JP2019164133A - Mist determination method of periphery of block object on conveyor, and property measurement method of block object on conveyor - Google Patents

Mist determination method of periphery of block object on conveyor, and property measurement method of block object on conveyor Download PDF

Info

Publication number
JP2019164133A
JP2019164133A JP2019045462A JP2019045462A JP2019164133A JP 2019164133 A JP2019164133 A JP 2019164133A JP 2019045462 A JP2019045462 A JP 2019045462A JP 2019045462 A JP2019045462 A JP 2019045462A JP 2019164133 A JP2019164133 A JP 2019164133A
Authority
JP
Japan
Prior art keywords
luminance
conveyor
mist
shadow
massive substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019045462A
Other languages
Japanese (ja)
Other versions
JP6806176B2 (en
Inventor
坪井 俊樹
Toshiki Tsuboi
俊樹 坪井
尚史 山平
Naofumi Yamahira
尚史 山平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019164133A publication Critical patent/JP2019164133A/en
Application granted granted Critical
Publication of JP6806176B2 publication Critical patent/JP6806176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To determine the occurrence/non-occurrence of mist around a block object, in measuring the property of the block object such as iron ore conveyed by a conveyor.SOLUTION: A mist determination method of a periphery of a block object 4 on conveyor 3 of the present invention is a method of determining the occurrence/non-occurrence of mist around the block object conveyed on the conveyor on the basis of a picked-up image by an imaging apparatus 5. When the frequency of the luminance of a shadow in the picked-up image acquired by taking the block object is equal to or lower than a value determined on the basis of the frequency of the luminance exceeding the luminance of the shadow in the picked-up image, it is determined that mist occurs around the block object on the conveyor.SELECTED DRAWING: Figure 1

Description

本発明は、コンベアで搬送される鉄鉱石やコークスなどの塊状物質の性状測定の際に、塊状物質の周囲でのミストの発生の有無を判定する方法、及び、その判定方法を利用したコンベア上の塊状物質の性状測定方法に関する。   The present invention relates to a method for determining the presence or absence of mist around a massive substance when measuring the properties of the massive substance such as iron ore and coke conveyed on the conveyor, and on the conveyor using the judgment method. The present invention relates to a method for measuring the properties of the bulk material.

鉄鉱石やコークスなどの塊状の原料を用いた高炉などの製造設備においては、原料の粒度が製造プロセスの操業に影響する。そのため、製造プロセスを安定させるには、事前に原料の粒度情報を把握する必要がある。特に、高炉においては、鉱石、コークスといった原料の粒度の把握が重要であり、高炉内の通気性を確保するために、高炉に装入する原料に付着した微細な粉の粉率にも注意して操業を行う必要がある。尚、粉率とは、装入量全質量に占める粉の質量の比率を意味する。   In production facilities such as blast furnaces using massive raw materials such as iron ore and coke, the particle size of the raw materials affects the operation of the manufacturing process. Therefore, in order to stabilize the manufacturing process, it is necessary to grasp the particle size information of the raw material in advance. In particular, in blast furnaces, it is important to know the particle size of raw materials such as ore and coke. In order to ensure air permeability in the blast furnace, pay attention to the fine powder adhering to the raw material charged in the blast furnace. Need to operate. In addition, a powder rate means the ratio of the mass of the powder which occupies for the charging amount total mass.

高炉の通気性を維持するためには、塊状の装入物間に形成される空隙を確保することが重要である。装入物に小塊や粉が多く含まれると、塊状の装入物間の空隙が小塊や粉で埋められて、通気性が悪化する。これを防止するために、装入原料を事前に篩い分けして篩い上の塊のみを高炉に装入する操作が行われている。一般に、高炉装入前の篩い分けにより、コークスは25mm以上または35mm以上に、焼結鉱や鉄鉱石は5mm以上または25mm以上に粒度調整することが多い。   In order to maintain the air permeability of the blast furnace, it is important to secure a gap formed between the massive charges. If the charge contains a lot of small lumps or powder, the gaps between the bulk charge will be filled with small lumps or powder, and air permeability will deteriorate. In order to prevent this, an operation is performed in which the charged raw material is sieved in advance and only the lump on the sieve is charged into the blast furnace. In general, the size of coke is often adjusted to 25 mm or more or 35 mm or more, and the size of sintered ore or iron ore is adjusted to 5 mm or more or 25 mm or more by sieving before charging the blast furnace.

しかし、通常の篩い分け操作では、細粒原料を完全に除去することは困難である。特に、塊状原料に付着した粉状原料は塊状原料とともに高炉に装入され、高炉内では、塊状原料と粉状原料とが分離してしまうので、塊状原料に付着した粉状原料の量を事前に把握し、高炉へ装入される粉状原料の量を極力少なく管理することが求められる。   However, it is difficult to completely remove the fine raw material by a normal sieving operation. In particular, the powdery material adhering to the bulk material is charged into the blast furnace together with the bulk material, and the bulk material and the powdery material are separated in the blast furnace. Therefore, it is necessary to manage the amount of powdery raw material charged into the blast furnace as much as possible.

高炉原料の粒度や粉率の分析は、従来、定期的な原料のサンプリング及び篩い分けによって行われてきたが、この分析には時間を費やすので、搬送される原料をリアルタイムで分析することはできなかった。   Conventionally, analysis of the particle size and powder rate of blast furnace raw materials has been performed by periodic raw material sampling and sieving, but this analysis takes time, so the raw materials being conveyed cannot be analyzed in real time. There wasn't.

