JP2016141828A - Blast furnace charging material detecting method - Google Patents
Blast furnace charging material detecting method Download PDFInfo
- Publication number
- JP2016141828A JP2016141828A JP2015016781A JP2015016781A JP2016141828A JP 2016141828 A JP2016141828 A JP 2016141828A JP 2015016781 A JP2015016781 A JP 2015016781A JP 2015016781 A JP2015016781 A JP 2015016781A JP 2016141828 A JP2016141828 A JP 2016141828A
- Authority
- JP
- Japan
- Prior art keywords
- reflection spectrum
- spectrum information
- charge
- blast furnace
- database
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract 6
- 239000000463 material Substances 0.000 title abstract description 11
- 238000001228 spectrum Methods 0.000 claims abstract description 146
- 239000000843 powder Substances 0.000 claims description 41
- 238000001514 detection method Methods 0.000 claims description 26
- 230000006835 compression Effects 0.000 claims description 5
- 238000007906 compression Methods 0.000 claims description 5
- 238000000513 principal component analysis Methods 0.000 claims description 4
- 239000000571 coke Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000002245 particle Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 238000010606 normalization Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000000985 reflectance spectrum Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002801 charged material Substances 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Images
Landscapes
- Blast Furnaces (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Manufacture Of Iron (AREA)
Abstract
Description
本発明は、高炉に装入される装入物の状態を検出する高炉装入物検出方法に関し、例えば高炉への装入物であるコークス、鉱石(鉄鉱石)、焼結鉱が夫々どの程度、どのような状態で高炉に装入されているかを検出するものである。 The present invention relates to a blast furnace charge detection method for detecting the state of a charge charged in a blast furnace, and for example, how much coke, ore (iron ore), and sintered ore are charged in the blast furnace, respectively. In this state, the state in which the blast furnace is charged is detected.
高炉の炉頂部から高炉内に装入される装入物の量や性状、例えば水分量、粉付着率などの管理は十分とはいえないのが現状である。例えば高炉の炉頂上方に配置されたコンベヤから高炉内に装入される装入物の状態を検出することができれば、例えば高炉の炉内通気状態を管理することができ、高炉操業を安定化することも可能である。このような高炉装入物検出装置としては、例えば下記特許文献1及び特許文献2に記載されるものがある。このうち特許文献1に記載される高炉装入物検出装置は、原料貯蔵層の排出口を囲むようにコイルセンサを配置し、原料の排出に伴って変化するコイルセンサの出力値に基づいて原料の混合度を検出するものである。また、下記特許文献2に記載される高炉装入物検出装置は、カメラで撮像した画像に対して画像処理を行い、コークスの粒度分布を検出するものである。
At present, it cannot be said that management of the amount and properties of the charge charged into the blast furnace from the top of the blast furnace, for example, the amount of moisture and the powder adhesion rate, is sufficient. For example, if the state of the charge charged into the blast furnace can be detected from the conveyor disposed above the top of the blast furnace, for example, the state of ventilation in the blast furnace can be managed, and the operation of the blast furnace is stabilized. It is also possible to do. As such a blast furnace charge detection apparatus, there exist some which are described in the following
しかしながら、前記特許文献1に記載される高炉装入物検出装置は装入物の混合度を検出するだけであり、特許文献2に記載される高炉装入物検出装置はコークスの粒度を検出するだけのものであることから、高炉操業を安定化するためには装入物の情報が不足する。また、前記特許文献2に記載される高炉装入物検出装置は、コークスの粒度を検出するだけであるため、高炉のようにコークスのみならず、鉱石や焼結鉱が混合されて装入される場合には、粒度検出のための画像処理のパラメータが夫々で異なるため、夫々の粒度を適正に検出できない可能性がある。
本発明は、上記のような問題点に着目してなされたものであり、少なくとも装入物の種類を状態として検出することが可能な高炉装入物検出方法を提供することを目的とするものである。
However, the blast furnace charge detection device described in
The present invention has been made paying attention to the above problems, and an object of the present invention is to provide a blast furnace charge detection method capable of detecting at least the type of charge. It is.
上記課題を解決するために、本発明の一態様によれば、複数のデータを属性と共に記憶することが可能なデータベースと、演算処理機能を有し、データベースと連絡してデータベースに記憶されたデータを属性と共に読込むことが可能な演算処理機能とを用いて、高炉に装入される装入物の状態を検出するにあたり、少なくとも種類が分明な装入物からの近赤外領域の反射光を分光した反射スペクトル情報を取得すると共に、少なくともその装入物の種類をその反射スペクトル情報に属性として付与してデータベースにデータとして記憶し、これを少なくとも種類の異なる装入物に対して繰り返して行って、少なくとも装入物の種類が属性として付与された複数の反射スペクトル情報をデータベースにデータとして記憶し、少なくとも種類の分明でない装入物からの近赤外領域の反射光を分光した反射スペクトル情報を新規に取得し、データベースに記憶された反射スペクトル情報及び新規に取得した反射スペクトル情報のデータが予め設定されたM個の波長又は周波数分のスペクトルである場合に、そのM次元空間上の記憶された反射スペクトル情報及び新規に取得した反射スペクトル情報間の距離を求め、その距離が最も小さい又は最も小さい方から予め設定された個数分の記憶された反射スペクトル情報をデータベースから選出し、その選出された反射スペクトル情報の属性から新規に反射スペクトル情報を取得した装入物の少なくとも種類を状態として検出する高炉装入物検出方法が提供される。 In order to solve the above problems, according to one aspect of the present invention, a database capable of storing a plurality of data together with attributes, an arithmetic processing function, and data stored in the database in contact with the database In the near-infrared region of the reflected light from the charge of a known type at least when detecting the state of the charge charged in the blast furnace using the processing function capable of reading And at least the type of the charge is assigned as an attribute to the reflection spectrum information and stored as data in the database, and this is repeated for at least different types of charges. A plurality of reflection spectrum information to which at least the kind of charge is given as an attribute is stored as data in a database, and at least Reflection spectrum information obtained by spectroscopically reflecting reflected light in the near-infrared region from a non-bright charge is newly acquired, and reflection spectrum information stored in the database and newly acquired reflection spectrum information data are set in advance. In the case of a spectrum corresponding to a number of wavelengths or frequencies, the distance between the stored reflection spectrum information in the M-dimensional space and the newly acquired reflection spectrum information is obtained, and the distance from the smallest or smallest is previously determined. Specified number of stored reflection spectrum information from the database is selected from the database, and blast furnace charging is performed to detect at least the type of charge from which the reflection spectrum information has been newly acquired from the selected reflection spectrum information attributes. An object detection method is provided.
