, the above effect can be obtained even in a small amount, but it is preferably 0.01% or more, more preferably 0.05% or more, still more preferably 0.10% or more. It is good. On the other hand, when the V content exceeds 1.00%, the effect is saturated and the cost is increased.

<表面特性>
(a)残留オーステナイト量が面積率で20〜50%、
表面における残留オーステナイトは、上述したように、異物噛み込み時の塑性変形形状を応力集中しずらい形状に制御するのに有効である。表面から観察した残留オーステナイトの量が、面積率で20%未満の場合には、上述した異物噛み込み時の塑性変形形状制御効果が十分に得られないおそれがあり、一方、50%を超える場合には、柔らかい残留オーステナイト相の割合が多すぎて、微細炭窒化物の多量析出による効果を考慮しても、800HV超の硬さを確保できなくなり、転動疲労強度向上効果が低下するおそれがある。
<Surface characteristics>
(A) The amount of retained austenite is 20 to 50% in area ratio,
As described above, the retained austenite on the surface is effective for controlling the plastic deformation shape at the time of foreign object biting to a shape in which stress concentration is difficult. When the amount of retained austenite observed from the surface is less than 20% in terms of area ratio, the above-described plastic deformation shape control effect at the time of foreign object biting may not be sufficiently obtained, whereas, when it exceeds 50% In addition, since the ratio of the soft retained austenite phase is too large, even if the effect due to the large amount of fine carbonitride is precipitated, the hardness exceeding 800 HV cannot be secured, and the rolling fatigue strength improving effect may be reduced. is there.

(b)最大炭窒化物の長軸長さが15μm以下、
転動疲労強度の向上には、微細な炭窒化物の分散による表面硬さの向上が有効である。炭窒化物としては、Cr系炭窒化物の他、MoあるいはVが添加されている場合には、Mo系炭窒化物あるいはV系炭窒化物も同様の効果を発揮する。これらの炭窒化物のうち微細なものの必要個数は後述するとおりであるが、微細炭窒化物を増加させて硬さの向上を図っても、粗大な炭窒化物が存在すると、それが応力集中の起点となり、転動疲労強度向上に悪影響を及ぼす。したがって、表面観察により観察される最大炭窒化物の長軸長さが15μm以下となるように制御することが重要である。特に、最大炭窒化物の長軸長さが15μmを超える場合には、応力集中による悪影響が大きくなり、寿命低下の原因となるおそれが高くなるため、避ける必要がある。
(B) The long axis length of the maximum carbonitride is 15 μm or less,
In order to improve the rolling fatigue strength, it is effective to improve the surface hardness by dispersing fine carbonitrides. As the carbonitride, in addition to Cr-based carbonitride, when Mo or V is added, Mo-based carbonitride or V-based carbonitride also exhibits the same effect. Of these carbonitrides, the required number of fine ones is as will be described later, but even if the fine carbonitrides are increased to improve hardness, if coarse carbonitrides are present, they will be stress concentrated. This has an adverse effect on improving rolling fatigue strength. Therefore, it is important to control the long axis length of the maximum carbonitride observed by surface observation to be 15 μm or less. In particular, when the long axis length of the maximum carbonitride exceeds 15 μm, it is necessary to avoid the adverse effect due to stress concentration, which increases the risk of shortening the life.

(c)円相当径0.1〜2.0μmの炭窒化物の個数が400,000個/mm2以上、
上述したように、転動疲労強度の向上には微細な炭窒化物の分散による硬さの向上が不可欠である。表面観察において、硬さ向上に効果的な微細な炭窒化物の大きさは、円相当径が0.1〜2.0μmの炭窒化物であるため、このサイズの微細な炭窒化物の個数を400,000個/mm2以上存在させることによって、その効果が十分に発揮される。一方、微細な炭窒化物の個数が400,000個/mm2未満の場合には、上述した残留オーステナイト量を確保した場合における硬さ向上効果を十分に得ることができないおそれがある。
(C) The number of carbonitrides having an equivalent circle diameter of 0.1 to 2.0 μm is 400,000 pieces / mm 2 or more,
As described above, improvement in hardness by dispersion of fine carbonitrides is indispensable for improving rolling fatigue strength. In surface observation, the size of the fine carbonitride effective for improving the hardness is a carbonitride having an equivalent circle diameter of 0.1 to 2.0 μm. Therefore, the number of fine carbonitrides of this size The effect is sufficiently exhibited by the presence of at least 400,000 pieces / mm 2 . On the other hand, when the number of fine carbonitrides is less than 400,000 pieces / mm 2 , there is a possibility that the effect of improving the hardness when securing the above-mentioned amount of retained austenite cannot be obtained sufficiently.

