JP2019162922A - Maneuvering support system, naval vessel, and maneuvering support method - Google Patents

Maneuvering support system, naval vessel, and maneuvering support method Download PDF

Info

Publication number
JP2019162922A
JP2019162922A JP2018051218A JP2018051218A JP2019162922A JP 2019162922 A JP2019162922 A JP 2019162922A JP 2018051218 A JP2018051218 A JP 2018051218A JP 2018051218 A JP2018051218 A JP 2018051218A JP 2019162922 A JP2019162922 A JP 2019162922A
Authority
JP
Japan
Prior art keywords
ship
receiving
supply
relative
maneuvering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018051218A
Other languages
Japanese (ja)
Other versions
JP7139127B2 (en
Inventor
航 村田
Ko Murata
航 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Mitsui E&S Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd, Mitsui E&S Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2018051218A priority Critical patent/JP7139127B2/en
Publication of JP2019162922A publication Critical patent/JP2019162922A/en
Application granted granted Critical
Publication of JP7139127B2 publication Critical patent/JP7139127B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

To provide a maneuvering support system, a naval vessel and a maneuvering support method capable of improving safety and contributing to labor saving in an offshore replenishment work by an advanced automatization of maneuvering at a time of the offshore replenishment between a replenishment vessel and a receiving vessel, and by reduction in a deck arrangement of deck personnel based on cordless of a distance cable for a distance measurement and of a telephone cable for an on-site telephone line.SOLUTION: A relative distance Dx, Dy, a relative course β and a relative speed ΔVx, ΔVy between a replenishment vessel 2 and a receiving vessel 1 are detected from a combination of a pair of distance measurement systems consisting of a light receiving/emitting part 22A of an electro-optical distance meter on the side of the receiving vessel 1 and a reflector 22C or a light receiving/emitting part 22E on the side of the replenishment vessel 2, and a gyrocompass 23 provided in the receiving ship 1, or from two pairs of the distance measurement systems consisting of light receiving/emitting parts 22A, 22B on the side of the receiving vessel 1 and reflectors 22C, 22D or light receiving/emitting parts 22E, 22F on the side of the replenishment vessel 2.SELECTED DRAWING: Figure 1

Description

本発明は、補給艦と受給艦との間の洋上補給時における並走等の操艦を支援する操艦支援システム、艦船、及び、操艦支援方法に関する。   The present invention relates to a ship maneuvering support system, a ship, and a ship maneuvering support method for assisting in maneuvering such as parallel running during offshore resupply between a supply ship and a receiving ship.

補給艦から洋上補給を受ける艦船においては、針路と速度を一定に保持して航行する補給艦に近接して、予め定められた一定の相対距離と、艦速、方位を維持しながら、補給艦から燃料やその他の物質を受け取り、その後、相対距離を大きくして離脱している。   In ships that receive offshore supply from a supply ship, a supply ship that maintains a certain fixed relative distance, ship speed, and heading in close proximity to a supply ship that sails while maintaining a constant course and speed. Receives fuel and other materials from the, and then leaves with increasing relative distance.

この洋上補給に関しては、無線封鎖時やレーダー波等の電波発信制限時に行われることも想定しなければならず、従来では、給油ラインなど測距と通信のための距離索や通信のための現場電話索を補給艦と受給艦の間に張り巡らせて、距離電話線員や現場電話線員等の甲板要員からの連絡を受けつつ、艦橋で熟練の操艦要員が操艦していた。   This offshore replenishment must be assumed to be performed when radio is blocked or when radio wave transmission such as radar waves is restricted. Conventionally, the distance line for distance measurement and communication such as a refueling line and the field for communication Skilled maneuvers were maneuvering on the bridge while the telephone line was stretched between the supply ship and the receiving ship, and contact was received from deck personnel such as distance telephone lines and field telephone lines.

この洋上補給は、数時間にも及ぶ上に、風波の影響を受けているので、甲板要員も操艦要員も大きな緊張を長時間強いられることになり、この洋上補給の作業における甲板要員と操艦要員の負担の軽減が望まれてきた。   This offshore replenishment lasts for several hours and is affected by wind waves, so both deck personnel and maneuvering personnel will be forced to have great tension for a long time. The reduction of the burden has been desired.

これに関連して、船尾に左舷側推進器と右舷側推進器の2つの推進器と、左舷側舵と右舷側舵を2つの舵を備えている船舶において、左舷側に接岸若しくは接船する連続左舷側接岸制御、または、左舷側に接岸若しくは接船する連続左舷側接岸制御を自動で行う出港自動制御モードを備えている船舶の操縦システムが提案されている(例えば、特許文献1参照)。   In this connection, in a ship equipped with two propellers, a port side propulsion device and a starboard side propulsion device, and a port side rudder and a starboard side rudder at the stern, berthing or docking on the port side There has been proposed a ship maneuvering system having a port departure automatic control mode that automatically performs continuous portside berthing control or continuous portside berthing control that berths or ships on the port side (see, for example, Patent Document 1). .

特開2018−2040号公報JP-A-2018-2040

本発明は、上記の状況を鑑みてなされたものであり、その目的は、補給艦と受給艦との洋上補給時における操艦の高度な自動化と、測距用の距離索と現場電話線用の電話索の無索化による甲板要員の甲板配置の削減化により、洋上補給作業における安全性の向上と省人化への寄与を可能とすることができる、操艦支援システム、艦船、及び、操艦支援方法を提供することにある。   The present invention has been made in view of the above-described situation, and its purpose is to provide advanced automation of a ship maneuver at the time of offshore replenishment of a supply ship and a receiving ship, a range finder for ranging, and a field telephone line. The maneuvering support system, ship and maneuvering support, which can contribute to safety improvement and labor saving in offshore replenishment work by reducing the deck arrangement of deck personnel by unlined telephone cord It is to provide a method.

上記のような目的を達成するための本発明の操艦支援システムは、補給艦に並走して前記補給艦からの洋上補給を受ける受給艦との間で行われる洋上補給作業を支援する操艦支援システムにおいて、前記補給艦と前記受給艦のどちらか一方を第1船とし、他方を第2船とし、前記第1船側の光波測距儀の受発光部と、前記第2船側の反射器又は光波測距儀の受発光部とを有して、相互間の距離と前記受給艦の船首方向に対する測定用光波の投光方向の角度を検出する測距システムを構成すると共に、1組の前記測距システムと前記受給艦が備えているジャイロコンパスとの組み合わせから、又は、2組の前記測距システムの組み合わせから、前記補給艦と前記受給艦との間の相対距離と相対針路と相対速度とを検出する二船間情報取得手段を備えて構成される。   The ship maneuvering support system according to the present invention for achieving the above-described object is a ship maneuvering support for supporting an offshore replenishment operation performed in parallel with a receiving ship that runs parallel to a supply ship and receives offshore supply from the supply ship. In the system, one of the supply ship and the receiving ship is a first ship, the other is a second ship, a light emitting / receiving unit of a light wave range finder on the first ship side, a reflector on the second ship side, A distance measuring system configured to detect a distance between each other and an angle of a light projecting direction of the measuring light wave with respect to a bow direction of the receiving ship, and a set of the distance measuring system. From a combination of a ranging system and a gyrocompass provided in the receiving ship, or from a combination of two sets of ranging systems, a relative distance, a relative course, and a relative speed between the supply ship and the receiving ship A means to acquire information between two ships Ete constructed.

この構成では、自艦の位置を暴露する虞のあるレーダーや、電波妨害の虞のあるGPS(全地球測位システム)を使用せず、光波を用いて距離を測定する光波測距義を有する測距システムを使用しているので、電波を使用しない電波封止の状態や電波妨害を受けている状態などの環境下でも運用でき、しかも、距離測定のために、洋上補給用に補給艦と受給艦の間に張り巡らせていた距離索が不要になり、甲板における作業が減少するとともに、距離索を監視する必要もなくなるので、甲板要員を減少でき、洋上補給の作業要員の安全性を向上できる。   This configuration does not use radar that may expose the ship's position or GPS (Global Positioning System) that may interfere with radio waves, but has lightwave ranging that measures the distance using lightwaves. Since the system is used, it can be operated even in environments where radio waves are not used or where radio waves are being disturbed. In addition, for distance measurement, supply ships and receiving ships are used for offshore supply. This eliminates the need for distance cords stretched between the two, reduces the work on the deck and eliminates the need to monitor the distance cords, thereby reducing the number of deck personnel and improving the safety of offshore supply personnel.

上記の操艦支援システムにおいて、前記測距システムが前記光波測距儀の光波としてアイセーフ可視レーザー光を使用していると、次のような効果を発揮できるようになる。   In the ship maneuvering support system described above, when the distance measuring system uses eye-safe visible laser light as the light wave of the light wave range finder, the following effects can be exhibited.

大気中に伝播するレーザー光は、気体分子による吸収や 散乱により減衰されるが、気体分子による吸収の少ない波長域であり、「大気の窓」と呼ばれる「可視〜赤外領域の一部の波長域」があるので、この波長域の中でも、目の網膜まで達し難い1.4μmから2.6μmの波長のアイセーフレーザー光を、レーザー光を光波測距儀で用いる光波として用いる。このアイセーフレーザー光を用いることで、暴露部にいる作業要員の目に対する安全性を向上できる。   Laser light propagating in the atmosphere is attenuated by absorption and scattering by gas molecules, but is a wavelength region with little absorption by gas molecules, and is called “atmospheric window”, which is a part of the visible to infrared region. In this wavelength range, eye-safe laser light having a wavelength of 1.4 μm to 2.6 μm, which is difficult to reach the retina of the eye, is used as a light wave that is used in the optical rangefinder. By using this eye-safe laser beam, it is possible to improve safety for the eyes of workers in the exposed area.

上記の操艦支援システムにおいて、前記測距システムが前記光波測距儀の光波を用いた一方向通信機能又は双方向通信機能を備えていると、次のような効果を発揮できるようになる。なお、この一方向通信機能又は双方向通信機能は、受給艦側と補給艦側の両方で光波測距儀の受発光部を備えて、この光波に通信情報を乗せることで容易に実現できる。この場合、データをまとめて一気に送信する方式を取ることがより好ましい。   In the ship maneuvering support system described above, if the ranging system has a one-way communication function or a two-way communication function using the light wave of the light wave rangefinder, the following effects can be exhibited. The one-way communication function or the two-way communication function can be easily realized by providing light receiving / emitting portions of the light wave range finder on both the receiving ship side and the supply ship side and placing communication information on this light wave. In this case, it is more preferable to adopt a method of sending data all at once.

この構成によれば、補給艦側の操艦情報や給油操作情報等を受給艦側に送り、受給艦側の操艦情報や受油操作情報等を補給艦側に送ることができ、双方の情報をお互いに共有できるので、操艦時の安全性の確保が容易にでき、また、燃料油などの物資の移動に必要な情報を得られ、容易にこれらのデータを画面表示したり、音声メッセージとしたり、操艦の制御や給油や物資の移動の際の各種操作の制御に使用できるようになる。   According to this configuration, ship operation information and refueling operation information on the supply ship side can be sent to the receiving ship side, and ship operation information and oil reception operation information on the receiving ship side can be sent to the supply ship side. Since they can be shared with each other, it is easy to ensure safety when maneuvering, and it is possible to obtain information necessary for the movement of materials such as fuel oil. It can be used for ship operation control, refueling, and control of various operations when moving goods.

従って、電話通信に比べて通信精度を著しく向上でき、通話時における誤解の発生を回避でき、機器類の操作の同調性を著しく向上でき、受給に係る時間を短縮できる。また、洋上補給時のみに補給艦と受給艦の間に張られる電話索も不要になり、給油や物資の移動に関するものを除いて、ワイヤレス化できるので、甲板上の作業と甲板上等の暴露部にいる作業要員を減少できる。   Accordingly, the communication accuracy can be remarkably improved as compared with telephone communication, misunderstandings during a call can be avoided, the synchrony of operation of devices can be remarkably improved, and the time required for receiving can be shortened. In addition, there is no need for a telephone line between the supply ship and the receiving ship only at the time of offshore supply, and it can be made wireless except for those related to refueling and movement of goods, so work on the deck and exposure on the deck etc. The number of workers in the department can be reduced.

上記の操艦支援システムにおいて、前記補給艦に対して予め設定された受給位置領域に到達した後に、前記二船間情報取得手段で得られた前記補給艦と前記受給艦との間の相対距離と相対針路と相対速度に基づいて、前記補給艦に対する前記受給位置領域を維持するように前記受給艦の操艦を自動で行う相対位置維持制御手段を備えて構成されている。   In the ship maneuvering support system, a relative distance between the supply ship and the receiving ship obtained by the two ship information acquisition means after reaching a preset receiving position area for the supply ship; Relative position maintenance control means for automatically maneuvering the receiving ship to maintain the receiving position area for the supply ship based on the relative course and relative speed is provided.

この構成によれば、補給艦に対して、定められた一定の相対距離、艦速、方位を自動的に維持しながら、つまり、補給艦に対する受給位置領域内に受給艦の相対位置を維持しながら、自動操艦で航行できるようになり、また、距離索の監視や電話通信等で得られる情報に比べて、二船間情報取得手段で得られる情報の方が精度が高くなる。従って、甲板要員及び操艦要員の負担を著しく軽減することができると共に、操艦時の安全性を向上できる。   According to this configuration, the fixed ship is automatically maintained at a fixed relative distance, ship speed, and direction, that is, the relative position of the receiving ship is maintained within the receiving position area relative to the supplying ship. However, it is possible to navigate by automatic ship operation, and the information obtained by the information acquisition means between the two ships is more accurate than the information obtained by monitoring the distance rope or by telephone communication. Accordingly, it is possible to remarkably reduce the burden on the deck personnel and the maneuvering personnel, and improve the safety during the maneuvering.

上記の操艦支援システムにおいて、前記二船間情報取得手段で得られた前記補給艦と前記受給艦との間の相対距離と相対針路と相対速度に基づいて、前記補給艦に対して予め設定された受給位置領域に前記受給艦を導くための操艦を自動で行う近接制御手段を備えて構成されている。   In the ship maneuvering support system described above, a preset is set for the supply ship based on a relative distance, a relative course, and a relative speed between the supply ship and the receiving ship obtained by the biship information acquisition means. Proximity control means for automatically maneuvering the ship to guide the receiving ship to the receiving position area.

この構成によれば、補給艦に対して受給位置領域に接近し、受給位置領域に占位するまでを自動操艦で行うことができるようになり、また、距離索や電話索の張り渡しがない状態で、相手の艦船の位置の監視が精度よくできるようになる。従って、甲板要員及び操艦要員の負担を著しく軽減することができると共に、受給位置領域に接近するまでの時間を短縮でき、また、操艦時の安全性を向上できる。   According to this configuration, the automatic ship can be used to approach the receiving position area with respect to the supply ship and to occupy the receiving position area, and there is no distance cable or telephone cable extension. The position of the opponent's ship can be monitored accurately. Therefore, it is possible to remarkably reduce the burden on the deck personnel and the maneuvering personnel, reduce the time required to approach the receiving position area, and improve the safety during the maneuvering.

上記の操艦支援システムにおいて、前記二船間情報取得手段で得られた前記補給艦と前記受給艦との間の相対距離と相対針路と相対速度に基づいて、前記受給位置領域から前記受給艦を離脱させるための操艦を自動で行う離脱制御手段を備えて構成されている。   In the ship maneuvering support system, the receiving ship is moved from the receiving position area based on a relative distance, a relative course, and a relative speed between the supply ship and the receiving ship obtained by the two-ship information acquisition unit. Detachment control means for automatically performing a ship maneuvering for detachment is provided.

この構成によれば、補給艦に対する受給位置領域からの離脱を自動操艦で行うことができるようになり、また、距離索や電話索の張り渡しがない状態であるので、受給ラインの離脱のみで、速やかに自動で離脱操艦できるようになる。従って、受給位置領域から安全な離立ち位置までの航行時間を短縮でき、また、操艦時の安全性を向上できる。   According to this configuration, it is possible to leave the supply ship from the receiving position area by an automatic maneuvering, and there is no distance cable or telephone cable overhanging, so only the receiving line is removed. , You will be able to quickly and automatically leave the ship. Therefore, the navigation time from the receiving position area to the safe take-off position can be shortened, and the safety at the time of maneuvering can be improved.

そして、上記のような目的を達成するための本発明の艦船は、上記の操艦支援システムを備えて構成され、上記の操艦支援システムと同様の効果を発揮することができる。   And the ship of this invention for achieving the above objectives is comprised including said ship maneuvering support system, and can exhibit the same effect as said ship maneuvering support system.

そして、上記のような目的を達成するための本発明の操艦支援方法は、上記の操艦支援システムを用いる方法であり、上記の操艦支援システムと同様の効果を発揮することができる。   The ship maneuvering support method of the present invention for achieving the above object is a method using the ship maneuvering support system, and can exhibit the same effects as the ship maneuvering support system.

本発明の操艦支援システム、艦船、及び、操艦支援方法によれば、電波封鎖時や電波妨害時においても、補給艦と受給艦との間の相対位置と相対針路と相対速度とを検出できて、受給艦側における自動操艦で並走を行って、甲板要員と操艦要員の負担の軽減しつつ、補給艦からの補給を受けることができる。   According to the ship maneuvering support system, the ship, and the ship maneuvering support method of the present invention, the relative position, the relative heading, and the relative speed between the supply ship and the receiving ship can be detected even when the radio wave is blocked or jammed. It is possible to receive replenishment from a supply ship while reducing the burden on deck and maneuvering personnel by running in parallel with the automatic maneuvering on the receiving ship side.

従って、補給艦と受給艦との洋上補給時における操艦の高度な自動化と、測距用の距離索と現場電話線用の電話索の無索化による甲板要員の甲板配置の削減化により、洋上補給作業における安全性の向上と省人化への寄与を可能とすることができる。   Therefore, the advanced maneuvering of the ship at the time of offshore resupply of the supply ship and the receiving ship and the reduction of the deck arrangement of the deck personnel by eliminating the distance cable for ranging and the telephone cable for the on-site telephone line, It is possible to improve safety in replenishment work and contribute to labor saving.

本発明の実施の形態の操艦支援システムの受給艦側の構成を模式的に示す図である。It is a figure which shows typically the structure by the side of the receiving ship of the ship handling assistance system of embodiment of this invention. 本発明の実施の形態の操艦支援システムの制御面での構成を模式的に示す図である。It is a figure which shows typically the structure in the control surface of the ship handling assistance system of embodiment of this invention. 本発明の実施の形態の操艦支援方法のフローを模式的に示す図である。It is a figure which shows typically the flow of the ship handling assistance method of embodiment of this invention. 本発明の第1の実施の形態の操艦支援システムによる補給艦への受給艦の近接状況を説明するための図である。It is a figure for demonstrating the proximity | contact situation of the receiving ship to the supply ship by the ship handling assistance system of the 1st Embodiment of this invention. 本発明の第1の実施の形態の操艦支援システムによる補給艦への受給艦の並走状況を説明するための図である。It is a figure for demonstrating the parallel running condition of the receiving ship to the supply ship by the ship handling assistance system of the 1st Embodiment of this invention. 本発明の第1の実施の形態の操艦支援システムによる補給艦への受給艦の離脱状況を説明するための図である。It is a figure for demonstrating the detachment | leave state of the receiving ship to the supply ship by the ship handling assistance system of the 1st Embodiment of this invention. 本発明の第2の実施の形態の操艦支援システムによる補給艦への受給艦の近接状況を説明するための図である。It is a figure for demonstrating the proximity situation of the receiving ship to the supply ship by the ship handling assistance system of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の操艦支援システムによる補給艦への受給艦の並走状況を説明するための図である。It is a figure for demonstrating the parallel running condition of the receiving ship to the supply ship by the ship handling assistance system of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の操艦支援システムによる補給艦への受給艦の離脱状況を説明するための図である。It is a figure for demonstrating the leaving situation of the receiving ship to the supply ship by the ship handling assistance system of the 2nd Embodiment of this invention.

以下、本発明に係る実施の形態の操艦支援システム、艦船、及び、操艦支援方法について、図面を参照しながら説明する。ここでは、船首にバウスラスタを備えていない船舶を例にして説明するが、船首にバウスラスタを備えていても、水中音響機器などの使用時におけるバウスラスタ禁止時における操艦操作にも使用することができるので、本発明は、必ずしも、バウスラスタを備えていない船舶に限定する必要は無く、バウスラスタを備えていてもよい。ここでは、バウスラスタを使用しない操艦を扱っているが、バウスラスタの併用により、さらに操縦性能を向上することができる。   Hereinafter, a ship maneuvering support system, a ship, and a ship maneuvering support method according to embodiments of the present invention will be described with reference to the drawings. Here, a description will be given using a ship that does not have a bow thruster at the bow as an example, but even if a bow thruster is provided at the bow, it can also be used for ship maneuvering operations when bow thrusters are prohibited when using underwater acoustic devices, etc. The present invention is not necessarily limited to ships that do not have a bow raster, and may have a bow raster. Here, we are dealing with a ship maneuver that does not use a bow thruster, but the steering performance can be further improved by using the bow thruster in combination.