そこで、原料の粒度をリアルタイムで分析する手段が多数提案されている。例えば、特許文献1には、搬送体に載せられて移動中の粉粒体を撮像機により撮像し、画像処理によりその粒度分布を計測する装置において、前記粉粒体の撮像照明を行う閃光照明装置と、該閃光照明装置と前記撮像機とを制御する制御装置と、撮像された画像を画像処理して粒度分布解析する粒度分布解析装置と、を有する粒度分布計測装置が提案されている。また、特許文献2には、ベルトコンベアを搬送される塊状の原材料に、斜め上方から光を照射し、塊状の原材料から散乱された光をカメラで採取し、採取画像について画像処理を行って該採取画像の輝度分布を得、該輝度分布における最大ピークのピーク値から粒度を検知する粒度検知方法が提案されている。   Therefore, many means for analyzing the particle size of the raw material in real time have been proposed. For example, Patent Document 1 discloses flash illumination that performs imaging illumination of the granular material in an apparatus that captures an image of a moving granular material placed on a carrier by an imaging device and measures the particle size distribution by image processing. There has been proposed a particle size distribution measuring device including a device, a control device that controls the flash illumination device and the image pickup device, and a particle size distribution analysis device that performs image processing on a captured image and analyzes the particle size distribution. Further, in Patent Document 2, light is radiated obliquely from above on a lump-shaped raw material conveyed on a belt conveyor, light scattered from the lump-shaped raw material is collected with a camera, and image processing is performed on a collected image. A particle size detection method has been proposed in which the luminance distribution of a collected image is obtained and the particle size is detected from the peak value of the maximum peak in the luminance distribution.

特許文献1や特許文献2では、原料のエッジ部分を画像から判定して粒径を求めたり、また、原料表面の輝度を利用したりして、粉率を測定している。原料、特にコークスであれば、コークス炉から直送されて熱を持った状態で運ばれるものや、ヤードに野ざらしにされて水分を多く含むものなどが存在する。そのような状態でコンベア上を運搬されているので、季節による寒暖差や湿度差などの要因でコークス周囲にミストが発生する。ミストが発生した状態では撮像画像がぼやけたり、白く覆われてしまったりして、測定値が異常になるという問題がある。   In Patent Document 1 and Patent Document 2, the edge ratio of the raw material is determined from an image to determine the particle size, or the luminance of the raw material surface is used to measure the powder rate. In the case of raw materials, particularly coke, there are those that are sent directly from a coke oven and transported with heat, and those that are left open in the yard and contain a lot of moisture. Since it is transported on the conveyor in such a state, mist is generated around the coke due to factors such as seasonal differences in temperature and humidity. When the mist is generated, there is a problem that the measured value becomes abnormal because the captured image is blurred or covered with white.

特許文献3には、塊状物質の周囲に発生するミストを検知する技術ではないが、トンネル内などに設置されるテレビカメラの映像を画像処理して、トンネル内などでの火災を検知する装置が提案されている。具体的には、予め火災または煙が発生していないときの画像(元画像)を利用して輝度ヒストグラムを求め、火災または煙が発生しているときに輝度ヒストグラムが元画像と異なることを利用して、輝度ヒストグラムのピークに閾値を定め、火災または煙を検知するという技術である。   Patent Document 3 is not a technique for detecting mist generated around a massive substance, but there is an apparatus for detecting a fire in a tunnel or the like by performing image processing on a TV camera image installed in the tunnel or the like. Proposed. Specifically, a luminance histogram is obtained using an image (original image) when no fire or smoke has occurred in advance, and the fact that the luminance histogram is different from the original image when fire or smoke occurs is used. In this technique, a threshold is set at the peak of the luminance histogram to detect fire or smoke.

しかしながら、特許文献3の技術をコンベア上の塊状物質の周囲に発生するミスト検知に適用しようとすると、塊状物質は撮像ごとに性状が異なり色合いが変化し、輝度ヒストグラムが撮像ごとに大きく変化するため、特許文献3に記載された画像の輝度ヒストグラムのピークに単純に閾値を設ける方法ではミスト検知は極めて困難である。   However, if the technique of Patent Document 3 is applied to the detection of mist generated around a massive substance on a conveyor, the characteristic of the massive substance is different for every imaging and the color changes, and the luminance histogram changes greatly every imaging. It is extremely difficult to detect mist by the method of simply providing a threshold value at the peak of the luminance histogram of the image described in Patent Document 3.

特開2005−181169号公報JP-A-2005-181169 特開2000−329683号公報JP 2000-329683 A 特開平8−202967号公報JP-A-8-202967

本発明は上記事情に鑑みてなされたもので、その目的とするところは、コンベアで搬送される鉄鉱石やコークスなどの塊状物質の性状測定の際に、塊状物質の周囲でのミストの発生の有無を判定する方法を提供することであり、また、その判定方法を利用したコンベア上の塊状物質の性状測定方法を提供することである。   The present invention has been made in view of the above circumstances, and the object of the present invention is to generate mist around the massive material when measuring the properties of the massive material such as iron ore and coke conveyed on the conveyor. It is to provide a method for determining the presence / absence, and to provide a method for measuring the properties of a massive substance on a conveyor using the determination method.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]コンベア上を搬送される塊状物質の周囲でのミスト発生の有無を撮像画像に基づいて判定する方法であって、
前記塊状物質を撮影した撮像画像内の影の輝度の頻度が、撮像画像内の影の輝度を超える輝度の頻度に基づいて決定した値以下である場合に、コンベア上の塊状物質の周囲にミストが発生していると判定することを特徴とする、コンベア上の塊状物質周囲のミスト判定方法。
[2]前記影の輝度の頻度が、撮像画像内の影の輝度を超える輝度の最大頻度に予め定めた所定の係数を掛けた値以下である場合に、コンベア上の塊状物質の周囲にミストが発生していると判定することを特徴とする、上記[1]に記載のコンベア上の塊状物質周囲のミスト判定方法。
[3]コンベア上を搬送される塊状物質の性状の測定に、上記[1]または上記[2]に記載のコンベア上の塊状物質周囲のミスト判定方法を利用することを特徴とする、コンベア上の塊状物質の性状測定方法。
[4]前記塊状物質の性状とは、前記塊状物質の粒度分布であることを特徴とする、上記[3]に記載のコンベア上の塊状物質の性状測定方法。
[5]前記塊状物質の性状とは、前記塊状物質の粉率であることを特徴とする、上記[3]に記載のコンベア上の塊状物質の性状測定方法。
The gist of the present invention for solving the above problems is as follows.
[1] A method for determining the presence or absence of mist generation around a massive substance conveyed on a conveyor based on a captured image,
When the frequency of the shadow luminance in the captured image obtained by photographing the block material is equal to or less than the value determined based on the luminance frequency exceeding the luminance of the shadow in the captured image, the mist around the block material on the conveyor A method for determining mist around a massive substance on a conveyor, characterized in that it is determined that an occurrence has occurred.
[2] When the frequency of the luminance of the shadow is equal to or less than a value obtained by multiplying the maximum frequency of luminance exceeding the luminance of the shadow in the captured image by a predetermined coefficient, a mist around the massive substance on the conveyor The method for determining mist around a massive substance on a conveyor according to the above [1], characterized in that it is determined that the above has occurred.
[3] On the conveyor, the method for determining mist around the massive substance on the conveyor described in [1] or [2] is used for measuring the property of the massive substance conveyed on the conveyor. Method for measuring properties of bulk material.
[4] The method for measuring properties of a massive substance on a conveyor according to the above [3], wherein the property of the massive substance is a particle size distribution of the massive substance.
[5] The property measurement method for a bulk material on a conveyor according to the above [3], wherein the property of the bulk material is a powder rate of the bulk material.

