JP6044536B2 - Blast furnace charge detector - Google Patents

Blast furnace charge detector Download PDF

Info

Publication number
JP6044536B2
JP6044536B2 JP2013271734A JP2013271734A JP6044536B2 JP 6044536 B2 JP6044536 B2 JP 6044536B2 JP 2013271734 A JP2013271734 A JP 2013271734A JP 2013271734 A JP2013271734 A JP 2013271734A JP 6044536 B2 JP6044536 B2 JP 6044536B2
Authority
JP
Japan
Prior art keywords
charge
type
blast furnace
spectrum
moisture content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013271734A
Other languages
Japanese (ja)
Other versions
JP2015124436A (en
Inventor
丈英 平田
丈英 平田
泰平 野内
泰平 野内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013271734A priority Critical patent/JP6044536B2/en
Publication of JP2015124436A publication Critical patent/JP2015124436A/en
Application granted granted Critical
Publication of JP6044536B2 publication Critical patent/JP6044536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、高炉に装入される装入物の状態を検出する高炉装入物検出装置に関し、例えば高炉への装入物であるコークス、鉱石(鉄鉱石)、焼結鉱が夫々どの程度、どのような状態で高炉に装入されているかを検出するものである。   The present invention relates to a blast furnace charge detection device for detecting the state of a charge charged in a blast furnace, and for example, to what extent are coke, ore (iron ore), and sintered ore, respectively, that are charged into the blast furnace. In this state, the state in which the blast furnace is charged is detected.

高炉の炉頂部から高炉内に装入される装入物の量や性状、例えば粒度分布、水分量、粉率などの管理は十分とはいえないのが現状である。例えば高炉の炉頂上方に配置されたコンベヤから高炉内に装入される装入物の状態を検出することができれば、例えば高炉の炉内通気状態を管理することができ、高炉操業を安定化することも可能である。このような高炉装入物検出装置としては、例えば下記特許文献1及び2に記載されるものがある。このうち特許文献1に記載される高炉装入物検出装置は、原料貯蔵層の排出口を囲むようにコイルセンサを配置し、原料の排出に伴って変化するコイルセンサの出力値に基づいて原料の混合度を検出するものである。また、下記特許文献2に記載される高炉装入物検出装置は、カメラで撮像した画像に対して画像処理を行い、コークスの粒度分布を検出するものである。   At present, it cannot be said that management of the amount and properties of the charges charged into the blast furnace from the top of the blast furnace, such as particle size distribution, moisture content, and powder rate, is sufficient. For example, if it is possible to detect the state of the charge charged into the blast furnace from the conveyor placed above the top of the blast furnace, it is possible to manage the ventilation state of the blast furnace and stabilize the blast furnace operation. It is also possible to do. Examples of such a blast furnace charge detection device include those described in Patent Documents 1 and 2 below. Among these, the blast furnace charge detection device described in Patent Document 1 arranges a coil sensor so as to surround the discharge port of the raw material storage layer, and the raw material is based on the output value of the coil sensor that changes as the raw material is discharged. The degree of mixing is detected. Moreover, the blast furnace charge detection apparatus described in the following Patent Document 2 performs image processing on an image captured by a camera and detects the particle size distribution of coke.

特許第4802739号公報Japanese Patent No. 4802739 特開2003−83868号公報JP 2003-83868 A

しかしながら、前記特許文献1に記載される高炉装入物検出装置は装入物の混合度を検出するだけであり、特許文献2に記載される高炉装入物検出装置はコークスの粒度を検出するだけのものであることから、高炉操業を安定化するためには装入物の情報が不足する。また、前記特許文献2に記載される高炉装入物検出装置は、コークスの粒度を検出するだけであるため、高炉のようにコークスのみならず、鉱石や焼結鉱が混合されて装入される場合には、粒度検出のための画像処理のパラメータが夫々で異なるため、夫々の粒度を適正に検出できない可能性がある。   However, the blast furnace charge detection device described in Patent Document 1 only detects the mixing degree of the charge, and the blast furnace charge detection device described in Patent Document 2 detects the coke particle size. Therefore, there is insufficient information on the charges to stabilize the blast furnace operation. Further, since the blast furnace charge detection device described in Patent Document 2 only detects the particle size of coke, not only coke but also ore and sintered ore are mixed and charged as in a blast furnace. In this case, since the image processing parameters for particle size detection are different, there is a possibility that the respective particle sizes cannot be detected properly.