最初に、図1を参照しながら、本発明に係る実施の形態の操艦支援システム20の受給艦1側の構成について説明する。この受給艦1は、船底11と船側外板12と上甲板13で囲われた船体10に上部構造14が載置され、この上部構造14には艦橋14aが設けられている。この受給艦1は、船尾側に右舷側主機関15aと左舷側主機関15bで駆動される右舷側推進器16aと左舷側推進器16bの2つの推進器と、右舷側舵17aと左舷側舵17bの2つの舵を備えている。また、この右舷側推進器16aと左舷側推進器16bの両方を可変ピッチプロペラで構成されており、更に、右舷側舵17aと左舷側舵17bはそれぞれ、右舷側操舵機18aと左舷側操舵機18bで操作されるように構成されている。   Initially, the structure by the side of the receiving ship 1 of the ship operation assistance system 20 of embodiment which concerns on this invention is demonstrated, referring FIG. In this receiving ship 1, an upper structure 14 is placed on a hull 10 surrounded by a ship bottom 11, a ship side skin 12 and an upper deck 13, and a bridge 14 a is provided on the upper structure 14. The receiving ship 1 includes two propulsion devices, a starboard side propulsion device 16a and a port side propulsion device 16b, which are driven by a starboard side main engine 15a and a port side main engine 15b, a starboard side rudder 17a, and a port side rudder. It has two rudders 17b. Further, both the starboard side propulsion device 16a and the starboard side propulsion device 16b are constituted by variable pitch propellers. Further, the starboard side rudder 17a and the starboard side rudder 17b are respectively a starboard side steering device 18a and a port side steering device. It is configured to be operated at 18b.

また、この操艦支援システム20は、制御の面に関しては、制御装置21に制御手段40を備えており、この制御手段40は、図2に示すように、通常操艦手段41の他に、二船間情報取得手段42a、近接制御手段42b、相対位置維持制御手段42c、離脱制御手段42dを有して構成される洋上補給時制御手段42を備えている。そして、図3に示すようなフローで洋上補給の近接、並走、離脱を自動操艦で行う。   The ship maneuvering support system 20 is provided with a control means 40 in the control device 21 in terms of control. The control means 40 includes two ships in addition to the normal ship maneuver means 41 as shown in FIG. It is provided with offshore replenishment control means 42 having a gap information acquisition means 42a, a proximity control means 42b, a relative position maintenance control means 42c, and a separation control means 42d. Then, in the flow as shown in FIG.

先ず、通常操艦手段41は、洋上補給時以外の通常の操艦を行う手段であり、手動操艦及び自動操艦を行う各種の制御手段(図示しない)を備えて構成されている。この通常操艦手段41は、船底を流れる水流から船の対水速度を計測する電磁ログ31、風向及び風速を計測する風信儀32、人工衛星を利用して位置を測定するGPS(全地球測位システム)装置33、測距情報を得るためのレーダー装置(図示しない)、水中目標情報を得るためのソーナー装置(図示しない)等から操艦用測定データを入力する。   First, the normal ship maneuvering means 41 is a means for performing a normal ship maneuvering other than at the time of offshore replenishment, and includes various control means (not shown) for performing manual ship maneuvering and automatic ship maneuvering. The normal ship maneuvering means 41 includes an electromagnetic log 31 for measuring a ship's water velocity from a water stream flowing through the bottom of the ship, a wind nose 32 for measuring a wind direction and a wind speed, and a GPS (Global Positioning System) for measuring a position using an artificial satellite ) Ship measurement data is input from the device 33, a radar device (not shown) for obtaining ranging information, a sonar device (not shown) for obtaining underwater target information, and the like.

それと共に、通常操艦手段41は、艦橋14aに固定された艦橋操作盤(表示パネル付)24A、戦闘指揮所(CIC)に固定された指揮所操作盤(表示パネル付)24B、可搬式の遠隔操作盤24C等における操艦要員の操艦操作で入力された操艦用指示データを入力して、2つの主機関15a、15b、2つの推進器16a、16b、及び、2つ操舵機18a、18bを制御する。   At the same time, the normal ship maneuvering means 41 includes a bridge control panel (with display panel) 24A fixed to the bridge 14a, a command station control panel (with display panel) 24B fixed to the battle command center (CIC), a portable remote control. Control data for controlling two main engines 15a and 15b, two propulsion devices 16a and 16b, and two steering gears 18a and 18b are input by inputting marine vessel maneuvering data input by the maneuvering operation of the maneuvering personnel on the operation panel 24C and the like. To do.

この可搬式の遠隔操作盤24Cを用いることで、洋上補給時には、艦橋14aの左右舷・前後部等の場所で、ジョイスティック等による操艦が可能となり、また、USV(無人水上航走体)やUUV(無人水中航走体)の投入/揚収作業時、ブイ係留時等においては、その作業場所での直接的な操艦が可能となる。これにより、各種作業の円滑化、安全性向上に寄与できるようになる。   By using this portable remote control panel 24C, at the time of offshore replenishment, it becomes possible to maneuver with a joystick etc. at locations such as the left and right sides of the bridge 14a and the front and rear, as well as USV (Unmanned Surface Vehicle) and UUV When loading / unloading (unmanned underwater vehicle), mooring buoys, etc., it is possible to directly maneuver at the work site. Thereby, it becomes possible to contribute to smoothing various operations and improving safety.

この艦橋操作盤24A、指揮所操作盤24B、遠隔操作盤24Cについては、例えば、入力装置と操縦制御装置を備えて構成されており、この入力装置は、ジョイスティック等で構成される船尾部制御力入力部と、ダイヤル等で構成される舵角入力部とを有して構成されている。  The bridge operation panel 24A, the command post operation panel 24B, and the remote control panel 24C are configured to include, for example, an input device and a steering control device, and the input device includes a stern control force including a joystick or the like. An input unit and a steering angle input unit configured by a dial or the like are included.

また、操縦制御装置は、船尾部制御力入力部からの傾倒方向(操艦方向:船の移動方向)と、その方向におけるジョイスティックの傾斜角度の大きさの傾斜角度データと、舵角入力部からの舵角データの他にも、GPS装置33、電磁ログ31等からの艦船の位置情報や速度情報、ジャイロコンパス23からの船首方位情報や、風信儀32からの情報、ソーナー装置からの情報、レーダー装置からの情報、測距システム(後述)などのからの情報などを入力して、右舷側推進器16aと左舷側推進器16bのそれぞれにおける前進又は後進の選択と、発生する推力の大きさの指令とを、それぞれの可変ピッチプロペラの制御装置に出力し、また、右舷側舵17aと左舷側舵17bの面舵と取舵の選択と、その舵角の大きさの指令とをそれぞれの操舵機18a、18bに出力する。   In addition, the steering control device includes a tilting direction data from the stern control force input unit (steering direction: moving direction of the ship), tilt angle data of a joystick tilt angle in that direction, and a steering angle input unit. In addition to rudder angle data, ship position information and speed information from GPS device 33, electromagnetic log 31, etc., heading information from gyrocompass 23, information from wind nose 32, information from sonar device, radar Information from the device, information from a ranging system (described later), etc. are input, selection of forward or reverse on the starboard side propulsion device 16a and port side propulsion device 16b, and the magnitude of the generated thrust Command to the control device of each variable pitch propeller, and the selection of the surface rudder and steering of starboard side rudder 17a and port side rudder 17b, and the command of the magnitude of the rudder angle, respectively Steering gear 18a, and outputs it to the 18b.

そして、洋上補給時制御手段42の二船間情報取得手段42aは、図4〜図6に示すような測距システム(22A、22C)とジャイロコンパス23の組み合わせを用いる第1の実施の形態の操艦支援システム20と、図7〜図9に示すような第1の測距システム(22A、22C)と第2の測距システム(22B、22E)の組み合わせを用いる第2の実施の形態の操艦支援システム20Aがある。   And the information system 42a between two ships of the control means 42 at the time of offshore replenishment of 1st Embodiment using the combination of the ranging system (22A, 22C) and the gyrocompass 23 as shown in FIGS. The ship maneuvering system 20 according to the second embodiment using a combination of the ship maneuvering support system 20 and the first ranging system (22A, 22C) and the second ranging system (22B, 22E) as shown in FIGS. There is a support system 20A.

図4〜図6に示す第1の実施の形態の操艦支援システム20の二船間情報取得手段42aは、光波測距儀の受発光部22Aと反射器(リフレクタ)22Cの組み合わせで構成される測距システム(22A、22C)を備えている。この受発光部22Aは受給艦1側に配置され、反射器22Cが補給艦2側に配置される。この測距システム(22A、22C)では、単に相互間の距離S1を検出するだけでなく、相互間の距離S1に加えて受給艦1の船首方向に対する測定用光波の投光方向の角度α1を検出するように構成される。   The two-ship information acquisition means 42a of the ship maneuvering support system 20 according to the first embodiment shown in FIGS. 4 to 6 is configured by a combination of a light emitting / receiving unit 22A and a reflector (reflector) 22C of the light wave rangefinder. A ranging system (22A, 22C) is provided. The light emitting / receiving unit 22A is disposed on the receiving ship 1 side, and the reflector 22C is disposed on the supply ship 2 side. In this distance measuring system (22A, 22C), not only the distance S1 between each other is detected, but also the angle α1 of the light projection direction of the measurement light wave with respect to the bow direction of the receiving ship 1 in addition to the distance S1 between each other. Configured to detect.

これにより、自艦の位置を暴露する虞のあるレーダーや、電波妨害の虞のあるGPS(全地球測位システム)を使用せず、光波を用いて距離を測定する光波測距義を有する測距システム(22A、22C)を使用しているので、電波を使用できない電波封止の状態や電波妨害を受けてGPSを使用できない状態などの環境下でも運用でき、しかも、距離測定のために、洋上補給用に補給艦2と受給艦1の間に張り巡らせていた距離索が不要になり、上甲板13における作業が減少して、距離索を目視で監視する必要もなくなるので、甲板要員を減少できるとともに、洋上補給の作業における安全性を向上できる。   This makes it possible to measure the distance using light waves without using a radar that may expose the ship's position or GPS (global positioning system) that may cause radio interference. (22A, 22C) is used, so it can be operated even in environments where radio waves cannot be used or in situations where GPS cannot be used due to radio interference, and replenishment at sea for distance measurement. This eliminates the need for the distance cable that has been stretched between the supply ship 2 and the receiving ship 1 and reduces the work on the upper deck 13 and eliminates the need to visually monitor the distance cable. At the same time, safety in offshore replenishment work can be improved.

また、この光波測距儀の光波としてアイセーフ可視レーザー光を使用することが好ましい。つまり、大気中に伝播するレーザー光は、気体分子による吸収や散乱により減衰されるが、気体分子による吸収の少ない波長域であり、「大気の窓」と呼ばれる「可視〜赤外領域の一部の波長域」があるので、この波長域のレーザー光を光波測距儀で用いる光波として用いる。その中でも、目の網膜まで達し難い1.4μmから2.6μmの波長のアイセーフレーザー光を用いることで、甲板や船橋等の暴露部にいる作業要員の目に対する安全性を向上できる。この波長のレーザー光としては、レーザーポイントなどのレーザー光が当たった場所を視認できるレーザー光がある。   Moreover, it is preferable to use eye-safe visible laser light as the light wave of this light wave rangefinder. In other words, laser light propagating in the atmosphere is attenuated by absorption and scattering by gas molecules, but is a wavelength region where absorption by gas molecules is small, and is a part of the visible to infrared region called the “atmosphere window” Therefore, laser light in this wavelength region is used as a light wave used in the light wave rangefinder. Among them, by using eye-safe laser light having a wavelength of 1.4 μm to 2.6 μm that is difficult to reach the retina of the eyes, it is possible to improve the safety of workers in the exposed parts such as the deck and the bridge to the eyes. As the laser beam of this wavelength, there is a laser beam that can visually recognize a place where a laser beam such as a laser point hits.

なお、気体分子による散乱は波長が長い程少なくてすむが、この測距システムでは、大気中で長距離を伝送する必要が無く、むしろ、秘匿性の面から遠くには伝送させたくないので、同じく大気の窓の中に発振波長をもつ赤外線レーザーや炭酸ガスレーザーよりは、むしろ短距離で散乱する可視レーザーを用いる。   In addition, the longer the wavelength, the smaller the scattering by gas molecules, but this distance measurement system does not need to transmit long distances in the atmosphere, but rather, it does not want to transmit far away from the aspect of confidentiality. Similarly, a visible laser that scatters in a short distance is used rather than an infrared laser or a carbon dioxide gas laser having an oscillation wavelength in an atmospheric window.

そして、更に、反射器(リフレクタ)22Cの代わりに、光波測距儀の受発光部22Eを用いて、光波測距儀の光波を用いた一方向通信機能又は双方向通信機能を備えて構成することが好ましい。この一方向通信機能又は双方向通信機能は、受給艦1側と補給艦2側の両方で光波測距儀の受発光部22A、22Eを備えて、この光波に通信情報を乗せることで容易に実現できる。この場合、洋上補給では、補給艦2も受給艦1も波浪などの影響を受けて船体運動をしており、荒天時などでは、受発光部22Aと受発光部22Eの間の光波のラインを途切れることなく維持することは難しい状況になる可能性も考えて、データをまとめて一気に送信する方式を取ることがより好ましい。   Further, instead of the reflector (reflector) 22C, the light receiving / emitting unit 22E of the light wave range finder is used to provide a one-way communication function or a two-way communication function using the light wave of the light wave distance finder. It is preferable. The one-way communication function or the two-way communication function is easily provided by including the light emitting / receiving sections 22A and 22E of the light wave range finder on both the receiving ship 1 side and the supply ship 2 side, and placing communication information on this light wave. realizable. In this case, in the offshore supply, the supply ship 2 and the reception ship 1 are affected by the wave and the like, and the hull movement is performed. In the case of stormy weather, the light wave line between the light emitting / receiving unit 22A and the light receiving / emitting unit 22E is set. Considering the possibility of a situation where it is difficult to maintain without interruption, it is more preferable to adopt a method of sending data all at once.

この光波通信により、電話通信に比べて通信精度と、通話時における誤解の発生の回避と、機器類の操作の同調性等を著しく向上でき、洋上補給作業に係る時間を短縮できる。また、洋上補給時のみに補給艦2と受給艦1の間に張られる電話索も不要になり、給油や物資の移動に関するものを除いて、ワイヤレス化できるので、上甲板13や艦橋14aの外部等の暴露部にいる作業要員を減少できる。   With this lightwave communication, communication accuracy, avoidance of misunderstanding during a call, synchrony of operation of devices, and the like can be remarkably improved as compared with telephone communication, and time for offshore replenishment work can be shortened. Also, there is no need for a telephone line to be stretched between the supply ship 2 and the receiving ship 1 only at the time of offshore supply, and it can be made wireless except for those related to refueling and movement of goods, so the outside of the upper deck 13 and the bridge 14a. It is possible to reduce the number of workers in the exposed area.

更に、補給艦2側の操艦情報及び給油機器類の操作情報等を受給艦1側に送り、受給艦1側の操艦情報及び受油機器類の操作情報等を補給艦2側に送ることができるようになり、双方の情報をお互いに共有できるようになる。そのため、操艦時の安全性の確保が容易にできるとともに、燃料油などの物資の移動に関する機器類の操作及び制御に必要な情報を得られ、容易にこれらのデータを画面表示したり、音声メッセージとしたり、操艦の制御及び給油や物資の移動の際の各種操作の制御に使用できるようになる。   Furthermore, ship operation information on the supply ship 2 side, operation information on the refueling equipment, etc. are sent to the receiving ship 1 side, and ship operation information on the supply ship 1 side, operation information on the oil reception equipment, etc. are sent to the supply ship 2 side. Will be able to share each other's information. Therefore, it is easy to ensure safety when maneuvering the ship, and it is possible to obtain information necessary for the operation and control of equipment related to the movement of goods such as fuel oil. It can be used for ship operation control and various operations during refueling and movement of goods.

そして、この第1の実施の形態の操艦支援システム20では、二船間情報取得手段42aは、この測距システム(22A、22C)と、受給艦1が備えているジャイロコンパス23との組み合わせから、補給艦2と受給艦1との間の相対距離Dsx、Dsyと相対針路βと相対速度ΔVx、ΔVyとを検出するように構成される。   In the ship maneuvering support system 20 of the first embodiment, the two-ship information acquisition means 42a is based on a combination of the distance measuring system (22A, 22C) and the gyrocompass 23 provided in the receiving ship 1. The relative distances Dsx, Dsy, the relative course β, and the relative speeds ΔVx, ΔVy between the supply ship 2 and the receiving ship 1 are detected.

図4〜図6に示すように、測距システム(22A、22C)により距離S1と投光方向の角度α1を検出し、更に、受給艦1が備えているジャイロコンパス23により、受給艦1の針路の方位θ1を得て、補給艦2の針路の方位θ2との差である相対針路β(=θ2−θ1)を算出する。この補給艦2の針路の方位θ2は、洋上補給に際して補給艦2側の予め取り決めて設定した方位として、又は、補給艦2側の操艦データとして受給艦1側に伝達された方位として得られる。   As shown in FIGS. 4 to 6, the distance measurement system (22A, 22C) detects the distance S1 and the angle α1 in the light projecting direction, and the gyrocompass 23 provided in the receiving ship 1 further detects the receiving ship 1. The heading direction θ1 is obtained, and a relative heading β (= θ2−θ1) that is a difference from the heading direction θ2 of the supply ship 2 is calculated. The heading direction θ2 of the supply ship 2 is obtained as an orientation determined and set in advance on the supply ship 2 side at the time of offshore supply, or as the direction transmitted to the receiving ship 1 side as ship operation data on the supply ship 2 side.

投光方向の角度α1と補給艦2の針路の方位θ2との差を角度γとすると、図4〜図6に示すように、「γ=α1+β」となり、補給艦2の船長方向の相対距離(受給艦1と補給艦2との間の距離:厳密には受発光器22Aと反射器22Cとの間の距離)Dxは、「Dx=S1×Cos(α1+β)」、補給艦2の船幅方向の相対距離(受給艦1と補給艦2との間の距離:厳密には受発光器22Aと反射器22Cとの間の距離)Dyは、「Dy=S1×Sin(α1+β)」となる。また、相対速度ΔVxは相対距離Dxを時間微分し、相対速度ΔVyは相対距離Dyを時間微分することで得られる。   Assuming that the difference between the angle α1 in the light projecting direction and the heading direction θ2 of the supply ship 2 is the angle γ, as shown in FIGS. 4 to 6, “γ = α1 + β” is obtained, and the relative distance in the ship length of the supply ship 2 (Distance between receiving ship 1 and supply ship 2: Strictly speaking, distance between light receiving / emitting device 22A and reflector 22C) Dx is “Dx = S1 × Cos (α1 + β)”, the ship of supply ship 2 The relative distance in the width direction (distance between receiving ship 1 and supply ship 2: strictly speaking, the distance between light receiving / emitting device 22A and reflector 22C) Dy is “Dy = S1 × Sin (α1 + β)” Become. The relative speed ΔVx is obtained by time-differentiating the relative distance Dx, and the relative speed ΔVy is obtained by time-differentiating the relative distance Dy.

なお、受発光部22Aと反射器22Cとの間の相対位置Dx、Dyから、操艦用の受給艦1と補給艦2との間の距離Dsx、Dsyを算定することは、受発光部22Aと反射器22Cのそれぞれの艦における配置位置が分かっているので容易に行うことができる。なお、図5及び図6では、図面の簡略化のために、操艦用の受給艦1と補給艦2との間の距離Dsx、Dsyの図示を省略している。   Note that calculating the distances Dsx and Dsy between the ship receiving ship 1 and the supply ship 2 from the relative positions Dx and Dy between the light receiving and emitting part 22A and the reflector 22C is as follows: Since the position of the reflector 22C in each ship is known, it can be easily performed. In FIGS. 5 and 6, the distances Dsx and Dsy between the ship receiving ship 1 and the supply ship 2 are omitted for simplification of the drawings.

また、近接制御手段42bは、図4の近接状態等から図5の並走状態に移行させる手段であり、二船間情報取得手段42aで得られた補給艦2と受給艦1との間の相対距離Dsx、Dsyと相対針路βと相対速度ΔVx、ΔVyに基づいて、補給艦2に対して予め設定された受給位置領域Rに受給艦1を導くための操艦を自動で行う手段である。この受給位置領域Rはピンポイントではなく、ある程度の範囲を持つ領域として、天候や波浪の状態等に基づいて洋上補給の開始前に予め設定される。   Further, the proximity control means 42b is a means for shifting from the proximity state in FIG. 4 to the parallel running state in FIG. 5, and between the supply ship 2 and the receiving ship 1 obtained by the two-ship information acquisition means 42a. This is means for automatically maneuvering the ship to guide the receiving ship 1 to the receiving position region R set in advance for the supply ship 2 based on the relative distances Dsx, Dsy, the relative course β, and the relative speeds ΔVx, ΔVy. The receiving position region R is not a pinpoint, but is set in advance as a region having a certain range before the start of offshore replenishment based on the weather and wave conditions.

なお、受給艦1の航行速度をUx、Uyとし、補給艦2の航行速度をWx、Wyとすると、「ΔVx=Ux−Wx」、「ΔVy=Uy−Wy」となる。通常の単独航行では、Uy=0、Wy=0であるが、2船が並走すると2船間の距離によって2船の間に吸引力(サクションフォース)と旋回モーメント(サクションモーメント)が発生するので、ここでは、航行速度Ux、Wxだけでなく、補給艦2の船幅方向の航行速度もUy、Wyとして採用する必要が生じる。   In addition, if the navigation speed of the receiving ship 1 is Ux and Uy and the navigation speed of the supply ship 2 is Wx and Wy, “ΔVx = Ux−Wx” and “ΔVy = Uy−Wy” are obtained. In normal solo navigation, Uy = 0 and Wy = 0, but when two ships run in parallel, suction force (suction force) and turning moment (suction moment) occur between the two ships depending on the distance between the two ships. Therefore, here, it is necessary to adopt not only the navigation speeds Ux and Wx but also the navigation speed in the width direction of the supply ship 2 as Uy and Wy.

この近接制御手段42bは、補給艦2と受給艦1との間の現状の相対距離Dx、Dyと相対針路βと相対速度ΔVx、ΔVyを入力して、補給艦2に対して予め設定された受給位置領域Rと現状の相対距離Dsx、Dsyとの関係とから、受給艦1を受給位置領域Rに接近させるための、今後の補給艦2の針路の方位θ1と航行速度Ux、Uyを算出して、この針路の方位θ1と航行速度Ux、Uyとなるように算出された制御力(前進力、横力、旋回モーメント)を発生するように、可変ピッチプロペラで構成されている2つの推進器16a、16bと、2つの舵17a、17bの4つの操作量を操作する近接制御を行う。   The proximity control means 42b inputs the current relative distances Dx and Dy, the relative course β, and the relative speeds ΔVx and ΔVy between the supply ship 2 and the receiving ship 1, and is set in advance for the supply ship 2. From the relationship between the receiving position area R and the current relative distances Dsx and Dsy, the heading direction θ1 and the navigation speeds Ux and Uy of the future supply ship 2 are calculated in order to bring the receiving ship 1 closer to the receiving position area R. Then, the two propulsions constituted by the variable pitch propellers so as to generate the control force (forward force, lateral force, turning moment) calculated so as to be the heading direction θ1 and the navigation speeds Ux, Uy. Proximity control is performed to operate four operation amounts of the instruments 16a and 16b and the two rudders 17a and 17b.

この近接制御手段42bによれば、補給艦2に対して受給位置領域Rに接近し、受給位置領域Rに占位するまでを自動操艦で行うことができるようになり、また、距離索や電話索の張り渡しがない状態で、相手の艦船の位置の監視が精度よくできるようになる。従って、甲板要員及び操艦要員の負担を著しく軽減することができると共に、受給位置領域Rに接近するまでの時間を短縮でき、また、操艦時の安全性を向上できる。   According to this proximity control means 42b, it becomes possible to perform the operation until the supply ship 2 approaches the receiving position area R and occupies the receiving position area R by an automatic ship. It will be possible to monitor the position of the opponent's ship with high accuracy in the absence of a cable. Accordingly, it is possible to remarkably reduce the burden on deck personnel and ship maneuvering personnel, reduce the time required to approach the receiving position region R, and improve the safety during maneuvering.

なお、この近接制御においては、予め設定した近接用のデータを用いて、時々刻々の相対距離Dx,Dyに応じた針路の方位θ1と航行速度Ux、Uyを自動で算出及び設定してもよいが、操艦要員からの入力により、この近接用データの指示値を変更したり、あるいは、ジョイスティックなどの操作により手動操艦したりできるように構成しておくことが好ましい。   In this proximity control, the heading direction θ1 and the navigation speeds Ux and Uy corresponding to the relative distances Dx and Dy may be automatically calculated and set using preset proximity data. However, it is preferable that the instruction value of the proximity data can be changed by an input from a ship operator or can be manually operated by an operation of a joystick or the like.

また、相対位置維持制御手段42cは、図5の並走状態を維持する手段であり、補給艦2に対して予め設定された受給位置領域Rに到達した後に、二船間情報取得手段42aで得られた補給艦2と受給艦1との間の相対距離Dsx、Dsyと相対針路βと相対速度ΔVx、ΔVyに基づいて、補給艦2に対する受給位置領域Rを維持するように、言い換えれば、定められた一定の相対距離Dsx、Dsy(=Ds)、艦速Ux(=Wx)、(Uy=0)、針路の方位θ1を維持するように、受給艦1の操艦を自動で行う手段である。   Further, the relative position maintenance control means 42c is a means for maintaining the parallel running state of FIG. 5, and after reaching the receiving position region R set in advance for the supply ship 2, the two-ship information acquisition means 42a. In other words, based on the relative distances Dsx, Dsy, relative course β, and relative speeds ΔVx, ΔVy between the obtained supply ship 2 and the receiving ship 1, the receiving position region R for the supply ship 2 is maintained. A means for automatically maneuvering the receiving ship 1 so as to maintain the fixed constant relative distances Dsx, Dsy (= Ds), ship speed Ux (= Wx), (Uy = 0), and heading direction θ1. is there.

この相対位置維持制御手段42cは、現状の補給艦2と受給艦1との間の相対距離Dsx、Dsyと相対針路βと相対速度ΔVx、ΔVyを入力して、今後の補給艦2の針路の方位θ2と相対速度Wx、Wyを受けて、補給艦2の針路の方位θ1(=θ2)を保ちつつ、相対速度ΔVx、ΔVyをゼロとする航行速度Ux、Uyとなるように算出された制御力(前進力、横力、旋回モーメント)を発生するように、可変ピッチプロペラで構成されている2つの推進器16a、16bと、2つの舵17a、17bの4つの操作量を操作する相対位置維持制御を行う。   This relative position maintenance control means 42c inputs the relative distances Dsx and Dsy between the current supply ship 2 and the receiving ship 1, the relative course β, and the relative speeds ΔVx and ΔVy, and the future of the course of the future supply ship 2 The control calculated to receive the azimuth θ2 and the relative speeds Wx and Wy, and maintain the heading azimuth θ1 (= θ2) of the supply ship 2 and the navigation speeds Ux and Uy with the relative speeds ΔVx and ΔVy being zero. Relative positions for operating the four operation amounts of the two propulsion units 16a and 16b and the two rudders 17a and 17b configured with variable pitch propellers so as to generate force (forward force, lateral force, turning moment) Perform maintenance control.

この相対位置維持制御手段42cによれば、補給艦2に対して受給位置領域Rを維持しながら自動操艦で航行できるようになり、また、距離索の監視や電話通信等で得られる情報に比べて、二船間情報取得手段42aで得られる情報の方が距離の測定精度が高くまた瞬時になる。従って、甲板要員及び操艦要員の負担を著しく軽減することができると共に、操艦時の安全性を向上できる。   According to this relative position maintenance control means 42c, it becomes possible to navigate by the automatic ship while maintaining the receiving position area R with respect to the supply ship 2, and compared with information obtained by monitoring the distance rope, telephone communication or the like. Thus, the information obtained by the two-ship information acquisition means 42a has higher distance measurement accuracy and is instantaneous. Accordingly, it is possible to remarkably reduce the burden on the deck personnel and the maneuvering personnel, and improve the safety during the maneuvering.

また、離脱制御手段42dは、図5の並走状態から図6の離脱状態に移行させる手段であり、二船間情報取得手段42aで得られた補給艦2と受給艦1との間の相対距離Dsx、Dsyと相対針路βと相対速度ΔVx、ΔVyに基づいて、受給位置領域Rから受給艦1を離脱させるための操艦を自動で行う手段である。   Further, the separation control means 42d is a means for shifting from the parallel running state of FIG. 5 to the separation state of FIG. 6, and the relative relationship between the supply ship 2 and the receiving ship 1 obtained by the two-ship information acquisition means 42a. This is a means for automatically performing ship maneuvering for detaching the receiving ship 1 from the receiving position region R based on the distances Dsx, Dsy, the relative course β, and the relative speeds ΔVx, ΔVy.

この離脱制御手段42dは、現状の補給艦2と受給艦1との間の相対距離Dsx、Dsyと相対針路βと相対速度ΔVx、ΔVyを入力して、補給艦2に対して予め設定された受給位置領域Rと現状の相対距離Dsx、Dsyとの関係とから、受給艦1を受給位置領域Rから離脱して、受給位置領域Rの外側の離脱領域(図示しない)に移動させるための、今後の受給艦1の針路の方位θ1と航行速度Ux、Uyを算出して、この針路の方位θ1と航行速度Ux、Uyとなるように算出された制御力(前進力、横力、旋回モーメント)を発生するように、可変ピッチプロペラで構成されている2つの推進器16a、16bと、2つの舵17a、17bの4つの操作量を操作する離脱制御を行う。   This separation control means 42d inputs relative distances Dsx, Dsy, relative course β, and relative speeds ΔVx, ΔVy between the current supply ship 2 and the receiving ship 1, and is set in advance for the supply ship 2. Based on the relationship between the receiving position area R and the current relative distances Dsx and Dsy, the receiving ship 1 is detached from the receiving position area R and moved to a separating area (not shown) outside the receiving position area R. The heading direction θ1 and the navigation speeds Ux and Uy of the future receiving ship 1 are calculated, and the control force (forward force, lateral force, turning moment) calculated to be the heading direction θ1 and the navigation speeds Ux and Uy is calculated. ) Is performed so as to operate four operation amounts of the two propulsion devices 16a and 16b configured by the variable pitch propeller and the two rudders 17a and 17b.

この離脱制御手段42dによれば、補給艦2に対する受給位置領域Rからの離脱を自動操艦で行うことができるようになり、また、距離索や電話索の張り渡しがない状態であるので、受給ラインの離脱のみで、速やかに自動で離脱操艦できるようになる。従って、受給位置領域Rから安全な離脱領域までの航行時間を短縮でき、また、操艦時の安全性を向上できる。   According to this disengagement control means 42d, the resupply ship 2 can be disengaged from the receiving position region R by an automatic ship operation, and there is no distance cable or telephone cable being stretched. By simply leaving the line, it will be possible to quickly and automatically leave the ship. Therefore, the navigation time from the receiving position region R to the safe departure region can be shortened, and the safety at the time of maneuvering can be improved.

なお、この離脱制御においても、予め設定した離脱用のデータを用いて、時々刻々の相対距離Dsx,Dsyに応じた針路の方位θ1と航行速度Ux、Uyを自動で算出及び設定してもよいが、この離脱用データの指示値を変更したり、あるいは、ジョイスティックなどの操作により手動操艦したりできるように構成しておくことが好ましい。   In this departure control as well, the heading direction θ1 and the navigation speeds Ux and Uy corresponding to the relative distances Dsx and Dsy every moment may be automatically calculated and set using preset separation data. However, it is preferable that the instruction value of the data for detachment can be changed or the ship can be manually operated by operating a joystick or the like.

次に、第2の実施の形態の操艦支援システム20Aについて説明するが、第1の実施の形態の操艦支援システム20との差は、二船間情報取得手段42aにおける以下の違いだけであり、その他の構成は同じである。   Next, the ship maneuvering support system 20A of the second embodiment will be described, but the difference from the ship maneuvering support system 20 of the first embodiment is only the following difference in the two-ship information acquisition means 42a. Other configurations are the same.

図7〜図9の構成の第2の実施の形態の操艦支援システム20Aの二船間情報取得手段42aは、第1の実施の形態の操艦支援システム20の第1の測距システム(22A、22C)に加えて、図1にも示してある光波測距儀の受発光部22Bと反射器(リフレクタ)22Dの組み合わせで構成される第2の測距システム(22B、22D)を備えて構成されている。   The ship-to-ship information acquisition means 42a of the ship maneuvering support system 20A according to the second embodiment having the configuration shown in FIGS. 7 to 9 includes the first distance measuring system (22A, 22A, 22B) of the ship maneuvering support system 20 according to the first embodiment. 22C) and a second distance measuring system (22B, 22D) configured by a combination of a light emitting / receiving unit 22B and a reflector (reflector) 22D of the light wave range finder shown in FIG. Has been.

なお、この第2の測距システム(22B、22D)は、前記した第1の実施の形態の操艦支援システム20では不要である。言い換えれば、第1の測距システム(22A、22C)又は第2の測距システム(22B、22D)のいずれかが故障した場合には、故障しない側の測距システムと、ジャイロコンパス23とにより、第1の実施の形態の操艦支援システム20を構成することができる。   The second ranging system (22B, 22D) is not necessary in the ship maneuvering support system 20 of the first embodiment described above. In other words, if either the first ranging system (22A, 22C) or the second ranging system (22B, 22D) fails, the ranging system that does not fail and the gyrocompass 23 The ship maneuvering support system 20 of the first embodiment can be configured.

この第2の測距システム(22B、22D)の受発光部22Bは受給艦1側に受発光部22Bと船長方向に関して距離L1をおいて配置され、反射器22Eは補給艦2側に反射器22Cと船長方向に関して距離L2をおいて配置される。この第2の測距システム(22B、22D)でも、単に相互間の距離S2を検出するだけでなく、相互間の距離S2に加えて受給艦1の船首方向に対する測定用光波の投光方向の角度α2を検出するように構成される。   The light receiving / emitting section 22B of the second ranging system (22B, 22D) is disposed on the receiving ship 1 side at a distance L1 from the light receiving / emitting section 22B in the direction of the captain, and the reflector 22E is a reflector on the supply ship 2 side. It is arranged at a distance L2 with respect to 22C and the ship length direction. Even in the second ranging system (22B, 22D), not only the distance S2 between each other but also the distance S2 between each other and the projection direction of the measurement light wave with respect to the bow direction of the receiving ship 1 The angle α2 is configured to be detected.

この第2の実施の形態の操艦支援システム20Aの二船間情報取得手段42aでは、図6〜図8に示すように、第1の測距システム(22A、22C)により距離S1と投光方向の角度α1を検出し、更に、第2の測距システム(22B、22D)により距離S2と投光方向の角度α2を検出する。   In the ship-to-ship information acquisition means 42a of the ship maneuvering support system 20A of the second embodiment, as shown in FIGS. 6 to 8, the first distance measuring system (22A, 22C) uses the distance S1 and the light projection direction. Is detected, and further, the distance S2 and the angle α2 in the light projecting direction are detected by the second distance measuring system (22B, 22D).

そして、2つ受発光部22A、22Bの間の離間距離L1、2つ反射器22C、22Eの間の離間距離L2、測定された2つの距離S1、S2と2つの投光方向の角度α1、α2とから、受発光部22A、22Bと反射器22C、22Eの相対位置D1x、D1y、D2x(図示しない)、D2y(図示しない)を算定することができ、補給艦2の針路の方位θ2に対する受給艦1の針路の方位θ1との差である相対針路βと、相対位置Dsx、Dsyを算定することができる。なお、受発光部22Aと反射器22Cとの間の相対位置D1x、D1yから、操艦用の受給艦1と補給艦2との間の距離Dsx、Dsyを算定することは、受発光部22Aと反射器22Cのそれぞれの艦における配置位置が分かっているので容易に行うことができる。なお、図7〜図9においては受発光部22Bと反射器22Eの相対位置D2x、D2yの図示を省略し、また、図8及び図9では、図面の簡略化のために、操艦用の受給艦1と補給艦2との間の距離Dsx、Dsyの図示も省略している。   Then, a separation distance L between the two light emitting / receiving sections 22A and 22B, a separation distance L2 between the two reflectors 22C and 22E, two measured distances S1 and S2, and two angles α1 of the light projecting directions, From α2, the relative positions D1x, D1y, D2x (not shown) and D2y (not shown) of the light emitting / receiving units 22A, 22B and the reflectors 22C, 22E can be calculated, and the heading direction θ2 of the supply ship 2 can be calculated. The relative course β, which is the difference from the heading direction θ1 of the receiving ship 1, and the relative positions Dsx and Dsy can be calculated. Note that calculating the distances Dsx and Dsy between the ship receiving ship 1 and the supply ship 2 from the relative positions D1x and D1y between the light receiving and emitting part 22A and the reflector 22C is as follows: Since the position of the reflector 22C in each ship is known, it can be easily performed. 7 to 9, the relative positions D2x and D2y of the light emitting / receiving unit 22B and the reflector 22E are not shown, and in FIGS. 8 and 9, for the purpose of simplifying the drawing, the receiving for ship operation is omitted. Illustration of distances Dsx and Dsy between the ship 1 and the supply ship 2 is also omitted.

次に、これらの構成の操艦支援システム20、20Aを用いた操艦支援方法について説明する。この操艦支援方法では、図3に示すように、洋上補給作業に入ると、補給艦2側では、補給用操艦を行い、定針・定速航行を開始し、洋上補給作業中は、これを維持する。そして、補給艦2から受給艦1への補給などが完了した段階で、この定針・定速航行を終了し。洋上補給作業を完了する。   Next, a ship maneuvering support method using these ship maneuvering support systems 20 and 20A will be described. In this ship maneuvering support method, as shown in FIG. 3, when the offshore replenishment work is started, the resupply ship 2 performs a resupply ship, starts constant needle / constant speed navigation, and during the offshore replenishment work, maintain. Then, when replenishment from the supply ship 2 to the receiving ship 1 is completed, this constant needle / constant speed navigation is terminated. Complete offshore replenishment work.

一方、受給艦1側では、洋上補給作業に入ると、補給用操艦を行う。そして、「光学測距儀のペアリング」を行う。このペアリングは、受給艦1側の光波測距儀の受発光部22A(又は/及び22B)を、補給艦2側の反射器22C(又は/及び22D)に向けて、光波を投光する。この投光した光波が反射器22Cから反射されて受発光部22Aに戻ってくるように、先ず、受発光部22からの投光方向を反射器22Cに向けて自動又は手動でスキャンさせて、投光した光波が反射器22Cに当たるようにする。この時可視レーザー光を用いているので、目視による手動調整も粗い調整が可能となる。   On the other hand, on the receiving ship 1 side, when the offshore replenishment work is started, a resupply ship is operated. Then, “pairing optical rangefinder” is performed. In this pairing, light waves are projected toward the reflector 22C (or / and 22D) on the supply ship 2 side with respect to the light emitting / receiving unit 22A (or / and 22B) of the light wave rangefinder on the receiving ship 1 side. . First, the projection direction from the light emitting / receiving unit 22 is automatically or manually scanned toward the reflector 22C so that the projected light wave is reflected from the reflector 22C and returns to the light receiving / emitting unit 22A. The projected light wave strikes the reflector 22C. At this time, since visible laser light is used, manual adjustment by visual observation can also be coarsely adjusted.

この光波を受けた反射器22Cの方向を自動又は手動で調整して、反射器22Cで反射した光波が受発光部22Aに戻るようにする。一旦、受発光部22Aから反射器22Cへの光路と、反射器22Cから受発光部22Aへの光路とが確立し、この光路確立を認識した後は、それぞれの装置で、上下左右の首振り機構により、光路が外れそうになったら、自動で追従するように構成されていることが好ましい。   The direction of the reflector 22C that has received the light wave is automatically or manually adjusted so that the light wave reflected by the reflector 22C returns to the light emitting and receiving unit 22A. Once the optical path from the light emitting / receiving unit 22A to the reflector 22C and the optical path from the reflector 22C to the light receiving / emitting unit 22A are established, and after recognizing the establishment of the optical path, each device swings up, down, left and right. It is preferable that the mechanism is configured to automatically follow when the optical path is likely to be removed by the mechanism.

この「光学測距儀のペアリング」の前後(図3では後)で、「自動操艦システムへの切替」を行う。これにより、操艦要員による自動操艦システムへの切換えスイッチの操作などにより、操艦権を操艦要員の手から自動操艦システムに切り替える。   Before and after the “pairing of optical rangefinder” (after in FIG. 3), “switch to automatic ship maneuvering system” is performed. As a result, the maneuvering authority is switched from the hand of the maneuvering personnel to the automatic maneuvering system, for example, by the operation of the switch to the automatic maneuvering system by the maneuvering personnel.

その後は、近接制御手段42bにより、自動操艦による近接を行う。この近接制御では、受給艦1を補給艦2に対して受給位置領域R内に移動させる。これにより、受給位置領域Rに受給艦1を近接させ、その受給位置領域Rを占位させる。   After that, the proximity control means 42b performs proximity by automatic ship operation. In this proximity control, the receiving ship 1 is moved into the receiving position region R with respect to the supply ship 2. Thereby, the receiving ship 1 is brought close to the receiving position area R, and the receiving position area R is occupied.

この占位の状態に至った後は、相対位置維持制御手段42cにより、相対位置維持制御を行って、受給位置領域R内に受給艦1を自動操艦で維持する。つまり、受給艦1がその受給位置領域R内に留まるように受給艦1を補給艦2と同じ針路の方位(θ1=θ2:β=0)で同じ速度(Ux=Wx、Uy=Wy:ΔVx=0、ΔVy=0)で航行させる。   After reaching the occupied state, the relative position maintaining control means 42c performs relative position maintaining control, and the receiving ship 1 is maintained in the receiving position region R by automatic ship operation. That is, the receiving ship 1 stays in the receiving position region R so that the receiving ship 1 has the same heading direction (θ1 = θ2: β = 0) and the same speed (Ux = Wx, Uy = Wy: ΔVx). = 0, ΔVy = 0).

この受給艦1が受給位置領域R内に入る直前若しくは直後に、または、受給艦1が相対位置維持制御に入る直前若しくは直後に、補給の準備としての補給艦2と受給艦1との間に補給ラインの構築を行い、この構築が完了し、しかも、相対位置維持制御に入っている状態になったら、補給を開始し、補給艦2に並行して受給艦1を航行させながら補給を行う。そして、この補給が完了したら、補給ラインを取り外して、補給を解除する。   Immediately before or immediately after the receiving ship 1 enters the receiving position region R, or immediately before or immediately after the receiving ship 1 enters the relative position maintenance control, between the supplying ship 2 and the receiving ship 1 as preparation for supply. When the supply line is constructed, and when this construction is completed and the relative position maintenance control is entered, the supply is started, and the supply ship 1 is operated in parallel with the supply ship 2 and replenishment is performed. . When this replenishment is completed, the replenishment line is removed and the replenishment is released.

補給解除の後では、離脱制御手段42dにより、自動操艦による離脱を行う。この離脱制御では、受給艦1を補給艦2に対して受給位置領域Rから離脱領域に移動させる。これにより、受給位置領域Rから受給艦1を離脱させる。この離脱が完了すると、離脱完了の合図信号(光学的表示、音声信号等)受けて、操艦要員による自動操艦システムへの切換えスイッチの操作などが行われ、操艦権を自動操艦システムから操艦要員の手からに切り替える。これにより、「自動操艦システムからの切替」が行われる。   After the replenishment is released, the withdrawal control means 42d performs the withdrawal by the automatic ship operation. In this leaving control, the receiving ship 1 is moved from the receiving position area R to the leaving area with respect to the supply ship 2. As a result, the receiving ship 1 is detached from the receiving position region R. When this departure is completed, a signal indicating completion of the departure (optical display, audio signal, etc.) is received, and the operation of the switch to the automatic ship operation system is performed by the ship operator, and the right to operate the ship is transferred from the automatic ship operation system to the ship operator. Switch from hand to hand. Thereby, “switching from the automatic ship maneuvering system” is performed.

この「自動操艦システムからの切替」の前後(図3では後)において、「光学測距儀のペアリングの解除」を行う。これは、受給艦1側の光波測距儀の受発光部22A(又は/及び22B)からの光波の投光を終了することで行う。これにより、補給用操艦を終了する。   Before and after “switching from the automatic ship maneuvering system” (after in FIG. 3), “cancel optical pairing”. This is done by terminating the light wave projection from the light emitting / receiving section 22A (or / and 22B) of the light wave rangefinder on the receiving ship 1 side. This completes the resupply ship.

なお、上記の構成では、受給艦1を2軸2舵の構成としたが、前進力、横力、旋回モーメントの3つ制御力を発生できる構成の船舶であればよく、サイドスラスタを備えて1軸1舵の船舶であってもよい。   In the above configuration, the receiving ship 1 has a configuration of two-axes and two rudders. However, any vessel having a configuration capable of generating three control forces of forward force, lateral force, and turning moment may be used, and a side thruster is provided. A ship with one axis and one rudder may be used.

さらに、測距システムの受発光器22A、22Bを受給艦1側に、反射器22C、22Dを補給艦2側に配置しているが、基本的には、操艦支援システム20、20Aを備えている側の受給艦1に受発光器22A、22Bを配置するのが好ましいが、測距システムを用いて、あるいは別経路で双方向通信を確保できる場合には、補給艦2側に受発光器22A、22Bを配置し、受給艦1側に反射器22C、22Dを配置してもよい。   Furthermore, although the light receiving / emitting devices 22A and 22B of the ranging system are arranged on the receiving ship 1 side and the reflectors 22C and 22D are arranged on the supply ship 2 side, basically, the ship operating support systems 20 and 20A are provided. It is preferable to arrange the light emitters / receivers 22A and 22B on the receiving ship 1 on the side where they are located. However, if two-way communication can be secured using a ranging system or another route, the light emitters / receivers on the supply ship 2 side. 22A and 22B may be arranged, and reflectors 22C and 22D may be arranged on the receiving ship 1 side.

また、操艦支援システム20、20Aを補給艦2側に備えて、双方向通信で、受給艦1を制御してもよい。補給艦2側のみならず、受給艦1側にも操艦支援システム20、20Aを備えておくことにより、緊急時における補給艦2側からの受給艦1の補給用操艦が可能となる。   Further, the ship operation support systems 20 and 20A may be provided on the supply ship 2 side, and the receiving ship 1 may be controlled by bidirectional communication. By providing the ship maneuvering support systems 20 and 20A not only on the supply ship 2 side but also on the reception ship 1 side, it becomes possible to operate the supply ship 1 for supply from the supply ship 2 side in an emergency.

上記の構成の操艦支援システム20、20A、艦船、及び、操艦支援方法によれば、電波封鎖時や電波妨害時においても、補給艦2と受給艦1との間の相対位置Dsx,Dsyと相対針路βと相対速度ΔVx、ΔVyとを検出できて、受給艦1側における自動操艦で並走を行って、甲板要員と操艦要員の負担の軽減しつつ、補給艦2からの補給を受けることができる。   According to the ship maneuvering support systems 20 and 20A, the ship and the ship maneuvering support method configured as described above, the relative positions Dsx and Dsy between the supply ship 2 and the receiving ship 1 are relative to each other even when the radio wave is blocked or jammed. It is possible to detect the heading β and the relative speeds ΔVx and ΔVy, perform parallel running with the automatic ship on the receiving ship 1 side, and receive replenishment from the supply ship 2 while reducing the burden on the deck personnel and the ship operating personnel. it can.

従って、補給艦2と受給艦1との洋上補給時における操艦の高度な自動化と、測距用の距離索と現場電話線用の電話索の無索化による甲板要員の甲板配置の削減化により、洋上補給作業における安全性の向上と省人化への寄与を可能とすることができる。   Therefore, by the advanced automation of the maneuvering of the supply ship 2 and the receiving ship 1 at the time of offshore supply, and the reduction in the deck arrangement of deck personnel by eliminating the distance cable for ranging and the telephone cable for the field telephone line. It is possible to improve safety and contribute to labor saving in offshore replenishment work.

1 受給艦
2 補給艦
10 船体
13 上甲板
14 上部構造
14a 艦橋
16a 右舷側推進器
16b 左舷側推進器
17a 右舷側舵
17b 左舷側舵
20、20A 操艦支援システム
21 制御装置
22A、22B、22E,22F 光波測距儀の受発光部(測距システム)
22C、22D 反射器(測距システム)
23 ジャイロコンパス
24A 艦橋操作盤
24B 指揮所操作盤
24C 遠隔操作盤
40 制御手段
41 通常操艦手段
42 洋上補給時制御手段
42a 二船間情報取得手段
42b 近接制御手段
42c 相対位置維持制御手段
42d 離脱制御手段
Dx 第1の測距システムの機器の相互間の距離(補給艦の船首尾方向)
Dy 第1の測距システムの機器の相互間の距離(補給艦の船幅方向)
Dsx 補給艦と受給艦との間の相対距離(補給艦の船首尾方向)
Dsy 補給艦と受給艦との間の相対距離(補給艦の船幅方向)
S1 第1の測距システムの機器の相互間の距離
S2 第2の測距システムの機器の相互間の距離
α1、α2 測定用光波の投光方向の角度
β 相対針路
θ1 受給艦の針路の方位
θ2 補給艦の針路の方位
γ 投光方向と補給艦の針路の方位との差の角度
DESCRIPTION OF SYMBOLS 1 Receiving ship 2 Supply ship 10 Hull 13 Upper deck 14 Superstructure 14a Bridge 16a Starboard side propulsion device 16b Port side propulsion device 17a Starboard side rudder 17b Port side rudder 20, 20A Ship maneuvering support system 21 Controllers 22A, 22B, 22E, 22F Light receiving / emitting unit of light wave rangefinder (ranging system)
22C, 22D Reflector (ranging system)
23 Gyrocompass 24A Bridge control panel 24B Command station control panel 24C Remote control panel 40 Control means 41 Normal ship control means 42 Offshore replenishment control means 42a Two ship information acquisition means 42b Proximity control means 42c Relative position maintenance control means 42d Departure control means Dx Distance between devices of the first ranging system (in the direction of the stern of the supply ship)
Dy Distance between devices of the first ranging system (width direction of the supply ship)
Dsx Relative distance between the supply ship and the receiving ship (direction of the tail of the supply ship)
Dsy Relative distance between supply ship and receiving ship (width direction of supply ship)
S1 Distance between the devices of the first ranging system S2 Distance between the devices of the second ranging system α1, α2 Angle of projection direction of the measuring light wave β Relative course θ1 Direction of the course of the receiving ship θ2 Heading direction of supply ship γ Angle of difference between flood direction and heading direction of supply ship

Claims (8)