本発明によれば、原料性状や照度変化などの外乱の影響を受けることなく、コンベアで搬送される鉄鉱石やコークスなどの塊状物質周囲でのミストの発生有無を判定することが可能となる。   According to the present invention, it is possible to determine whether or not mist is generated around a massive substance such as iron ore or coke conveyed by a conveyor without being affected by disturbances such as raw material properties and changes in illuminance.

本発明の実施形態の一例を示す概略図であって、高炉のコークス用コンベアに、ミスト判定方法を適用したコークスの粉率測定装置を設置した概要図である。It is the schematic which shows an example of embodiment of this invention, Comprising: It is the schematic which installed the coke powder rate measuring apparatus which applied the mist determination method to the coke conveyor of a blast furnace. ミストが発生していないときの撮像機によるコークスの画像である。It is the image of the coke by an imaging device when the mist has not occurred. ミストが発生していないときの粉率判定機による輝度ヒストグラムである。It is a brightness | luminance histogram by the powder rate determination machine when the mist has not generate | occur | produced. ミストが発生しているときの撮像機によるコークスの画像である。It is the image of the coke by an imaging device when the mist is generated. ミストが発生しているときの粉率判定機による輝度ヒストグラムである。It is a brightness | luminance histogram by the powder rate determination machine when the mist has generate | occur | produced. 粉率判定機による輝度ヒストグラムにおいて、3種類の閾値の決定方法を示す説明図である。It is explanatory drawing which shows the determination method of three types of threshold values in the luminance histogram by a powder rate determination machine. コンベア上の影Sに相当する輝度の最大頻度を時系列順にプロットしたグラフである。It is the graph which plotted the maximum frequency of the brightness | luminance equivalent to the shadow S on a conveyor in time series order. 輝度レベルAを超える輝度の最大頻度を時系列順にプロットしたグラフである。It is the graph which plotted the maximum frequency of the brightness | luminance exceeding the brightness level A in time series order. 影Sに相当する輝度の最大頻度を、輝度レベルA超の輝度範囲での最大頻度で割った比率を時系列順にプロットしたグラフである。5 is a graph in which a ratio obtained by dividing the maximum frequency of luminance corresponding to a shadow S by the maximum frequency in a luminance range exceeding luminance level A is plotted in time series. 粉率測定結果及びミスト発生の有無の判定結果を示すグラフである。It is a graph which shows the determination result of the presence or absence of powder rate measurement result and mist generation.

以下、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described.

本発明に係るミスト判定方法は、コンベア上を運搬されている堆積塊状物質を或る一定以上の光量下でカメラ撮像すると、堆積塊状物質に必ず生ずる影に着目し、撮像画像内の影に相当する或る輝度以下の輝度群の頻度(画素数)が、撮像画像内の影の輝度を超える輝度の頻度(画素数)に基づいて決定した値(閾値)以下である場合に、コンベア上を搬送される塊状物質の周囲にミストが発生していると判定する。   The mist determination method according to the present invention pays attention to the shadow that is always generated on the accumulated lump substance when the accumulated lump substance being conveyed on the conveyor is imaged under a certain amount of light, and corresponds to the shadow in the captured image. When the frequency (number of pixels) of the luminance group below a certain luminance is equal to or less than the value (threshold value) determined based on the frequency (number of pixels) of the luminance exceeding the luminance of the shadow in the captured image, It is determined that mist is generated around the massive substance to be conveyed.

コンベア上の塊状物質は堆積しているので、或る一定以上の光量下でカメラ撮像すれば、必ず影が生じる。塊状物質周囲にミストが発生していなければ、この影に相当する輝度は撮像機ごとに常に一定の範囲にあり、原料の性状変化に依存しない。一方、ミストが発生していれば、前記影にミストが覆いかぶさり、影に相当する輝度が正の方向へ全体的に上昇する。したがって、通常、影に相当する輝度が存在する輝度範囲に、輝度が存在しなければ、ミストが発生していると判定する。   Since the massive substances on the conveyor are accumulated, a shadow is always generated when the camera is imaged under a certain amount of light. If no mist is generated around the massive substance, the luminance corresponding to this shadow is always in a certain range for each image pickup device and does not depend on the property change of the raw material. On the other hand, if mist is generated, the shadow is covered with the mist, and the luminance corresponding to the shadow increases in the positive direction as a whole. Therefore, normally, if there is no luminance in the luminance range where the luminance corresponding to the shadow exists, it is determined that mist is generated.