本発明は、上記のような問題点に着目してなされたものであり、装入物の種類を特定し、夫々の状態を検出することが可能な高炉装入物検出装置を提供することを目的とするものである。   The present invention has been made paying attention to the problems as described above, and provides a blast furnace charge detection device capable of specifying the type of charge and detecting each state. It is the purpose.

上記課題を解決するために、本発明の高炉装入物検出装置は、高炉に装入される装入物の状態を検出する高炉装入物検出装置であって、前記装入物からの近赤外領域の反射波を分光してスペクトルを取得する分光部と、前記分光部で取得されたスペクトルから前記装入物の種類を判別する種類判別部と、前記種類判別部で判別された種類の装入物の存在領域から当該種類の装入物の粒度を検出する粒度検出部、及び前記種類判別部で判別された種類の装入物の前記分光部で取得されたスペクトルから当該種類の装入物の水分量を検出する水分量検出部、及び前記種類判別部で判別された種類の装入物の前記分光部で取得されたスペクトルから当該種類の装入物の水分量を検出し、当該水分量から当該種類の装入物の粉率を検出する粉率検出部の少なくとも2つ以上とを備えたことを特徴とするものである。
また、前記近赤外領域の反射波として、1000〜1500nmを含む波長帯域を分光することが好ましい。
In order to solve the above-mentioned problems, a blast furnace charge detection device according to the present invention is a blast furnace charge detection device that detects a state of a charge charged in a blast furnace, and includes a proximity from the charge. A spectroscopic unit that spectrally separates reflected waves in the infrared region to obtain a spectrum, a type discriminating unit that discriminates the type of the charge from the spectrum acquired by the spectroscopic unit, and a type discriminated by the type discriminating unit The particle size detection unit for detecting the particle size of the charge of the type from the existence region of the charge of the type, and the spectrum of the type from the spectrum acquired by the spectroscopic unit of the type of charge determined by the type determination unit A moisture amount detection unit for detecting the moisture content of the charge and a moisture content of the charge of the type detected from the spectrum acquired by the spectroscopic unit of the type of charge determined by the type determination unit. , A powder rate detection unit for detecting the powder rate of the charge of the type from the moisture content It is characterized in that it comprises at least two or more.
Moreover, it is preferable to spectrally disperse a wavelength band including 1000 to 1500 nm as the reflected wave in the near infrared region.

而して、本発明の高炉装入物検出装置によれば、装入物からの近赤外領域の反射光を分光してスペクトルを取得し、その取得されたスペクトルから装入物の種類を判別する。装入物の種類が判別されたら、その種類の装入物の存在領域を例えば画像から求めて粒度を検出する。また、装入物の種類が判別されたら、その種類の装入物のスペクトルから当該種類の装入物の水分量を検出する。また、装入物の種類が判別されたら、その種類の装入物のスペクトルから当該種類の装入物の水分量を検出し、スペクトルから求めた装入物の水分量と当該装入物の粉率とは一意の関係にあるから、その水分量から当該種類の装入物の粉率を検出する。従って、装入物の種類を特定し、その種類の装入物の粒度、水分量、粉率を検出することができるので、これらに基づいて、例えば高炉炉内通気性を管理して高炉操業を安定化することが可能となる。   Thus, according to the blast furnace charge detection device of the present invention, a spectrum is obtained by spectroscopically analyzing reflected light in the near infrared region from the charge, and the type of charge is determined from the acquired spectrum. Determine. When the type of the charge is determined, the existence area of the charge of that type is obtained from, for example, an image to detect the particle size. When the type of the charge is determined, the moisture content of the charge of the type is detected from the spectrum of the charge. When the type of charge is determined, the moisture content of the charge of that type is detected from the spectrum of the charge of that type, and the moisture content of the charge determined from the spectrum and the charge Since there is a unique relationship with the powder rate, the powder rate of the type of charge is detected from the amount of water. Therefore, it is possible to identify the type of charge and to detect the particle size, moisture content, and powder rate of that type of charge. Based on these, for example, the blast furnace operation is controlled by controlling the air permeability in the blast furnace. Can be stabilized.