本発明によれば、装入物からの近赤外領域の反射光を分光して反射スペクトル情報を新規に取得し、新規に取得された反射スペクトル情報及びデータベースに記憶された反射スペクトル情報から少なくとも装入物の種類を状態として検出することができる。 According to the present invention, reflected spectrum information is newly acquired by spectroscopically reflecting reflected light in the near-infrared region from the charge, and at least from the newly acquired reflection spectrum information and the reflected spectrum information stored in the database. The type of the charge can be detected as the state.
次に、本発明の高炉装入物検出方法の一実施形態について図面を参照しながら説明する。図1は、この実施形態の高炉装入物検出方法の概略構成図である。高炉1では、炉頂部から鉱石(鉄鉱石)、コークス、焼結鉱が装入物として装入され、それらが堆積した炉内堆積物に対して炉下部の羽口2から熱風を送風し、装入物の還元、即ち製銑が行われる。炉床部に流れ落ちた溶銑は、溶滓と共に、高炉2の炉底部外周に形成された出銑口から出銑される。
Next, an embodiment of the blast furnace charge detection method of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of the blast furnace charge detection method of this embodiment. In the
本実施形態では、鉱石、コークス、焼結鉱といった装入物を高炉1の炉頂部から装入するために、高炉1の炉頂部上方にコンベヤ3を配置している。コンベヤ3で搬送された装入物は、一旦、ホッパー(バンカーともいう)4に投入され、そこから回転式分配装置5を介して、炉内に均等に装入される。本実施形態では、コンベヤ3の上方にカメラ6を配置し、このカメラ6で捉えたコンベヤ3上の装入物の反射光から、装入物の種類や水分量などを検出する。この実施形態では、安定した光量を得るために照明が必要であるが、必要に応じて予め設定された波長域の照明を用いてもよい。
In the present embodiment, the
この実施形態で採用されたカメラ6は、二次元的に広がる撮像領域を撮像する一般的なものではなく、所謂ラインセンサ型の分光カメラである。このラインセンサは、CCDやCMOSなどで構成される撮像素子を1画素ずつ一次元方向に並べて構成され、各撮像素子は装入物からの反射光の色合いや輝度を検出する。このラインセンサで構成されるカメラ6は、例えばコンベヤ3の搬送方向と直交方向に向けて一次元的に捉えた装入物反射光のうち、近赤外領域の反射光を各画素毎に分光して波長別(周波数別でもよい)の反射スペクトル(反射強度)を反射スペクトル情報として取得することができる。
The
このように近赤外領域の反射光を分光して取得した装入物の反射スペクトルを、例えばコンピュータのような高度な演算処理機能を有する演算処理装置7に取り込み、この演算処理装置7によって装入物の種類の検出、種類が検出された装入物の水分量、或いは種類が検出された装入物の粉付着率を検出する。粉付着率は、粉率ともいう。この演算処理装置7は、データベース8に接続している。データベース8は、大規模容量の記憶装置の記憶領域であり、この実施形態では、演算処理装置7によって、その演算処理装置7で取り込まれる反射スペクトル情報に属性を付与して記憶することができる。また、演算処理装置7は、データベース8に連絡して、そのデータベース8に記憶されている反射スペクトル情報を属性と共に読込むことができる。
The reflection spectrum of the charge obtained by spectrally dividing the reflected light in the near-infrared region in this way is taken into an
演算処理装置7は、既存のコンピュータなどと同様に、入出力部、演算処理部、記憶部などを備えて構成される。この実施形態の高炉装入物検出方法は、演算処理装置7に記憶されて実行されるソフトウエアと、そのソフトウエアで機能する演算処理装置7及びデータベース8によって構築される。図2には、種類毎の装入物反射光の対波長反射スペクトルを示す。赤外分光法では、高炉装入物のように検出物の表面状態が複雑である場合には、得られる反射スペクトルにバラツキが生じる。そこで、例えば装入物の種類毎に多数の反射スペクトルをサンプリングしてデータベース8に蓄積し、分散を正規化したものが図2である。なお、図は、各装入物の水分量(又は粉付着率)が一定で変化しない状態、例えば水分量が1wt%未満のドライ条件のものである。例えば鉱石は見た目に赤褐色であり、コークスや焼結鉱の見た目は灰色である。そのため、コークスや焼結鉱の反射スペクトルのパターンに対し、鉱石の反射スペクトルのパターンは特徴的である。一方、コークスの反射スペクトルのパターンと焼結鉱の反射スペクトルのパターンとは類似している。しかしながら、両者には、特に1000〜1200nmの波長領域に明確なパターンの差がある。この波長毎の反射スペクトルを比較することにより、例えば新規に取得した装入物の種類を、その装入物の状態として検出することが可能となる。
The
前述したように、実際に取得される装入物の反射スペクトルは、水分量又は粉付着率が一定であっても、図3に示すように、バラツキがある。図は、前述したドライ条件の鉱石の反射スペクトルを複数取得し、対波長で表したものである。鉱石、コークスや焼結鉱は、自然物若しくは自然物を一次加工した程度のものであるため、表面凹凸があり表面の状態は不均一である。そのため、反射スペクトルにもバラツキが生じる。 As described above, the reflection spectrum of the charge actually obtained varies as shown in FIG. 3 even if the moisture content or the powder adhesion rate is constant. In the figure, a plurality of reflection spectra of ores under the above-mentioned dry conditions are acquired and expressed in terms of wavelength. Since ore, coke and sintered ore are natural products or those obtained by primary processing of natural products, they have surface irregularities and the surface state is not uniform. Therefore, the reflection spectrum also varies.