本発明の実施形態の一例について図面を用いて説明する。ここでは、塊状物質を搬送する例として高炉において使用されるコークスを搬送するコンベアを示すが、本発明はこれに限定されるものではない。   An example of an embodiment of the present invention will be described with reference to the drawings. Here, although the conveyor which conveys the coke used in a blast furnace as an example which conveys a massive substance is shown, this invention is not limited to this.

図1は、本発明の実施形態の一例を示す概略図であり、高炉のコークス用コンベアに、ミスト判定方法を適用したコークスの粉率測定装置を設置した概要図である。図1において、符号1はホッパー、2は篩い分け器、3はコンベア、4はコークス、5は撮像機(カメラ)、6は粉率判定機、7は投光器である。投光器7は夜間の撮影などに使用するもので、太陽光の存在下では必ずしも使用する必要はない。   FIG. 1 is a schematic diagram illustrating an example of an embodiment of the present invention, and is a schematic diagram in which a coke powder rate measuring device to which a mist determination method is applied is installed on a coke conveyor of a blast furnace. In FIG. 1, reference numeral 1 is a hopper, 2 is a sieving device, 3 is a conveyor, 4 is coke, 5 is an imager (camera), 6 is a powder rate determination device, and 7 is a projector. The projector 7 is used for photographing at night, and is not necessarily used in the presence of sunlight.

高炉に装入する直前のコークス4は、コークス4を収納するホッパー1の後段に配置される篩い分け器2によって細かい粉が落とされ、コンベア3によって高炉へ輸送される。コンベア上には篩い分け器2の目開き寸法よりも大きい粒と篩い切れなかった付着粉とが残る。高炉を効率的に操業するために、主に付着粉で構成される粉の比率(粉率)を、撮像機5と粉率判定機6とからなる粉率測定装置で測定する。   The coke 4 just before charging into the blast furnace is finely powdered by the sieving device 2 disposed at the rear stage of the hopper 1 that stores the coke 4, and is transported to the blast furnace by the conveyor 3. On the conveyor, grains larger than the opening size of the sieving device 2 and adhered powder that cannot be sieved remain. In order to operate the blast furnace efficiently, the ratio (powder rate) of powder mainly composed of adhering powder is measured by a powder rate measuring device including the imaging device 5 and the powder rate judgment device 6.

ミスト判定方法について述べる。今回の撮像機5で撮った画像は、966×1296画素で、モノクロ画像12bitである。輝度値は0〜4096を示す。   A mist determination method will be described. The image taken by the imaging device 5 this time is 966 × 1296 pixels and is a monochrome image of 12 bits. The luminance value is 0 to 4096.

図2は、ミストが発生していないときの撮像機5によるコークス4の画像、図3は、ミストが発生していないときの粉率判定機6による輝度ヒストグラムである。   FIG. 2 is an image of the coke 4 by the image pickup device 5 when no mist is generated, and FIG. 3 is a luminance histogram by the powder rate determination device 6 when no mist is generated.

図2に示すように、或る一定以上の光量下で撮影された画像内ではコンベア上の堆積したコークス4によって生じた影Sが撮影されている。この撮像機5では、影Sに相当する輝度は輝度170以下であり(影Sの輝度の最大値は輝度=170)、本明細書では、図3に示すように、影Sに相当する輝度の最大値(輝度=170)を輝度レベルAと定義する。或る一定以上の光量下においては、影Sに相当する輝度レベルA以下の範囲の輝度は、コークス4の表面性状に依存せずに、ほぼ一定の範囲に存在する。   As shown in FIG. 2, a shadow S generated by the coke 4 accumulated on the conveyor is photographed in an image photographed under a certain amount of light. In this imaging device 5, the luminance corresponding to the shadow S is 170 or less (the maximum value of the luminance of the shadow S is luminance = 170). In this specification, the luminance corresponding to the shadow S is shown in FIG. Is defined as a luminance level A (luminance = 170). Under a certain amount of light, the luminance in the range below the luminance level A corresponding to the shadow S exists in a substantially constant range without depending on the surface properties of the coke 4.

これに対して、図4は、ミスト発生時の撮像機5によるコークス4の画像で、図5は、ミスト発生時の粉率判定機6による輝度ヒストグラムである。ミストが発生しているときは、図4に示すように、影Sにミストが被り、影Sが白くぼやける。したがって、ミストが発生しているときは、ミストが発生していないときの輝度ヒストグラム(図3)と比べると、図5に示すように、影Sが白くぼやけることで、影Sの輝度値が全体的に正に上昇している。   On the other hand, FIG. 4 is an image of the coke 4 by the image pickup device 5 when mist is generated, and FIG. 5 is a luminance histogram by the powder rate determination device 6 when mist is generated. When mist is generated, as shown in FIG. 4, the shadow S is covered with mist, and the shadow S is blurred in white. Therefore, when the mist is generated, as compared with the luminance histogram when the mist is not generated (FIG. 3), the shadow S is blurred white as shown in FIG. Overall, it is rising positively.

本発明では、ミスト発生時の影Sに相当する輝度が全体的に正に上昇することを利用して、ミストの発生の有無を判定する。この影Sに相当する輝度の上昇を利用することで、撮像ごとのコークス性状である色合いに依存せず、安定したミスト判定が可能になる。   In the present invention, the presence or absence of mist generation is determined by utilizing the fact that the luminance corresponding to the shadow S at the time of mist generation increases positively as a whole. By utilizing the increase in luminance corresponding to the shadow S, it is possible to perform stable mist determination without depending on the hue that is the coke property for each imaging.