本発明の高炉装入物検出装置の一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the blast furnace charge detection apparatus of this invention. 図1の高炉装入物検出装置で検出された装入物反射光の分光スペクトルの説明図である。It is explanatory drawing of the spectral spectrum of the charge reflected light detected with the blast furnace charge detection apparatus of FIG. 水分量が変化したときの鉱石反射光の分光スペクトルの説明図である。It is explanatory drawing of the spectrum of the ore reflected light when a moisture content changes. 水分量が変化したときのコークス反射光の分光スペクトルの説明図である。It is explanatory drawing of the spectrum of coke reflected light when a moisture content changes. 水分量が変化したときの焼結鉱反射光の分光スペクトルの説明図である。It is explanatory drawing of the spectrum of the sinter reflected light when a moisture content changes. 検出された水分量と粉率の相関を示す説明図である。It is explanatory drawing which shows the correlation of the detected moisture content and a powder rate. 図1の高炉装入物検出装置で検出された装入物の種類の正解率の説明図である。It is explanatory drawing of the correct answer rate of the kind of charge detected with the blast furnace charge detection apparatus of FIG. 図1の高炉装入物検出装置で検出された装入物の水分量と実際値の相関を示す説明図である。It is explanatory drawing which shows the correlation of the moisture content and actual value of the charge detected with the blast furnace charge detection apparatus of FIG.

次に、本発明の高炉装入物検出装置の一実施形態について図面を参照しながら説明する。図1は、本実施形態の高炉装入物検出装置の概略構成図である。高炉1では、炉頂部から鉱石(鉄鉱石)、コークス、焼結鉱が装入物として装入され、それらの炉内堆積物に対して炉下部の羽口2から熱風を送風し、装入物の還元、即ち製銑が行われる。炉床部に流れ落ちた溶銑は、溶滓と共に、高炉2の炉底部外周に形成された出銑口から出銑される。   Next, an embodiment of the blast furnace charge detection apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of the blast furnace charge detection device of the present embodiment. In the blast furnace 1, ore (iron ore), coke, and sintered ore are charged as charges from the top of the furnace, and hot air is blown from the tuyere 2 at the bottom of the furnace to charge them. Reduction of goods, that is, iron making is performed. The hot metal that has flowed down to the hearth part is discharged together with the hot metal from a tap outlet formed on the outer periphery of the bottom of the blast furnace 2.

本実施形態では、鉱石、コークス、焼結鉱といった装入物を高炉1の炉頂部から装入するために、高炉1の炉頂部上方にコンベヤ3を配置している。コンベヤ3で搬送された装入物は、一旦、ホッパー(バンカーともいう)4に投入され、そこから回転式分配装置5を介して、炉内に均等に装入される。本実施形態では、コンベヤ3の上方にカメラ6を配置し、このカメラ6で捉えたコンベヤ3上の装入物の反射光から、装入物の種類や大きさ、水分量などを検出する。本実施形態では、安定した光量を得るために証明が必要であるが、必要に応じて予め設定された波長域の照明を用いてもよい。   In the present embodiment, the conveyor 3 is disposed above the top of the blast furnace 1 in order to charge charges such as ore, coke, and sintered ore from the top of the blast furnace 1. The charge conveyed by the conveyor 3 is once charged into a hopper (also referred to as a bunker) 4, and is then uniformly charged into the furnace through the rotary distributor 5. In this embodiment, a camera 6 is disposed above the conveyor 3, and the type and size of the charge, the amount of water, and the like are detected from the reflected light of the charge on the conveyor 3 captured by the camera 6. In this embodiment, proof is necessary to obtain a stable light amount, but illumination in a preset wavelength region may be used as necessary.