そこで、この実施形態では、各装入物の反射スペクトルの特性をよく表す波長を予め複数設定し、それらの波長の反射スペクトルを多数取得して反射スペクトル情報として空間座標に表す。例えば、反射スペクトルに対して予め設定された波長の個数がM個である場合に、それらの波長の夫々を軸で表してM次元の空間を構成し、そのM次元空間に取得した多数の反射スペクトル情報を表す。取得した一つ一つの反射スペクトル情報は、M次元空間で点として表れる。図4は、水分量(又は粉付着率)がドライ一定のときに、実際に取得された装入物からの反射スペクトル情報をプロットしたM次元空間を模式的に表したものである。図から明らかなように、装入物の種類、つまり鉱石(○)、コークス(△)、焼結鉱(□)毎に、バラツキはあっても、反射スペクトル情報がまとまっている。従って、例えば図3に星(☆)印で示すような装入物の反射スペクトル情報が新規に取得された場合に、その反射スペクトル情報の最も近い反射スペクトル情報群が、新規に反射スペクトル情報の取得された装入物の種類であるらしいことが分かる。なお、予め設定するM個の波長には、装入物の種類を特徴付ける波長に加えて、後述するように、装入物の水分量(又は粉付着率)を特徴付ける波長を選択してもよい。 Therefore, in this embodiment, a plurality of wavelengths that well represent the characteristics of the reflection spectrum of each charge are set in advance, and a large number of reflection spectra of those wavelengths are acquired and expressed in spatial coordinates as reflection spectrum information. For example, when the number of wavelengths set in advance with respect to the reflection spectrum is M, an M-dimensional space is configured by representing each of these wavelengths as an axis, and a number of reflections acquired in the M-dimensional space. Represents spectral information. Each piece of acquired reflection spectrum information appears as a point in the M-dimensional space. FIG. 4 schematically shows an M-dimensional space in which the reflection spectrum information from the charge actually obtained is plotted when the moisture content (or the powder adhesion rate) is dry and constant. As is apparent from the figure, the reflection spectrum information is gathered even though there are variations for each type of charge, that is, ore (◯), coke (Δ), and sintered ore (□). Therefore, for example, when the reflection spectrum information of the charge as indicated by a star (☆) in FIG. 3 is newly acquired, the reflection spectrum information group closest to the reflection spectrum information is newly added to the reflection spectrum information. It turns out that it seems to be the kind of the charge which was acquired. In addition to the wavelength that characterizes the type of charge, the wavelength that characterizes the moisture content (or powder adhesion rate) of the charge may be selected for the M wavelengths set in advance, as described later. .
サンプリングによって取得した装入物の反射スペクトル情報には、例えば装入物の種類を属性として付与してデータベース8に記憶する。演算処理装置7は、カメラ6から反射スペクトル情報を新規に取得したら、データベース8に記憶された全ての反射スペクトル情報に対し、新規に取得した反射スペクトル情報と記憶された反射スペクトル情報とのM次元空間上での距離dを求める。この距離dの最も小さい記憶された反射スペクトル情報をデータベース8から選出し、その選出された反射スペクトル情報の属性から、新規に反射スペクトル情報の取得した装入物の種類が状態として検出できる。新規に取得した反射スペクトル情報と記憶された反射スペクトル情報とのM次元空間上での距離dは、新規に取得した反射スペクトル情報の各波長の反射スペクトルをλobji(i=1,2,…,M)、記憶された反射スペクトル情報の各波長の反射スペクトルをλdbi(i=1,2,…,M)としたとき、下記1式で求められる。
d=√((λobj1−λdb1)2+(λobj2−λdb2)2+…+(λobjM−λdbM)2) ……… (1)
In the reflection spectrum information of the charge obtained by sampling, for example, the type of the charge is given as an attribute and stored in the database 8. When the
d = √ ((λ obj1 −λ db1 ) 2 + (λ obj2 −λ db2 ) 2 +… + (λ objM −λ dbM ) 2 ) (1)
或いは、新規に取得された反射スペクトル情報に対し、距離dの最も小さい記憶された反射スペクトル情報に代えて、距離dの最も小さい方から予め設定された個数、例えばK個分の記憶された反射スペクトル情報をデータベース8から選出し、それらの反射スペクトル情報の属性から新規に反射スペクトル情報の取得された装入物の種類を状態として検出してもよい。例えば、距離dの最も小さい反射スペクトル情報の属性が「鉱石」であっても、残りの「K−1」個の反射スペクトル情報の属性が「焼結鉱」である場合には、新規に反射スペクトル情報の取得された装入物は「焼結鉱」であるとすることもできる。また、装入物の状態が、例えば後述する水分量や粉付着率のような連続値である場合には、選出されたK個の反射スペクトル情報の属性情報としての水分量や粉付着率の平均値や距離dの小さいものほど重みを大きくした重み付け平均値などを用いて、新規に反射スペクトル情報の取得された装入物の水分量や粉付着率を検出することもできる。 Alternatively, for newly acquired reflection spectrum information, instead of the stored reflection spectrum information having the smallest distance d, the number of reflections stored in advance from the smallest distance d, for example, K stored reflections. Spectral information may be selected from the database 8, and the type of the charge from which the reflection spectrum information is newly acquired may be detected as a state from the attribute of the reflection spectrum information. For example, even if the attribute of the reflection spectrum information with the smallest distance d is “ore”, if the attribute of the remaining “K−1” pieces of reflection spectrum information is “sintered ore”, the reflection is newly performed. The charge from which the spectral information has been acquired may be “sintered ore”. Further, when the state of the charge is a continuous value such as a moisture amount and a powder adhesion rate described later, for example, the amount of moisture and the powder adhesion rate as attribute information of the selected K reflection spectrum information. It is also possible to detect the moisture content and the powder adhesion rate of the charge from which the reflection spectrum information is newly acquired by using a weighted average value in which the weight is increased as the average value and the distance d are smaller.