本発明は、撮像画像内の影Sの輝度、つまり、輝度レベルAを超える輝度の頻度に基づいて閾値を決定し、図3に示すように、撮像画像内の影Sの輝度の頻度が、決定した閾値を超える場合には、コンベア上の塊状物質の周囲にミストが発生していないと判定し、図5に示すように、撮像画像内の影Sの輝度の頻度が、決定した閾値以下である場合に、コンベア上の塊状物質の周囲にミストが発生していると判定する。   The present invention determines the threshold value based on the luminance of the shadow S in the captured image, that is, the frequency of the luminance exceeding the luminance level A, and as shown in FIG. If the determined threshold value is exceeded, it is determined that no mist is generated around the massive substance on the conveyor, and the luminance frequency of the shadow S in the captured image is equal to or less than the determined threshold value as shown in FIG. If it is, it is determined that mist is generated around the massive substance on the conveyor.

この閾値を決定する際に、基準となる輝度の頻度を定める方法は複数の方法があるので、図6を参照して、以下に説明する。尚、図6は、輝度ヒストグラムにおいて、3種類の閾値の決定方法を示す説明図である。   There are a plurality of methods for determining the frequency of the reference luminance when determining this threshold value, and will be described below with reference to FIG. FIG. 6 is an explanatory diagram showing a method for determining three types of threshold values in the luminance histogram.

ケース1(輝度レベルAを超える範囲での最大頻度を基準とする方法)
撮像機5によって決まる輝度レベルAと、輝度レベルAを超える範囲での撮像画像ごとの最大頻度とを決定し、この最大頻度に、予め定めた所定の係数(今回の撮像画像では係数=1/4)を掛けて(乗算して)、閾値1(図6を参照)を設定する。そして、輝度レベルA以下の輝度ごとの全ての頻度が閾値1を超えなければ、ミストが発生していると判定する。尚、前記所定の係数は、好ましくは1.0以下とし、0.5以下とすれば、より望ましい。
Case 1 (method based on the maximum frequency in the range exceeding luminance level A)
A luminance level A determined by the image pickup device 5 and a maximum frequency for each captured image in a range exceeding the luminance level A are determined, and a predetermined coefficient (coefficient = 1/1 / in the current captured image) is determined based on the maximum frequency. 4) is multiplied (multiplied) to set the threshold value 1 (see FIG. 6). And if all the frequencies for every brightness | luminance below the brightness level A do not exceed the threshold value 1, it will determine with the mist having generate | occur | produced. The predetermined coefficient is preferably 1.0 or less, and more preferably 0.5 or less.

図6に基づいて具体的に説明する。図6の輝度レベルA(輝度170)を超える輝度での最大頻度は6000程度であり、係数を1/4に設定して閾値1を決める。そのときに、図6では、輝度レベルA以下の影Sに相当する輝度ごとの頻度において、或る輝度の頻度が7000程度になり、この頻度7000は閾値1(6000×1/4=1500)を超えているので、ミストが発生していないと判定する。   This will be specifically described with reference to FIG. The maximum frequency at the luminance exceeding the luminance level A (luminance 170) in FIG. 6 is about 6000, and the threshold value 1 is determined by setting the coefficient to 1/4. At that time, in FIG. 6, in the frequency for each luminance corresponding to the shadow S of the luminance level A or lower, the frequency of a certain luminance is about 7000, and this frequency 7000 is a threshold value 1 (6000 × 1/4 = 1500). It is determined that no mist is generated.

ケース2(輝度レベルAを超える範囲での最大頻度近傍の平均値を基準とする方法)
撮像機5によって決まる輝度レベルAと、輝度レベルAを超える範囲での撮像画像ごとの最大頻度とを決定し、この最大頻度周辺の輝度(今回の撮像画像では最大頻度の輝度±100)の頻度の平均値に、予め定めた所定の係数(今回の撮像画像では係数=1/3)を掛けて閾値2(図6を参照)を設定する。そして、輝度レベルA以下の輝度ごとの全ての頻度が閾値2を超えなければ、ミストが発生していると判定する。尚、前記所定の係数は、好ましくは1.0以下とし、0.5以下とすればより望ましい。
Case 2 (method based on an average value in the vicinity of the maximum frequency in a range exceeding the luminance level A)
The luminance level A determined by the image pickup device 5 and the maximum frequency for each captured image in the range exceeding the luminance level A are determined, and the frequency of the luminance around the maximum frequency (the maximum frequency luminance ± 100 in the current captured image). Is multiplied by a predetermined coefficient (coefficient = 1/3 in this captured image) to set a threshold value 2 (see FIG. 6). And if all the frequencies for every brightness | luminance below the brightness level A do not exceed the threshold value 2, it will determine with the mist having generate | occur | produced. The predetermined coefficient is preferably 1.0 or less, and more preferably 0.5 or less.

図6に基づいて具体的に説明する。図6の輝度レベルA(輝度170)を超える輝度での最大頻度輝度±100周辺の頻度の平均値は5500程度であり、係数を1/3に設定して閾値2を決める。そのときに、図6では、輝度レベルA以下の影Sに相当する輝度ごとの頻度において、或る輝度の頻度が7000程度になり、この頻度7000は閾値2(5500×1/3≒1800)を超えているので、ミストが発生していないと判定する。   This will be specifically described with reference to FIG. The average value of the frequencies around the maximum frequency luminance ± 100 at a luminance exceeding the luminance level A (luminance 170) in FIG. 6 is about 5500, and the threshold value 2 is determined by setting the coefficient to 1/3. At that time, in FIG. 6, in the frequency for each luminance corresponding to the shadow S below the luminance level A, the frequency of a certain luminance is about 7000, and this frequency 7000 is a threshold value 2 (5500 × 1 / 3≈1800). It is determined that no mist is generated.

ケース3(輝度レベルAを超える範囲での最大頻度の1/2を基準とする方法)
撮像機5によって決まる輝度レベルAと、輝度レベルAを超える範囲での撮像画像ごとの最大頻度とを決定し、この最大頻度の値に1/2を掛け、更に、予め定めた所定の係数(今回の撮像画像では係数=1/3)を掛けて、閾値3(図3を参照)に設定する。そして、輝度レベルA以下の輝度ごとの全ての頻度が閾値3を超えなければ、ミストが発生していると判定する。尚、前記所定の係数は、好ましくは1.0以下とし、0.5以下とすればより望ましい。
Case 3 (method based on 1/2 of the maximum frequency in the range exceeding the luminance level A)
The luminance level A determined by the image pickup device 5 and the maximum frequency for each captured image in the range exceeding the luminance level A are determined, the value of the maximum frequency is multiplied by 1/2, and a predetermined coefficient ( In this captured image, a threshold value 3 (see FIG. 3) is set by multiplying by a coefficient = 1/3). And if all the frequencies for every brightness | luminance below the brightness level A do not exceed the threshold value 3, it will determine with the mist having generate | occur | produced. The predetermined coefficient is preferably 1.0 or less, and more preferably 0.5 or less.

図6に基づいて具体的に説明する。図6の輝度レベルA(輝度170)を超える輝度での最大頻度値は6000程度であり、その最大頻度値に1/2を掛けた値は3000程度である。更に、係数を1/3に設定して閾値3を決める。そのときに、図6では、輝度レベルA以下の影Sに相当する輝度ごとの頻度において、或る輝度の頻度が7000程度になり、この頻度7000は閾値3(3000×1/3=1000)を超えているので、ミストが発生していないと判定する。   This will be specifically described with reference to FIG. The maximum frequency value at a luminance exceeding luminance level A (luminance 170) in FIG. 6 is about 6000, and a value obtained by multiplying the maximum frequency value by 1/2 is about 3000. Further, the threshold is set by setting the coefficient to 1/3. At that time, in FIG. 6, in the frequency for each luminance corresponding to the shadow S of the luminance level A or lower, the frequency of a certain luminance is about 7000, and this frequency 7000 is a threshold value 3 (3000 × 1/3 = 1000). It is determined that no mist is generated.

上記のケース1〜3の説明は、966×1296画素で、モノクロ画像12bitであり、輝度値が0〜4096の画像について説明したが、本発明はこれに限らず、例えば8bitのカラー画像でRGB各々の値を利用して同様にミスト判定に用いてもよい。また、輝度レベルAを輝度170で設定し、係数を1/3及び1/4で設定したが、これらの数値に限るものではない。また更に、基準となる輝度の頻度を定める方法は、上記のケース1〜3に限ることなく、種々の方法で決めることができる。少なくとも、輝度レベルAを超える範囲の最大頻度と最大頻度×1/2との範囲内の頻度の輝度であれば、基準となる輝度として問題なく用いることができる。   In the above description of cases 1 to 3, the description has been given of an image with 966 × 1296 pixels, a monochrome image of 12 bits, and a luminance value of 0 to 4096. However, the present invention is not limited to this, and for example, an 8-bit color image is RGB. Each value may be similarly used for mist determination. Further, although the luminance level A is set at the luminance 170 and the coefficients are set at 1/3 and 1/4, it is not limited to these numerical values. Furthermore, the method of determining the luminance frequency as a reference is not limited to the above cases 1 to 3, and can be determined by various methods. As long as the luminance has a frequency within the range of at least the maximum frequency in the range exceeding the luminance level A and the maximum frequency × ½, it can be used without any problem as the reference luminance.

また、輝度レベルA以下の影Sに相当する輝度の最大頻度自体に閾値を設定する方法も存在する。しかしながら、天候変化、照度変化などの影響で影Sの総量が変化し、輝度レベルA以下の最大頻度値は大きく変化する。   There is also a method of setting a threshold value for the maximum luminance frequency itself corresponding to the shadow S below the luminance level A. However, the total amount of shadow S changes under the influence of weather changes, illuminance changes, etc., and the maximum frequency value below the luminance level A changes greatly.

図7は、コンベア上の影Sに相当する輝度の最大頻度を時系列順にプロットしたものである。天候が変化し快晴になった場合、太陽からの光量が増加した、図7に示す時点Z以降では、影Sの最大頻度が大きく減少し、時点Z以前に設定した、影S自体に基づく閾値では光量増加時には誤判定する。   FIG. 7 plots the maximum luminance frequency corresponding to the shadow S on the conveyor in time series. When the weather changes and the weather becomes clear, the amount of light from the sun increases. After the time Z shown in FIG. 7, the maximum frequency of the shadow S greatly decreases, and the threshold based on the shadow S itself set before the time Z Then, an erroneous determination is made when the amount of light increases.

図8は、図7と同じ時期における、輝度レベルAを超える輝度の最大頻度を時系列順にプロットしたものである。図8では、図7と同様に、時点Z以降の光量増加時には、輝度レベルAを超える輝度の最大頻度も大きく減少している。   FIG. 8 is a graph in which the maximum frequency of luminance exceeding the luminance level A at the same time as in FIG. 7 is plotted in chronological order. In FIG. 8, as in FIG. 7, the maximum frequency of luminance exceeding the luminance level A greatly decreases when the amount of light after time Z increases.

一方、図9に、図7及び図8と同一時期における、影Sに相当する輝度の最大頻度を、輝度レベルA超の輝度範囲での最大頻度で除算した比率を時系列順にプロットしたグラフを示す。図9に示す比率は、時点Zの前後でも値に大きな変化はなく、ほぼ一定であり、影Sの最大頻度及び輝度レベルA超えの範囲の最大頻度は、照度の影響を同等に受けており、これらを比率にすることで照度影響を除外できている。   On the other hand, FIG. 9 is a graph in which the ratio of the maximum frequency of the luminance corresponding to the shadow S divided by the maximum frequency in the luminance range exceeding the luminance level A at the same time as in FIG. 7 and FIG. Show. The ratio shown in FIG. 9 does not change much before and after the time point Z and is almost constant. The maximum frequency of the shadow S and the maximum frequency in the range exceeding the luminance level A are equally affected by the illuminance. By making these ratios, the illuminance effect can be excluded.

つまり、輝度レベルA超えの例えば最大頻度を利用し、この輝度レベルA超えの最大頻度及び当該最大頻度周囲の輝度の頻度平均値に、適切な係数を掛けて閾値を設定することで、ミスト判定において照度変化などの外乱を除外できることがわかる。   In other words, by using, for example, the maximum frequency exceeding the luminance level A and setting a threshold value by multiplying the maximum frequency exceeding the luminance level A and the frequency average value of luminance around the maximum frequency by an appropriate coefficient, mist determination It can be seen that disturbances such as changes in illuminance can be excluded.

本発明に係るミスト判定方法を、塊状物質の粒度分布の測定や粉率測定などの性状測定方法に利用する場合は、ミストが発生していると判定された場合は、撮像機5と粉率判定機6とからなる粉率測定装置による測定結果は異常値として除外する。その場合、リアルタイムの測定はできなくなるものの、原料のサンプリング及び篩い分けによる性状測定を実施する。   When the mist determination method according to the present invention is used for a property measurement method such as measurement of particle size distribution or powder ratio of a bulk material, when it is determined that mist is generated, the imaging device 5 and the powder ratio The measurement result by the powder rate measuring device including the determination device 6 is excluded as an abnormal value. In that case, although real-time measurement cannot be performed, property measurement is performed by sampling the raw material and sieving.

以上説明したように、本発明によれば、原料性状や照度変化などの外乱の影響を受けることなく、コンベアで搬送される鉄鉱石やコークスなどの塊状物質周囲でのミストの発生有無を判定することが可能となる。   As described above, according to the present invention, it is determined whether or not mist is generated around a massive substance such as iron ore or coke conveyed by a conveyor without being affected by disturbances such as raw material properties and changes in illuminance. It becomes possible.

図1に示す撮像機で撮った、画素数が966×1296、モノクロ画像12bitで、輝度値が0〜4096の画像を用い、塊状コークスの周囲のミスト判定を行いつつ、コークスの粉率測定を実施した。輝度レベルAを輝度170で設定し、輝度レベルAを超える輝度の最大頻度に係数1/4を掛けた値を閾値とした。   The coke powder rate measurement was performed while performing mist determination around a block of coke using an image with a pixel number of 966 × 1296, a monochrome image of 12 bits, and a luminance value of 0 to 4096, taken with the image pickup device shown in FIG. Carried out. The luminance level A is set at a luminance of 170, and a value obtained by multiplying the maximum frequency of luminance exceeding the luminance level A by a coefficient ¼ is set as a threshold value.

図10に、粉率測定結果及びミスト発生の有無の判定結果を示す。図10は、左軸に粉率(−)を、右軸にミスト判定結果を、時系列で示している。ミスト判定結果は、ミスト発生の場合を「1.0」、ミストが発生していない場合を「0」と表示している。   In FIG. 10, the determination result of the powder rate measurement result and the presence or absence of mist generation is shown. FIG. 10 shows the powder rate (−) on the left axis and the mist determination result on the right axis in time series. In the mist determination result, “1.0” is displayed when mist is generated, and “0” is displayed when mist is not generated.

時点Tより前の時点では、ミストが発生しており、粉率はミストの影響を受けて数値が若干高くなっている。右軸のミスト判定結果を見ると、時点T以前はミストが発生していると正しく判定しており、このときに粉率測定値を除外するなどの対処をして異常値を除去することで、原料性状や照度変化などの外乱の影響を受けることなく、粉率測定を実現することができる。   At a time point before time point T, mist is generated, and the powder rate is slightly higher due to the influence of the mist. Looking at the mist determination result on the right axis, it is correctly determined that mist has occurred before time T. At this time, by taking measures such as excluding the measured powder rate, the abnormal value can be removed. The powder ratio can be measured without being affected by disturbances such as raw material properties and changes in illuminance.

今回はミスト判定の結果を粉率測定に適用したが、これに限るものではなく、その他にも画像内塊状物質の粒径計測や画像内輝度を利用した測定に用いることができる。   This time, the result of the mist determination is applied to the measurement of the powder ratio, but the present invention is not limited to this, and can be used for the measurement of the particle size of the massive substance in the image and the measurement using the luminance in the image.

1 ホッパー
2 篩い分け器
3 コンベア
4 コークス
5 撮像機
6 粉率判定機
7 投光器
DESCRIPTION OF SYMBOLS 1 Hopper 2 Sieving device 3 Conveyor 4 Coke 5 Imaging machine 6 Powder rate judgment machine 7 Floodlight

Claims (5)