カメラ6は、単に撮像領域を撮像するというだけのものではなく、所謂ラインセンサなどと呼ばれるセンサの一種で、例えばコンベヤ3の搬送方向と直交方向に向けて一次元的に捉えた装入物反射光のうち、近赤外領域の反射光を各画素毎に分光してスペクトルを取得することができる。このように近赤外領域の反射光を分光して取得した装入物のスペクトルを、例えばホストコンピュータのような高度な演算処理機能を有する演算処理装置7に取り込み、この演算処理装置7によって装入物の種類の判別、種類が判別された装入物の粒度、種類が判別された装入物の水分量、種類が判別された装入物の粉率を検出する。   The camera 6 is not merely an image pickup area, but a so-called line sensor or the like. For example, the reflection of the charge captured one-dimensionally in the direction orthogonal to the conveying direction of the conveyor 3. Of the light, the reflected light in the near-infrared region can be dispersed for each pixel to obtain a spectrum. Thus, the spectrum of the charge obtained by separating the reflected light in the near-infrared region is taken into an arithmetic processing device 7 having an advanced arithmetic processing function such as a host computer, and the arithmetic processing device 7 installs the spectrum. The type of the input, the particle size of the charge whose type has been determined, the moisture content of the charge whose type has been determined, and the powder rate of the charge whose type has been determined are detected.

演算処理装置7には、装入物の種類の判別を行う装入物種類判別部8、種類が判別された装入物の粒度を検出する粒度検出部9、種類が判別された装入物の水分量を検出する水分量検出部10、種類が判別された装入物の粉率を検出する粉率検出部11が構築されている。これらの判別部や検出部は、ソフトウエアによる演算処理で構成される。図2には、種類毎の装入物反射光の分光スペクトルを示す。赤外分光法では、検出物の表面状態が複雑である場合には、得られる分光スペクトルにバラツキが生じる。そこで、例えば装入物の種類毎に多数の分光スペクトルを種々の条件でサンプリングしてデータベースに蓄積し、分散を正規化したものが図2である。この装入物の種類に応じた分光スペクトルの基準値を用いて、装入物種類判別部8では装入物の種類の判別を行う。   The arithmetic processing unit 7 includes a charge type determination unit 8 for determining the type of the charge, a particle size detection unit 9 for detecting the particle size of the charge whose type has been determined, and a charge whose type has been determined. A moisture amount detection unit 10 that detects the amount of moisture in the container and a powder rate detection unit 11 that detects the powder rate of the charge whose type has been determined are constructed. These discriminating units and detecting units are constituted by arithmetic processing by software. In FIG. 2, the spectrum of the charge reflected light for each type is shown. In the infrared spectroscopy, when the surface state of the detection object is complicated, the obtained spectrum is varied. Therefore, for example, FIG. 2 shows a sample in which a large number of spectral spectra are sampled under various conditions and accumulated in a database for each type of charge, and dispersion is normalized. The charge type discriminating unit 8 discriminates the type of the charge using the reference value of the spectral spectrum corresponding to the type of the charge.

このような装入物の種類に応じた反射光の分光スペクトルの基準値を用いることで、例えば現在得られた反射光の分光スペクトルが鉱石、コークス、焼結鉱の何れであるかを判別することができる。例えば鉱石は見た目に赤褐色であり、コークスや焼結鉱の見た目は灰色である。そのため、コークスや焼結鉱の反射光の分光スペクトルのパターンに対し、鉱石の反射光の分光スペクトルのパターンは特徴的である。従って、得られた反射光の分光スペクトルが鉱石の反射光の分光スペクトルの基準値に類似していれば、それは鉱石であると判別することができる。一方、コークスの反射光の分光スペクトルのパターンと焼結鉱の反射光の分光スペクトルのパターンとは類似している。しかしながら、両者には、特に1000〜1200nmの波長領域に明確なパターンの差があり、この部分を得られた反射光の分光スペクトルと比較することで、コークスか焼結鉱かを判別することができる。   By using the reference value of the spectral spectrum of the reflected light according to the type of the charge, for example, it is determined whether the spectral spectrum of the reflected light currently obtained is ore, coke, or sintered ore. be able to. For example, the ore looks reddish brown, and the appearance of coke and sintered ore is gray. Therefore, the spectral spectrum pattern of the reflected light of the ore is characteristic to the spectral spectrum pattern of the reflected light of coke or sintered ore. Therefore, if the spectrum of the obtained reflected light is similar to the reference value of the spectrum of the reflected light of the ore, it can be determined that it is an ore. On the other hand, the spectral spectrum pattern of the coke reflected light is similar to the spectral spectrum pattern of the reflected light of the sintered ore. However, there is a clear pattern difference especially in the wavelength region of 1000 to 1200 nm, and it is possible to discriminate between coke and sintered ore by comparing this part with the spectral spectrum of the reflected light obtained. it can.

このように装入物の種類の判別が行われたら、粒度検出部9で、各装入物の粒度(大きさ)の検出を行う。この装入物の粒度検出は、例えばカメラ6で得られた装入物の撮像情報(画像)を用いて、例えば前記特許文献2に記載される粒度検出方法を適用することができる。この場合、既に装入物の種類が判別されているので、判別された装入物の種類に応じて画像処理のパラメータを適切に設定することが可能となり、結果的に装入物の存在領域を明確にして粒度を適正に検出することが可能となる。また、この他にも、一般的な画像処理によって画像データを二値化し、境界を抽出した装入物の存在領域の大きさから装入物の粒度を検出する方法も挙げられる。   When the type of the charge is thus determined, the particle size detection unit 9 detects the particle size (size) of each charge. For example, the particle size detection method described in Patent Document 2 can be applied to the particle size detection of the charge using, for example, imaging information (image) of the charge obtained by the camera 6. In this case, since the type of the charge has already been determined, it is possible to appropriately set the image processing parameters according to the determined type of the charge, and as a result, the existence region of the charge. This makes it possible to detect the particle size appropriately. In addition to this, there is a method in which the image data is binarized by general image processing, and the particle size of the charge is detected from the size of the existing region where the boundary is extracted.

一方、判別された装入物の種類に基づいて、その装入物の水分量の検出を水分量検出部10で行う。図3には鉱石の、図4にはコークスの、図5には焼結鉱の、夫々水分量が変化したときの反射光の分光スペクトルを示す。何れも、1450nm近傍、及び1950nm近傍の水の吸収波長帯において、水分量の変化に伴って分光スペクトルの変化が見られる。従って、種々の水分量の分光スペクトルを各装入物の種類毎に多数サンプリングしてデータベースに蓄積し、得られた反射光の分光スペクトルを各装入物の種類毎に設定した水分量毎の分光スペクトルと比較して、その装入物の水分量を検出することができる。なお、前述した1000〜1200nmにおけるコークスと焼結鉱の夫々の反射光の分光スペクトルの特徴、及び1450nm近傍の水の吸収波長帯から、反射光の分光領域を1000〜1500nmとしてもよい。   On the other hand, the moisture amount detection unit 10 detects the moisture content of the charged material based on the determined type of the charged material. FIG. 3 shows the spectrum of the reflected light of the ore, FIG. 4 of the coke, and FIG. 5 of the sintered ore when the water content changes. In both cases, changes in the spectral spectrum are observed with changes in the amount of water in the absorption wavelength band of water near 1450 nm and 1950 nm. Therefore, a large number of spectral spectra of various moisture contents are sampled for each charge type and accumulated in the database, and the obtained reflected light spectrum spectrum is set for each charge quantity for each charge type. Compared to the spectroscopic spectrum, the water content of the charge can be detected. The spectral region of the reflected light may be 1000 to 1500 nm based on the spectral characteristics of the reflected light of coke and sintered ore at 1000 to 1200 nm and the absorption wavelength band of water near 1450 nm.

また、各装入物の水分量を検出したら、その水分量を用いてその装入物の粉率を粉率検出部11で検出する。図6には、装入物の水分量と粉率の相関を示す。図では、装入物の水分量と粉率の関係を表示しているが、前述のようにして装入物の水分量が求められれば、その装入物の粉率も検出することができる。
装入物の粒度、水分量、粉率は、高炉の炉内通気性に影響を及ぼす。具体的には、粒度が小さく、水分量が多く、粉率が大きいほど、炉内通気性が低下する。炉内通気性の低下は、高炉操業の不安定化に繋がるから、これらの装入物性状を把握することは、高炉操業の安定化を可能とする。本実施形態の高炉装入物検出装置では、高炉装入物の種類を判別するだけでなく、更にそれらの装入物の粒度、水分量、粉率を検出することができるので、高炉操業の安定化を図ることができる。
Moreover, if the water content of each charge is detected, the powder rate of the charge is detected by the powder rate detection unit 11 using the water content. FIG. 6 shows the correlation between the water content of the charge and the powder rate. In the figure, the relationship between the moisture content of the charge and the powder rate is displayed, but if the moisture content of the charge is determined as described above, the powder rate of the charge can also be detected. .
The particle size, water content, and powder rate of the charged product affect the air permeability of the blast furnace. Specifically, the smaller the particle size, the greater the amount of water, and the greater the powder rate, the lower the furnace air permeability. A decrease in the furnace air permeability leads to instability of the blast furnace operation. Therefore, grasping these charging properties makes it possible to stabilize the blast furnace operation. In the blast furnace charge detection device of this embodiment, not only the type of blast furnace charge but also the particle size, moisture content, and powder rate of those charges can be detected, so that the blast furnace operation Stabilization can be achieved.

図7には、本実施形態の高炉装入物検出装置で検出された装入物の種類の正解率を示す。前述したように、鉱石の反射光の分光スペクトルのパターンは明確な特徴を有するために、判別の正解率は100%であった。一方、コークスと焼結鉱とでは、分光スペクトルのパターンが類似しているものの、前述のように1000〜1200nmの波長域において波長に対する変化率に差があるため、若干の誤差はあるものの90%を超える正解率であった。また、図8には、本実施形態の高炉装入物検出装置で検出された装入物の水分量と実際値の相関を示す。同図から明らかなように、バラツキはあるものの、水分量を検出することができている。   In FIG. 7, the correct answer rate of the kind of charging detected with the blast furnace charging detection apparatus of this embodiment is shown. As described above, since the spectral spectrum pattern of the reflected light of the ore has a clear feature, the accuracy rate of the discrimination was 100%. On the other hand, although coke and sintered ore have similar spectral spectrum patterns, there is a difference in the rate of change with respect to the wavelength in the wavelength range of 1000 to 1200 nm as described above. The accuracy rate exceeded. Moreover, in FIG. 8, the correlation of the moisture content and the actual value of the charge detected with the blast furnace charge detection apparatus of this embodiment is shown. As is clear from the figure, the moisture content can be detected although there is variation.

このように本実施形態の高炉装入物検出装置では、装入物からの近赤外領域の反射光を分光してスペクトルを取得し、その取得されたスペクトルから装入物の種類を判別する。装入物の種類が判別されたら、その種類の装入物の存在領域を例えば画像から求めて粒度を検出する。また、装入物の種類が判別されたら、その種類の装入物のスペクトルから当該種類の装入物の水分量を検出する。また、装入物の種類が判別されたら、その種類の装入物のスペクトルから当該種類の装入物の水分量を検出し、スペクトルから求めた装入物の水分量と当該装入物の粉率とは一意の関係にあるから、その水分量から当該種類の装入物の粉率を検出する。従って、装入物の種類を特定し、その種類の装入物の粒度、水分量、粉率を検出することができるので、これらに基づいて、例えば高炉炉内通気性を管理して高炉操業を安定化することが可能となる。   As described above, in the blast furnace charge detection device of the present embodiment, the spectrum is obtained by dispersing the reflected light in the near-infrared region from the charge, and the type of the charge is determined from the acquired spectrum. . When the type of the charge is determined, the existence area of the charge of that type is obtained from, for example, an image to detect the particle size. When the type of the charge is determined, the moisture content of the charge of the type is detected from the spectrum of the charge. When the type of charge is determined, the moisture content of the charge of that type is detected from the spectrum of the charge of that type, and the moisture content of the charge determined from the spectrum and the charge Since there is a unique relationship with the powder rate, the powder rate of the type of charge is detected from the amount of water. Therefore, it is possible to identify the type of charge and to detect the particle size, moisture content, and powder rate of that type of charge. Based on these, for example, the blast furnace operation is controlled by controlling the air permeability in the blast furnace. Can be stabilized.

1 高炉
2 羽口
3 コンベヤ
4 ホッパー
5 分配装置
6 カメラ
7 演算処理装置
8 装入物種類判別部
9 粒度検出部
10 水分量検出部
11 粉率検出部
DESCRIPTION OF SYMBOLS 1 Blast furnace 2 tuyere 3 Conveyor 4 Hopper 5 Distribution apparatus 6 Camera 7 Arithmetic processing apparatus 8 Charge type discrimination | determination part 9 Grain size detection part 10 Water content detection part 11 Powder rate detection part

Claims (2)

高炉に装入される装入物の状態を検出する高炉装入物検出装置であって、
前記装入物からの近赤外領域の反射波を分光してスペクトルを取得する分光部と、
前記分光部で取得されたスペクトルから前記装入物の種類を判別する種類判別部と、
前記種類判別部で判別された種類の装入物の存在領域から当該種類の装入物の粒度を検出する粒度検出部、
及び前記種類判別部で判別された種類の装入物の前記分光部で取得されたスペクトルから当該種類の装入物の水分量を検出する水分量検出部、
及び前記種類判別部で判別された種類の装入物の前記分光部で取得されたスペクトルから当該種類の装入物の水分量を検出し、当該水分量から当該種類の装入物の粉率を検出する粉率検出部の少なくとも2つ以上と
を備えたことを特徴とする高炉装入物検出装置。
A blast furnace charge detection device for detecting a state of a charge charged in a blast furnace,
A spectroscopic unit that obtains a spectrum by dispersing the reflected wave in the near-infrared region from the charge;
A type discriminating unit for discriminating the type of the charge from the spectrum acquired by the spectroscopic unit;
A particle size detection unit for detecting the particle size of the charge of the type from the existence region of the type of charge determined by the type determination unit;
And a moisture amount detection unit for detecting the moisture content of the type of charge from the spectrum acquired by the spectroscopic unit of the type of charge determined by the type determination unit,
And the moisture content of the charge of the type is detected from the spectrum acquired by the spectroscopic section of the charge of the type determined by the type determination section, and the powder rate of the charge of the type is detected from the moisture content. A blast furnace charge detection device, comprising: at least two or more powder rate detection units for detecting slag.
前記近赤外領域の反射波として、1000〜1500nmを含む波長帯域を分光することを特徴とする請求項1に記載の高炉装入物検出装置。   2. The blast furnace charge detection apparatus according to claim 1, wherein the reflected wave in the near infrared region is dispersed in a wavelength band including 1000 to 1500 nm.
JP2013271734A 2013-12-27 2013-12-27 Blast furnace charge detector Active JP6044536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013271734A JP6044536B2 (en) 2013-12-27 2013-12-27 Blast furnace charge detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013271734A JP6044536B2 (en) 2013-12-27 2013-12-27 Blast furnace charge detector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016220359A Division JP6308284B2 (en) 2016-11-11 2016-11-11 Blast furnace charge detection device and blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2015124436A JP2015124436A (en) 2015-07-06
JP6044536B2 true JP6044536B2 (en) 2016-12-14

Family

ID=53535368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013271734A Active JP6044536B2 (en) 2013-12-27 2013-12-27 Blast furnace charge detector

Country Status (1)

Country Link
JP (1) JP6044536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190054794A (en) * 2017-11-14 2019-05-22 주식회사 포스코 Apparatus and method for controlling blow of blast furnace