前述しているように、装入物の反射スペクトル情報の属性として、水分量を付与することもできる。図5には鉱石の、図6にはコークスの、図7には焼結鉱の、夫々水分量が変化したときのバラツキが正規化された反射スペクトル(図では反射率)を示す。何れも、1450nm近傍、及び1950nm近傍の水の吸収波長帯において、水分量の変化に伴って反射スペクトルの変化が見られる。従って、これらの波長帯を含む波長を前述したM個の波長に含めて、水分量の異なる反射スペクトルを各装入物の種類毎に多数サンプリングし、装入物の種類と水分量を属性として付与した反射スペクトル情報をデータとしてデータベース8に蓄積し、新規に取得された装入物の反射スペクトル情報を水分量毎の反射スペクトル情報と比較して、その装入物の水分量を状態として検出することができる。ちなみに、各装入物の水分量と各装入物の粉付着率とは、図8に示すように、互いにリニアな関係にある。即ち、装入物の水分量が大きくなれば、その分だけ、その装入物に付着する粉の量が増加するから、装入物の粉付着率も大きくなる。そのため、反射スペクトル情報から得られる水分量は、即ち粉付着率であると考えてよい。 As described above, the amount of moisture can be given as an attribute of the reflection spectrum information of the charge. FIG. 5 shows the reflectance spectrum (reflectance in the figure) of the ore, FIG. 6 of the coke, and FIG. 7 of the sintered ore, with the variation normalized when the water content is changed. In either case, a change in the reflection spectrum is observed with a change in the amount of water in the water absorption wavelength band near 1450 nm and 1950 nm. Therefore, the wavelengths including these wavelength bands are included in the M wavelengths described above, a large number of reflection spectra with different moisture amounts are sampled for each type of charge, and the type and amount of moisture are used as attributes. The assigned reflection spectrum information is stored as data in the database 8, and the newly obtained reflection spectrum information of the charge is compared with the reflection spectrum information for each moisture amount, and the moisture content of the charge is detected as a state. can do. Incidentally, the moisture content of each charge and the powder adhesion rate of each charge are in a linear relationship with each other as shown in FIG. That is, as the amount of water in the charge increases, the amount of powder adhering to the charge increases accordingly, and the powder adhesion rate of the charge also increases. Therefore, the water content obtained from the reflection spectrum information may be considered as the powder adhesion rate.
このように水分量(又は粉付着率)が変化したときにも、同じ水分量の装入物から実際に取得される反射スペクトルにはバラツキが存在する。図9は、鉱石の水分量が変化したときの実際に取得された反射スペクトルであるが、コークスや焼結鉱についても、水分量が変化したときの実際に取得される反射スペクトルにはバラツキが存在する。正規化によって図5のように表された鉱石の水分量が変化したときの実際に取得された反射スペクトル情報を図10のM次元空間に模式的に表す。同様に、正規化によって図6のように表されたコークスの水分量が変化したときの実際に取得された反射スペクトル情報を図11のM次元空間に模式的に示す。また、正規化によって図7のように表された焼結鉱の水分量が変化したときの実際に取得された反射スペクトル情報を図12のM次元空間に模式的に示す。これらは、空間がM次元であることから分かるように、水分量(又は粉付着率)の変化が顕著に表れる波長域の波長を含めてM個の波長の反射スペクトルのデータである。 Even when the amount of moisture (or powder adhesion rate) changes in this way, there is variation in the reflection spectrum that is actually obtained from the charge with the same amount of moisture. FIG. 9 shows the reflection spectrum actually obtained when the moisture content of the ore changes. However, the reflection spectrum actually obtained when the moisture content also changes for coke and sintered ore. Exists. The reflection spectrum information actually obtained when the water content of the ore represented as shown in FIG. 5 is changed by normalization is schematically shown in the M-dimensional space of FIG. Similarly, the reflection spectrum information actually obtained when the moisture content of the coke expressed as shown in FIG. 6 is changed by normalization is schematically shown in the M-dimensional space of FIG. Moreover, the reflection spectrum information actually acquired when the moisture content of the sintered ore expressed as shown in FIG. 7 is changed by normalization is schematically shown in the M-dimensional space of FIG. As can be seen from the fact that the space is M-dimensional, these are data of reflection spectra of M wavelengths including wavelengths in a wavelength region in which a change in moisture content (or powder adhesion rate) is noticeable.