コンベア上を搬送される塊状物質の周囲でのミスト発生の有無を撮像画像に基づいて判定する方法であって、
前記塊状物質を撮影した撮像画像内の影の輝度の頻度が、撮像画像内の影の輝度を超える輝度の頻度に基づいて決定した値以下である場合に、コンベア上の塊状物質の周囲にミストが発生していると判定することを特徴とする、コンベア上の塊状物質周囲のミスト判定方法。
A method for determining the presence or absence of mist generation around a massive substance conveyed on a conveyor based on a captured image,
When the frequency of the shadow luminance in the captured image obtained by photographing the block material is equal to or less than the value determined based on the luminance frequency exceeding the luminance of the shadow in the captured image, the mist around the block material on the conveyor A method for determining mist around a massive substance on a conveyor, characterized in that it is determined that an occurrence has occurred.
前記影の輝度の頻度が、撮像画像内の影の輝度を超える輝度の最大頻度に予め定めた所定の係数を掛けた値以下である場合に、コンベア上の塊状物質の周囲にミストが発生していると判定することを特徴とする、請求項1に記載のコンベア上の塊状物質周囲のミスト判定方法。   When the frequency of the luminance of the shadow is not more than a value obtained by multiplying the maximum frequency of luminance exceeding the luminance of the shadow in the captured image by a predetermined coefficient, mist is generated around the massive substance on the conveyor. The method for determining mist around a massive substance on a conveyor according to claim 1, wherein it is determined that the mist is present. コンベア上を搬送される塊状物質の性状の測定に、請求項1または請求項2に記載のコンベア上の塊状物質周囲のミスト判定方法を利用することを特徴とする、コンベア上の塊状物質の性状測定方法。   The property of the massive substance on the conveyor, characterized in that the method for determining the mist around the massive substance on the conveyor according to claim 1 or 2 is used for measuring the property of the massive substance conveyed on the conveyor. Measuring method. 前記塊状物質の性状とは、前記塊状物質の粒度分布であることを特徴とする、請求項3に記載のコンベア上の塊状物質の性状測定方法。   The method for measuring properties of a massive substance on a conveyor according to claim 3, wherein the property of the massive substance is a particle size distribution of the massive substance. 前記塊状物質の性状とは、前記塊状物質の粉率であることを特徴とする、請求項3に記載のコンベア上の塊状物質の性状測定方法。   The method for measuring properties of a massive substance on a conveyor according to claim 3, wherein the property of the massive substance is a powder rate of the massive substance.
JP2019045462A 2018-03-19 2019-03-13 Method for determining mist around lumpy substances on conveyor and method for measuring properties of lumpy substance on conveyor Active JP6806176B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018050694 2018-03-19
JP2018050694 2018-03-19

Publications (2)

Publication Number Publication Date
JP2019164133A true JP2019164133A (en) 2019-09-26
JP6806176B2 JP6806176B2 (en) 2021-01-06

Family

ID=68066325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045462A Active JP6806176B2 (en) 2018-03-19 2019-03-13 Method for determining mist around lumpy substances on conveyor and method for measuring properties of lumpy substance on conveyor

Country Status (1)

Country Link
JP (1) JP6806176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912755A (en) * 2020-08-07 2020-11-10 山东中煤工矿物资集团有限公司 Mining dust concentration sensor, sensor system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329683A (en) * 1999-05-20 2000-11-30 Ube Ind Ltd Detecting method for particle size of object conveyed by belt conveyor
US20040151361A1 (en) * 2003-01-22 2004-08-05 Pierre Bedard Method and apparatus for testing the quality of reclaimable waste paper matter containing contaminants
JP2008267837A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Apparatus for detecting state of exhaust gas from vehicle
JP2010147969A (en) * 2008-12-22 2010-07-01 Rohm Co Ltd Image correction processing circuit and semiconductor device obtained by integrating the same
JP2016141828A (en) * 2015-01-30 2016-08-08 Jfeスチール株式会社 Blast furnace charging material detecting method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329683A (en) * 1999-05-20 2000-11-30 Ube Ind Ltd Detecting method for particle size of object conveyed by belt conveyor
US20040151361A1 (en) * 2003-01-22 2004-08-05 Pierre Bedard Method and apparatus for testing the quality of reclaimable waste paper matter containing contaminants
JP2008267837A (en) * 2007-04-16 2008-11-06 Toyota Motor Corp Apparatus for detecting state of exhaust gas from vehicle
JP2010147969A (en) * 2008-12-22 2010-07-01 Rohm Co Ltd Image correction processing circuit and semiconductor device obtained by integrating the same
JP2016141828A (en) * 2015-01-30 2016-08-08 Jfeスチール株式会社 Blast furnace charging material detecting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111912755A (en) * 2020-08-07 2020-11-10 山东中煤工矿物资集团有限公司 Mining dust concentration sensor, sensor system and method
CN111912755B (en) * 2020-08-07 2021-08-10 山东中煤工矿物资集团有限公司 Mining dust concentration sensor, sensor system and method

Also Published As

Publication number Publication date
JP6806176B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6519034B2 (en) Powder percentage measuring device and powder percentage measuring system
JP5886266B2 (en) Particle mass inspection device
CN109584175B (en) Image processing method and device
JP2000329683A (en) Detecting method for particle size of object conveyed by belt conveyor
KR101879087B1 (en) Apparatus for measuring size of transferred raw material
CN111968173A (en) Method and system for analyzing granularity of mixture
JP2002005637A (en) Method for measuring volume or weight of particulate aggregate in high-temperature state
JP6806176B2 (en) Method for determining mist around lumpy substances on conveyor and method for measuring properties of lumpy substance on conveyor
CN114599802B (en) Method for operating blast furnace
EP3779402A1 (en) Particle size distribution measurement apparatus and particle size distribution measurement method
JP6892019B2 (en) Powder ratio measurement method and equipment
CN202865251U (en) Video detection device for furnace burden granularity of blast furnace
JP2006126061A (en) Method and device for measuring particle size distribution of powder and grain
CN110951930A (en) Method and system for preventing furnace top equipment from being blocked
JP2005181169A (en) Apparatus for measuring particle size distribution, and method
KR960001823B1 (en) Powder cokes grain size distribution inspecting system
JP6950839B2 (en) Powder rate measuring device, powder rate measuring system, powder rate measuring method, computer program, blast furnace and blast furnace operation method
JP7171578B2 (en) Particle rate measuring device, Particle rate measuring system, Blast furnace operating method, and Particle rate measuring method
JP7167744B2 (en) Control method and control device
Puttinger et al. Visual raceway blockage detection in a blast furnace finding feasible image processing strategies for online monitoring and process control
JP2022180326A (en) Deposition substance detection device and deposition substance detection method
JPWO2019193971A1 (en) Particle size distribution measuring device and particle size distribution measuring method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6806176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250