(d)Cs(C濃度)が1.5〜3.4%、
Csは、表面において測定したC(炭素)濃度を示すものである。この範囲の炭素濃度を確保するためには、後述するように、例えば、高濃度ガス浸炭処理または高濃度ガス浸炭浸窒処理を行えばよい。そして、上記した成分からなる鋼に対して、Csを上記範囲となるように制御しつつ、浸炭又は浸炭浸窒処理することにより、上述した微細な炭窒化物が析出し、かつ粗大な炭窒化物の生成を抑制した鋼部品を得ることができる。Csが3.4%を超える場合には、粗大な炭窒化物が生成し、その粗大な炭窒化物が破壊の起点となるおそれがあり、一方、1.5%未満の場合には、硬さが800HV超を得るのに十分な量の炭窒化物を確保することが困難となる。
(D) Cs (C concentration) is 1.5 to 3.4%,
Cs indicates the C (carbon) concentration measured on the surface. In order to ensure the carbon concentration within this range, for example, a high-concentration gas carburizing process or a high-concentration gas carburizing / nitriding process may be performed as described later. Then, the above-described fine carbonitride is precipitated and coarse carbonitriding by carburizing or carburizing and nitriding while controlling Cs so as to be in the above range with respect to the steel composed of the above components. Steel parts in which the production of objects is suppressed can be obtained. When Cs exceeds 3.4%, coarse carbonitrides are produced, and the coarse carbonitrides may become a starting point of fracture, while when less than 1.5%, It is difficult to secure a sufficient amount of carbonitride to obtain a thickness of more than 800 HV.

(e)Ns(N濃度)が0.5%以下、
Nsは、表面において測定したN(窒素)濃度を示すものであり、浸窒処理を行った場合に、表面に窒素を拡散させ、転動疲労特性を改善することができる。しかし、N濃度が高すぎる場合には、炭窒化物の粗大化が促進され、かえって転動疲労特性が低下するおそれがある。そのため、炭窒化物の粗大化を阻止するために、Nsを0.5%以下にすることが重要である。なお、Nは、鋼中に不純物として含有する元素であるため、浸窒処理しない場合でも、少量含有される。
(E) Ns (N concentration) is 0.5% or less,
Ns indicates the N (nitrogen) concentration measured on the surface, and when nitriding is performed, nitrogen can be diffused on the surface and rolling fatigue characteristics can be improved. However, when the N concentration is too high, the coarsening of the carbonitride is promoted, and the rolling fatigue characteristics may be deteriorated. Therefore, in order to prevent coarsening of the carbonitride, it is important to set Ns to 0.5% or less. In addition, since N is an element contained as an impurity in steel, it is contained in a small amount even when the nitriding treatment is not performed.

(f)表面硬さ800HVを超え、
表面硬さを向上させることは、転動疲労特性を向上させるための基本的な要件である。本願における鋼部品においては、従来以上の特性を得ることを目的とするため、800HVを超えることを必須とする。
(F) the surface hardness exceeds 800 HV,
Improving the surface hardness is a basic requirement for improving rolling fatigue characteristics. In the steel part in this application, since it aims at obtaining the characteristic more than the past, it is essential to exceed 800HV.

なお、表面特性における表面とは、最終的な鋼部品での最表面を意味する。すなわち、浸炭処理や浸炭浸窒処理をした後に、表面を機械加工するような場合は、その加工後の最表面を意味する。   In addition, the surface in a surface characteristic means the outermost surface in a final steel part. That is, when the surface is machined after carburizing or carburizing and nitriding, it means the outermost surface after the processing.

<式1>
また、上記した成分範囲、表面におけるC濃度、N濃度の条件を満足することに加えて、式1:4×([Cs]+[Ns])−([Cr]+[Mo]+[V])<3.6、を満たすことが、炭窒化物の粗大化をより確実に阻止し、優れた転動疲労特性を得るために有効である。式1の左辺の値が、3.6以上の場合には、粗大な炭窒化物の生成の可能性が残るが、3.6未満とすることによって、より確実に粗大な炭窒化物の生成を阻止することができる。
なお、上述したように、式中における[Cs]は上記(d)のCsの値、[Ns]は上記(e)のNsの値、[Cr]、[Mo]及び[V]はCr、Mo及びVの含有率(質量%)を示す。
<Formula 1>
Further, in addition to satisfying the above-mentioned component range, surface C concentration and N concentration conditions, the formula 1: 4 × ([Cs] + [Ns]) − ([Cr] + [Mo] + [V ]) <3.6 is effective in preventing the coarsening of carbonitrides more reliably and obtaining excellent rolling fatigue characteristics. When the value on the left side of Equation 1 is 3.6 or more, the possibility of formation of coarse carbonitrides remains, but by making it less than 3.6, the production of coarse carbonitrides is more reliably achieved. Can be prevented.
As described above, [Cs] in the formula is the value of Cs in (d), [Ns] is the value of Ns in (e), [Cr], [Mo] and [V] are Cr, The content rate (mass%) of Mo and V is shown.

<表面硬化層よりも内部の特性>
上記鋼部品においては、好ましくは、内部の特性、つまり、表面硬化層よりも内部である表面硬化処理の影響が及ばない断面位置での特性として、残留オーステナイト量が面積率で10%以下である、という要件を具備することが好ましい。
<Internal characteristics rather than surface hardened layer>
In the steel part, preferably, the amount of retained austenite is 10% or less in terms of area ratio as an internal characteristic, that is, a characteristic at a cross-sectional position that is not affected by the surface hardening treatment inside the surface hardened layer. It is preferable to satisfy the requirements of.

残留オーステナイトは、時間経過により、徐々にマルテンサイト変態し、相変態によって膨張する特性を有する。そのため、内部の残留オーステナイト量が多いと変形量が大きくなり、それによる不具合が生じるおそれがある。そのため、内部の残留オーステナイト量を上記のごとく制御することが好ましい。   Residual austenite has the property of gradually martensitic transformation over time and expanding due to phase transformation. Therefore, if the amount of retained austenite in the interior is large, the amount of deformation becomes large, and there is a possibility that a malfunction will occur. Therefore, it is preferable to control the amount of retained austenite inside as described above.