このように水分量が変化したときの実際に取得されてデータベース8に記憶された反射スペクトル情報と新規に取得された装入物の反射スペクトル情報の距離dを前述と同様に算出し、距離dの最も小さい記憶された反射スペクトル情報、又は距離dの最も小さい方から予め設定された個数、例えばK個分の記憶された反射スペクトル情報をデータベース8から選出し、それら選出された反射スペクトル情報の属性から新規に反射スペクトル情報の取得された装入物の種類及び水分量(又は粉付着率)を状態として検出することができる。水分量(又は粉付着率)は連続値であるから、選出されたK個の反射スペクトル情報の属性情報としての水分量(又は粉付着率)の平均値や距離dの小さいものほど重みを大きくした重み付け平均値などを用いれば、装入物の水分量(又は粉付着率)をより正確に検出することができる。 The distance d between the reflection spectrum information actually acquired and stored in the database 8 when the water content changes in this way and the newly acquired reflection spectrum information of the charge are calculated in the same manner as described above, and the distance d Of the stored reflection spectrum information of the smallest or the smallest number of the distance d, for example, K pieces of stored reflection spectrum information are selected from the database 8, and the selected reflection spectrum information of the selected reflection spectrum information is selected. The type and moisture content (or powder adhesion rate) of the newly acquired reflection spectrum information from the attribute can be detected as the state. Since the moisture content (or powder adhesion rate) is a continuous value, the weight value increases as the average value of the moisture content (or powder adhesion rate) or the distance d becomes smaller as the attribute information of the K reflection spectrum information selected. If the weighted average value or the like is used, the moisture content (or powder adhesion rate) of the charge can be detected more accurately.
また、これらの図10〜12から明らかなように、鉱石、コークス、焼結鉱の夫々で、水分量(又は粉付着率)が変化したときの反射スペクトル情報の変化の方向性は凡そ決まっている。従って、各装入物毎に水分量が変化したときの反射スペクトル情報の主成分分析を行い、データの次元圧縮を行うことで、より誤差に強い状態検出を可能とすることができる。主成分分析による次元圧縮は、図10〜12に示すように、例えば水分量(又は粉付着率)の変化に伴う分散が最大となる軸(=主成分)への投影であるから、主成分の近傍でバラツいている反射スペクトル情報を主成分上に投影して次元圧縮を行うことができる。次元圧縮された反射スペクトル情報は、水分量(又は粉付着率)の変化のみを反映しているから、この次元圧縮された反射スペクトル情報と新規に取得された装入物の反射スペクトル情報を比較することで、水分量(又は粉付着率)をより正確に検出することが可能となる。 As is clear from FIGS. 10 to 12, the direction of the change in the reflectance spectrum information when the water content (or the powder adhesion rate) changes in each of the ore, coke, and sintered ore is roughly determined. Yes. Therefore, by performing principal component analysis of reflection spectrum information when the amount of water changes for each charge, and performing dimensional compression of the data, it is possible to detect a state more resistant to errors. As shown in FIGS. 10 to 12, dimensional compression by principal component analysis is, for example, a projection onto an axis (= principal component) that maximizes dispersion accompanying changes in the amount of moisture (or powder adhesion rate). The reflection spectrum information, which varies in the vicinity of, can be projected onto the main component to perform dimensional compression. Since the dimensionally compressed reflection spectrum information reflects only the change in moisture content (or powder adhesion rate), this dimensionally compressed reflection spectrum information is compared with the newly acquired reflection spectrum information. By doing so, it becomes possible to detect the amount of moisture (or powder adhesion rate) more accurately.
高炉では、装入物の水分量、粉付着率は、高炉の炉内通気性に影響を及ぼす。具体的には、水分量が多いほど、粉付着率が大きいほど、炉内通気性が低下する。炉内通気性の低下は、高炉操業の不安定化に繋がるから、これらの装入物状態を把握することは、高炉操業の安定化を可能とする。この実施形態の高炉装入物検出方法では、高炉装入物の種類を検出するだけでなく、更にそれらの装入物の水分量、粉付着率を検出することができるので、高炉操業の安定化を図ることができる。図13には、この実施形態の高炉装入物検出方法で検出された装入物の種類の正解率を示す。前述したように、鉱石の反射スペクトルのパターンは明確な特徴を有するために、判別の正解率は100%であった。一方、コークスと焼結鉱とでは、反射スペクトルのパターンが類似しているものの、前述のように1000〜1200nmの波長域において波長に対する変化率に差があるため、若干の誤差はあるものの90%を超える正解率であった。また、図14には、この実施形態の高炉装入物検出方法で検出された装入物の水分量と実際値の相関を示す。同図から明らかなように、バラツキはあるものの、水分量を検出することができている。 In the blast furnace, the moisture content and the powder adhesion rate of the charge affect the air permeability of the blast furnace. Specifically, the greater the amount of moisture and the greater the powder adhesion rate, the lower the furnace air permeability. A decrease in furnace air permeability leads to destabilization of blast furnace operation, so grasping the state of these charges enables stabilization of blast furnace operation. In the blast furnace charge detection method of this embodiment, not only the type of blast furnace charge, but also the water content and powder adhesion rate of those charges can be detected, so that the blast furnace operation is stable. Can be achieved. In FIG. 13, the correct answer rate of the kind of charging detected with the blast furnace charging detection method of this embodiment is shown. As described above, since the pattern of the reflection spectrum of the ore has distinct characteristics, the accuracy rate of the discrimination was 100%. On the other hand, although the reflection spectrum pattern is similar between coke and sintered ore, since there is a difference in the change rate with respect to the wavelength in the wavelength range of 1000 to 1200 nm as described above, 90% although there is a slight error. The accuracy rate exceeded. FIG. 14 shows the correlation between the water content of the charge detected by the blast furnace charge detection method of this embodiment and the actual value. As is clear from the figure, the moisture content can be detected although there is variation.