補給艦に並走して前記補給艦からの洋上補給を受ける受給艦との間で行われる洋上補給作業を支援する操艦支援システムにおいて、
前記補給艦と前記受給艦のどちらか一方を第1船とし、他方を第2船とし、前記第1船側の光波測距儀の受発光部と、前記第2船側の反射器又は光波測距儀の受発光部とを有して、相互間の距離と前記受給艦の船首方向に対する測定用光波の投光方向の角度を検出する測距システムを構成すると共に、
1組の前記測距システムと前記受給艦が備えているジャイロコンパスとの組み合わせから、又は、2組の前記測距システムの組み合わせから、前記補給艦と前記受給艦との間の相対距離と相対針路と相対速度とを検出する二船間情報取得手段を備えていることを特徴とする操艦支援システム。
In a ship operation support system that supports offshore supply work performed between a receiving ship that runs parallel to a supply ship and receives offshore supply from the supply ship,
One of the supply ship and the receiving ship is a first ship, the other is a second ship, a light emitting / receiving unit of a light wave ranging finder on the first ship side, a reflector or light wave ranging on the second ship side And a distance measuring system for detecting the angle between the distance between each other and the direction of light projection of the measurement light wave with respect to the bow direction of the receiving ship,
From the combination of one set of the ranging system and the gyrocompass included in the receiving ship, or from the combination of two sets of the ranging systems, the relative distance and relative between the supply ship and the receiving ship A marine vessel maneuvering support system comprising means for acquiring information between two ships for detecting a course and a relative speed.
前記測距システムが前記光波測距儀の光波としてアイセーフ可視レーザー光を使用していることを特徴とする請求項1に記載の操艦支援システム。   2. The ship maneuvering support system according to claim 1, wherein the ranging system uses an eye-safe visible laser beam as a light wave of the light wave ranging finder. 前記測距システムが前記光波測距儀の光波を用いた一方向通信機能又は双方向通信機能を備えていることを特徴とする請求項1又は2に記載の操艦支援システム。   3. The marine vessel maneuvering support system according to claim 1, wherein the ranging system has a one-way communication function or a two-way communication function using a light wave of the light wave rangefinder. 前記補給艦に対して予め設定された受給位置領域に到達した後に、前記二船間情報取得手段で得られた前記補給艦と前記受給艦との間の相対距離と相対針路と相対速度に基づいて、前記補給艦に対する前記受給位置領域を維持するように前記受給艦の操艦を自動で行う相対位置維持制御手段を備えていることを特徴とする請求項1〜3のいずれか1項に記載の操艦支援システム。   Based on a relative distance, a relative course, and a relative speed between the supply ship and the receiving ship obtained by the two-ship information acquisition means after reaching a preset receiving position area for the supply ship 4. The apparatus according to claim 1, further comprising a relative position maintenance control unit that automatically operates the receiving ship so as to maintain the receiving position area with respect to the supply ship. Ship navigation support system. 前記二船間情報取得手段で得られた前記補給艦と前記受給艦との間の相対距離と相対針路と相対速度に基づいて、前記補給艦に対して予め設定された受給位置領域に前記受給艦を導くための操艦を自動で行う近接制御手段を備えていることを特徴とする請求項1〜4のいずれか1項に記載の操艦支援システム。   Based on the relative distance, the relative course, and the relative speed between the supply ship and the receiving ship obtained by the two-ship information acquisition means, the receiving position is set in a receiving position area set in advance for the supply ship. The ship maneuvering support system according to any one of claims 1 to 4, further comprising proximity control means for automatically maneuvering the ship to guide the ship. 前記二船間情報取得手段で得られた前記補給艦と前記受給艦との間の相対距離と相対針路と相対速度に基づいて、前記受給位置領域から前記受給艦を離脱させるための操艦を自動で行う離脱制御手段を備えていることを特徴とする請求項4又は5に記載の操艦支援システム。   Based on the relative distance between the supply ship and the receiving ship, the relative course, and the relative speed obtained by the information acquisition means between the two ships, a ship maneuvering for automatically removing the receiving ship from the receiving position area is automatically performed. 6. A ship maneuvering support system according to claim 4 or 5, further comprising a departure control means for performing the above operation. 請求項1〜6のいずれか1項の操艦支援システムを備えたことを特徴とする艦船。   A ship comprising the ship maneuvering support system according to any one of claims 1 to 6. 請求項1〜6のいずれか1項の操艦支援システムを用いることを特徴とする操艦支援方法。   A ship maneuvering support method using the ship maneuvering support system according to any one of claims 1 to 6.
JP2018051218A 2018-03-19 2018-03-19 Ship maneuvering support system, ship, and ship maneuvering support method Active JP7139127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018051218A JP7139127B2 (en) 2018-03-19 2018-03-19 Ship maneuvering support system, ship, and ship maneuvering support method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018051218A JP7139127B2 (en) 2018-03-19 2018-03-19 Ship maneuvering support system, ship, and ship maneuvering support method

Publications (2)

Publication Number Publication Date
JP2019162922A true JP2019162922A (en) 2019-09-26
JP7139127B2 JP7139127B2 (en) 2022-09-20

Family

ID=68065462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018051218A Active JP7139127B2 (en) 2018-03-19 2018-03-19 Ship maneuvering support system, ship, and ship maneuvering support method

Country Status (1)

Country Link
JP (1) JP7139127B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7026911B1 (en) * 2021-09-27 2022-03-01 商船三井テクノトレード株式会社 Refueling method
JP7083049B1 (en) 2021-01-26 2022-06-09 三菱重工業株式会社 Port support system and port support method

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146878A (en) * 1982-02-25 1983-09-01 Hitachi Zosen Corp Navigating information transfer device
JPS6065690U (en) * 1984-08-15 1985-05-09 川崎重工業株式会社 Floating body positioning and orientation equipment
JPH0325094A (en) * 1989-06-22 1991-02-01 Nkk Corp Alongside-pier method of marine vessel
JPH04268480A (en) * 1991-02-22 1992-09-24 Furuno Electric Co Ltd Automatic steering apparatus
JPH05170191A (en) * 1991-12-19 1993-07-09 Mitsubishi Heavy Ind Ltd Landing guidance sensor system
JPH0648392A (en) * 1992-07-27 1994-02-22 Tokimec Inc Course/velocity change detecting/warning device and method therefor
JPH06286694A (en) * 1993-04-02 1994-10-11 Japan Hamuwaaji Kk Method for mooring ship alongside quay and detaching ship from quay automatically
JPH0815433A (en) * 1994-06-27 1996-01-19 Mitsubishi Heavy Ind Ltd Distance measuring and laser communication equipment
JP2005028891A (en) * 2003-07-07 2005-02-03 National Maritime Research Institute Ship steering facility for berthing
US20050145751A1 (en) * 2003-07-25 2005-07-07 Shelly Mark A. Methods and apparatus for passive illumination of refueling hoses
CN204473093U (en) * 2014-11-24 2015-07-15 中国人民解放军镇江船艇学院 Automation auxiliary device handled by a kind of ships and light boats
JP2016151541A (en) * 2015-02-19 2016-08-22 株式会社小野測器 Laser measurement device
JP2018002040A (en) * 2016-07-06 2018-01-11 三井造船株式会社 Maneuvering system, ship, and maneuvering method of ship

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58146878A (en) * 1982-02-25 1983-09-01 Hitachi Zosen Corp Navigating information transfer device
JPS6065690U (en) * 1984-08-15 1985-05-09 川崎重工業株式会社 Floating body positioning and orientation equipment
JPH0325094A (en) * 1989-06-22 1991-02-01 Nkk Corp Alongside-pier method of marine vessel
JPH04268480A (en) * 1991-02-22 1992-09-24 Furuno Electric Co Ltd Automatic steering apparatus
JPH05170191A (en) * 1991-12-19 1993-07-09 Mitsubishi Heavy Ind Ltd Landing guidance sensor system
JPH0648392A (en) * 1992-07-27 1994-02-22 Tokimec Inc Course/velocity change detecting/warning device and method therefor
JPH06286694A (en) * 1993-04-02 1994-10-11 Japan Hamuwaaji Kk Method for mooring ship alongside quay and detaching ship from quay automatically
JPH0815433A (en) * 1994-06-27 1996-01-19 Mitsubishi Heavy Ind Ltd Distance measuring and laser communication equipment
JP2005028891A (en) * 2003-07-07 2005-02-03 National Maritime Research Institute Ship steering facility for berthing
US20050145751A1 (en) * 2003-07-25 2005-07-07 Shelly Mark A. Methods and apparatus for passive illumination of refueling hoses
CN204473093U (en) * 2014-11-24 2015-07-15 中国人民解放军镇江船艇学院 Automation auxiliary device handled by a kind of ships and light boats
JP2016151541A (en) * 2015-02-19 2016-08-22 株式会社小野測器 Laser measurement device
JP2018002040A (en) * 2016-07-06 2018-01-11 三井造船株式会社 Maneuvering system, ship, and maneuvering method of ship

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7083049B1 (en) 2021-01-26 2022-06-09 三菱重工業株式会社 Port support system and port support method
JP2022114274A (en) * 2021-01-26 2022-08-05 三菱重工業株式会社 Aboardage support system and aboardage support method
JP7026911B1 (en) * 2021-09-27 2022-03-01 商船三井テクノトレード株式会社 Refueling method

Also Published As

Publication number Publication date
JP7139127B2 (en) 2022-09-20

Similar Documents

Publication Publication Date Title
JP7336565B2 (en) Automatic docking device
ES2865195T3 (en) A procedure and system for operating one or more tugs
JP7386041B2 (en) Ship maneuvering support system and method
JP4716214B2 (en) Ship entry / exit berth support method and system
DK179591B1 (en) A tugboat with a capsizing and sinking prevention system
EP2917764A1 (en) Maritime autonomous station keeping (mask)
JP2019162977A (en) Automatic maneuvering system for vessel
WO2018030897A1 (en) Motion compensating crane system
JP2005028891A (en) Ship steering facility for berthing
JP2019162922A (en) Maneuvering support system, naval vessel, and maneuvering support method
AU2018379592B2 (en) Interface unit
JP2005254956A (en) Automated fixed point holding device of water jet propulsion ship
JP6621102B1 (en) Ship position control system and ship equipped with the system
JP3999976B2 (en) Maneuvering method and apparatus
JP7083049B1 (en) Port support system and port support method
DK179117B1 (en) Tugboat with crane or robot arm
RU2809129C1 (en) Method of guiding, mooring and unmooring sea cargo vessel in autonomous mode and method of operating digital instrumental platform for motion control of group of autonomous towing vessels in port water area
WO2023233742A1 (en) Vessel handling system and vessel handling method
JP2023117498A (en) Uniaxial two-rudder vessel having automatic pier-docking function
CN115335284A (en) Ship steering support system
Ghignone et al. Self-powered underwater vehicle for MCM operations (MIN MK2 system)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180606

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20210308

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20211210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220907

R150 Certificate of patent or registration of utility model

Ref document number: 7139127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150