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101287A1 (en) 2016-11-30 2018-06-07 Jfeスチール株式会社 Powder ratio measuring device and powder ratio measuring system
US11391662B2 (en) 2017-03-30 2022-07-19 Jfe Steel Corporation Raw material particle size distribution measuring apparatus, particle size distribution measuring method, and porosity measuring apparatus
JP7171578B2 (en) * 2018-03-30 2022-11-15 Jfeスチール株式会社 Particle rate measuring device, Particle rate measuring system, Blast furnace operating method, and Particle rate measuring method
CN111954800A (en) * 2018-04-03 2020-11-17 杰富意钢铁株式会社 Particle size distribution measuring apparatus and particle size distribution measuring method
JP6566180B1 (en) * 2018-04-03 2019-08-28 Jfeスチール株式会社 Particle size distribution measuring apparatus and particle size distribution measuring method
JP6879276B2 (en) * 2018-08-21 2021-06-02 Jfeスチール株式会社 Method and device for determining the generation of air-dispersed fine particles and method and device for measuring the properties of agglomerates
CN113614254B (en) * 2019-03-28 2022-11-18 杰富意钢铁株式会社 Powder ratio measuring device, powder ratio measuring system, powder ratio measuring method, blast furnace, and blast furnace operation method
WO2020204165A1 (en) 2019-04-05 2020-10-08 Jfeスチール株式会社 Powder rate measuring method and device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802739B2 (en) * 2006-01-31 2011-10-26 Jfeスチール株式会社 Blast furnace raw material mixing degree measuring method and blast furnace raw material mixing degree measuring device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190054794A (en) * 2017-11-14 2019-05-22 주식회사 포스코 Apparatus and method for controlling blow of blast furnace
WO2019098484A1 (en) * 2017-11-14 2019-05-23 주식회사 포스코 Blast control device for blast furnace and method therefor
KR102002428B1 (en) * 2017-11-14 2019-07-22 주식회사 포스코 Apparatus and method for controlling blow of blast furnace

Also Published As

Publication number Publication date
JP2015124436A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP6044536B2 (en) Blast furnace charge detector
JP6252504B2 (en) Blast furnace charge detection method
CN110476053B (en) Raw material particle size distribution measuring device, particle size distribution measuring method, and porosity measuring device
JP6308284B2 (en) Blast furnace charge detection device and blast furnace operation method
KR102332719B1 (en) Powder ratio measuring device and powder ratio measuring system
JP2017160473A (en) Evaluation method of pseudo particle for manufacturing sintered ore
JP2005189179A (en) Method for measuring granularity of powder granular material
JP6806176B2 (en) Method for determining mist around lumpy substances on conveyor and method for measuring properties of lumpy substance on conveyor
JP6569444B2 (en) Measuring apparatus, measuring method and program
JP6879276B2 (en) Method and device for determining the generation of air-dispersed fine particles and method and device for measuring the properties of agglomerates
JP7171578B2 (en) Particle rate measuring device, Particle rate measuring system, Blast furnace operating method, and Particle rate measuring method
JP4075799B2 (en) Method for detecting powder particles
WO2020032905A2 (en) An experiment assembly for evaluating equipment performance
JP2023137418A (en) Grain diameter measurement apparatus, method and program
JP7167744B2 (en) Control method and control device
WO2023136240A1 (en) Information processing method, information processing device, information processing system, information processing program, and sintered ore production method
Popov et al. Flame intensity analysis for hot molten metal pouring in the steel industry by applying image segmentation
JP2022162530A (en) Grain size measurement device, method and program for the same, granulation device, and method for the same
Bonifazi et al. Chemical imaging: an innovative tool for particulate matter characterization and sorting
KR20230092495A (en) Apparatus and method for monnitoring particle size of raw materials of blast furnace
KOH et al. Image segmentation using multi-coloured active illumination
Fongaro et al. Image analysis in nuclear forensics
JP2017160472A (en) Evaluation method of pseudo particle for manufacturing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161031

R150 Certificate of patent or registration of utility model

Ref document number: 6044536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250