なお、この実施形態の高炉装入物検出方法では、反射スペクトル情報から装入物の種類、水分量、粉付着率を状態として検出することとしたが、装入物の状態として装入物の成分量を加えることもできる。装入物の反射スペクトル情報には、装入物の成分量が反映する。そこで、例えば銑鉄の仕様や高炉の操業に影響を及ぼす装入物の成分量を属性として反射スペクトル情報に付与し、それをデータベースにデータとして記憶しておけば、新規に取得された反射スペクトル情報に類似する記憶された反射スペクトル情報のデータの属性から新規に反射スペクトル情報を取得した装入物の成分量を状態として検出することができる。 In the blast furnace charge detection method of this embodiment, the type of the charge, the amount of water, and the powder adhesion rate are detected as the state from the reflection spectrum information, but the state of the charge is determined as the state of the charge. Ingredient amounts can also be added. The amount of component of the charge is reflected in the reflection spectrum information of the charge. Therefore, for example, if the reflection spectrum information is added to the reflection spectrum information as an attribute and the component amount of the charge affecting the operation of the pig iron and the operation of the blast furnace, and it is stored as data in the database, the newly acquired reflection spectrum information It is possible to detect, as a state, the component amount of the charge from which the reflection spectrum information is newly obtained from the attribute of the data of the stored reflection spectrum information similar to.
このように本実施形態の高炉装入物検出方法では、複数のデータを属性と共に記憶することが可能なデータベース8と、演算処理機能を有し、データベースと連絡してデータベースに記憶されたデータを属性と共に読込むことが可能な演算処理機能7とを用い、高炉に装入される装入物の状態を検出する。その際、少なくとも種類が分明な装入物からの近赤外領域の反射光を分光した反射スペクトル情報を取得すると共に、少なくともその装入物の種類をその反射スペクトル情報に属性として付与してデータベース8にデータとして記憶し、これを少なくとも種類の異なる装入物に対して繰り返して行って、少なくとも装入物の種類が属性として付与された複数の反射スペクトル情報をデータベース8にデータとして記憶する。その状態で、少なくとも種類の分明でない装入物からの近赤外領域の反射光を分光した反射スペクトルを新規に取得し、データベース8に記憶された反射スペクトル情報及び新規に取得した反射スペクトル情報のデータが予め設定されたM個の波長又は周波数分のスペクトルである場合に、そのM次元空間上の記憶された反射スペクトル情報及び新規に取得した反射スペクトル情報間の距離を求める。そして、その距離が最も小さい又は最も小さい方から予め設定された個数分の記憶された反射スペクトル情報をデータベース8から選出し、その選出された反射スペクトル情報の属性から新規に反射スペクトルを取得した装入物の少なくとも種類を状態として検出する。これにより、少なくとも装入物の種類を高精度に検出することができる。
As described above, in the blast furnace charge detection method of the present embodiment, the database 8 capable of storing a plurality of data together with the attributes, the arithmetic processing function, and the data stored in the database in contact with the database are stored. Using the
また、反射スペクトル情報の属性として、装入物の種類に加えて、装入物の水分量及び装入物の粉付着率の少なくとも一方を付与し、選出された反射スペクトルの属性から新たに反射スペクトルを取得した装入物の種類に加えて水分量及び粉付着率の少なくとも一方を検出する。従って、装入物の種類を特定し、その種類の装入物の水分量及び粉付着率を検出することができるので、これらに基づいて、例えば高炉炉内通気性を管理して高炉操業を安定化することが可能となる。
また、装入物の水分量及び粉付着率の少なくとも一方について主成分分析を適用して次元圧縮を行うことにより、誤差に強い水分量及び粉付着率の状態検出を行うことができる。
In addition to the type of charge, at least one of the moisture content of the charge and the powder adhesion rate of the charge is given as an attribute of the reflection spectrum information, and a new reflection is made from the selected reflection spectrum attribute. In addition to the type of charge from which the spectrum was acquired, at least one of the moisture content and the powder adhesion rate is detected. Therefore, the type of charge can be specified and the moisture content and powder adhesion rate of that type of charge can be detected. Based on these, for example, the blast furnace operation can be controlled by managing the blast furnace air permeability. It becomes possible to stabilize.
Further, by applying dimension compression by applying principal component analysis to at least one of the moisture content and the powder adhesion rate of the charge, it is possible to detect the state of the moisture content and the powder adhesion rate that are resistant to errors.
1 高炉
2 羽口
3 コンベヤ
4 ホッパー
5 分配装置
6 カメラ
7 演算処理装置
8 データベース
1
Claims (3)
演算処理機能を有し、前記データベースと連絡して前記データベースに記憶されたデータを属性と共に読込むことが可能な演算処理機能とを用いて、
高炉に装入される装入物の状態を検出する高炉装入物検出方法であって、
少なくとも種類が分明な装入物からの近赤外領域の反射光を分光した反射スペクトル情報を取得すると共に、少なくともその装入物の種類をその反射スペクトル情報に属性として付与して前記データベースにデータとして記憶し、これを少なくとも種類の異なる装入物に対して繰り返して行って、少なくとも装入物の種類が属性として付与された複数の反射スペクトル情報をデータベースにデータとして記憶し、
少なくとも種類の分明でない装入物からの近赤外領域の反射光を分光した反射スペクトル情報を新規に取得し、
前記データベースに記憶された反射スペクトル情報及び前記新規に取得した反射スペクトル情報のデータが予め設定されたM個の波長又は周波数分のスペクトルである場合に、そのM次元空間上の記憶された反射スペクトル情報及び新規に取得した反射スペクトル情報間の距離を求め、その距離が最も小さい又は最も小さい方から予め設定された個数分の記憶された反射スペクトル情報を前記データベースから選出し、その選出された反射スペクトル情報の属性から新規に反射スペクトル情報を取得した装入物の少なくとも種類を状態として検出する
ことを特徴とする高炉装入物検出方法。 A database capable of storing multiple data with attributes;
With an arithmetic processing function, using an arithmetic processing function capable of reading the data stored in the database together with the attribute in contact with the database,
A blast furnace charge detection method for detecting a state of a charge charged in a blast furnace,
Reflection spectrum information obtained by spectroscopically reflecting reflected light in the near-infrared region from a charge of which the type is clear is obtained, and at least the type of the charge is assigned as an attribute to the reflection spectrum information and data is stored in the database. And repeatedly performing this for at least different types of charges, and storing at least a plurality of reflection spectrum information assigned with the types of charges as attributes in the database as data,
Newly obtained reflection spectrum information obtained by spectroscopically reflecting the reflected light in the near infrared region from at least a kind of non-lightening charge,
When the reflection spectrum information stored in the database and the data of the newly acquired reflection spectrum information are spectra for M wavelengths or frequencies set in advance, the reflection spectrum stored in the M-dimensional space is stored. The distance between the information and the newly acquired reflection spectrum information is obtained, and the stored reflection spectrum information corresponding to a preset number is selected from the database from the smallest or smallest distance, and the selected reflection is obtained. A method for detecting a blast furnace charge, comprising detecting at least a type of a charge for which reflection spectrum information is newly acquired from an attribute of spectrum information as a state.