<製造方法>
本願における鋼部品は、少なくとも熱間加工を施して粗部品を形成し、該粗部品に焼きなまし処理及び粗切削加工を施した後、表面硬化処理を施し、その後、仕上げ切削加工を施すことにより製造することができる。そして、上記表面硬化処理は、例えば、高濃度ガス浸炭処理、高濃度ガス浸炭浸窒処理、高濃度真空浸炭処理、高濃度真空浸炭浸窒処理等を採用することができる。
<Manufacturing method>
Steel parts in the present application are manufactured by forming at least hot working to form rough parts, subjecting the rough parts to annealing treatment and rough cutting processing, surface hardening treatment, and then finishing cutting processing. can do. And the said surface hardening process can employ | adopt a high concentration gas carburizing process, a high concentration gas carburizing nitriding process, a high concentration vacuum carburizing process, a high concentration vacuum carburizing nitriding process etc., for example.

高濃度ガス浸炭処理は、カーボンポテンシャル(Cp)が0.8〜1.6という比較的高い条件で浸炭ガスを導入して、マトリックス中に微細炭窒化物を生成させる浸炭を行う処理である。高濃度ガス浸炭浸窒処理は、高濃度ガス浸炭処理と同様に、カーボンポテンシャル(Cp)が0.8〜1.6という比較的高い条件で浸炭ガスを導入しつつ、さらに、アンモニア(NH3)ガスも導入して、前記と同様にマトリックス中に微細炭窒化物を生成させる浸炭と浸窒の両方を行う処理である。 The high-concentration gas carburizing process is a process in which carburizing gas is introduced under a relatively high condition of carbon potential (Cp) of 0.8 to 1.6 to generate fine carbonitrides in the matrix. In the high-concentration gas carburizing and nitriding treatment, similarly to the high-concentration gas carburizing treatment, while introducing the carburizing gas under a relatively high condition where the carbon potential (Cp) is 0.8 to 1.6, ammonia (NH 3 ) Gas is also introduced and both carburizing and nitriding are performed to generate fine carbonitrides in the matrix as described above.

これらの処理における処理温度としては、880〜960℃とすることが好ましい。浸炭又は浸炭浸窒処理時の加熱温度が960℃を超える場合には、浸炭異常層が深くなり、強度が低下するおそれがあり、一方、880℃未満の場合には、CあるいはC及びNの浸入・拡散が遅くなり、充分な硬度向上効果や硬化深さが得られないおそれがある。   As processing temperature in these processes, it is preferable to set it as 880-960 degreeC. If the heating temperature during carburizing or carburizing and nitrocarburizing treatment exceeds 960 ° C, the carburizing abnormal layer may be deepened and the strength may decrease. On the other hand, if it is less than 880 ° C, C or C and N Penetration / diffusion is slow, and there is a possibility that sufficient hardness improvement effect and curing depth cannot be obtained.

また、高濃度ガス浸炭処理または高濃度ガス浸炭浸窒処理の後には、連続的に焼入れ処理を行う。焼入れ処理における急冷前の温度(以下、焼入れ温度と記す。)は、850〜930℃とすることが好ましい。焼入れ温度が930℃を超える場合には、焼入れ時の変形が大きくなり過ぎるおそれがあり、一方、850℃未満の場合には、生成した炭窒化物が粗大化しやすくなり、粗大炭窒化物が生成して、転動疲労強度が低下するおそれがある。なお、焼入れ処理時の急冷方法としては、例えば、40〜130℃の油中に投入する油冷を採用することができる。また、焼入れ処理後には、150℃程度に保持する焼戻し処理を施すことが好ましい。   Further, after the high-concentration gas carburizing process or the high-concentration gas carburizing and nitriding process, a quenching process is continuously performed. The temperature before quenching in the quenching treatment (hereinafter referred to as quenching temperature) is preferably 850 to 930 ° C. When the quenching temperature exceeds 930 ° C., deformation during quenching may be excessively large. On the other hand, when the quenching temperature is less than 850 ° C., the generated carbonitride tends to be coarsened, and coarse carbonitride is generated. As a result, the rolling fatigue strength may decrease. In addition, as a rapid cooling method at the time of a quenching process, the oil cooling thrown in in 40-130 degreeC oil can be employ | adopted, for example. Moreover, it is preferable to perform the tempering process hold | maintained at about 150 degreeC after a quenching process.

また、高濃度ガス浸炭処理または高濃度ガス浸炭浸窒処理時の温度(以下、処理温度と記す。)から、焼入れ温度まで移行する際に、一定以上の冷却速度で降温することにより、炭窒化物をより微細に生成することができる。そして、処理温度が高いほど、また焼入れ温度が低いほど、炭窒化物生成量は多くなる。つまり、処理温度と焼入れ温度の差異が大きいほど微細炭窒化物量は増加する。このため、処理温度と、焼入れ温度との温度差は、粗大炭窒化物の生成を抑制できる範囲で、温度差を大きくするのが好ましく、10℃以上とするのがよく、好ましくは20℃以上、より好ましくは30℃以上とするのがよい。   In addition, when shifting from the temperature during high-concentration gas carburizing treatment or high-concentration gas carburizing and nitriding treatment (hereinafter referred to as “treatment temperature”) to the quenching temperature, the carbonitriding is performed by lowering the temperature at a certain cooling rate or higher. The product can be produced more finely. And the higher the treatment temperature and the lower the quenching temperature, the greater the amount of carbonitride produced. That is, the amount of fine carbonitride increases as the difference between the treatment temperature and the quenching temperature increases. For this reason, the temperature difference between the treatment temperature and the quenching temperature is preferably within a range in which the formation of coarse carbonitrides can be suppressed, preferably 10 ° C. or more, preferably 20 ° C. or more. More preferably, the temperature is 30 ° C. or higher.

上記転動疲労特性に優れた鋼部品の実施例につき、比較例と共に説明する。まず、表1に示す化学成分を有する複数の鋼種(試験No.1〜31(試験No.1〜19は実施例、試験No.20〜30は比較例、試験No.31は従来鋼SUJ2)を準備した。ここで、Moについて0.05%未満の鋼は、積極添加しておらず、不純物として含有していた量を示すものである。   Examples of steel parts having excellent rolling fatigue characteristics will be described together with comparative examples. First, a plurality of steel types having chemical components shown in Table 1 (Test Nos. 1 to 31 (Test Nos. 1 to 19 are examples, Test Nos. 20 to 30 are comparative examples, and Test No. 31 is a conventional steel SUJ2). Here, steel less than 0.05% of Mo is not positively added, and indicates the amount contained as an impurity.

これらの鋼は、電気炉で溶解して鋼塊を作製し、鋼塊に鍛伸加工を施して粗加工前の棒材に加工する。そして、この棒材を780〜1080℃に4時間保持した後、770〜880℃まで3時間かけて冷却した後、600℃まで12時間40分かけて徐冷し、その後空冷する球状化焼き鈍し処理を行った。なお、処理温度は、成分により最適条件が異なるため、供試材毎に変化させている。その後、直径φ45mm×12mm厚さの円盤形状の粗加工品を作製した。   These steels are melted in an electric furnace to produce a steel ingot, and the steel ingot is forged and processed into a bar material before roughing. And after hold | maintaining this bar at 780-1080 degree C for 4 hours, after cooling to 770-880 degree C over 3 hours, gradually cooling to 600 degree C over 12 hours 40 minutes, and then air-cooling spheroidizing annealing treatment Went. In addition, since optimal conditions differ with components, the processing temperature is changed for every test material. Thereafter, a disk-shaped rough processed product having a diameter of 45 mm × 12 mm was prepared.

この粗加工品に対して、後述する条件で高濃度ガス浸炭浸窒処理(試験No.16〜18、23、29は、高濃度ガス浸炭処理)及び焼入れ・焼戻し処理を施し、その後、仕上げ加工として表面を0.1mm切削して試験片を得た。この切削後の表面が、実部品での表面に相当する位置である。表面特性は、この試験片における仕上げ加工面において測定した。また、内部特性は、前記の高濃度ガス浸炭浸窒処理又は高濃度ガス浸炭処理の影響が及ばないことが確認できている位置であるさらに表面から2mmまで切削した面において測定した。   The rough processed product is subjected to high-concentration gas carburizing and nitriding treatment (test Nos. 16-18, 23, and 29 are high-concentration gas carburizing treatment) and quenching / tempering treatment under the conditions described later, and then finished. As a result, the surface was cut by 0.1 mm to obtain a test piece. The surface after cutting is a position corresponding to the surface of the actual part. The surface characteristics were measured on the finished surface of the test piece. Further, the internal characteristics were measured on a surface cut to 2 mm from the surface, which was a position where it was confirmed that the high concentration gas carburizing / nitrogenizing treatment or the high concentration gas carburizing treatment was not affected.

なお、試験No.21については、高濃度ガス浸炭浸窒処理の有無による効果の差異を明確にするため、従来鋼SUJ2と共に、従来鋼に対して通常行われている熱処理である焼入れ焼戻し処理(850℃×30分加熱後油冷→150℃1時間加熱後空冷)を行った。   In addition, Test No. For No. 21, in order to clarify the difference in the effect due to the presence or absence of the high-concentration gas carburizing and nitriding treatment, together with the conventional steel SUJ2, a quenching and tempering treatment (850 ° C. × 30 minutes) which is a heat treatment usually performed on the conventional steel Oil cooling after heating → 150 ° C. for 1 hour followed by air cooling).

また、一部の供試材は、本発明で明らかにしている表面の特性範囲が重要であることを明確にするために、意図的に浸炭浸窒処理条件を調整して、一部が本発明の条件の範囲外となるように処理し、本発明の実施例との比較を行った。   In addition, in order to clarify that the characteristic range of the surface specified in the present invention is important for some test materials, some of the test materials were intentionally adjusted for carburizing and nitriding treatment, It processed so that it might become out of the range of the conditions of invention, and compared with the Example of this invention.

高濃度ガス浸炭浸窒処理は、浸炭ガスをカーボンポテンシャル(Cp)が0.8〜1.6%となる条件で導入しながら、かつ、NH3を所望のNs(%)が得られる条件で導入しながら(試験No.16〜18、23、29は、NH3の導入はなし)、表1及び表2の「浸炭浸窒処理温度」の欄に記載した温度に4〜12時間保持する条件で行った。 High concentration gas carbonitriding treatment, a carburizing gas while introducing the conditions carbon potential (Cp) is 0.8 to 1.6%, and the desired Ns (%) NH 3 under conditions to obtain Conditions for holding for 4 to 12 hours at the temperature described in the column of “Carburizing and Nitrogen Treatment Temperature” in Tables 1 and 2 while introducing (Test Nos. 16 to 18, 23, and 29 are no introduction of NH 3 ) I went there.

高濃度ガス浸炭浸窒処理後の焼入れ・焼戻し処理は、「処理温度」から、表1及び表2の「焼入れ温度」の欄に記載の温度まで短時間(約15分)で直接降温し、その温度で30分保持し、40〜130℃の油中に焼入れを行った。その後、150℃に1時間保持する焼戻し処理を行った。「処理温度」から「焼入れ温度」へ降温する際の温度差も、表1及び表2に記載した。   The quenching and tempering treatment after the high-concentration gas carburizing and nitriding treatment, the temperature is directly lowered in a short time (about 15 minutes) from the “treatment temperature” to the temperature described in the “quenching temperature” column of Tables 1 and 2. It was kept at that temperature for 30 minutes and quenched in oil at 40 to 130 ° C. Then, the tempering process hold | maintained at 150 degreeC for 1 hour was performed. Table 1 and Table 2 also show the temperature difference when the temperature is lowered from the “treatment temperature” to the “quenching temperature”.

<(a)表面の残留オーステナイト量及び内部の残留オーステナイト量>
表面及び内部の残留オーステナイト(γ)量は、微小部X線残留応力装置(PSPC)(リガク製)を用い、管球:Cr管球、X線:Kα1、加速電圧20kV、照射電流:40mAの条件設定で測定した値を用いた。
<(A) Surface retained austenite amount and internal retained austenite amount>
The amount of retained austenite (γ) on the surface and inside is as follows: a micro part X-ray residual stress device (PSPC) (manufactured by Rigaku), tube: Cr tube, X-ray: Kα1, acceleration voltage 20 kV, irradiation current: 40 mA. The value measured in the condition setting was used.

<(b)最大炭窒化物長軸長さ>
光学顕微鏡を用い、倍率:×1000、測定範囲:約0.0045mm2、測定視野数:10視野、の条件で表面を観察し、観察領域の中で長軸長さが最長のものを選んでその値を最大炭窒化物長軸長さとした。
<(B) Maximum carbonitride major axis length>
Using an optical microscope, observe the surface under the conditions of magnification: × 1000, measurement range: about 0.0045 mm 2 , number of fields of view: 10 fields of view, and select the longest axis in the observation area The value was taken as the maximum carbonitride major axis length.

<(c)微細炭窒化物個数>
SEMを用い、倍率:×10000で観察し、円相当径が0.1〜2.0μmのものの個数を画像処理により数えた。400,000個以上/mm2を指標とする。
<(C) Number of fine carbonitrides>
SEM was used and observed at a magnification of × 10000, and the number of circle-equivalent diameters of 0.1 to 2.0 μm was counted by image processing. The index is 400,000 or more / mm 2 .

<(d)Cs(%)及び(e)Ns(%)>
表面炭素濃度、表面窒素濃度は、EPMA(X線マイクロアナライザー)を用いて測定(浸窒処理を行っていない試験材は、Cs(%)のみ測定)した。
<(D) Cs (%) and (e) Ns (%)>
The surface carbon concentration and the surface nitrogen concentration were measured using EPMA (X-ray microanalyzer) (only Cs (%) was measured for a test material not subjected to nitriding treatment).

<(f)表面硬さ>
表面硬さは、試験片1における切削済みの表面を、ビッカース硬さ試験機を用いて、荷重20kgfの条件で測定した。
<(F) Surface hardness>
The surface hardness was measured on the cut surface of the test piece 1 using a Vickers hardness tester under a load of 20 kgf.

<B10寿命特性及び寿命比>
B10寿命特性(転動疲労寿命特性)試験は、森式スラスト型転動疲労試験機を用い、最大接触面圧:5.3GPa、回転数:1500rpm、潤滑油:マシン油#30、ボールサイズ3/8インチ、ボール個数3個、温度:室温という条件に加え、異物としてハイス鋼粉末(硬さ730HVV、粒径100〜150μm)を混入させる条件で行った。転動疲労寿命の評価は、ワイブル分析により折損しない確率が90%と定義されるB10寿命を求め、従来鋼SUJ2(試験No.31)の結果を基準として、これに対する比率を寿命比として求めた。そして、従来鋼SUJ2に対し、4倍以上の寿命が得られた場合を合格と判断した。
<B10 life characteristics and life ratio>
The B10 life characteristics (rolling fatigue life characteristics) test was performed using a Mori-type thrust type rolling fatigue tester. Maximum contact surface pressure: 5.3 GPa, rotation speed: 1500 rpm, lubricating oil: machine oil # 30, ball size 3 In addition to the conditions of / 8 inch, the number of balls of 3, and the temperature: room temperature, high-speed steel powder (hardness of 730 HVV, particle size of 100 to 150 μm) was mixed as foreign matter. For the evaluation of rolling fatigue life, the B10 life defined as 90% probability of not breaking by Weibull analysis was obtained, and the ratio to this was obtained as the life ratio based on the result of conventional steel SUJ2 (Test No. 31). . And the case where 4 times or more of lifetime was acquired with respect to conventional steel SUJ2 was judged as the pass.

これらの評価結果は表1及び表2に示す。   These evaluation results are shown in Tables 1 and 2.

Figure 2019167551
Figure 2019167551

Figure 2019167551
Figure 2019167551

表1から知られるように、実施例の試験No.1〜19は、上述した特定の化学成分組成を具備すると共に式1を満足し、かつ、表面特性(a)〜(f)の全てを満足する。
これにより、B10寿命に優れ、すべて、異物を有する厳しい条件であるにもかかわらず、従来鋼(試験No.31)より4倍以上優れた寿命特性(転動疲労特性)を発揮した。ここで、実施例のうち、試験No.6〜8は、温度差の値の影響をみるため、同一成分で温度差を変化させた結果を示すが、温度差が大きいほど微細炭窒化物の数が増加し、その結果表面硬さが上昇し、B10寿命が改善されることがわかった。
As can be seen from Table 1, test No. 1 to 19 have the above-described specific chemical component composition, satisfy Formula 1, and satisfy all of the surface characteristics (a) to (f).
Thereby, it was excellent in B10 life, and exhibited life characteristics (rolling fatigue characteristics) four times or more superior to that of the conventional steel (test No. 31) in spite of all severe conditions having foreign matters. Here, among the examples, the test No. 6 to 8 show the results of changing the temperature difference with the same component in order to see the influence of the temperature difference value. The larger the temperature difference, the more the number of fine carbonitrides increases, resulting in an increase in surface hardness. B10 life was found to be improved.

一方、比較例の試験No.20〜30は、化学成分、式1、表面特性(a)〜(f)の少なくとも1つが所望範囲から外れ、実施例に匹敵するほど寿命特性が向上したものはなかった。   On the other hand, test No. of the comparative example. In Nos. 20 to 30, at least one of the chemical components, Formula 1, and surface characteristics (a) to (f) deviated from the desired range, and none of the life characteristics was improved to be comparable to the examples.

試験No.20は、式1を含め、化学成分に問題はないが、高濃度浸炭浸窒処理後、降温することなく、焼入れを行った結果、微細炭窒化物が十分に生成されず、その結果微細炭窒化物生成による表面硬さ向上効果が小さくなり、表面硬さが800HV未満となったため、実施例ほどの寿命特性が得られなかった。   Test No. 20 has no problem in chemical composition, including the formula 1, but after carbonization nitriding treatment, after quenching without lowering the temperature, fine carbonitrides are not sufficiently produced, and as a result Since the effect of improving the surface hardness due to the formation of the nitride was reduced and the surface hardness was less than 800 HV, the life characteristics as in Examples were not obtained.

試験No.21は、式1を含め化学成分に問題はないが、表面硬化処理の効果を明確にするために、高濃度浸炭浸窒処理を行わず、従来鋼SUJ2で普通に行われている焼入れ焼戻し処理を行った結果、当然の結果として、(a)表面の残留オーステナイト量、(c)微細炭窒化物の個数、(d)Cs、(f)表面硬さが本発明の条件を満足しなくなり従来鋼よりも寿命特性が劣る結果となった。   Test No. 21 has no problem with chemical components including Formula 1, but in order to clarify the effect of the surface hardening treatment, the high-concentration carburizing and nitriding treatment is not performed, and the quenching and tempering treatment normally performed in the conventional steel SUJ2 As a natural result, (a) the amount of retained austenite on the surface, (c) the number of fine carbonitrides, (d) Cs, (f) the surface hardness does not satisfy the conditions of the present invention. The life characteristics were inferior to those of steel.

試験No.22は、個々の化学成分に問題はないが、式1が満足せず、かつ浸炭浸窒処理後の表面窒素濃度Nsが高すぎるため、炭窒化物が粗大化し、従来鋼よりも寿命特性が劣る結果となった。   Test No. No. 22 has no problem with individual chemical components, but the formula 1 is not satisfied, and the surface nitrogen concentration Ns after the carbonitriding process is too high, so the carbonitride is coarsened, and the life characteristics are higher than that of the conventional steel. The result was inferior.

試験No.23は、式1の値も含め化学成分に問題はないが、浸炭処理後の表面炭素濃度Csが低すぎたため、微細炭窒化物の個数が所定の数より少なくなった結果、狙いの表面硬さが得られず、実施例ほどの寿命特性が得られなかった。   Test No. 23, there is no problem with the chemical composition including the value of Formula 1, but the surface carbon concentration Cs after the carburizing treatment was too low, and as a result, the number of fine carbonitrides was less than the predetermined number. Thus, the life characteristics as in Examples were not obtained.

試験No.24は、化学成分においてC含有率が高すぎたため、粗大炭窒化物が生成された結果、最大炭窒化物長軸長さが本発明の条件を満足しなかったため、十分な表面硬さを有しながら、従来鋼よりも寿命特性が劣る結果となった。   Test No. No. 24 had a sufficient surface hardness because the C content in the chemical component was too high, and as a result, a coarse carbonitride was produced, so that the maximum carbonitride major axis length did not satisfy the conditions of the present invention. However, the life characteristics were inferior to conventional steel.

試験No.25は、Si含有率が低いことが原因で、狙いの(f)表面硬さが満足できず、実施例ほどの寿命特性が得られなかった。   Test No. For No. 25, the target (f) surface hardness could not be satisfied due to the low Si content, and the life characteristics as in Examples were not obtained.

試験No.26は、化学成分においてMn含有率が低すぎた影響で(f)表面硬さが狙い値を満足できず、実施例ほどの寿命特性が得られなかった。   Test No. No. 26 was affected by the Mn content being too low in the chemical component, and (f) the surface hardness could not satisfy the target value, and the life characteristics as in Examples were not obtained.

試験No.27は、化学成分においてCr含有率が低すぎ、その影響で(c)微細炭窒化物が狙い通りの個数生成されなかった影響で、(f)表面硬さが800HV超えとならず、実施例ほどの寿命特性が得られなかった。   Test No. No. 27 is the effect that the Cr content in the chemical component is too low, and (c) the number of fine carbonitrides was not generated as intended, and (f) the surface hardness did not exceed 800 HV. Not so long life characteristics were obtained.

試験No.28は、化学成分においてCr含有率が高すぎ、炭窒化物が粗大化しやすい成分であったため、(b)最大炭窒化物長軸長さが本発明の条件を満足できなかったため、十分な表面硬さを有しながら、従来鋼よりも寿命特性が劣る結果となった。   Test No. 28 is a component in which the Cr content in the chemical component is too high and the carbonitride tends to coarsen, and (b) the maximum carbonitride major axis length did not satisfy the conditions of the present invention, While having hardness, the life characteristics were inferior to conventional steel.

試験No.29は、式1を含め、化学成分に問題はないが、浸炭浸窒処理後に表面炭素濃度Csが高くなりすぎたため、析出する炭窒化物が粗大化し、(b)最大炭窒化物長軸長さが本発明の条件を満足できず、非常に高い表面硬さを有しながら、従来鋼よりも寿命特性が劣る結果となった。   Test No. 29, although there is no problem in chemical composition including Formula 1, the surface carbon concentration Cs became too high after the carbonitriding process, so that the precipitated carbonitride was coarsened, and (b) the maximum carbonitride major axis length However, the conditions of the present invention could not be satisfied, and the life characteristics were inferior to those of the conventional steel while having a very high surface hardness.

試験No.30は、式1を含め、化学成分に問題はないが、浸炭浸窒処理後に表面の残留γ量が高くなりすぎ、表面硬さ800HV超を得ることができなかったため、従来鋼に対し4倍以上の寿命を確保できなかった。   Test No. 30 has no problem in chemical composition including Formula 1, but the amount of residual γ on the surface became too high after carburizing and nitriding treatment, and the surface hardness of over 800 HV could not be obtained. The above lifetime could not be secured.

Claims (2)

質量比で、C:0.50〜1.20%、Si:0.20〜1.50%、Mn:0.20〜1.50%、Cr:5.00〜9.00%、Mo:0〜1.00%(0%を含む)、V:0〜1.00%(0%を含む)を含有し、残部がFeおよび不可避不純物からなり、
浸炭層又は浸炭浸窒層を含む表面硬化層を有し、
表面特性として、以下の(a)〜(f)を具備し、
(a)残留オーステナイト量が面積率で20〜50%、
(b)最大炭窒化物の長軸長さが15μm以下、
(c)円相当径0.1〜2.0μmの炭窒化物の個数が400,000個/mm2以上、
(d)Cs(C濃度)が1.5〜3.4%、
(e)Ns(N濃度)が0.5%以下、
(f)表面硬さが800HVを超え、かつ、
下記式1を満足する、転動疲労特性に優れた鋼部品。
式1:4×([Cs]+[Ns])−([Cr]+[Mo]+[V])<3.6、
(但し、式中における[Cs]は上記(d)のCsの値、[Ns]は上記(e)のNsの値、[Cr]、[Mo]及び[V]はCr、Mo及びVの含有率(質量%)を示す。)
By mass ratio, C: 0.50 to 1.20%, Si: 0.20 to 1.50%, Mn: 0.20 to 1.50%, Cr: 5.00 to 9.00%, Mo: 0 to 1.00% (including 0%), V: 0 to 1.00% (including 0%), the balance consisting of Fe and inevitable impurities,
Having a hardened surface layer including a carburized layer or a carburized and nitrocarburized layer;
As surface characteristics, the following (a) to (f) are provided,
(A) The amount of retained austenite is 20 to 50% in area ratio,
(B) The long axis length of the maximum carbonitride is 15 μm or less,
(C) The number of carbonitrides having an equivalent circle diameter of 0.1 to 2.0 μm is 400,000 pieces / mm 2 or more,
(D) Cs (C concentration) is 1.5 to 3.4%,
(E) Ns (N concentration) is 0.5% or less,
(F) the surface hardness exceeds 800 HV, and
A steel part that satisfies the following formula 1 and has excellent rolling fatigue characteristics.
Formula 1: 4 × ([Cs] + [Ns]) − ([Cr] + [Mo] + [V]) <3.6,
(In the formula, [Cs] is the value of Cs in (d) above, [Ns] is the value of Ns in (e), [Cr], [Mo] and [V] are the values of Cr, Mo and V (The content (% by mass) is indicated.)
上記表面硬化層よりも内部の残留オーステナイト量が面積率で10%以下である、請求項1に記載の転動疲労特性に優れた鋼部品。   The steel part excellent in rolling fatigue characteristics according to claim 1, wherein the amount of retained austenite inside the hardened surface layer is 10% or less in terms of area ratio.
JP2018053669A 2018-03-21 2018-03-21 Steel parts with excellent rolling fatigue characteristics Active JP6939670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018053669A JP6939670B2 (en) 2018-03-21 2018-03-21 Steel parts with excellent rolling fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018053669A JP6939670B2 (en) 2018-03-21 2018-03-21 Steel parts with excellent rolling fatigue characteristics

Publications (2)

Publication Number Publication Date
JP2019167551A true JP2019167551A (en) 2019-10-03
JP6939670B2 JP6939670B2 (en) 2021-09-22

Family

ID=68108138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018053669A Active JP6939670B2 (en) 2018-03-21 2018-03-21 Steel parts with excellent rolling fatigue characteristics

Country Status (1)

Country Link
JP (1) JP6939670B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6974642B1 (en) * 2020-10-30 2021-12-01 Ntn株式会社 Rolling members and rolling bearings
WO2022092210A1 (en) * 2020-10-30 2022-05-05 Ntn株式会社 Rolling member and rolling bearing
JP2022108242A (en) * 2021-01-12 2022-07-25 Ntn株式会社 Rolling motion component and rolling bearing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003343577A (en) * 2002-05-28 2003-12-03 Nsk Ltd Roller bearing and belt type non-stage transmission using the same
JP2004003608A (en) * 2002-04-15 2004-01-08 Nsk Ltd Rolling bearing for belt-type continuously variable transmission
JP2008223104A (en) * 2007-03-14 2008-09-25 Nsk Ltd Rolling shaft
JP2009215597A (en) * 2008-03-10 2009-09-24 Aichi Steel Works Ltd Rolling-motion part and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004003608A (en) * 2002-04-15 2004-01-08 Nsk Ltd Rolling bearing for belt-type continuously variable transmission
JP2003343577A (en) * 2002-05-28 2003-12-03 Nsk Ltd Roller bearing and belt type non-stage transmission using the same
JP2008223104A (en) * 2007-03-14 2008-09-25 Nsk Ltd Rolling shaft
JP2009215597A (en) * 2008-03-10 2009-09-24 Aichi Steel Works Ltd Rolling-motion part and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6974642B1 (en) * 2020-10-30 2021-12-01 Ntn株式会社 Rolling members and rolling bearings
WO2022092210A1 (en) * 2020-10-30 2022-05-05 Ntn株式会社 Rolling member and rolling bearing
JP2022073906A (en) * 2020-10-30 2022-05-17 Ntn株式会社 Rolling member and rolling bearing
JP2022108242A (en) * 2021-01-12 2022-07-25 Ntn株式会社 Rolling motion component and rolling bearing
JP7177883B2 (en) 2021-01-12 2022-11-24 Ntn株式会社 Rolling parts and rolling bearings

Also Published As

Publication number Publication date
JP6939670B2 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP5503344B2 (en) High-strength case-hardened steel parts and manufacturing method thereof
JP5094126B2 (en) Rolling and sliding parts and manufacturing method thereof
JP5202043B2 (en) Rolling parts and manufacturing method thereof
WO2013084800A1 (en) Rolling bearing and method for producing same
US20120222778A1 (en) Rolling/sliding part and production method thereof
EP2386669A1 (en) Constituent member of bearing, process for production of same, and ball-and-roller bearing provided with the constituent member
JPH0525609A (en) Rolling bearing
JP6939670B2 (en) Steel parts with excellent rolling fatigue characteristics
JP2001073072A (en) Carbo-nitrided parts excellent in pitching resistance
JP5206271B2 (en) Carbonitriding parts made of steel
JP5541048B2 (en) Carbonitrided steel parts with excellent pitting resistance
JP6029949B2 (en) Normalizing process after hot forging can be omitted, and a method for manufacturing case-hardened steel and parts excellent in high-temperature carburizing properties
JP4569961B2 (en) Manufacturing method of parts for ball screw or one-way clutch
JP4413769B2 (en) Rolling bearing steel
JP6029950B2 (en) After hot forging, normalizing can be omitted, and a method for producing case-hardened steel and parts with excellent high-temperature carburizing properties
JP5999485B2 (en) Carbon nitrided parts with excellent surface fatigue strength of hydrogen embrittlement type
JP5272609B2 (en) Carbonitriding parts made of steel
JP6448405B2 (en) Carbon nitride bearing parts with excellent surface fatigue strength of hydrogen embrittlement type
JP2022170056A (en) steel
JP2021028414A (en) Steel for carburized gear, carburized gear, and manufacturing method of carburized gear
JP6881496B2 (en) Parts and their manufacturing methods
JP2019056141A (en) Steel material for carbonitriding and carbonitrided bearing part
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP6601359B2 (en) Carburized parts with excellent wear resistance and manufacturing method thereof
JP2008088482A (en) Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R150 Certificate of patent or registration of utility model

Ref document number: 6939670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150