3. The blast furnace charge detection method according to claim 2, wherein dimension compression is performed by applying principal component analysis to at least one of the moisture content and the powder adhesion rate of the charge.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015016781A JP6252504B2 (en) | 2015-01-30 | 2015-01-30 | Blast furnace charge detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015016781A JP6252504B2 (en) | 2015-01-30 | 2015-01-30 | Blast furnace charge detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016141828A true JP2016141828A (en) | 2016-08-08 |
JP6252504B2 JP6252504B2 (en) | 2017-12-27 |
Family
ID=56569797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015016781A Active JP6252504B2 (en) | 2015-01-30 | 2015-01-30 | Blast furnace charge detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6252504B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106435069A (en) * | 2016-10-17 | 2017-02-22 | 中冶赛迪工程技术股份有限公司 | Material changing detection method and system for blast furnace smelting production process |
CN109844498A (en) * | 2016-11-30 | 2019-06-04 | 杰富意钢铁株式会社 | powder ratio measuring device and powder ratio measuring system |
JP2019164133A (en) * | 2018-03-19 | 2019-09-26 | Jfeスチール株式会社 | Mist determination method of periphery of block object on conveyor, and property measurement method of block object on conveyor |
WO2019189262A1 (en) * | 2018-03-30 | 2019-10-03 | Jfeスチール株式会社 | Powder ratio measurement device, powder ratio measurement system, and blast furnace operation method |
JP2020030072A (en) * | 2018-08-21 | 2020-02-27 | Jfeスチール株式会社 | Method and device for determining occurrence of particle dispersed in air, and method and device for measuring property of lumpy matter |
CN111954800A (en) * | 2018-04-03 | 2020-11-17 | 杰富意钢铁株式会社 | Particle size distribution measuring apparatus and particle size distribution measuring method |
KR20210122821A (en) * | 2019-03-28 | 2021-10-12 | 제이에프이 스틸 가부시키가이샤 | Fraction measuring device, fraction measuring system, fraction measuring method, computer program, blast furnace and blast furnace operation method |
WO2023286379A1 (en) * | 2021-07-14 | 2023-01-19 | 栗田工業株式会社 | Estimation system, estimation device, estimation method, and estimation program |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58140162U (en) * | 1982-03-16 | 1983-09-21 | 川崎製鉄株式会社 | Blast furnace raw material supply control device |
JPS6056005A (en) * | 1983-09-07 | 1985-04-01 | Nippon Kokan Kk <Nkk> | Method for deciding kind of raw material charged into blast furnace |
JPH04328449A (en) * | 1991-04-26 | 1992-11-17 | Kao Corp | Measuring method and apparatus for moisture |
-
2015
- 2015-01-30 JP JP2015016781A patent/JP6252504B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58140162U (en) * | 1982-03-16 | 1983-09-21 | 川崎製鉄株式会社 | Blast furnace raw material supply control device |
JPS6056005A (en) * | 1983-09-07 | 1985-04-01 | Nippon Kokan Kk <Nkk> | Method for deciding kind of raw material charged into blast furnace |
JPH04328449A (en) * | 1991-04-26 | 1992-11-17 | Kao Corp | Measuring method and apparatus for moisture |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106435069A (en) * | 2016-10-17 | 2017-02-22 | 中冶赛迪工程技术股份有限公司 | Material changing detection method and system for blast furnace smelting production process |
CN109844498A (en) * | 2016-11-30 | 2019-06-04 | 杰富意钢铁株式会社 | powder ratio measuring device and powder ratio measuring system |
EP3505910A4 (en) * | 2016-11-30 | 2019-07-03 | JFE Steel Corporation | Powder ratio measuring device and powder ratio measuring system |
US11403747B2 (en) | 2016-11-30 | 2022-08-02 | Jfe Steel Corporation | Fine ratio measuring device and fine ratio measuring system |
JP2019164133A (en) * | 2018-03-19 | 2019-09-26 | Jfeスチール株式会社 | Mist determination method of periphery of block object on conveyor, and property measurement method of block object on conveyor |
RU2768539C1 (en) * | 2018-03-30 | 2022-03-24 | ДжФЕ СТИЛ КОРПОРЕЙШН | Device for measuring the relative content of fine particles, a system for measuring the relative content of fine particles and a method for performing an operation for a blast furnace |
US11555781B2 (en) | 2018-03-30 | 2023-01-17 | Jfe Steel Corporation | Fine ratio measuring device, fine ratio measuring system, and blast furnace operating method |
CN111971547A (en) * | 2018-03-30 | 2020-11-20 | 杰富意钢铁株式会社 | Powder ratio measuring device, powder ratio measuring system, and blast furnace operation method |
EP3757543A4 (en) * | 2018-03-30 | 2021-04-28 | JFE Steel Corporation | Powder ratio measurement device, powder ratio measurement system, and blast furnace operation method |
JPWO2019189262A1 (en) * | 2018-03-30 | 2020-04-30 | Jfeスチール株式会社 | Powder ratio measuring device, powder ratio measuring system, and blast furnace operating method |
CN111971547B (en) * | 2018-03-30 | 2024-04-16 | 杰富意钢铁株式会社 | Powder ratio measuring device, powder ratio measuring system, and method for operating blast furnace |
WO2019189262A1 (en) * | 2018-03-30 | 2019-10-03 | Jfeスチール株式会社 | Powder ratio measurement device, powder ratio measurement system, and blast furnace operation method |
JP7171578B2 (en) | 2018-03-30 | 2022-11-15 | Jfeスチール株式会社 | Particle rate measuring device, Particle rate measuring system, Blast furnace operating method, and Particle rate measuring method |
CN111954800A (en) * | 2018-04-03 | 2020-11-17 | 杰富意钢铁株式会社 | Particle size distribution measuring apparatus and particle size distribution measuring method |
CN111954800B (en) * | 2018-04-03 | 2024-05-31 | 杰富意钢铁株式会社 | Particle size distribution measuring device and particle size distribution measuring method |
JP2020030072A (en) * | 2018-08-21 | 2020-02-27 | Jfeスチール株式会社 | Method and device for determining occurrence of particle dispersed in air, and method and device for measuring property of lumpy matter |
KR20210122821A (en) * | 2019-03-28 | 2021-10-12 | 제이에프이 스틸 가부시키가이샤 | Fraction measuring device, fraction measuring system, fraction measuring method, computer program, blast furnace and blast furnace operation method |
CN113614254B (en) * | 2019-03-28 | 2022-11-18 | 杰富意钢铁株式会社 | Powder ratio measuring device, powder ratio measuring system, powder ratio measuring method, blast furnace, and blast furnace operation method |
KR102603372B1 (en) * | 2019-03-28 | 2023-11-16 | 제이에프이 스틸 가부시키가이샤 | Fraction measuring device, fraction measuring system, fraction measuring method, computer program, blast furnace and blast furnace operation method |
EP3950968A4 (en) * | 2019-03-28 | 2022-05-04 | JFE Steel Corporation | Powder ratio measurement device, powder ratio measurement system, powder ratio measurement method, computer program, blast furnace and blast furnace operation method |
CN113614254A (en) * | 2019-03-28 | 2021-11-05 | 杰富意钢铁株式会社 | Powder ratio measuring device, powder ratio measuring system, powder ratio measuring method, computer program, blast furnace, and blast furnace operation method |
WO2023286379A1 (en) * | 2021-07-14 | 2023-01-19 | 栗田工業株式会社 | Estimation system, estimation device, estimation method, and estimation program |
JP2023012947A (en) * | 2021-07-14 | 2023-01-26 | 栗田工業株式会社 | Estimation system, estimation device, estimation method and estimation program |
JP7327446B2 (en) | 2021-07-14 | 2023-08-16 | 栗田工業株式会社 | Estimation system, estimation device, estimation method and estimation program |
JP7552795B2 (en) | 2021-07-14 | 2024-09-18 | 栗田工業株式会社 | Estimation system, estimation device, estimation method, and estimation program |
Also Published As
Publication number | Publication date |
---|---|
JP6252504B2 (en) | 2017-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6252504B2 (en) | Blast furnace charge detection method | |
CN110476053B (en) | Raw material particle size distribution measuring device, particle size distribution measuring method, and porosity measuring device | |
JP6044536B2 (en) | Blast furnace charge detector | |
EP3801934B1 (en) | Process and system for in-line inspection of product stream for detection of foreign objects | |
JP6519034B2 (en) | Powder percentage measuring device and powder percentage measuring system | |
JPS59218084A (en) | Visible image processing method | |
CN111954800B (en) | Particle size distribution measuring device and particle size distribution measuring method | |
JP2014534699A (en) | System and method for digital image signal compression using unique images | |
Wang et al. | Spatial distribution of total polyphenols in multi-type of tea using near-infrared hyperspectral imaging | |
JP6308284B2 (en) | Blast furnace charge detection device and blast furnace operation method | |
JP2005189179A (en) | Method for measuring granularity of powder granular material | |
JP7171578B2 (en) | Particle rate measuring device, Particle rate measuring system, Blast furnace operating method, and Particle rate measuring method | |
KR20230052014A (en) | Method and apparatus for classifying foreign matter | |
JP6566180B1 (en) | Particle size distribution measuring apparatus and particle size distribution measuring method | |
JP2020030072A (en) | Method and device for determining occurrence of particle dispersed in air, and method and device for measuring property of lumpy matter | |
JP6950839B2 (en) | Powder rate measuring device, powder rate measuring system, powder rate measuring method, computer program, blast furnace and blast furnace operation method | |
JP2005208024A (en) | Method for forming grain size distribution of powdery/granular material | |
JP2023137418A (en) | Grain diameter measurement apparatus, method and program | |
Fongaro et al. | Image analysis in nuclear forensics | |
CN118318154A (en) | Information processing method, information processing device, information processing system, information processing program, and sinter production method | |
Sarker et al. | Feasibility of Smartphone-Based Color Matching in Fabrics for Smart Textiles Based on Color Modeling and Machine Learning | |
Huang et al. | Near-infrared imaging for quantitative analysis of active component in counterfeit dimethomorph using partial least squares regression | |
JP2022162530A (en) | Grain size measurement device, method and program for the same, granulation device, and method for the same | |
BR112020020009B1 (en) | DEVICE AND METHOD FOR MEASURING THE PROPORTION OF FINES THAT ADHERE TO THE SURFACE OF A MATERIAL IN THE FORM OF CLUMS, SYSTEM FOR MEASURING THE PROPORTION OF FINES, METHOD OF BLAST FURNACE OPERATION | |
Várvölgyi et al. | Identification and quantification of barley as adulterant in ground roasted coffee by vision system and sensory analysis. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170626 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171113 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6252504 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |