WO2023233742A1 - Vessel handling system and vessel handling method - Google Patents

Vessel handling system and vessel handling method Download PDF

Info

Publication number
WO2023233742A1
WO2023233742A1 PCT/JP2023/008261 JP2023008261W WO2023233742A1 WO 2023233742 A1 WO2023233742 A1 WO 2023233742A1 JP 2023008261 W JP2023008261 W JP 2023008261W WO 2023233742 A1 WO2023233742 A1 WO 2023233742A1
Authority
WO
WIPO (PCT)
Prior art keywords
propulsion
ship
berthing
command
thrust
Prior art date
Application number
PCT/JP2023/008261
Other languages
French (fr)
Japanese (ja)
Inventor
英輝 風間
守行 坂本
毅 古賀
嵩 野田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2023233742A1 publication Critical patent/WO2023233742A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/16Tying-up; Shifting, towing, or pushing equipment; Anchoring using winches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B43/00Improving safety of vessels, e.g. damage control, not otherwise provided for
    • B63B43/18Improving safety of vessels, e.g. damage control, not otherwise provided for preventing collision or grounding; reducing collision damage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/21Control means for engine or transmission, specially adapted for use on marine vessels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft

Definitions

  • the present disclosure relates to a method for maneuvering a ship, particularly when berthed, and a ship maneuvering system that implements the method.
  • the series of processes from when a ship enters a port to when it docks at a berth and is moored includes ship operations that place a large mental burden on the ship operator, and tasks that place a large labor load on the ship's workers. For these reasons, there is a desire to automate the above series of steps and save labor in order to reduce the load and improve safety. However, as it requires flexible responses to changes in weather and sea conditions within the port and extraordinarily between shipboard and port workers, it is still necessary to rely on the experience of ship operators and shipboard and port workers. At present, most of the work is being carried out.
  • Patent Document 1 discloses an automatic berthing and mooring machine that automates ship maneuvering from berthing to mooring.
  • the ship of Patent Document 1 includes a longitudinal thrust engine that outputs longitudinal thrust of the hull, a bow side thruster and a stern pod propulsion machine that can output lateral thrust in both directions of the hull, and a mooring line.
  • a bow mooring machine and a stern mooring machine that can be retracted and unwound, a rangefinder that measures the distance to the quay, a bow side thruster, a stern pod propulsion machine, and a bow side thruster based on the measured value of the rangefinder. It includes a mooring machine and a controller that controls the stern side mooring machine.
  • the controller performs the berthing and mooring operations of the vessel in the order of berthing mode and mooring mode.
  • the controller stops the front and rear thrust engines, the bow mooring machine, and the stern mooring machine, and uses the bow side thruster and the stern pod propulsion machine to move the hull laterally to a mooring starting position 1 m from the quay.
  • the controller stops the front and rear thrust engines, the bow side thruster, and the stern pod propulsion machine, and uses the bow mooring machine and the stern mooring machine to pull the mooring line, thereby mooring the ship to the quay.
  • the present disclosure has been made in view of the above circumstances, and its purpose is to propose a technology that prevents a ship from colliding with a quay even if a misoperation of the control equipment occurs when the ship is docked. be.
  • a ship maneuvering system includes: a plurality of propulsion devices mounted on the hull, including a propulsion machine that outputs a thrust that propels the hull in the berthing direction; and a mooring machine that outputs a thrust that propels the hull in the berthing direction by winding a mooring line; a distance meter that detects a berthing distance, which is a distance from the ship's hull to a quay to which it is attempting to berth; A control device that outputs a propulsion command; Obtaining the berthing distance and the propulsion command, determining the propulsion command limit value corresponding to the berthing distance based on a given relationship in which the propulsion command limit value decreases as the berthing distance decreases, and If the propulsion command output from the control device is equal to or greater than the propulsion command limit value, the propulsion command is set as the propulsion command limit value, and the thrust corresponding to the
  • a ship maneuvering method includes: Maneuvering a ship in which a plurality of propulsion devices are mounted on the hull, including a propulsion machine that outputs a thrust that propels the hull in the berthing direction, and a mooring machine that outputs a thrust that propels the hull in the berthing direction by winding a mooring line.
  • a method Obtaining the berthing distance, which is the distance from the ship's hull to the quay where the ship is attempting to berth; obtaining a propulsion command for the hull;
  • the propulsion command limit value corresponding to the berthing distance is determined based on a given relationship in which the propulsion command limit value decreases as the berthing distance becomes smaller, and the propulsion command limit value is determined to be less than or equal to the propulsion command limit value.
  • Ask for instructions allocating thrust corresponding to the limited propulsion command to the plurality of propulsion devices;
  • the plurality of propulsion devices are controlled so that thrust distributed from each of the plurality of propulsion devices is output.
  • FIG. 1 is a diagram showing a schematic configuration of a ship to which a ship maneuvering system according to an embodiment of the present disclosure is applied.
  • FIG. 2 is a diagram showing a schematic configuration of a mooring machine.
  • FIG. 3 is a diagram showing the configuration of the ship maneuvering system.
  • FIG. 4 is a diagram illustrating the functional units of the ship maneuvering controller.
  • FIG. 5 is a diagram illustrating the processing of the propulsion control section.
  • FIG. 6 is a diagram illustrating a method of maneuvering a ship when mooring at a berth.
  • FIG. 7 is a chart showing an example of the relationship between the berthing distance d and the propulsion command limit value Ulim.
  • FIG. 8 is a chart showing an example of the relationship between the berthing distance d and the propulsion command limit value Ulim.
  • FIG. 9 is a diagram illustrating the berthing speed Vapp.
  • FIG. 10 is a chart showing an example of the relationship between the difference ⁇ V between the berthing speed Vapp and the approach speed threshold Vsafe and the correction coefficient Kv.
  • FIG. 11 is a diagram illustrating the berthing disturbance force Fapp.
  • FIG. 1 is a diagram showing a schematic configuration of a ship S to which a ship maneuvering system 20 according to an embodiment of the present invention is applied.
  • the ship S includes a hull 5 , at least one longitudinal propulsion device 2 that outputs a thrust in the longitudinal direction to the hull 5 , and at least one lateral propulsion device 3 that outputs a thrust in the lateral direction to the hull 5 .
  • the longitudinal propulsion device 2 includes a combination of a variable pitch propeller, which is a main propulsion device, and a rudder.
  • a variable pitch propeller and a rudder are provided on the stern side of the hull 5.
  • the longitudinal propulsion device 2 is not limited to the above, and may be a rotating thruster or a combination of a plurality of variable pitch propellers and rudders.
  • the lateral propulsion device 3 preferably includes at least one bow side lateral propulsion device 3B and at least one stern side lateral propulsion device 3A.
  • the bow side lateral propulsion device 3B is a side thruster (bow thruster) provided on the bow side.
  • the combination of the variable pitch propeller and rudder provided on the stern side can output both longitudinal thrust and lateral thrust depending on the direction of the rudder, so the stern side lateral propulsion It also has the function of machine 3A.
  • the lateral propulsion device 3 provided in the ship S is not limited to the above, and side thrusters may be arranged on each of the bow side and the stern side of the hull 5, or a swing type device may be arranged on at least one of the bow side and the stern side of the hull 5. Thrusters may also be arranged.
  • the ship S includes at least one bow side mooring machine 10B installed on the bow side of the deck, and at least one stern side mooring machine 10A installed on the stern side of the deck.
  • the mooring machine 10 the longitudinal propulsion machine 2, and the lateral propulsion machine 3 are collectively referred to as a "propulsion device 9."
  • the mooring machine 10 is originally a device for mooring the ship S, but in the ship maneuvering system 20 of the present disclosure, the mooring machine 10 has a function of giving thrust to the ship S, so the mooring machine 10 is also a type of propulsion device 9. Capture.
  • the bow mooring machine 10B includes a headline mooring machine and a forward spring line mooring machine.
  • the bow side mooring machine 10B may further include a forward breast mooring machine.
  • the stern mooring machine 10A includes a sternline mooring machine and an aft spring mooring machine.
  • the stern mooring machine 10A may further include an aft breast mooring machine.
  • the mooring machine 10 (the reference numeral 10 is used when not distinguishing between the bow mooring machine 10B and the stern mooring machine 10A) that the ship S should possess is determined by the number of riggings and the like.
  • each mooring machine 10 includes a mooring line R and a winch W capable of winding up and letting out the mooring line R.
  • the winch W is an electro-hydraulic type.
  • the winch W includes a winding drum 11 around which the mooring line R is wound, a motor 12 that rotationally drives the winding drum 11, and a hydraulic winch that switches connection and disconnection of power transmission from the motor 12 to the winding drum 11. It includes a clutch 13, a speed reducer 14 provided on a power transmission path from the motor 12 to the winding drum 11, and a hydraulic release type brake 15 that constantly applies braking force.
  • the structure of the winch W is not limited to the above, and the winch W may be electric.
  • the mooring machine 10 is provided with a rotational position sensor 51, a tension meter 52, a cable length meter 53, and a winch controller 50 that controls the operation of the winch W based on these detected values.
  • the rotational position sensor 51 detects the rotational position and rotational speed of the motor 12 or the winding drum 11.
  • the cable length meter 53 measures the length of the mooring cable R let out from the winding drum 11.
  • the winch controller 50 measures the rotation of the motor 12 or the winding drum 11 based on the detection signal of the rotational position sensor 51 and/or the measurement value of the rope length meter 53, and determines the winding length and the let-out length of the mooring rope R. presume.
  • the tension meter 52 may directly or indirectly detect the tension (load) acting on the mooring line R.
  • the tension meter 52 is, for example, a load cell provided in the brake 15, and the tension of the mooring line R may be estimated based on the load detected by the load cell.
  • the tension meter 52 is, for example, a torque sensor that detects the output torque of the motor 12, and the tension of the mooring line R may be estimated based on the torque detected by the torque sensor.
  • the winch controller 50 can control the rotation of the winding drum 11 based on the detected value of the tension meter 52 so that the tension acting on the mooring line R is maintained at a predetermined value that does not exceed a predetermined upper limit value. can.
  • the power transmission path from the motor 12 to the winding drum 11 is connected by the clutch 13, and the winding drum 11 is rotationally driven in the winding direction.
  • the clutch 13 is disconnected and the power transmission path from the motor 12 to the take-up drum 11 is cut off, and the take-up drum 11 becomes in a state where it can idle and rotates in the pay-out direction. can do.
  • the power transmission path from the motor 12 to the winding drum 11 may be connected by the clutch 13, and the winding drum 11 may be rotationally driven in the letting-out direction.
  • the tip of the mooring line R is anchored to a mooring post 35 provided on the quay 30.
  • the mooring line R pulled out from the winding drum 11 is protected and guided by an appropriate guide device 36 such as a chock (mooring hole), a fairlead, a deck end roller, or a stand roller.
  • FIG. 3 is a diagram showing the configuration of the ship maneuvering system 20.
  • the ship maneuvering system 20 of the ship S includes a ship maneuvering controller 6, an instrument group 7 electrically connected to the ship maneuvering controller 6 by wire or wirelessly, a user interface 8, and a propulsion controller group 9C. .
  • the ship maneuvering controller 6 includes a processor, memories such as ROM and RAM, and an I/O section (all not shown).
  • the vessel maneuvering controller 6 is connected to an instrument group 7, a user interface 8, and a propulsion controller group 9C via an I/O section.
  • a storage (not shown) may be connected to the ship maneuvering controller 6 via an I/O section.
  • a ship-to-land communication device 31 is connected to the ship maneuvering controller 6.
  • the ship maneuvering controller 6 uses the ship-land communication device 31 to transmit ship maneuvering information to a state monitoring device 33 provided at a land base.
  • This vessel maneuvering information includes navigation conditions within the port, equipment operation data, etc.
  • the instrument group 7 includes a rangefinder 27, a camera 28, and various navigation instruments.
  • the rangefinder 27 includes a bow rangefinder that measures the distance from the bow of the ship to the quay 30, and a stern rangefinder that measures the distance from the stern to the quay 30.
  • the distance meter 27 may be, for example, a known non-contact distance meter such as a laser distance meter.
  • the ship maneuvering controller 6 can determine the distance in the berthing direction D2 from the hull 5 to the berthing wall 30 to which the ship is attempting to berth (hereinafter referred to as "berthing distance d").
  • the berthing direction D2 is a direction approaching the quay 30.
  • the berthing distance d may be defined as the shortest distance from the hull 5 to the quay 30.
  • the cameras 28 include a bow side camera that is installed on the bow side deck and continuously or intermittently images the quay wall 30 from the bow, and a stern side camera that is installed on the stern side deck that images the quay wall 30 continuously or intermittently from the stern.
  • the imaging field of the bow camera preferably includes the bow mooring machine 10B and/or the mooring line R let out from the bow mooring machine 10B.
  • the imaging field of the stern camera includes the stern mooring machine 10A and/or the mooring line R let out from the stern mooring machine 10A.
  • an around-view camera system may be employed as the camera 28.
  • Various navigation instruments include a compass 21 that detects the heading angle of the ship, a speedometer 22 (water speedometer), a wind direction and speed meter 25 (wind vane and anemometer), a ship position measuring device 26, a current meter 29, an acoustic depth sounder, Examples include radar, chronometer, and draft gauge.
  • the ship position measuring device 26 is a radio wave type and/or light wave type position measuring device using GPS using a satellite or radio waves and light from a reference station.
  • the ship maneuvering controller 6 can obtain navigation status information including the position, course, heading angle, ship speed, etc. of the ship 5 based on information obtained from various navigation instruments.
  • the ship handling controller 6 uses the ship-land communication device 31 to timely acquire port information from the port information providing device 32 provided at the land base.
  • Port information includes weather and oceanographic information within the port, port environment information, etc.
  • Weather/oceanographic information includes wind speed, wind direction, tidal current, tide level, weather, climate, etc. within the port.
  • the port environment information includes the degree of congestion within the port, berth status, etc.
  • the ship maneuvering controller 6 also uses information sent from the port information providing device 32 via the ship-land communication device 31, together with information from the instrument group 7, for calculations.
  • the user interface 8 is provided with a control device 80 and a display device 83.
  • the user interface 8 includes setting devices and indicators for propulsion devices 9 such as individual propellers and rudders, a display section that displays signals from the instrument group 7 such as direction display and ship speed display, various function changeover switches, and , an indicator light, etc. may be further provided.
  • a joystick 81 and a turning dial 82 are provided as the operating device 80.
  • the joystick 81 receives commands for the direction and magnitude of thrust for parallel movement of the hull 5, which are input by the ship operator by moving the joystick 81, and outputs them to the ship handling controller 6.
  • the turning dial 82 receives a command for the direction and magnitude of a turning moment for turning movement, which is input by the ship operator by moving the turning dial 82, and inputs it to the ship handling controller 6.
  • the control device 80 is not limited to the above, and any known control device may be employed.
  • the display device 83 at least one type of known display device is employed among various display devices such as a touch panel display and a head-mounted display.
  • the display device 83 may include ship maneuvering support information output from the ship maneuvering controller 6, images captured by the camera 28, operating status of equipment, navigation status information, environmental information of the hull 5 (oceanographic/weather information), etc. .
  • the ship maneuvering support information includes the ship's position on the nautical chart, the recommended route, the evacuation line, the remaining distance, seaside facilities, and the target position, the moving speed vector of the ship 5, the speed at arbitrary positions of the bow and stern, and the quay 30. This includes at least one of the following: remaining distance to the destination.
  • the propulsion controller group 9C controls the operation of the propulsion device 9.
  • the propulsion controller group 9C includes a winch controller 50 that controls the winch W of the mooring machine 10, a longitudinal propulsion controller 91 that controls the longitudinal propulsion device 2, and a lateral propulsion controller 92 that controls the lateral propulsion device 3.
  • the winch controller 50, the longitudinal propulsion controller 91, and the lateral propulsion controller 92 are provided according to the number of winches W, longitudinal propulsion devices 2, and lateral propulsion devices 3 mounted on the ship S. However, in FIG. 3, one of the winch controller 50, the longitudinal propulsion controller 91, and the lateral propulsion controller 92 is illustrated, and the rest are omitted.
  • the ship handling controller 6 outputs commands to each of these propulsion controller groups 9C, and the propulsion controller groups 9C operate the corresponding propulsion devices 9 based on the commands.
  • the ship maneuvering controller 6 includes a ship maneuvering support information generation section 65, a display control section 66, a route planning section 67, a command generation section 68, and a propulsion control section 69.
  • the ship maneuvering support information generation unit 65 generates ship maneuvering support information based on information acquired from the instrument group 7 and the port information providing device 32.
  • the display control unit 66 displays the generated ship maneuvering support information on the display device 83.
  • the route planning unit 67 searches for an optimal route that optimizes a predetermined evaluation index from the departure point to the destination based on information acquired from the instrument group 7 and the port information providing device 32, and plans the optimal route. Generate as a route.
  • the command generating unit 68 generates a command on behalf of the ship operator during automatic ship maneuvering.
  • the propulsion control unit 69 corresponds to a control device in the claims.
  • the propulsion control section 69 controls the propulsion device 9 via the propulsion controller group 9C.
  • FIG. 5 is a diagram illustrating the processing of the propulsion control section 69.
  • the propulsion control unit 69 of the ship maneuvering controller 6 includes an acquisition device 61, a limiter 64, a corrector 60, a thrust distribution calculator 62, and an output device 63.
  • the acquisition unit 61 acquires information detected or measured by the instrument group 7, commands received by the control device 80 of the user interface 8, and the like.
  • the information detected or measured by the instrument group 7 includes the berthing distance d and the berthing speed Vapp.
  • the acquirer 61 performs A/D conversion, scaling processing, etc. on the acquired information and commands.
  • the acquirer 61 generates a "command vector" based on the propulsion command (that is, the tilt angle and tilt direction of the joystick 81) received by the joystick 81.
  • the direction of the command vector corresponds to the tilting direction of the joystick 81, and the magnitude of the command vector corresponds to the tilting angle of the joystick 81.
  • the command vector is defined as a thrust command to be applied to the hull 5 expressed in direction and magnitude.
  • the command vector is defined as the speed command of the hull 5 expressed in direction and magnitude.
  • the limiter 64 limits the command vector as necessary based on the berthing distance d.
  • the function of the limiter 64 will be explained in detail later. Note that the limiter 64 may limit not only the command vector based on the command received by the control device 80 but also the command vector generated by the command generation unit 68.
  • the corrector 60 receives disturbance information including the tidal current detected by the tidal current meter 29, the wind direction and wind speed detected by the anemometer 25, and/or the tidal current and wind direction and wind speed in the port acquired from the port information providing device 32.
  • the disturbance force acting on the ship S is estimated based on the disturbance information, and the command vector is corrected by adding a force that resists the disturbance force to the command vector.
  • the thrust distribution calculator 62 distributes thrust to each of the plurality of propulsion devices 9 (mooring aircraft 10, longitudinal propulsion device 2, and lateral propulsion device 3) so that the corrected command vector and thrust vector correspond to each other. Perform calculations.
  • the mooring machine 10 is regarded as a propulsion device 9 that outputs a thrust that propels the hull 5 in the berthing direction D2 by winding up the mooring line R.
  • the "thrust vector" is defined as a composite force of thrusts output from a plurality of propulsion devices 9 (mooring machine 10, longitudinal propulsion machine 2, and lateral propulsion machine 3) expressed in direction and magnitude.
  • the thrust distribution calculation method by the thrust distribution calculation unit 62 will be described in detail later.
  • the output device 63 performs scaling, D/A conversion, abnormality processing, etc. on the thrust distributed to each propulsion device 9 (front/rear propulsion device 2, lateral propulsion device 3, mooring device 10) obtained by the thrust distribution calculator 62. After doing so, it is output as an operation command to the corresponding propulsion controller group 9C (winch controller 50, longitudinal propulsion controller 91, and lateral propulsion controller 92). As a result, a thrust toward the tilting direction is applied to the hull 5 with a magnitude corresponding to the tilting angle of the joystick 81.
  • the ship maneuvering controller 6 starts approach maneuvering when the ship S enters the port. During approach maneuvering, the maneuvering controller 6 generates approach maneuvering support information using information acquired from the instrument group 7 and the port information providing device 32, and displays it on the screen of the display device 83.
  • the vessel maneuvering controller 6 sets a predetermined berthing start position P2 as a target position, and uses information acquired from the instrument group 7 and the port information providing device 32 to determine the optimal route from the port entrance P1 to the berthing start position P2 as a planned route. Find it as.
  • approach vessel maneuvering support information includes a port nautical chart on which the planned route consisting of a plurality of waypoints, the target position, and the ship's own position are overlaid, and navigation information such as the heading angle and ship speed.
  • the berthing start position P2 is a predetermined distance (for example, about 30 to 50 meters) away from the quay 30 of the berth, and the hull 5 of the vessel S that has reached the berth start position P2 has its longitudinal direction aligned with the extension direction of the quay 30 (hereinafter referred to as , referred to as the "quay wall direction D1"), and the speed in the longitudinal direction is approximately zero.
  • the vessel operator operates the joystick 81 and the turning dial 82 based on the approach vessel maneuvering support information displayed on the display device 83.
  • the ship maneuvering controller 6 obtains a command vector based on the tilt angle and tilt direction of the joystick 81.
  • the ship S may be automatically maneuvered toward the approach.
  • the ship handling controller 6 may generate the command vector by itself based on the information acquired from the instrument group 7 and the port information providing device 32, and the planned route.
  • the ship maneuvering controller 6 obtains a modified command vector by adding a force resisting the disturbance force to the command vector, and obtains a thrust vector corresponding to the modified command vector by combining the thrust forces output from the front and rear propulsion units 2. As such, thrust is distributed to the front and rear propulsion units 2. In approach maneuvering, the thrust distributed to the lateral propulsion machine 3 and the mooring machine 10 is zero.
  • the ship maneuvering controller 6 generates a thrust target value such that the distributed thrust is output, and outputs it to the longitudinal propulsion controller 91, and the longitudinal propulsion controller 91 generates a thrust force corresponding to the thrust target value. Controls the longitudinal propulsion device 2. As a result, the ship S obtains a thrust corresponding to the command vector and navigates along the planned route.
  • the ship maneuvering controller 6 starts the berthing maneuver when the ship S reaches the berthing start position P2. During the berthing maneuver, the ship maneuvering controller 6 generates berthing maneuver support information using information acquired from the instrument group 7 and the port information providing device 32, and displays it on the screen of the display device 83. In the berthing maneuver, the ship S is moved from the berthing start position P2 to a predetermined mooring start position P3.
  • the mooring start position P3 is a position that is several to several tens of meters away from the quay 30 of the berth, and the hull 5 of the vessel S that has arrived at the mooring start position P3 is approximately parallel to the quay direction D1 in the longitudinal direction.
  • Forward and lateral speeds are approximately zero.
  • a nautical chart of the port with the target position and own ship position overlaid as berthing maneuver support information, navigation information such as the heading angle and ship speed, berthing distance d, and information captured by the camera 28 are displayed. Images etc. are displayed.
  • the ship operator operates the joystick 81 and the turning dial 82 based on the berthing ship maneuvering support information displayed on the display device 83.
  • the ship maneuvering controller 6 obtains a command vector based on the tilt angle and tilt direction of the joystick 81.
  • the ship S may be automatically maneuvered to dock.
  • the ship maneuvering controller 6 may generate the command vector by itself based on information acquired from the instrument group 7 and the port information providing device 32.
  • the ship maneuvering controller 6 obtains a modified command vector by adding a force resisting the disturbance force to the command vector, and corresponds to the modified command vector by combining the thrusts output from the longitudinal propulsion device 2 and the lateral propulsion device 3. Thrust is distributed to the longitudinal propulsion device 2 and the transverse propulsion device 3 so that a thrust vector is obtained. In the docking maneuver, the thrust distributed to the mooring aircraft 10 is zero.
  • the ship maneuvering controller 6 generates and outputs a thrust target value such that the thrust distributed to each of the longitudinal propulsion controller 91 and the lateral propulsion controller 92 is output, and the longitudinal propulsion controller 91 outputs the thrust that is distributed to each of the longitudinal propulsion controller 91 and the lateral propulsion controller 92.
  • the longitudinal propulsion device 2 is controlled so that the thrust corresponding to the target value is outputted, and the lateral propulsion controller 92 controls the lateral propulsion device 3 so that the thrust corresponding to the given thrust target value is outputted.
  • the ship S obtains a thrust corresponding to the command vector and mainly moves horizontally to the mooring start position P3.
  • the vessel maneuvering controller 6 After the tips of all the mooring lines R are anchored to the mooring posts 35 provided on the quay 30, the vessel maneuvering controller 6 starts mooring vessel maneuvering.
  • the vessel maneuvering controller 6 generates mooring vessel maneuvering support information using the information acquired from the instrument group 7 and the port information providing device 32, and causes the mooring vessel maneuvering support information to be displayed on the screen of the display device 83.
  • On the screen of the display device 83 a nautical chart of the port with the target position and own ship position overlaid as berthing maneuver support information, navigation information such as the heading angle and ship speed, berthing distance d, and information captured by the camera 28 are displayed. Images etc. are displayed.
  • the ship operator visually recognizes the mooring ship maneuvering support information displayed on the display device 83 and operates the joystick 81 and turning dial 82 of the maneuvering device 80.
  • the joystick 81 and the turning dial 82 accept operations from the boat operator and input them to the boat steering controller 6 .
  • the mooring maneuver may be performed automatically.
  • the vessel maneuvering controller 6 When mooring maneuvering is performed automatically, the vessel maneuvering controller 6 generates a command vector based on information acquired from the instrument group 7 and the port information providing device 32, and the vessel operator uses the command vector generated by the vessel maneuvering controller 6 to operate the vessel. It can be corrected using 80.
  • the acquirer 61 of the ship maneuvering controller 6 acquires the propulsion command received by the maneuvering device 80 such as the joystick 81 and generates a command vector.
  • the maneuvering device 80 such as the joystick 81
  • a lateral thrust acts on the vessel S, and the vessel S moves in the berthing direction D2. Therefore, when the propulsion command Uc is a thrust command, the command vector at the time of mooring maneuvering is a vector pointing in the berthing direction D2 with a thrust of a magnitude corresponding to the propulsion command. Further, when the propulsion command Uc is a speed command, the command vector during mooring maneuvering is a vector pointing in the berthing direction D2 and having a speed corresponding to the propulsion command Uc.
  • the limiter 64 of the maneuvering controller 6 places a limit on the propulsion command Uc.
  • the limiter 64 may be configured to limit the propulsion command Uc when the berthing distance d is less than a predetermined limit distance.
  • the limit distance may be the distance from the quay 30 to the mooring start position P3, or may be a shorter distance.
  • the limiter 64 is given in advance information representing the relationship between the berthing distance d and the propulsion command limit value Ulim, and the limiter 64 determines the propulsion command limit value Ulim based on this information.
  • FIG. 7 is a chart showing an example of the relationship between the berthing distance d and the propulsion command limit value Ulim when the propulsion command Uc is a thrust command.
  • the propulsion command limit value Ulim illustrated in FIG. 7 is constant at the first value Up when the berthing distance d is from 0 to the first threshold dth1, and is constant at the first value Up when the berthing distance d is from the first threshold dth1 to the second threshold dth2. It increases as the berthing distance d increases, and remains constant at the command maximum value Umax when the berthing distance d is equal to or greater than the second threshold value dth2.
  • the first value Up is larger than 0 and corresponds to the thrust that presses the hull 5 against the quay 30.
  • FIG. 8 is a chart showing an example of the relationship between the berthing distance d and the propulsion command limit value Ulim when the propulsion command Uc is a speed command in the lateral direction (i.e., the berthing direction D2) of the ship S.
  • the propulsion command limit value Ulim illustrated in FIG. 8 is the first value Up when the berthing distance d is 0, and increases as the berthing distance d increases until the berthing distance d is greater than 0 and reaches the threshold value dth.
  • the command maximum value Umax is constant.
  • the first value Up is larger than 0 and corresponds to the speed at which the hull 5 is pressed against the quay 30. Alternatively, the first value Up may be zero.
  • the limiter 64 compares the propulsion command Uc with the determined propulsion command limit value Ulim, and if the propulsion command Uc is less than or equal to the propulsion command limit value Ulim, it does not limit the propulsion command Uc (or sets a zero limit). (multiply). On the other hand, if the propulsion command Uc is larger than the propulsion command limit value Ulim, the limiter 64 limits the propulsion command Uc and replaces the propulsion command Uc with the propulsion command limit value Ulim. That is, the propulsion command Uc is limited to the propulsion command limit value Ulim or less, regardless of the value of the input command.
  • the ship S will not collide with the quay 30, for example, even if the operation amount of the control device 80 is excessive due to an erroneous operation by the ship operator.
  • the propulsion command Uc is limited as follows.
  • the command vector (ie, propulsion command Uc) processed by the limiter 64 as described above is corrected by the corrector 60 by applying a force to resist the disturbance force.
  • the thrust distribution calculator 62 acquires the corrected command vector and distributes it to the plurality of propulsion devices 9 so that a thrust vector corresponding to the corrected command vector is obtained by combining the thrusts output from the plurality of propulsion devices 9. Allocate thrust to More specifically, the thrust distribution calculator 62 generates a thrust target value such that the thrust distributed to each of the winch controller 50, the longitudinal propulsion controller 91, and the lateral propulsion controller 92 is output. The output device 63 outputs the generated thrust target value to each of the propulsion controller group 9C.
  • the winch controller 50 controls the hoisting force or hoisting speed of the mooring machine 10 so that the thrust corresponding to the given thrust target value is output. Specifically, the winch controller 50 adjusts the winding force or winding speed of the winch W so that the target thrust value is obtained by winding and letting out the mooring line R and adjusting the tension and cable length. Control.
  • the longitudinal propulsion controller 91 controls the longitudinal propulsion machine 2 so that the thrust corresponding to the given thrust target value is output.
  • the lateral propulsion controller 92 controls the lateral propulsion machine 3 so that the thrust corresponding to the given thrust target value is output.
  • the ship S obtains a thrust corresponding to the corrected command vector and mainly moves horizontally until it approaches the shore.
  • Each mooring machine 10 has a permissible tension range for the mooring line R set therein. After the mooring maneuver is started and the deflection of the mooring rope R is eliminated by the hoisting operation of the mooring machine 10, the mooring rope is adjusted so that the tension of the mooring rope R measured by the tension meter 52 is maintained within the allowable range. Thrust is distributed to the aircraft 10.
  • the allowable range of tension is below a predetermined threshold value that is larger than 0 and smaller than the maximum winding force of mooring machines 10A and 10B.
  • the maximum winding force of the mooring machines 10A, 10B is a known value specific to each of the mooring machines 10A, 10B.
  • a threshold value (permissible range) regarding the tension of the mooring line R may be individually set for each of the mooring machines 10A and 10B.
  • the same threshold value (tolerable range) regarding the tension of the mooring rope R may be set for all mooring machines 10A and 10B.
  • thrust is first distributed to each mooring machine 10 so that the tension of each mooring line R is maintained within an allowable range. Then, the combined vector (mooring machine thrust vector) of the thrust output by all the mooring machines 10 is calculated, and the shortfall obtained by subtracting the mooring machine thrust vector from the command vector is the thrust output from the longitudinal propulsion machine 2 and the lateral propulsion machine 3. It is supplemented by If there is no shortage, the thrust output from the longitudinal propulsion device 2 and the transverse propulsion device 3 may be zero.
  • the ship maneuvering controller 6 causes the bow mooring machine 10B and the stern mooring machine 10A to perform a winding operation of the mooring line R, and at the same time to perform forward and backward propulsion during at least a portion of the mooring maneuver.
  • These propulsion devices 9 are controlled so that at least one of the machine 2 and the lateral propulsion machine 3 outputs a thrust that reduces the tension on the mooring line R.
  • FIG. 9 is a diagram explaining the berthing speed Vapp.
  • the berthing speed Vapp is a component of the speed V of the ship S in the berthing direction D2.
  • the berthing speed Vapp can be determined using the speed V of the ship S detected by the speedometer 22, the heading angle of the ship S detected by the compass 21, and pre-stored hull model and quay information.
  • the limiter 64 of the propulsion control unit 69 corrects the propulsion command limit value Ulim so that it decreases as the speed Vapp of the hull 5 in the berthing direction D2 increases.
  • the corrected propulsion command limit value Ulim is expressed as the propulsion command limit value Ulim ⁇ correction coefficient Kv.
  • the correction coefficient Kv has a value of 1 or less and is inversely proportional to the difference ⁇ V between the berthing speed Vapp and the predetermined approach speed threshold Vsafe. If the hull 5 moving below the approach speed threshold Vsafe comes into contact with the quay 30, no damage will occur to the hull 5, but if the hull 5 moving above the approach speed threshold Vsafe collides with the quay 30, damage will occur to the hull 5. there is a possibility. FIG.
  • FIG. 10 is a chart showing an example of the relationship between the difference ⁇ V between the berthing speed Vapp and the approach speed threshold Vsafe and the correction coefficient Kv.
  • the propulsion command limit value Ulim corrected by the berthing speed Vapp becomes smaller as the difference ⁇ V between the berthing speed Vapp and the approach speed threshold Vsafe increases.
  • the limiter 64 can limit the propulsion command Uc using the propulsion command limit value Ulim corrected in this way.
  • the limiter 64 of the propulsion device 9 described above determines the propulsion command limit value Ulim based on the berthing distance d, but the propulsion command limit value Ulim determined based on the berthing distance d is caused by disturbance in the berthing direction D2 acting on the ship S.
  • the force hereinafter referred to as "berthing disturbance force Fapp" may be corrected.
  • FIG. 11 is a diagram illustrating the berthing disturbance force Fapp.
  • the berthing disturbance force Fapp is a component of the disturbance force F acting on the ship S in the berthing direction D2.
  • the disturbance force F may include at least one of a fluid force exerted on the hull 5 by water and a wind pressure exerted on the hull 5 by wind.
  • the fluid force can be calculated, for example, based on the tidal current measured by the tidal current meter 29 and a pre-stored hull model.
  • the fluid force may be calculated based on the tidal current and tidal level in the harbor included in the weather/oceanographic information and a pre-stored hull model.
  • the wind pressure can be calculated, for example, based on the wind direction and wind speed measured by the anemometer 25 and the hull model. Alternatively, the wind pressure may be calculated based on the wind speed and wind direction in the harbor included in the weather/oceanographic information and a pre-stored hull model.
  • the berthing disturbance force Fapp can be obtained using the fluid force and wind pressure, the heading angle of the ship S detected by the compass 21, and the pre-stored ship model and quay information.
  • the limiter 64 of the propulsion control unit 69 acquires disturbance information including the wind direction, wind speed, and tidal current of the environment in which the hull 5 is placed, and determines the disturbance force in the berthing direction D2 acting on the hull 5 based on the disturbance information.
  • the disturbance force Fapp) is estimated, and the propulsion command limit value is corrected according to the berthing disturbance force Fapp.
  • the corrected propulsion command limit value Ulim is expressed as [propulsion command limit value Ulim ⁇ disturbance correction value Kf].
  • the disturbance correction value Kf is proportional to the berthing disturbance force Fapp.
  • a positive disturbance correction value Kf represents a disturbance force that promotes the movement of the ship S in the berthing direction D2
  • a negative disturbance correction value Kf represents a disturbance force that impedes the movement of the ship S in the berthing direction D2 (i.e., a disturbance force that promotes the movement of the ship S in the berthing direction D2). represents the disturbance force that promotes the movement of D3.
  • the relationship between the berthing disturbance force Fapp and the disturbance correction value Kf is defined in advance, and the limiter 64 calculates the disturbance correction value Kf based on the berthing disturbance force Fapp, and further calculates the propulsion command corrected by the disturbance correction value Kf.
  • the limit value Ulim can be determined.
  • the propulsion command limit value Ulim corrected by the berthing disturbance force Fapp is determined when the berthing disturbance force Fapp promotes the movement of the ship S in the unberthing direction D3 (that is, when the disturbance correction value Kf is a negative value) ), increases as the absolute value of the berthing disturbance force Fapp increases.
  • the propulsion command limit value Ulim corrected by the berthing disturbance force Fapp is determined by It becomes smaller as the absolute value of the disturbance force Fapp becomes larger.
  • the ship maneuvering system 20 includes: The mooring machine 10 is mounted on the hull 5 and includes propulsion machines 2 and 3 that output a thrust that propels the hull 5 in the berthing direction D2, and a mooring machine 10 that outputs a thrust that propels the hull 5 in the berthing direction D2 by winding the mooring rope R.
  • a plurality of propulsion devices 9 a plurality of propulsion devices 9; a distance meter 27 that detects a berthing distance d, which is the distance from the hull 5 to the quay 30 where the ship is about to berth;
  • a control device 80 that outputs a propulsion command Uc; Obtain the berthing distance d and the propulsion command Uc, and calculate the propulsion command limit value Ulim corresponding to the berthing distance d based on a given relationship in which the propulsion command limit value Ulim decreases as the berthing distance d becomes smaller;
  • the propulsion command Uc output from the control device 80 is greater than or equal to the propulsion command limit value Ulim, the propulsion command Uc is set to the propulsion command limit value Ulim, and the thrust corresponding to the limited propulsion command Uc is applied to the plurality of propulsion devices 9.
  • It is characterized by comprising a control device 69 that controls the plurality of propulsion devices 9 so that the thrust distributed to each of the plurality of
  • the value of the propulsion command Uc is limited to the propulsion command limit value Ulim or less.
  • the propulsion command limit value Ulim becomes a smaller value as the hull 5 approaches the quay 30, so when the hull 5 is close to the quay 30, even if an erroneous operation of the control device 80 occurs, the propulsion command Uc is limited to a sufficiently small value. This prevents the hull 5 from colliding with the quay 30.
  • the ship maneuvering system 20 according to the second item of the present disclosure is the ship maneuvering system 20 according to the first item, further comprising a speedometer 22 that detects the speed V of the hull 5, and the control device 69 controls the propulsion command limit value.
  • Ulim is corrected so that it becomes smaller as the speed Vapp of the hull 5 in the berthing direction D2 becomes larger.
  • the berthing speed Vapp of the hull 5 is taken into account in the propulsion command limit value Ulim, so the propulsion command Uc can be limited so as to more reliably prevent the hull 5 from colliding with the quay 30.
  • the control device 69 acquires disturbance information of the environment in which the hull 5 is placed, and based on the disturbance information.
  • the disturbance force Fapp in the berthing direction D2 acting on the hull 5 is estimated, and the propulsion command limit value Ulim is corrected according to the disturbance force Fapp.
  • the disturbance information may include, for example, wind direction, wind speed, and tidal current.
  • the berthing disturbance force Fapp acting on the hull 5 is added to the propulsion command limit value Ulim, so the propulsion command Uc can be restricted to more reliably prevent the collision of the hull 5 with the quay 30. .
  • the ship maneuvering system 20 according to the fourth item of the present disclosure is the ship maneuvering system 20 according to any one of the first to third items, further including a tension meter 52 that measures the tension of the mooring line R, and the control device 69: A plurality of thrusts are applied to the propulsion command so that the tension of the mooring line R measured by the tension meter 52 is maintained within a range greater than 0 and less than a predetermined threshold value smaller than the maximum entrainment force of the mooring machine 10. It is to be distributed to the device 9.
  • the ship maneuvering method includes propulsion units 2 and 3 that output a thrust that propels the hull 5 in the berthing direction D2, and outputs a thrust that propels the hull 5 in the berthing direction D2 by winding the mooring rope R.
  • a method for maneuvering a ship S in which a plurality of propulsion devices 9 including a mooring device 10 is mounted on a hull 5, Obtain the berthing distance d, which is the distance from the hull 5 to the quay 30 where the ship is going to berth, Obtain the propulsion command Uc for the hull 5, Based on a given relationship in which the propulsion command limit value Ulim decreases as the berthing distance d becomes smaller, the propulsion command limit value Ulim corresponding to the berthing distance d is determined, and the propulsion command is limited to the propulsion command limit value Ulim or less. Find the command Uc, Distributing the thrust corresponding to the limited propulsion command Uc to the plurality of propulsion devices 9, It is characterized in that the plurality of propulsion devices 9 are controlled so that thrust distributed from each of the plurality of propulsion devices 9 is output.
  • the value of the propulsion command Uc is limited to the propulsion command limit value Ulim or less, regardless of the initially obtained value of the propulsion command Uc.
  • the propulsion command limit value Ulim becomes a smaller value as the hull 5 approaches the quay 30, so when the hull 5 is close to the quay 30, even if an erroneous operation of the control device 80 occurs, the propulsion command Uc is limited to a sufficiently small value. This prevents the hull 5 from colliding with the quay 30.
  • the functions of the vessel maneuvering controller 6 disclosed herein may be implemented using general purpose processors, special purpose processors, integrated circuits, ASICs (Application Specific Integrated Circuits), conventional circuits, and/or circuits configured or programmed to perform the disclosed functions. Alternatively, it can be implemented using a circuit or processing circuit including a combination thereof. Processors are considered processing circuits or circuits because they include transistors and other circuits.
  • a circuit, unit, or means is hardware that performs the recited functions.
  • the hardware may be the hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. If the hardware is a processor, which is considered a type of circuit, the circuit, means or unit is a combination of hardware and software, the software being used to configure the hardware and/or the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

This vessel handling system comprises: a plurality of propelling devices mounted in a vessel body including a propelling machine and a mooring machine; a distance meter that detects a berthing distance which is a distance between the vessel body and a quay for berthing; a steering instrument that outputs a propelling command to the propelling device; and a control device that acquires the berthing distance and the propelling command to obtain a propelling command limitation value corresponding to the berthing distance on the basis of a predetermined relationship in which the propelling command limitation value decreases as the berthing distance decreases, and controls the plurality of propelling devices such that, if the propelling command output from the steering instrument is greater than or equal to the propelling command limitation value, the propelling command limitation value is set as the propelling command, and a thrust corresponding to the limited propelling command is distributed to the plurality of propelling devices so that the distributed thrust is output from each of the plurality of propelling devices.

Description

操船システム及び操船方法Ship maneuvering system and method
 本開示は、船舶の特に接岸時の操船方法及びそれを実現する操船システムに関する。 The present disclosure relates to a method for maneuvering a ship, particularly when berthed, and a ship maneuvering system that implements the method.
 船舶が入港してからバースで着岸し係船されるまでの一連の工程には、操船者にとって精神的負荷の大きい操船、船内作業員にとって労働負荷の大きい作業が含まれている。このような理由から、負荷の軽減と安全性の向上のために上記一連の工程の自動化や省人化の要望がある。しかし、港湾内の気象海象の変動に対する臨機応変な対応や、船内作業員と港湾内作業員の絶妙な連携が必要とされることから、未だ操船者や船内及び港湾内作業員の経験に頼って作業の大部分が行われているのが現状である。 The series of processes from when a ship enters a port to when it docks at a berth and is moored includes ship operations that place a large mental burden on the ship operator, and tasks that place a large labor load on the ship's workers. For these reasons, there is a desire to automate the above series of steps and save labor in order to reduce the load and improve safety. However, as it requires flexible responses to changes in weather and sea conditions within the port and exquisite cooperation between shipboard and port workers, it is still necessary to rely on the experience of ship operators and shipboard and port workers. At present, most of the work is being carried out.
 特許文献1は、着岸から係船までの操船を自動化する自動着岸係船機を開示する。この特許文献1の船舶は、船体の前後推力を出力する前後推力機関と、船体の両舷方向のいずれにも横推力を出力可能な船首側サイドスラスタ及び船尾側ポッド推進機と、係船索の巻取り及び繰り出しが可能な船首側係船機及び船尾側係船機と、岸壁までの距離を計測する距離計と、距離計の計測値に基づいて船首側サイドスラスタ、船尾側ポッド推進機、船首側係船機及び船尾側係船機を制御するコントローラとを備える。コントローラは、船舶の着岸・係船動作を着岸モード、係船モードの順に行う。コントローラは、着岸モードでは前後推力機関、船首側係船機及び船尾側係船機を停止させて、船首側サイドスラスタ及び船尾側ポッド推進機で船体を岸壁から1mの係船開始位置まで横移動させる。コントローラは、係船モードでは前後推力機関、船首側サイドスラスタ及び船尾側ポッド推進機を停止させて、船首側係船機及び船尾側係船機で係船索を引っ張ることにより船体を岸壁に係止させる。 Patent Document 1 discloses an automatic berthing and mooring machine that automates ship maneuvering from berthing to mooring. The ship of Patent Document 1 includes a longitudinal thrust engine that outputs longitudinal thrust of the hull, a bow side thruster and a stern pod propulsion machine that can output lateral thrust in both directions of the hull, and a mooring line. A bow mooring machine and a stern mooring machine that can be retracted and unwound, a rangefinder that measures the distance to the quay, a bow side thruster, a stern pod propulsion machine, and a bow side thruster based on the measured value of the rangefinder. It includes a mooring machine and a controller that controls the stern side mooring machine. The controller performs the berthing and mooring operations of the vessel in the order of berthing mode and mooring mode. In the berthing mode, the controller stops the front and rear thrust engines, the bow mooring machine, and the stern mooring machine, and uses the bow side thruster and the stern pod propulsion machine to move the hull laterally to a mooring starting position 1 m from the quay. In the mooring mode, the controller stops the front and rear thrust engines, the bow side thruster, and the stern pod propulsion machine, and uses the bow mooring machine and the stern mooring machine to pull the mooring line, thereby mooring the ship to the quay.
特開2005-255058号公報Japanese Patent Application Publication No. 2005-255058
 船舶を着岸(又は、着桟)させる際に、操船者が操縦機器を誤操作することが想定され得る。誤操作によっても船体は移動する。船舶が岸壁へ十分に近づいた状態で、例えば、船舶に岸壁へ向かう推力を発生させるような誤操作が行われると、船舶が岸壁へ衝突するおそれがある。船舶の岸壁からの距離が小さくなるにつれて、誤操作により船舶が岸壁に衝突する可能性は高まる。 When berthing (or berthing) a ship, it can be assumed that the ship operator will operate the control equipment incorrectly. The ship will also move due to incorrect operation. If, for example, an erroneous operation is performed that causes the vessel to generate a thrust toward the quay while the vessel is sufficiently close to the quay, the vessel may collide with the quay. As the distance of the ship from the quay decreases, the possibility of the ship colliding with the quay due to incorrect operation increases.
 本開示は以上の事情に鑑みてなされたものであり、その目的は、船舶を着岸させる際に、操縦機器の誤操作が発生しても船舶の岸壁への衝突を阻止する技術を提案することにある。 The present disclosure has been made in view of the above circumstances, and its purpose is to propose a technology that prevents a ship from colliding with a quay even if a misoperation of the control equipment occurs when the ship is docked. be.
 上記課題を解決するために、本開示の一態様に係る操船システムは、
船体を接岸方向へ推し進める推力を出力する推進機と、係船索の巻取りによって前記船体を前記接岸方向へ推し進める推力を出力する係船機とを含む、前記船体に搭載された複数の推進デバイスと、
前記船体から着岸しようとする岸壁までの距離である接岸距離を検出する距離計と、
推進指令を出力する操縦機器と、
前記接岸距離及び前記推進指令を取得し、前記接岸距離が小さくなるのに伴って推進指令制限値が小さくなる所与の関係に基づいて前記接岸距離と対応する前記推進指令制限値を求め、前記操縦機器から出力される前記推進指令が前記推進指令制限値以上である場合は、前記推進指令を前記推進指令制限値とし、制限された前記推進指令に対応する推力を前記複数の推進デバイスに配分し、前記複数の推進デバイスの各々から配分された推力が出力されるように前記複数の推進デバイスを制御する制御装置と、を備えるものである。
In order to solve the above problems, a ship maneuvering system according to an aspect of the present disclosure includes:
a plurality of propulsion devices mounted on the hull, including a propulsion machine that outputs a thrust that propels the hull in the berthing direction; and a mooring machine that outputs a thrust that propels the hull in the berthing direction by winding a mooring line;
a distance meter that detects a berthing distance, which is a distance from the ship's hull to a quay to which it is attempting to berth;
A control device that outputs a propulsion command;
Obtaining the berthing distance and the propulsion command, determining the propulsion command limit value corresponding to the berthing distance based on a given relationship in which the propulsion command limit value decreases as the berthing distance decreases, and If the propulsion command output from the control device is equal to or greater than the propulsion command limit value, the propulsion command is set as the propulsion command limit value, and the thrust corresponding to the limited propulsion command is distributed to the plurality of propulsion devices. and a control device that controls the plurality of propulsion devices so that thrust distributed from each of the plurality of propulsion devices is output.
 本開示の一態様に係る操船方法は、
船体を接岸方向へ推し進める推力を出力する推進機と、係船索の巻取りによって前記船体を前記接岸方向へ推し進める推力を出力する係船機とを含む複数の推進デバイスを前記船体に搭載した船舶の操船方法であって、
前記船体から着岸しようとする岸壁までの距離である接岸距離を取得し、
前記船体に対する推進指令を取得し、
前記接岸距離が小さくなるのに伴って推進指令制限値が小さくなる所与の関係に基づいて前記接岸距離と対応する前記推進指令制限値を求め、前記推進指令制限値以下に制限された前記推進指令を求め、
制限された前記推進指令に対応する推力を前記複数の推進デバイスに配分し、
前記複数の推進デバイスの各々から配分された推力が出力されるように前記複数の推進デバイスを制御するものである。
A ship maneuvering method according to one aspect of the present disclosure includes:
Maneuvering a ship in which a plurality of propulsion devices are mounted on the hull, including a propulsion machine that outputs a thrust that propels the hull in the berthing direction, and a mooring machine that outputs a thrust that propels the hull in the berthing direction by winding a mooring line. A method,
Obtaining the berthing distance, which is the distance from the ship's hull to the quay where the ship is attempting to berth;
obtaining a propulsion command for the hull;
The propulsion command limit value corresponding to the berthing distance is determined based on a given relationship in which the propulsion command limit value decreases as the berthing distance becomes smaller, and the propulsion command limit value is determined to be less than or equal to the propulsion command limit value. Ask for instructions,
allocating thrust corresponding to the limited propulsion command to the plurality of propulsion devices;
The plurality of propulsion devices are controlled so that thrust distributed from each of the plurality of propulsion devices is output.
 本開示によれば、船舶を着岸させる際に、操縦機器の誤操作が発生しても船舶の岸壁への衝突を阻止する技術を提案できる。 According to the present disclosure, it is possible to propose a technology that prevents a ship from colliding with a quay even if an erroneous operation of a control device occurs when a ship is docked.
図1は、本開示の一実施形態に係る操船システムが適用される船舶の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a ship to which a ship maneuvering system according to an embodiment of the present disclosure is applied. 図2は、係船機の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a mooring machine. 図3は、操船システムの構成を示す図である。FIG. 3 is a diagram showing the configuration of the ship maneuvering system. 図4は、操船コントローラの機能部を説明する図である。FIG. 4 is a diagram illustrating the functional units of the ship maneuvering controller. 図5は、推進制御部の処理を説明する図である。FIG. 5 is a diagram illustrating the processing of the propulsion control section. 図6は、着岸係船時の操船方法を説明する図である。FIG. 6 is a diagram illustrating a method of maneuvering a ship when mooring at a berth. 図7は、接岸距離dと推進指令制限値Ulimとの関係の一例を表す図表である。FIG. 7 is a chart showing an example of the relationship between the berthing distance d and the propulsion command limit value Ulim. 図8は、接岸距離dと推進指令制限値Ulimとの関係の一例を表す図表である。FIG. 8 is a chart showing an example of the relationship between the berthing distance d and the propulsion command limit value Ulim. 図9は、接岸速度Vappを説明する図である。FIG. 9 is a diagram illustrating the berthing speed Vapp. 図10は、接岸速度Vappと接近速度閾値Vsafeの差ΔVと補正係数Kvとの関係の一例を表す図表である。FIG. 10 is a chart showing an example of the relationship between the difference ΔV between the berthing speed Vapp and the approach speed threshold Vsafe and the correction coefficient Kv. 図11は、接岸外乱力Fappを説明する図である。FIG. 11 is a diagram illustrating the berthing disturbance force Fapp.
 次に、図面を参照して本開示の実施の形態を説明する。図1は本発明の一実施形態に係る操船システム20が適用される船舶Sの概略構成を示す図である。 Next, embodiments of the present disclosure will be described with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a ship S to which a ship maneuvering system 20 according to an embodiment of the present invention is applied.
〔船舶Sの概略構成〕
 図1に示すように、船舶Sを基準とし、当該船舶Sの船首と船尾を繋ぐ水平方向を「前後方向」とし、前後方向と直交する水平方向(左右方向)を「横方向」とする。船舶Sは、船体5と、船体5に対し前後方向の推力を出力する少なくとも1つの前後推進機2と、船体5に対し横方向の推力を出力する少なくとも1つの横推進機3とを備える。
[Schematic configuration of ship S]
As shown in FIG. 1, with a ship S as a reference, the horizontal direction connecting the bow and stern of the ship S is defined as a "front-back direction", and the horizontal direction (left-right direction) perpendicular to the front-back direction is defined as a "lateral direction". The ship S includes a hull 5 , at least one longitudinal propulsion device 2 that outputs a thrust in the longitudinal direction to the hull 5 , and at least one lateral propulsion device 3 that outputs a thrust in the lateral direction to the hull 5 .
 本実施形態において、前後推進機2は主推進機である可変ピッチプロペラ及び舵の組み合わせを含む。可変ピッチプロペラ及び舵は、船体5の船尾側に設けられている。但し、前後推進機2は上記に限定されず、旋回式スラスタであったり、複数の可変ピッチプロペラ及び舵の組み合わせであったりしてもよい。 In this embodiment, the longitudinal propulsion device 2 includes a combination of a variable pitch propeller, which is a main propulsion device, and a rudder. A variable pitch propeller and a rudder are provided on the stern side of the hull 5. However, the longitudinal propulsion device 2 is not limited to the above, and may be a rotating thruster or a combination of a plurality of variable pitch propellers and rudders.
 横推進機3は、好ましくは、少なくとも1つの船首側横推進機3Bと少なくとも1つの船尾側横推進機3Aとを含む。本実施形態において、船首側横推進機3Bは船首側に設けられたサイドスラスタ(バウスラスタ)である。また、本実施形態において、船尾側に設けられた可変ピッチプロペラ及び舵の組み合わせは、舵の向きによって前後方向の推力と横方向の推力との双方を出力可能であることから、船尾側横推進機3Aとしての機能も併せ備える。但し、船舶Sが備える横推進機3は上記に限定されず、船体5の船首側及び船尾側のそれぞれにサイドスラスタが配置されたり、船体5の船首側及び船尾側のうち少なくとも一方に旋回式スラスタが配置されたりしていてもよい。 The lateral propulsion device 3 preferably includes at least one bow side lateral propulsion device 3B and at least one stern side lateral propulsion device 3A. In this embodiment, the bow side lateral propulsion device 3B is a side thruster (bow thruster) provided on the bow side. In addition, in this embodiment, the combination of the variable pitch propeller and rudder provided on the stern side can output both longitudinal thrust and lateral thrust depending on the direction of the rudder, so the stern side lateral propulsion It also has the function of machine 3A. However, the lateral propulsion device 3 provided in the ship S is not limited to the above, and side thrusters may be arranged on each of the bow side and the stern side of the hull 5, or a swing type device may be arranged on at least one of the bow side and the stern side of the hull 5. Thrusters may also be arranged.
 更に、船舶Sは、甲板の船首側に設置された少なくとも1つの船首側係船機10Bと、甲板の船尾側に設置された少なくとも1つの船尾側係船機10Aとを備える。本開示では、係船機10、前後推進機2、及び、横推進機3を総じて「推進デバイス9」と称する。本来の係船機10は船舶Sを係船するためのデバイスであるが、本開示の操船システム20では係船機10が船舶Sに推力を与える機能を有するため、係船機10も推進デバイス9の一種と捉える。 Furthermore, the ship S includes at least one bow side mooring machine 10B installed on the bow side of the deck, and at least one stern side mooring machine 10A installed on the stern side of the deck. In the present disclosure, the mooring machine 10, the longitudinal propulsion machine 2, and the lateral propulsion machine 3 are collectively referred to as a "propulsion device 9." The mooring machine 10 is originally a device for mooring the ship S, but in the ship maneuvering system 20 of the present disclosure, the mooring machine 10 has a function of giving thrust to the ship S, so the mooring machine 10 is also a type of propulsion device 9. Capture.
 本実施形態において船首側係船機10Bにはヘッドライン係船機と、フォワードスプリングライン係船機とが含まれる。船首側係船機10Bには、フォワードブレスト係船機が更に含まれていてもよい。また、本実施形態において船尾側係船機10Aには、スターンライン係船機とアフトスプリング係船機とが含まれる。船尾側係船機10Aには、アフトブレスト係船機が更に含まれていてもよい。船舶Sが所持すべき係船機10(船首側係船機10Bと船尾側係船機10Aとを区別しないときは、符号10を用いる)は、艤装数などにより決められている。 In this embodiment, the bow mooring machine 10B includes a headline mooring machine and a forward spring line mooring machine. The bow side mooring machine 10B may further include a forward breast mooring machine. Further, in this embodiment, the stern mooring machine 10A includes a sternline mooring machine and an aft spring mooring machine. The stern mooring machine 10A may further include an aft breast mooring machine. The mooring machine 10 (the reference numeral 10 is used when not distinguishing between the bow mooring machine 10B and the stern mooring machine 10A) that the ship S should possess is determined by the number of riggings and the like.
 船首側係船機10B及び船尾側係船機10Aの各係船機10は実質的に同一の構造を有する。図2に示すように、各係船機10は、係船索Rと、係船索Rの巻取りと繰り出しとが可能なウインチWとを備える。ウインチWは、電動油圧式である。ウインチWは、係船索Rが巻かれた巻取りドラム11と、巻取りドラム11を回転駆動するモータ12と、モータ12から巻取りドラム11への動力伝達の接続と遮断とを切り替える油圧式のクラッチ13と、モータ12から巻取りドラム11への動力伝達経路上に設けられた減速機14と、常時制動力を与える油圧解除式のブレーキ15とを備える。但し、ウインチWの構造は上記に限定されず、ウインチWは電動式であってもよい。 Each of the mooring machines 10, the bow mooring machine 10B and the stern mooring machine 10A, has substantially the same structure. As shown in FIG. 2, each mooring machine 10 includes a mooring line R and a winch W capable of winding up and letting out the mooring line R. The winch W is an electro-hydraulic type. The winch W includes a winding drum 11 around which the mooring line R is wound, a motor 12 that rotationally drives the winding drum 11, and a hydraulic winch that switches connection and disconnection of power transmission from the motor 12 to the winding drum 11. It includes a clutch 13, a speed reducer 14 provided on a power transmission path from the motor 12 to the winding drum 11, and a hydraulic release type brake 15 that constantly applies braking force. However, the structure of the winch W is not limited to the above, and the winch W may be electric.
 係船機10には、回転位置センサ51、張力計52、索長計53、及び、これらの検出値に基づいてウインチWの動作を制御するウインチコントローラ50が設けられている。回転位置センサ51は、モータ12又は巻取りドラム11の回転位置及び回転数を検出する。索長計53は、巻取りドラム11から繰り出された係船索Rの長さを計測する。ウインチコントローラ50は、回転位置センサ51の検出信号及び/又は索長計53の測定値に基づいて、モータ12又は巻取りドラム11の回転を計測し、係船索Rの巻取り長さや繰り出し長さを推定する。張力計52は、係船索Rに作用する張力(負荷)を直接的又は間接的に検出するものであってよい。張力計52は、例えば、ブレーキ15に設けられたロードセルであって、当該ロードセルで検出された荷重に基づいて係船索Rの張力が推定されてよい。張力計52は、例えば、モータ12の出力トルクを検出するトルクセンサであって、当該トルクセンサで検出されたトルクに基づいて係船索Rの張力が推定されてよい。ウインチコントローラ50は、張力計52の検出値に基づいて、係船索Rに作用する張力が所定の上限値を超えない所定の値に維持されるように巻取りドラム11の回転を制御することができる。 The mooring machine 10 is provided with a rotational position sensor 51, a tension meter 52, a cable length meter 53, and a winch controller 50 that controls the operation of the winch W based on these detected values. The rotational position sensor 51 detects the rotational position and rotational speed of the motor 12 or the winding drum 11. The cable length meter 53 measures the length of the mooring cable R let out from the winding drum 11. The winch controller 50 measures the rotation of the motor 12 or the winding drum 11 based on the detection signal of the rotational position sensor 51 and/or the measurement value of the rope length meter 53, and determines the winding length and the let-out length of the mooring rope R. presume. The tension meter 52 may directly or indirectly detect the tension (load) acting on the mooring line R. The tension meter 52 is, for example, a load cell provided in the brake 15, and the tension of the mooring line R may be estimated based on the load detected by the load cell. The tension meter 52 is, for example, a torque sensor that detects the output torque of the motor 12, and the tension of the mooring line R may be estimated based on the torque detected by the torque sensor. The winch controller 50 can control the rotation of the winding drum 11 based on the detected value of the tension meter 52 so that the tension acting on the mooring line R is maintained at a predetermined value that does not exceed a predetermined upper limit value. can.
 係船索Rを巻取りドラム11へ巻き取る際には、クラッチ13によってモータ12から巻取りドラム11への動力伝達経路が接続され、巻取りドラム11が巻取り方向に回転駆動される。なお、推力が離岸方向に働いている状態では、ウインチWの巻き込み力は係船索Rの弛みを抑える程度に小さな値とする。係船索Rを巻取りドラム11から繰り出す際には、クラッチ13が切断されてモータ12から巻取りドラム11への動力伝達経路が切断され、巻取りドラム11は空転可能な状態となり繰り出し方向へ回転することができる。或いは、係船索Rを繰り出す際には、クラッチ13によってモータ12から巻取りドラム11への動力伝達経路が接続され、巻取りドラム11が繰り出し方向へ回転駆動されてもよい。 When winding the mooring line R onto the winding drum 11, the power transmission path from the motor 12 to the winding drum 11 is connected by the clutch 13, and the winding drum 11 is rotationally driven in the winding direction. Note that in a state where the thrust is acting in the direction away from shore, the winding force of the winch W is set to a small value to the extent that slack in the mooring line R is suppressed. When the mooring line R is paid out from the take-up drum 11, the clutch 13 is disconnected and the power transmission path from the motor 12 to the take-up drum 11 is cut off, and the take-up drum 11 becomes in a state where it can idle and rotates in the pay-out direction. can do. Alternatively, when letting out the mooring line R, the power transmission path from the motor 12 to the winding drum 11 may be connected by the clutch 13, and the winding drum 11 may be rotationally driven in the letting-out direction.
 図1に戻って、係船索Rの先端は、岸壁30に設けられた係船柱35に係止される。巻取りドラム11から引き出された係船索Rは、チョック(ムアリングホール)、フェアリーダー、デッキエンドローラ、スタンドローラなどの適宜の案内器36によって、保護と案内がなされる。 Returning to FIG. 1, the tip of the mooring line R is anchored to a mooring post 35 provided on the quay 30. The mooring line R pulled out from the winding drum 11 is protected and guided by an appropriate guide device 36 such as a chock (mooring hole), a fairlead, a deck end roller, or a stand roller.
〔操船システム20の構成〕
 図3は、操船システム20の構成を示す図である。図3に示すように、船舶Sの操船システム20は、操船コントローラ6と、操船コントローラ6と電気的に有線又は無線で接続された計器群7、ユーザーインターフェース8、及び推進コントローラ群9Cとを備える。
[Configuration of ship maneuvering system 20]
FIG. 3 is a diagram showing the configuration of the ship maneuvering system 20. As shown in FIG. 3, the ship maneuvering system 20 of the ship S includes a ship maneuvering controller 6, an instrument group 7 electrically connected to the ship maneuvering controller 6 by wire or wirelessly, a user interface 8, and a propulsion controller group 9C. .
 操船コントローラ6は、プロセッサ、ROM及びRAMなどのメモリ、及び、I/O部を備える(いずれも図示略)。操船コントローラ6には、I/O部を介して計器群7、ユーザーインターフェース8、及び推進コントローラ群9Cが接続されている。操船コントローラ6には、I/O部を介してストレージ(図示略)が接続されていてもよい。 The ship maneuvering controller 6 includes a processor, memories such as ROM and RAM, and an I/O section (all not shown). The vessel maneuvering controller 6 is connected to an instrument group 7, a user interface 8, and a propulsion controller group 9C via an I/O section. A storage (not shown) may be connected to the ship maneuvering controller 6 via an I/O section.
 操船コントローラ6には、船陸間通信装置31が接続されている。操船コントローラ6は、船陸間通信装置31を使って、陸上基地に設けられた状態監視装置33へ操船情報を伝達する。この操船情報には、港湾内の航行状況や機器稼働データなどが含まれる。 A ship-to-land communication device 31 is connected to the ship maneuvering controller 6. The ship maneuvering controller 6 uses the ship-land communication device 31 to transmit ship maneuvering information to a state monitoring device 33 provided at a land base. This vessel maneuvering information includes navigation conditions within the port, equipment operation data, etc.
 計器群7は、距離計27、カメラ28、及び各種の航海計器を含む。 The instrument group 7 includes a rangefinder 27, a camera 28, and various navigation instruments.
 距離計27は、船首から岸壁30までの船首側距離を測定する船首側距離計と、船尾から岸壁30までの距離を測定する船尾側距離計とを含む。距離計27は、例えば、レーザー式距離計などの公知の非接触距離計であってよい。操船コントローラ6は、距離計27から取得した情報に基づいて、船体5から接岸しようとする岸壁30までの接岸方向D2の距離(以下、「接岸距離d」と称する)を求めることができる。ここで、接岸方向D2は、岸壁30へ近づく方向である。また、接岸距離dは、船体5から岸壁30までの最短の距離と規定されてよい。 The rangefinder 27 includes a bow rangefinder that measures the distance from the bow of the ship to the quay 30, and a stern rangefinder that measures the distance from the stern to the quay 30. The distance meter 27 may be, for example, a known non-contact distance meter such as a laser distance meter. Based on the information acquired from the distance meter 27, the ship maneuvering controller 6 can determine the distance in the berthing direction D2 from the hull 5 to the berthing wall 30 to which the ship is attempting to berth (hereinafter referred to as "berthing distance d"). Here, the berthing direction D2 is a direction approaching the quay 30. Further, the berthing distance d may be defined as the shortest distance from the hull 5 to the quay 30.
 カメラ28は、船首側甲板に設けられて船首から岸壁30を連続的又は断続的に撮像する船首側カメラと、船尾側甲板に設けられ船尾から岸壁30を連続的又は断続的に撮像する船尾側カメラとを含む。船首側カメラの撮像野には、岸壁30に加えて、船首側係船機10B及び/又は船首側係船機10Bから繰り出された係船索Rが含まれることが望ましい。また、船尾側カメラの撮像野には、船尾側係船機10A及び/又は船尾側係船機10Aから繰り出された係船索Rが含まれることが望ましい。このように広い視野を確保するために、カメラ28としてアラウンドビューカメラシステムが採用されてもよい。 The cameras 28 include a bow side camera that is installed on the bow side deck and continuously or intermittently images the quay wall 30 from the bow, and a stern side camera that is installed on the stern side deck that images the quay wall 30 continuously or intermittently from the stern. Including camera. In addition to the quay 30, the imaging field of the bow camera preferably includes the bow mooring machine 10B and/or the mooring line R let out from the bow mooring machine 10B. Further, it is desirable that the imaging field of the stern camera includes the stern mooring machine 10A and/or the mooring line R let out from the stern mooring machine 10A. In order to ensure such a wide field of view, an around-view camera system may be employed as the camera 28.
 各種の航海計器として、船首方位角を検出するコンパス21、速度計22(対水速度計)、風向風速計25(風向計及び風速計)、船位測定装置26、潮流計29、音響測深器、レーダー、クロノメーター、喫水計などが例示される。船位測定装置26は、衛星を用いたGPSや基準局からの電波や光を用いた電波式及び/又は光波式の位置測定装置である。操船コントローラ6は、各種の航海計器から取得した情報に基づいて、船体5の位置、針路、船首方位角、船速などを含む航行状況情報を求め得る。 Various navigation instruments include a compass 21 that detects the heading angle of the ship, a speedometer 22 (water speedometer), a wind direction and speed meter 25 (wind vane and anemometer), a ship position measuring device 26, a current meter 29, an acoustic depth sounder, Examples include radar, chronometer, and draft gauge. The ship position measuring device 26 is a radio wave type and/or light wave type position measuring device using GPS using a satellite or radio waves and light from a reference station. The ship maneuvering controller 6 can obtain navigation status information including the position, course, heading angle, ship speed, etc. of the ship 5 based on information obtained from various navigation instruments.
 操船コントローラ6は船陸間通信装置31を使って、陸上基地に設けられた港湾情報提供装置32から港湾情報を適時に取得する。港湾情報には、港湾内の気象・海象情報、港湾環境情報などが含まれる。気象・海象情報には、港湾内の風速、風向、潮流、潮位、天気、及び気候などが含まれる。港湾環境情報には、港湾内の輻輳具合やバース状況などが含まれる。操船コントローラ6は、船陸間通信装置31を介して港湾情報提供装置32から送られてきた情報も、計器群7からの情報とともに演算に利用する。 The ship handling controller 6 uses the ship-land communication device 31 to timely acquire port information from the port information providing device 32 provided at the land base. Port information includes weather and oceanographic information within the port, port environment information, etc. Weather/oceanographic information includes wind speed, wind direction, tidal current, tide level, weather, climate, etc. within the port. The port environment information includes the degree of congestion within the port, berth status, etc. The ship maneuvering controller 6 also uses information sent from the port information providing device 32 via the ship-land communication device 31, together with information from the instrument group 7, for calculations.
 ユーザーインターフェース8には、操縦機器80と、表示装置83とが設けられている。ユーザーインターフェース8には、個別のプロペラや舵などの推進デバイス9用の設定器や指示計、方位表示や船速表示などの計器群7からの信号を表示する表示部、各種機能切替スイッチ、及び、表示灯などが更に設けられていてもよい。 The user interface 8 is provided with a control device 80 and a display device 83. The user interface 8 includes setting devices and indicators for propulsion devices 9 such as individual propellers and rudders, a display section that displays signals from the instrument group 7 such as direction display and ship speed display, various function changeover switches, and , an indicator light, etc. may be further provided.
 本実施形態では、操縦機器80としてジョイスティック81と回頭ダイヤル82とが設けられている。ジョイスティック81は、操船者がジョイスティック81を動かすことによって入力した、船体5の平行移動のための推力の方向と大きさの指令を受け付けて、それを操船コントローラ6へ出力する。回頭ダイヤル82は、操船者が回頭ダイヤル82を動かすことによって入力した、回頭移動のための回頭モーメントの方向と大きさの指令を受け付けて、それを操船コントローラ6へ入力する。但し、操縦機器80は上記に限定されず、公知の操縦機器が採用されてよい。 In this embodiment, a joystick 81 and a turning dial 82 are provided as the operating device 80. The joystick 81 receives commands for the direction and magnitude of thrust for parallel movement of the hull 5, which are input by the ship operator by moving the joystick 81, and outputs them to the ship handling controller 6. The turning dial 82 receives a command for the direction and magnitude of a turning moment for turning movement, which is input by the ship operator by moving the turning dial 82, and inputs it to the ship handling controller 6. However, the control device 80 is not limited to the above, and any known control device may be employed.
 表示装置83としてタッチパネル式ディスプレイ、ヘッドマウント式ディスプレイなどの各種表示装置のうち少なくとも1種類の公知の表示装置が採用される。表示装置83には、操船コントローラ6から出力された操船支援情報、カメラ28で撮像された画像、機器の操作状況、航行状況情報、船体5の環境情報(海象・気象情報)などが含まれ得る。操船支援情報には、海図上の自船位置、推奨航路、避険線、残存距離、海域施設、及び目標位置や、船体5の移動速度ベクトルや、船首及び船尾の任意位置の速度と岸壁30との残距離などのうち少なくとも1つが含まれる。 As the display device 83, at least one type of known display device is employed among various display devices such as a touch panel display and a head-mounted display. The display device 83 may include ship maneuvering support information output from the ship maneuvering controller 6, images captured by the camera 28, operating status of equipment, navigation status information, environmental information of the hull 5 (oceanographic/weather information), etc. . The ship maneuvering support information includes the ship's position on the nautical chart, the recommended route, the evacuation line, the remaining distance, seaside facilities, and the target position, the moving speed vector of the ship 5, the speed at arbitrary positions of the bow and stern, and the quay 30. This includes at least one of the following: remaining distance to the destination.
 推進コントローラ群9Cは、推進デバイス9の動作を制御する。推進コントローラ群9Cは、具体的には、係船機10のウインチWを制御するウインチコントローラ50、前後推進機2を制御する前後推進コントローラ91、及び、横推進機3を制御する横推進コントローラ92を含む。ウインチコントローラ50、前後推進コントローラ91、及び横推進コントローラ92は、船舶Sに搭載されているウインチW、前後推進機2、及び横推進機3の基数に応じて設けられている。但し、図3ではウインチコントローラ50、前後推進コントローラ91、及び横推進コントローラ92のうちそれぞれ1つが図示されて残りは省略されている。操船コントローラ6は、これらの推進コントローラ群9Cの各々に対して指令を出力し、推進コントローラ群9Cは指令に基づいて対応する推進デバイス9を動作させる。 The propulsion controller group 9C controls the operation of the propulsion device 9. Specifically, the propulsion controller group 9C includes a winch controller 50 that controls the winch W of the mooring machine 10, a longitudinal propulsion controller 91 that controls the longitudinal propulsion device 2, and a lateral propulsion controller 92 that controls the lateral propulsion device 3. include. The winch controller 50, the longitudinal propulsion controller 91, and the lateral propulsion controller 92 are provided according to the number of winches W, longitudinal propulsion devices 2, and lateral propulsion devices 3 mounted on the ship S. However, in FIG. 3, one of the winch controller 50, the longitudinal propulsion controller 91, and the lateral propulsion controller 92 is illustrated, and the rest are omitted. The ship handling controller 6 outputs commands to each of these propulsion controller groups 9C, and the propulsion controller groups 9C operate the corresponding propulsion devices 9 based on the commands.
 図4に示すように、操船コントローラ6は、操船支援情報生成部65、表示制御部66、航路計画部67、指令生成部68、及び、推進制御部69の各機能部を有する。操船支援情報生成部65は、計器群7や港湾情報提供装置32から取得した情報に基づいて、操船支援情報を生成する。表示制御部66は、生成された操船支援情報を表示装置83へ表示させる。航路計画部67は、計器群7や港湾情報提供装置32から取得した情報などに基づいて、出発地から目的地までの所定の評価指標を最適化する最適航路を探索し、その最適航路を計画航路として生成する。指令生成部68は、自動操船時に操船者に代わって指令を生成する。推進制御部69は、請求の範囲の制御装置に相当する。推進制御部69は、推進コントローラ群9Cを介して推進デバイス9を制御する。 As shown in FIG. 4, the ship maneuvering controller 6 includes a ship maneuvering support information generation section 65, a display control section 66, a route planning section 67, a command generation section 68, and a propulsion control section 69. The ship maneuvering support information generation unit 65 generates ship maneuvering support information based on information acquired from the instrument group 7 and the port information providing device 32. The display control unit 66 displays the generated ship maneuvering support information on the display device 83. The route planning unit 67 searches for an optimal route that optimizes a predetermined evaluation index from the departure point to the destination based on information acquired from the instrument group 7 and the port information providing device 32, and plans the optimal route. Generate as a route. The command generating unit 68 generates a command on behalf of the ship operator during automatic ship maneuvering. The propulsion control unit 69 corresponds to a control device in the claims. The propulsion control section 69 controls the propulsion device 9 via the propulsion controller group 9C.
 図5は、推進制御部69の処理を説明する図である。図5に示すように、操船コントローラ6の推進制御部69は、取得器61と、制限器64と、修正器60と、推力配分演算器62と、出力器63とを有する。 FIG. 5 is a diagram illustrating the processing of the propulsion control section 69. As shown in FIG. 5, the propulsion control unit 69 of the ship maneuvering controller 6 includes an acquisition device 61, a limiter 64, a corrector 60, a thrust distribution calculator 62, and an output device 63.
 取得器61は、計器群7で検出又は測定された情報、ユーザーインターフェース8の操縦機器80が受け付けた指令などを取得する。計器群7で検出又は測定された情報には、接岸距離dや接岸速度Vappが含まれる。取得器61は、取得した情報や指令に対してA/D変換、スケーリング処理などを行う。取得器61は、ジョイスティック81が受け付けた推進指令(即ち、ジョイスティック81の傾倒角度と傾倒方向)に基づいて、「指令ベクトル」を生成する。指令ベクトルの方向はジョイスティック81の傾倒方向と対応し、指令ベクトルの大きさはジョイスティック81の傾倒角度と対応する。ここで、推進指令が推力指令である場合には、指令ベクトルは、船体5に作用させる推力指令を向きと大きさで表したものと規定される。また、推進指令が速度指令である場合には、指令ベクトルは、船体5の速度指令を向きと大きさで表したものと規定される。 The acquisition unit 61 acquires information detected or measured by the instrument group 7, commands received by the control device 80 of the user interface 8, and the like. The information detected or measured by the instrument group 7 includes the berthing distance d and the berthing speed Vapp. The acquirer 61 performs A/D conversion, scaling processing, etc. on the acquired information and commands. The acquirer 61 generates a "command vector" based on the propulsion command (that is, the tilt angle and tilt direction of the joystick 81) received by the joystick 81. The direction of the command vector corresponds to the tilting direction of the joystick 81, and the magnitude of the command vector corresponds to the tilting angle of the joystick 81. Here, when the propulsion command is a thrust command, the command vector is defined as a thrust command to be applied to the hull 5 expressed in direction and magnitude. Further, when the propulsion command is a speed command, the command vector is defined as the speed command of the hull 5 expressed in direction and magnitude.
 制限器64は、接岸距離dに基づいて指令ベクトルに必要に応じて制限を掛ける。制限器64の機能については、後ほど詳述する。なお、制限器64は、操縦機器80で受け付けた指令に基づく指令ベクトルだけではなく、指令生成部68で生成された指令ベクトルについても制限を掛けてもよい。 The limiter 64 limits the command vector as necessary based on the berthing distance d. The function of the limiter 64 will be explained in detail later. Note that the limiter 64 may limit not only the command vector based on the command received by the control device 80 but also the command vector generated by the command generation unit 68.
 修正器60は、潮流計29で検出された潮流、風向風速計25で検出された風向及び風速、並びに/又は、港湾情報提供装置32から取得した港湾内の潮流及び風向風速を含む外乱情報を取得し、外乱情報に基づいて船舶Sに作用する外乱力を推定し、指令ベクトルに外乱力に抗する力を加えることにより指令ベクトルを修正する。 The corrector 60 receives disturbance information including the tidal current detected by the tidal current meter 29, the wind direction and wind speed detected by the anemometer 25, and/or the tidal current and wind direction and wind speed in the port acquired from the port information providing device 32. The disturbance force acting on the ship S is estimated based on the disturbance information, and the command vector is corrected by adding a force that resists the disturbance force to the command vector.
 推力配分演算器62は、修正された指令ベクトルと推力ベクトルとが対応するように複数の推進デバイス9(係船機10、前後推進機2、及び、横推進機3)の各々に推力を配分する演算を行う。ここで、係船機10は係船索Rの巻取りによって船体5を接岸方向D2へ推し進める推力を出力する推進デバイス9と見做される。「推力ベクトル」は複数の推進デバイス9(係船機10、前後推進機2、及び、横推進機3)から出力される推力の合成力を向きと大きさで表したものと規定される。推力配分演算器62による推力配分演算方法については、後ほど詳述する。 The thrust distribution calculator 62 distributes thrust to each of the plurality of propulsion devices 9 (mooring aircraft 10, longitudinal propulsion device 2, and lateral propulsion device 3) so that the corrected command vector and thrust vector correspond to each other. Perform calculations. Here, the mooring machine 10 is regarded as a propulsion device 9 that outputs a thrust that propels the hull 5 in the berthing direction D2 by winding up the mooring line R. The "thrust vector" is defined as a composite force of thrusts output from a plurality of propulsion devices 9 (mooring machine 10, longitudinal propulsion machine 2, and lateral propulsion machine 3) expressed in direction and magnitude. The thrust distribution calculation method by the thrust distribution calculation unit 62 will be described in detail later.
 出力器63は、推力配分演算器62が求めた各推進デバイス9(前後推進機2,横推進機3,係船機10)に配分された推力を、スケーリングやD/A変換や異常処理などを行ったうえで、対応する推進コントローラ群9C(ウインチコントローラ50、前後推進コントローラ91、及び横推進コントローラ92)へ動作指令として出力する。これにより、ジョイスティック81の傾倒角度と対応した大きさで傾倒方向へ向かう推力が船体5に与えられる。 The output device 63 performs scaling, D/A conversion, abnormality processing, etc. on the thrust distributed to each propulsion device 9 (front/rear propulsion device 2, lateral propulsion device 3, mooring device 10) obtained by the thrust distribution calculator 62. After doing so, it is output as an operation command to the corresponding propulsion controller group 9C (winch controller 50, longitudinal propulsion controller 91, and lateral propulsion controller 92). As a result, a thrust toward the tilting direction is applied to the hull 5 with a magnitude corresponding to the tilting angle of the joystick 81.
〔操船方法〕
 ここで上記構成の操船システム20を用いた船舶Sの着岸・係船時の操船方法について、図6を用いて説明する。
[Ship operation method]
Here, a method of maneuvering the ship S when docking and mooring using the ship maneuvering system 20 having the above configuration will be described with reference to FIG. 6.
<アプローチ操船>
 操船コントローラ6は、船舶Sが港湾に進入するとアプローチ操船を開始する。アプローチ操船において、操船コントローラ6は、計器群7や港湾情報提供装置32から取得した情報を用いてアプローチ操船支援情報を生成し、それを表示装置83の画面に表示させる。ここで、操船コントローラ6は、所定の着岸開始位置P2を目標位置とし、計器群7や港湾情報提供装置32から取得した情報を用いて港湾口P1から着岸開始位置P2までの最適航路を計画航路として求める。表示装置83の画面上には、アプローチ操船支援情報として複数のウエイポイントから成る計画航路と目標位置及び自船位置とがオーバーレイされた港湾の海図や、船首方位角及び船速などの航行情報がグラフィック表示される。着岸開始位置P2は、バースの岸壁30から所定距離(例えば30~50m程度)だけ離れた位置であり、着岸開始位置P2に到達した船舶Sの船体5は前後方向が岸壁30の延伸方向(以下、「岸壁方向D1」称する)と略平行とであり、前後方向の速度は概ねゼロである。
<Approach maneuver>
The ship maneuvering controller 6 starts approach maneuvering when the ship S enters the port. During approach maneuvering, the maneuvering controller 6 generates approach maneuvering support information using information acquired from the instrument group 7 and the port information providing device 32, and displays it on the screen of the display device 83. Here, the vessel maneuvering controller 6 sets a predetermined berthing start position P2 as a target position, and uses information acquired from the instrument group 7 and the port information providing device 32 to determine the optimal route from the port entrance P1 to the berthing start position P2 as a planned route. Find it as. On the screen of the display device 83, approach vessel maneuvering support information includes a port nautical chart on which the planned route consisting of a plurality of waypoints, the target position, and the ship's own position are overlaid, and navigation information such as the heading angle and ship speed. Graphically displayed. The berthing start position P2 is a predetermined distance (for example, about 30 to 50 meters) away from the quay 30 of the berth, and the hull 5 of the vessel S that has reached the berth start position P2 has its longitudinal direction aligned with the extension direction of the quay 30 (hereinafter referred to as , referred to as the "quay wall direction D1"), and the speed in the longitudinal direction is approximately zero.
 操船者は表示装置83に表示されたアプローチ操船支援情報に基づいてジョイスティック81及び回頭ダイヤル82を操作する。操船コントローラ6は、ジョイスティック81の傾倒角度及び傾倒方向に基づいて指令ベクトルを求める。但し、船舶Sは自動でアプローチ操船されてもよい。この場合、操船コントローラ6は、計器群7や港湾情報提供装置32から取得した情報、及び、計画航路に基づいて、自ら指令ベクトルを生成してもよい。 The vessel operator operates the joystick 81 and the turning dial 82 based on the approach vessel maneuvering support information displayed on the display device 83. The ship maneuvering controller 6 obtains a command vector based on the tilt angle and tilt direction of the joystick 81. However, the ship S may be automatically maneuvered toward the approach. In this case, the ship handling controller 6 may generate the command vector by itself based on the information acquired from the instrument group 7 and the port information providing device 32, and the planned route.
 操船コントローラ6は、指令ベクトルに外乱力に抗する力を加えて修正された指令ベクトルを求め、前後推進機2から出力される推力の合成によって修正された指令ベクトルと対応する推力ベクトルが得られるように、前後推進機2に推力を配分する。アプローチ操船では、横推進機3及び係船機10に配分される推力はゼロである。操船コントローラ6は、配分された推力が出力されるような推力目標値を生成してそれを前後推進コントローラ91へ出力し、前後推進コントローラ91は推力目標値と対応する推力が出力されるように前後推進機2を制御する。その結果、船舶Sは指令ベクトルと対応する推力を得て計画航路に沿って航行する。 The ship maneuvering controller 6 obtains a modified command vector by adding a force resisting the disturbance force to the command vector, and obtains a thrust vector corresponding to the modified command vector by combining the thrust forces output from the front and rear propulsion units 2. As such, thrust is distributed to the front and rear propulsion units 2. In approach maneuvering, the thrust distributed to the lateral propulsion machine 3 and the mooring machine 10 is zero. The ship maneuvering controller 6 generates a thrust target value such that the distributed thrust is output, and outputs it to the longitudinal propulsion controller 91, and the longitudinal propulsion controller 91 generates a thrust force corresponding to the thrust target value. Controls the longitudinal propulsion device 2. As a result, the ship S obtains a thrust corresponding to the command vector and navigates along the planned route.
<着岸操船>
 操船コントローラ6は、船舶Sが着岸開始位置P2に到達すると着岸操船を開始する。着岸操船において、操船コントローラ6は、計器群7や港湾情報提供装置32から取得した情報を用いて着岸操船支援情報を生成し、それを表示装置83の画面に表示させる。着岸操船では、船舶Sを着岸開始位置P2から所定の係船開始位置P3へ移動させる。係船開始位置P3は、バースの岸壁30から数~数十m程度だけ離れた位置であり、係船開始位置P3に到達した船舶Sの船体5は前後方向が岸壁方向D1と略平行とであり、船首方向及び横方向の速度は概ねゼロである。表示装置83の画面上には、着岸操船支援情報として目標位置や自船位置がオーバーレイされた港湾の海図や、船首方位角及び船速などの航行情報、接岸距離d、カメラ28で撮像された画像などが表示される。
<Arrival maneuver>
The ship maneuvering controller 6 starts the berthing maneuver when the ship S reaches the berthing start position P2. During the berthing maneuver, the ship maneuvering controller 6 generates berthing maneuver support information using information acquired from the instrument group 7 and the port information providing device 32, and displays it on the screen of the display device 83. In the berthing maneuver, the ship S is moved from the berthing start position P2 to a predetermined mooring start position P3. The mooring start position P3 is a position that is several to several tens of meters away from the quay 30 of the berth, and the hull 5 of the vessel S that has arrived at the mooring start position P3 is approximately parallel to the quay direction D1 in the longitudinal direction. Forward and lateral speeds are approximately zero. On the screen of the display device 83, a nautical chart of the port with the target position and own ship position overlaid as berthing maneuver support information, navigation information such as the heading angle and ship speed, berthing distance d, and information captured by the camera 28 are displayed. Images etc. are displayed.
 操船者は表示装置83に表示された着岸操船支援情報に基づいてジョイスティック81及び回頭ダイヤル82を操作する。操船コントローラ6は、ジョイスティック81の傾倒角度及び傾倒方向に基づいて指令ベクトルを求める。但し、船舶Sは自動で着岸操船されてもよい。この場合、操船コントローラ6は、計器群7や港湾情報提供装置32から取得した情報に基づいて、自ら指令ベクトルを生成してもよい。 The ship operator operates the joystick 81 and the turning dial 82 based on the berthing ship maneuvering support information displayed on the display device 83. The ship maneuvering controller 6 obtains a command vector based on the tilt angle and tilt direction of the joystick 81. However, the ship S may be automatically maneuvered to dock. In this case, the ship maneuvering controller 6 may generate the command vector by itself based on information acquired from the instrument group 7 and the port information providing device 32.
 操船コントローラ6は、指令ベクトルに外乱力に抗する力を加えて修正された指令ベクトルを求め、前後推進機2及び横推進機3から出力される推力の合成によって修正された指令ベクトルと対応する推力ベクトルが得られるように、前後推進機2及び横推進機3に推力を配分する。着岸操船では、係船機10に配分される推力はゼロである。操船コントローラ6は、前後推進コントローラ91及び横推進コントローラ92の各々に対して配分された推力が出力されるような推力目標値を生成してそれを出力し、前後推進コントローラ91は与えられた推力目標値と対応する推力が出力されるように前後推進機2を制御し、横推進コントローラ92は与えられた推力目標値と対応する推力が出力されるように横推進機3を制御する。その結果、船舶Sは指令ベクトルと対応する推力を得て係船開始位置P3まで主に横移動する。 The ship maneuvering controller 6 obtains a modified command vector by adding a force resisting the disturbance force to the command vector, and corresponds to the modified command vector by combining the thrusts output from the longitudinal propulsion device 2 and the lateral propulsion device 3. Thrust is distributed to the longitudinal propulsion device 2 and the transverse propulsion device 3 so that a thrust vector is obtained. In the docking maneuver, the thrust distributed to the mooring aircraft 10 is zero. The ship maneuvering controller 6 generates and outputs a thrust target value such that the thrust distributed to each of the longitudinal propulsion controller 91 and the lateral propulsion controller 92 is output, and the longitudinal propulsion controller 91 outputs the thrust that is distributed to each of the longitudinal propulsion controller 91 and the lateral propulsion controller 92. The longitudinal propulsion device 2 is controlled so that the thrust corresponding to the target value is outputted, and the lateral propulsion controller 92 controls the lateral propulsion device 3 so that the thrust corresponding to the given thrust target value is outputted. As a result, the ship S obtains a thrust corresponding to the command vector and mainly moves horizontally to the mooring start position P3.
<係船操船>
 船舶Sが係船開始位置P3に到達すると、船尾側係船機10A及び船首側係船機10Bから係船索Rが繰り出され、係船索Rの先端部が岸壁30に設けられた係船柱35に係止される。この間、操船コントローラ6は、自動方位保持機能で、船舶Sを係船開始位置P3に位置保持させる。操船コントローラ6の自動方位保持機能は、設定船首方位角とコンパス21からの船首方位角との偏差に対してPID演算などを行い、それを回頭ダイヤル82の代わりに回頭モーメント指令として推力配分演算に与えることで、船首の方位が保持されるように前後推進機2及び横推進機3を稼働させる。
<Mooring maneuver>
When the ship S reaches the mooring start position P3, the mooring line R is let out from the stern side mooring machine 10A and the bow side mooring machine 10B, and the tip of the mooring line R is moored to the mooring post 35 provided on the quay 30. Ru. During this time, the ship maneuvering controller 6 maintains the ship S at the mooring start position P3 using the automatic heading holding function. The automatic heading holding function of the vessel maneuvering controller 6 performs PID calculation etc. on the deviation between the set heading angle and the heading angle from the compass 21, and uses this as a turning moment command instead of the turning dial 82 for thrust distribution calculation. By giving this, the longitudinal propulsion device 2 and the transverse propulsion device 3 are operated so that the heading of the ship is maintained.
 全ての係船索Rの先端部が岸壁30に設けられた係船柱35に係止されてから、操船コントローラ6は係船操船を開始する。操船コントローラ6は、計器群7や港湾情報提供装置32から取得した情報を用いて係船操船支援情報を生成し、それを表示装置83の画面に表示させる。表示装置83の画面上には、着岸操船支援情報として目標位置や自船位置がオーバーレイされた港湾の海図や、船首方位角及び船速などの航行情報、接岸距離d、カメラ28で撮像された画像などが表示される。 After the tips of all the mooring lines R are anchored to the mooring posts 35 provided on the quay 30, the vessel maneuvering controller 6 starts mooring vessel maneuvering. The vessel maneuvering controller 6 generates mooring vessel maneuvering support information using the information acquired from the instrument group 7 and the port information providing device 32, and causes the mooring vessel maneuvering support information to be displayed on the screen of the display device 83. On the screen of the display device 83, a nautical chart of the port with the target position and own ship position overlaid as berthing maneuver support information, navigation information such as the heading angle and ship speed, berthing distance d, and information captured by the camera 28 are displayed. Images etc. are displayed.
 操船者は表示装置83に表示された係船操船支援情報を視認して操縦機器80のジョイスティック81及び回頭ダイヤル82を操作する。ジョイスティック81及び回頭ダイヤル82は、操船者の操作を受け付けて操船コントローラ6へ入力する。但し、係船操船は自動で行われてもよい。係船操船が自動で行われる場合は、操船コントローラ6が計器群7や港湾情報提供装置32から取得した情報に基づいて指令ベクトルを生成し、操船者は操船コントローラ6が生成した指令ベクトルを操縦機器80を用いて修正できる。 The ship operator visually recognizes the mooring ship maneuvering support information displayed on the display device 83 and operates the joystick 81 and turning dial 82 of the maneuvering device 80. The joystick 81 and the turning dial 82 accept operations from the boat operator and input them to the boat steering controller 6 . However, the mooring maneuver may be performed automatically. When mooring maneuvering is performed automatically, the vessel maneuvering controller 6 generates a command vector based on information acquired from the instrument group 7 and the port information providing device 32, and the vessel operator uses the command vector generated by the vessel maneuvering controller 6 to operate the vessel. It can be corrected using 80.
 操船コントローラ6の取得器61は、ジョイスティック81などの操縦機器80が受け付けた推進指令を取得して、指令ベクトルを生成する。なお、係船操船においては原則として船舶Sには横方向の推力が働き、船舶Sは接岸方向D2へ移動する。よって、推進指令Ucが推力指令である場合には、係船操船時の指令ベクトルは推進指令と対応する大きさの推力の接岸方向D2を向いたベクトルである。また、推進指令Ucが速度指令である場合には、係船操船時の指令ベクトルは推進指令Ucと対応する大きさの速度の接岸方向D2を向いたベクトルである。 The acquirer 61 of the ship maneuvering controller 6 acquires the propulsion command received by the maneuvering device 80 such as the joystick 81 and generates a command vector. In addition, in the mooring maneuver, in principle, a lateral thrust acts on the vessel S, and the vessel S moves in the berthing direction D2. Therefore, when the propulsion command Uc is a thrust command, the command vector at the time of mooring maneuvering is a vector pointing in the berthing direction D2 with a thrust of a magnitude corresponding to the propulsion command. Further, when the propulsion command Uc is a speed command, the command vector during mooring maneuvering is a vector pointing in the berthing direction D2 and having a speed corresponding to the propulsion command Uc.
 係船操船では、操船コントローラ6の制限器64によって推進指令Ucに制限が掛けられる。例えば、制限器64は、接岸距離dが予め与えられた制限距離未満の場合に、推進指令Ucに制限を掛けるように構成されていてよい。制限距離は、岸壁30から係船開始位置P3までの距離であってもよいし、それよりも短い距離であってもよい。 During mooring maneuvering, the limiter 64 of the maneuvering controller 6 places a limit on the propulsion command Uc. For example, the limiter 64 may be configured to limit the propulsion command Uc when the berthing distance d is less than a predetermined limit distance. The limit distance may be the distance from the quay 30 to the mooring start position P3, or may be a shorter distance.
 制限器64には、接岸距離dと推進指令制限値Ulimとの関係を表す情報が予め与えられており、制限器64はこの情報に基づいて推進指令制限値Ulimを求める。 The limiter 64 is given in advance information representing the relationship between the berthing distance d and the propulsion command limit value Ulim, and the limiter 64 determines the propulsion command limit value Ulim based on this information.
 図7は、推進指令Ucが推力指令である場合の、接岸距離dと推進指令制限値Ulimとの関係の一例を表す図表である。図7に例示される推進指令制限値Ulimは、接岸距離dが0から第1閾値dth1までは第1の値Upで一定であり、接岸距離dが第1閾値dth1から第2閾値dth2までは接岸距離dの増加に伴って増加し、接岸距離dが第2閾値dth2以上では指令最大値Umaxで一定である。第1の値Upは、0よりも大きく、岸壁30へ船体5を押し付ける推力に相当する。 FIG. 7 is a chart showing an example of the relationship between the berthing distance d and the propulsion command limit value Ulim when the propulsion command Uc is a thrust command. The propulsion command limit value Ulim illustrated in FIG. 7 is constant at the first value Up when the berthing distance d is from 0 to the first threshold dth1, and is constant at the first value Up when the berthing distance d is from the first threshold dth1 to the second threshold dth2. It increases as the berthing distance d increases, and remains constant at the command maximum value Umax when the berthing distance d is equal to or greater than the second threshold value dth2. The first value Up is larger than 0 and corresponds to the thrust that presses the hull 5 against the quay 30.
 図8は、推進指令Ucが船舶Sの横方向(即ち、接岸方向D2)の速度指令である場合の、接岸距離dと推進指令制限値Ulimとの関係の一例を表す図表である。図8に例示される推進指令制限値Ulimは、接岸距離dが0のときに第1の値Upであり、接岸距離dが0より大きく閾値dthまでは接岸距離dの増加に伴って増加し、接岸距離dが閾値dth以上では指令最大値Umaxで一定である。第1の値Up、0よりも大きく、岸壁30へ船体5を押し付ける速度に相当する。或いは、第1の値Upは0であってもよい。 FIG. 8 is a chart showing an example of the relationship between the berthing distance d and the propulsion command limit value Ulim when the propulsion command Uc is a speed command in the lateral direction (i.e., the berthing direction D2) of the ship S. The propulsion command limit value Ulim illustrated in FIG. 8 is the first value Up when the berthing distance d is 0, and increases as the berthing distance d increases until the berthing distance d is greater than 0 and reaches the threshold value dth. , when the berthing distance d is equal to or greater than the threshold value dth, the command maximum value Umax is constant. The first value Up is larger than 0 and corresponds to the speed at which the hull 5 is pressed against the quay 30. Alternatively, the first value Up may be zero.
 制限器64は、推進指令Ucと求めた推進指令制限値Ulimとを比較し、推進指令Ucが推進指令制限値Ulim以下であれば、推進指令Ucに制限を掛けない(或いは、ゼロの制限を掛ける)。一方、制限器64は、推進指令Ucが推進指令制限値Ulimよりも大きければ、推進指令Ucに制限を掛け、推進指令Ucを推進指令制限値Ulimで置き換える。つまり、推進指令Ucは、入力された指令の値に関わらず、推進指令制限値Ulim以下に制限される。 The limiter 64 compares the propulsion command Uc with the determined propulsion command limit value Ulim, and if the propulsion command Uc is less than or equal to the propulsion command limit value Ulim, it does not limit the propulsion command Uc (or sets a zero limit). (multiply). On the other hand, if the propulsion command Uc is larger than the propulsion command limit value Ulim, the limiter 64 limits the propulsion command Uc and replaces the propulsion command Uc with the propulsion command limit value Ulim. That is, the propulsion command Uc is limited to the propulsion command limit value Ulim or less, regardless of the value of the input command.
 上記のように制限器64で推進指令Ucに制限処理が成されることによって、例えば、操船者の誤操作により操縦機器80の操作量が過剰であった場合でも、船舶Sが岸壁30と衝突しないように推進指令Ucが制限を受ける。 By restricting the propulsion command Uc by the limiter 64 as described above, the ship S will not collide with the quay 30, for example, even if the operation amount of the control device 80 is excessive due to an erroneous operation by the ship operator. The propulsion command Uc is limited as follows.
 上記のように制限器64で処理された指令ベクトル(即ち、推進指令Uc)は、修正器60によって、外乱力に抗する力を加えて修正される。 The command vector (ie, propulsion command Uc) processed by the limiter 64 as described above is corrected by the corrector 60 by applying a force to resist the disturbance force.
 推力配分演算器62は、修正された指令ベクトルを取得し、複数の推進デバイス9から出力される推力の合成によって修正された指令ベクトルと対応する推力ベクトルが得られるように、複数の推進デバイス9に推力を配分する。より詳細には、推力配分演算器62は、ウインチコントローラ50、前後推進コントローラ91及び横推進コントローラ92の各々に対して配分された推力が出力されるような推力目標値を生成する。出力器63は、生成された推力目標値を推進コントローラ群9Cの各々へ出力する。 The thrust distribution calculator 62 acquires the corrected command vector and distributes it to the plurality of propulsion devices 9 so that a thrust vector corresponding to the corrected command vector is obtained by combining the thrusts output from the plurality of propulsion devices 9. Allocate thrust to More specifically, the thrust distribution calculator 62 generates a thrust target value such that the thrust distributed to each of the winch controller 50, the longitudinal propulsion controller 91, and the lateral propulsion controller 92 is output. The output device 63 outputs the generated thrust target value to each of the propulsion controller group 9C.
 ウインチコントローラ50は与えられた推力目標値と対応する推力が出力されるように、係船機10の巻込み力又は巻込み速度を制御する。具体的には、ウインチコントローラ50は、係船索Rを巻き取ったり繰り出したりして張力及び索長を調整することにより推力目標値が得られるように、ウインチWの巻込み力又は巻込み速度を制御する。前後推進コントローラ91は与えられた推力目標値と対応する推力が出力されるように前後推進機2を制御する。横推進コントローラ92は与えられた推力目標値と対応する推力が出力されるように横推進機3を制御する。その結果、船舶Sは修正された指令ベクトルと対応する推力を得て接岸するまで主に横移動する。 The winch controller 50 controls the hoisting force or hoisting speed of the mooring machine 10 so that the thrust corresponding to the given thrust target value is output. Specifically, the winch controller 50 adjusts the winding force or winding speed of the winch W so that the target thrust value is obtained by winding and letting out the mooring line R and adjusting the tension and cable length. Control. The longitudinal propulsion controller 91 controls the longitudinal propulsion machine 2 so that the thrust corresponding to the given thrust target value is output. The lateral propulsion controller 92 controls the lateral propulsion machine 3 so that the thrust corresponding to the given thrust target value is output. As a result, the ship S obtains a thrust corresponding to the corrected command vector and mainly moves horizontally until it approaches the shore.
 係船操船における推力配分では、係船機10への推力の配分が優先される。各係船機10には係船索Rの張力の許容範囲が設定されている。係船操船が開始されて、係船機10の巻上げ動作により係船索Rのたわみが解消されたのちは、張力計52で測定される係船索Rの張力が許容範囲内に維持されるように、係船機10へ推力が配分される。ここで、張力の許容範囲は、0より大きく且つ係船機10A,10Bの最大巻込力より小さい所定の閾値以下である。係船機10A,10Bの最大巻込力は、係船機10A,10Bの各々に固有の既知の値である。係船機10A,10Bの各々について、係船索Rの張力に関する閾値(許容範囲)が個別に設定されてよい。或いは、全ての係船機10A,10Bについて、同一の係船索Rの張力に関する閾値(許容範囲)が設定されてもよい。 In thrust distribution during mooring maneuvering, priority is given to thrust distribution to the mooring machine 10. Each mooring machine 10 has a permissible tension range for the mooring line R set therein. After the mooring maneuver is started and the deflection of the mooring rope R is eliminated by the hoisting operation of the mooring machine 10, the mooring rope is adjusted so that the tension of the mooring rope R measured by the tension meter 52 is maintained within the allowable range. Thrust is distributed to the aircraft 10. Here, the allowable range of tension is below a predetermined threshold value that is larger than 0 and smaller than the maximum winding force of mooring machines 10A and 10B. The maximum winding force of the mooring machines 10A, 10B is a known value specific to each of the mooring machines 10A, 10B. A threshold value (permissible range) regarding the tension of the mooring line R may be individually set for each of the mooring machines 10A and 10B. Alternatively, the same threshold value (tolerable range) regarding the tension of the mooring rope R may be set for all mooring machines 10A and 10B.
 係船操船における推力配分では、先ず、各係船索Rの張力が許容範囲内に維持されるように各係船機10に推力が配分される。そして、全ての係船機10が出力する推力の合成ベクトル(係船機推力ベクトル)を求め、指令ベクトルから係船機推力ベクトルを差し引いた不足分が前後推進機2及び横推進機3から出力される推力で補われる。不足分が生じない場合には、前後推進機2及び横推進機3から出力される推力はゼロであってもよい。このように推力が配分されることによって、操船コントローラ6は、係船操船の少なくとも一部分において、船首側係船機10B及び船尾側係船機10Aに係船索Rの巻取り動作を行わせると同時に、前後推進機2及び横推進機3のうち少なくとも一方に係船索Rの張力を軽減させるような推力を出力させるように、これらの推進デバイス9を制御する。 In thrust distribution during mooring maneuvering, thrust is first distributed to each mooring machine 10 so that the tension of each mooring line R is maintained within an allowable range. Then, the combined vector (mooring machine thrust vector) of the thrust output by all the mooring machines 10 is calculated, and the shortfall obtained by subtracting the mooring machine thrust vector from the command vector is the thrust output from the longitudinal propulsion machine 2 and the lateral propulsion machine 3. It is supplemented by If there is no shortage, the thrust output from the longitudinal propulsion device 2 and the transverse propulsion device 3 may be zero. By distributing the thrust in this way, the ship maneuvering controller 6 causes the bow mooring machine 10B and the stern mooring machine 10A to perform a winding operation of the mooring line R, and at the same time to perform forward and backward propulsion during at least a portion of the mooring maneuver. These propulsion devices 9 are controlled so that at least one of the machine 2 and the lateral propulsion machine 3 outputs a thrust that reduces the tension on the mooring line R.
 なお、係船操船において船舶Sに搭載された全ての係船機10で推力を発生させる必要はない。例えば、1機の船尾側係船機10Aと1機の船首側係船機10Bのみに推力を発生させ、余の係船機10は係船索Rに弛みを生じさせず且つ発生する推力を阻害しないように係船索Rの張力が一定に保持されるように制御されてよい。 Note that during mooring maneuvering, it is not necessary for all mooring machines 10 mounted on the ship S to generate thrust. For example, only one stern mooring machine 10A and one bow mooring machine 10B generate thrust, and the remaining mooring machines 10 are designed so as not to cause slack in the mooring rope R and to prevent the generated thrust from being obstructed. The tension of the mooring line R may be controlled to be kept constant.
〔変形例1〕
 上記の推進デバイス9の制限器64は、接岸距離dに基づいて推進指令制限値Ulimを求めるが、接岸距離dに基づいて求めた推進指令制限値が船舶Sの接岸速度Vappで補正されてもよい。
[Modification 1]
The limiter 64 of the propulsion device 9 described above determines the propulsion command limit value Ulim based on the berthing distance d, but even if the propulsion command limit value determined based on the berthing distance d is corrected by the berthing speed Vapp of the ship S. good.
 図9は接岸速度Vappを説明する図である。図9に示すように、接岸速度Vapp、は、船舶Sの速度Vの接岸方向D2の成分である。接岸速度Vappは、速度計22で検出される船舶Sの速度Vと、コンパス21で検出される船舶Sの船首方位角と、予め記憶された船体モデル及び岸壁情報とを用いて求め得る。 FIG. 9 is a diagram explaining the berthing speed Vapp. As shown in FIG. 9, the berthing speed Vapp is a component of the speed V of the ship S in the berthing direction D2. The berthing speed Vapp can be determined using the speed V of the ship S detected by the speedometer 22, the heading angle of the ship S detected by the compass 21, and pre-stored hull model and quay information.
 推進制御部69の制限器64は、推進指令制限値Ulimを船体5の接岸方向D2の速度Vappが大きくなるのに伴って小さくなるように補正する。 The limiter 64 of the propulsion control unit 69 corrects the propulsion command limit value Ulim so that it decreases as the speed Vapp of the hull 5 in the berthing direction D2 increases.
 例えば、推進指令制限値Ulimが補正係数Kvで補正される場合、補正後の推進指令制限値Ulimは、推進指令制限値Ulim×補正係数Kvで表される。補正係数Kvは1以下の値であり、接岸速度Vappと所定の接近速度閾値Vsafeの差ΔVに反比例する。接近速度閾値Vsafe以下で移動する船体5が岸壁30に接触する程度では船体5には損傷は生じず、接近速度閾値Vsafeを超えて移動する船体5が岸壁30に衝突すると船体5に損傷が生じる可能性がある。図10は、接岸速度Vappと接近速度閾値Vsafeの差ΔVと補正係数Kvとの関係の一例を表す図表である。図10に例示されるように、接岸速度Vappと接近速度閾値Vsafeの差ΔVが大きくなれば、補正係数Kvの値が小さくなる。よって、接岸速度Vappで補正された推進指令制限値Ulimは、接岸速度Vappと接近速度閾値Vsafeの差ΔVが大きくなるに従って小さくなる。制限器64は、このように補正された推進指令制限値Ulimを用いて、推進指令Ucに制限を掛けることができる。 For example, when the propulsion command limit value Ulim is corrected by the correction coefficient Kv, the corrected propulsion command limit value Ulim is expressed as the propulsion command limit value Ulim×correction coefficient Kv. The correction coefficient Kv has a value of 1 or less and is inversely proportional to the difference ΔV between the berthing speed Vapp and the predetermined approach speed threshold Vsafe. If the hull 5 moving below the approach speed threshold Vsafe comes into contact with the quay 30, no damage will occur to the hull 5, but if the hull 5 moving above the approach speed threshold Vsafe collides with the quay 30, damage will occur to the hull 5. there is a possibility. FIG. 10 is a chart showing an example of the relationship between the difference ΔV between the berthing speed Vapp and the approach speed threshold Vsafe and the correction coefficient Kv. As illustrated in FIG. 10, as the difference ΔV between the berthing speed Vapp and the approach speed threshold Vsafe becomes larger, the value of the correction coefficient Kv becomes smaller. Therefore, the propulsion command limit value Ulim corrected by the berthing speed Vapp becomes smaller as the difference ΔV between the berthing speed Vapp and the approach speed threshold Vsafe increases. The limiter 64 can limit the propulsion command Uc using the propulsion command limit value Ulim corrected in this way.
〔変形例2〕
 上記の推進デバイス9の制限器64は、接岸距離dに基づいて推進指令制限値Ulimを求めるが、接岸距離dに基づいて求めた推進指令制限値Ulimが船舶Sに作用する接岸方向D2の外乱力(以下、「接岸外乱力Fapp」と称する)で補正されてもよい。
[Modification 2]
The limiter 64 of the propulsion device 9 described above determines the propulsion command limit value Ulim based on the berthing distance d, but the propulsion command limit value Ulim determined based on the berthing distance d is caused by disturbance in the berthing direction D2 acting on the ship S. The force (hereinafter referred to as "berthing disturbance force Fapp") may be corrected.
 図11は接岸外乱力Fappを説明する図である。図11に示すように、接岸外乱力Fappは、船舶Sに作用する外乱力Fの接岸方向D2の成分である。外乱力Fには、水が船体5に与える流体力、及び、風が船体5に与える風圧力のうち少なくとも一方を含んでいてよい。流体力は、例えば、潮流計29で計測された潮流と予め記憶された船体モデルに基づいて算出し得る。或いは、流体力は、気象・海象情報に含まれる港湾内の潮流及び潮位と予め記憶された船体モデルに基づいて算出し得る。風圧力は、例えば、風向風速計25で計測された風向及び風速と船体モデルに基づいて算出し得る。或いは、風圧力は、気象・海象情報に含まれる港湾内の風速、風向と予め記憶された船体モデルに基づいて算出し得る。接岸外乱力Fappは、流体力及び風圧力と、コンパス21で検出される船舶Sの船首方位角と、予め記憶された船体モデル及び岸壁情報とを用いて求め得る。 FIG. 11 is a diagram illustrating the berthing disturbance force Fapp. As shown in FIG. 11, the berthing disturbance force Fapp is a component of the disturbance force F acting on the ship S in the berthing direction D2. The disturbance force F may include at least one of a fluid force exerted on the hull 5 by water and a wind pressure exerted on the hull 5 by wind. The fluid force can be calculated, for example, based on the tidal current measured by the tidal current meter 29 and a pre-stored hull model. Alternatively, the fluid force may be calculated based on the tidal current and tidal level in the harbor included in the weather/oceanographic information and a pre-stored hull model. The wind pressure can be calculated, for example, based on the wind direction and wind speed measured by the anemometer 25 and the hull model. Alternatively, the wind pressure may be calculated based on the wind speed and wind direction in the harbor included in the weather/oceanographic information and a pre-stored hull model. The berthing disturbance force Fapp can be obtained using the fluid force and wind pressure, the heading angle of the ship S detected by the compass 21, and the pre-stored ship model and quay information.
 推進制御部69の制限器64は、船体5のおかれた環境の風向、風速、及び潮流を含む外乱情報を取得し、外乱情報に基づいて船体5に作用する接岸方向D2の外乱力(接岸外乱力Fapp)を推定し、推進指令制限値を接岸外乱力Fappに応じて補正する。 The limiter 64 of the propulsion control unit 69 acquires disturbance information including the wind direction, wind speed, and tidal current of the environment in which the hull 5 is placed, and determines the disturbance force in the berthing direction D2 acting on the hull 5 based on the disturbance information. The disturbance force Fapp) is estimated, and the propulsion command limit value is corrected according to the berthing disturbance force Fapp.
 例えば、推進指令制限値Ulimが補正値Kfで補正される場合、補正後の推進指令制限値Ulimは、[推進指令制限値Ulim-外乱補正値Kf]で表される。外乱補正値Kfは接岸外乱力Fappに比例する。正の数の外乱補正値Kfは船舶Sの接岸方向D2の移動を推進する外乱力を表し、負の数の外乱補正値Kfは船舶Sの接岸方向D2の移動を妨げる(即ち、離岸方向D3の移動を促進する)外乱力を表す。接岸外乱力Fappと外乱補正値Kfとの関係は予め規定されており、制限器64は接岸外乱力Fappに基づいて外乱補正値Kfを求め、更には、外乱補正値Kfで補正された推進指令制限値Ulimを求めることができる。このように、接岸外乱力Fappで補正された推進指令制限値Ulimは、接岸外乱力Fappが船舶Sの離岸方向D3の移動を促進する場合(即ち、外乱補正値Kfが負の値の場合)、接岸外乱力Fappの絶対値が大きくなるのに伴って大きくなる。一方、接岸外乱力Fappで補正された推進指令制限値Ulimは、接岸外乱力Fappが船舶Sの接岸方向D2の移動を促進する場合(即ち、外乱補正値Kfが正の値の場合)、接岸外乱力Fappの絶対値が大きくなるのに伴って小さくなる。 For example, when the propulsion command limit value Ulim is corrected by the correction value Kf, the corrected propulsion command limit value Ulim is expressed as [propulsion command limit value Ulim−disturbance correction value Kf]. The disturbance correction value Kf is proportional to the berthing disturbance force Fapp. A positive disturbance correction value Kf represents a disturbance force that promotes the movement of the ship S in the berthing direction D2, and a negative disturbance correction value Kf represents a disturbance force that impedes the movement of the ship S in the berthing direction D2 (i.e., a disturbance force that promotes the movement of the ship S in the berthing direction D2). represents the disturbance force that promotes the movement of D3. The relationship between the berthing disturbance force Fapp and the disturbance correction value Kf is defined in advance, and the limiter 64 calculates the disturbance correction value Kf based on the berthing disturbance force Fapp, and further calculates the propulsion command corrected by the disturbance correction value Kf. The limit value Ulim can be determined. In this way, the propulsion command limit value Ulim corrected by the berthing disturbance force Fapp is determined when the berthing disturbance force Fapp promotes the movement of the ship S in the unberthing direction D3 (that is, when the disturbance correction value Kf is a negative value) ), increases as the absolute value of the berthing disturbance force Fapp increases. On the other hand, the propulsion command limit value Ulim corrected by the berthing disturbance force Fapp is determined by It becomes smaller as the absolute value of the disturbance force Fapp becomes larger.
〔総括〕
 本開示の第1の項目に係る操船システム20は、
船体5を接岸方向D2へ推し進める推力を出力する推進機2,3と、係船索Rの巻取りによって船体5を接岸方向D2へ推し進める推力を出力する係船機10とを含む、船体5に搭載された複数の推進デバイス9と、
船体5から着岸しようとする岸壁30までの距離である接岸距離dを検出する距離計27と、
推進指令Ucを出力する操縦機器80と、
接岸距離d及び推進指令Ucを取得し、接岸距離dが小さくなるのに伴って推進指令制限値Ulimが小さくなる所与の関係に基づいて接岸距離dと対応する推進指令制限値Ulimを求め、操縦機器80から出力される推進指令Ucが推進指令制限値Ulim以上である場合は、推進指令Ucを推進指令制限値Ulimとし、制限された推進指令Ucに対応する推力を複数の推進デバイス9に配分し、複数の推進デバイス9の各々から配分された推力が出力されるように複数の推進デバイス9を制御する制御装置69と、を備えることを特徴としている。
[Summary]
The ship maneuvering system 20 according to the first item of the present disclosure includes:
The mooring machine 10 is mounted on the hull 5 and includes propulsion machines 2 and 3 that output a thrust that propels the hull 5 in the berthing direction D2, and a mooring machine 10 that outputs a thrust that propels the hull 5 in the berthing direction D2 by winding the mooring rope R. a plurality of propulsion devices 9;
a distance meter 27 that detects a berthing distance d, which is the distance from the hull 5 to the quay 30 where the ship is about to berth;
A control device 80 that outputs a propulsion command Uc;
Obtain the berthing distance d and the propulsion command Uc, and calculate the propulsion command limit value Ulim corresponding to the berthing distance d based on a given relationship in which the propulsion command limit value Ulim decreases as the berthing distance d becomes smaller; When the propulsion command Uc output from the control device 80 is greater than or equal to the propulsion command limit value Ulim, the propulsion command Uc is set to the propulsion command limit value Ulim, and the thrust corresponding to the limited propulsion command Uc is applied to the plurality of propulsion devices 9. It is characterized by comprising a control device 69 that controls the plurality of propulsion devices 9 so that the thrust distributed to each of the plurality of propulsion devices 9 is output.
 上記操船システム20では、操縦機器80が出力し制御装置69が取得した推進指令Ucの値に関わらず、推進指令Ucの値は推進指令制限値Ulim以下に制限される。推進指令制限値Ulimは船体5が岸壁30へ近づくほど小さな値となるので、船体5が岸壁30に近接した状態では操縦機器80の誤操作が生じても推進指令Ucが十分に小さな値に制限されることから、船体5の岸壁30への衝突が阻止される。 In the ship maneuvering system 20, regardless of the value of the propulsion command Uc output by the maneuvering device 80 and acquired by the control device 69, the value of the propulsion command Uc is limited to the propulsion command limit value Ulim or less. The propulsion command limit value Ulim becomes a smaller value as the hull 5 approaches the quay 30, so when the hull 5 is close to the quay 30, even if an erroneous operation of the control device 80 occurs, the propulsion command Uc is limited to a sufficiently small value. This prevents the hull 5 from colliding with the quay 30.
 本開示の第2の項目に係る操船システム20は、第1の項目に係る操船システム20において、船体5の速度Vを検出する速度計22を、更に備え、制御装置69は、推進指令制限値Ulimを船体5の接岸方向D2の速度Vappが大きくなるのに伴って小さくなるように補正するものである。 The ship maneuvering system 20 according to the second item of the present disclosure is the ship maneuvering system 20 according to the first item, further comprising a speedometer 22 that detects the speed V of the hull 5, and the control device 69 controls the propulsion command limit value. Ulim is corrected so that it becomes smaller as the speed Vapp of the hull 5 in the berthing direction D2 becomes larger.
 上記操船システム20では、推進指令制限値Ulimに船体5の接岸速度Vappが加味されるので、より確実に船体5の岸壁30への衝突が阻止されるように推進指令Ucを制限できる。 In the ship maneuvering system 20, the berthing speed Vapp of the hull 5 is taken into account in the propulsion command limit value Ulim, so the propulsion command Uc can be limited so as to more reliably prevent the hull 5 from colliding with the quay 30.
 本開示の第3の項目に係る操船システム20は、第1又は2の項目に係る操船システム20において、制御装置69は、船体5のおかれた環境の外乱情報を取得し、外乱情報に基づいて船体5に作用する接岸方向D2の外乱力Fappを推定し、推進指令制限値Ulimを外乱力Fappに応じて補正するものである。外乱情報は、例えば、風向、風速、及び潮流を含んでいてよい。 In the ship maneuvering system 20 according to the third item of the present disclosure, in the ship maneuvering system 20 according to the first or second item, the control device 69 acquires disturbance information of the environment in which the hull 5 is placed, and based on the disturbance information. The disturbance force Fapp in the berthing direction D2 acting on the hull 5 is estimated, and the propulsion command limit value Ulim is corrected according to the disturbance force Fapp. The disturbance information may include, for example, wind direction, wind speed, and tidal current.
 上記操船システム20では、推進指令制限値Ulimに船体5に作用する接岸外乱力Fappが加味されるので、より確実に船体5の岸壁30への衝突が阻止されるように推進指令Ucを制限できる。 In the ship maneuvering system 20 described above, the berthing disturbance force Fapp acting on the hull 5 is added to the propulsion command limit value Ulim, so the propulsion command Uc can be restricted to more reliably prevent the collision of the hull 5 with the quay 30. .
 本開示の第4の項目に係る操船システム20は、第1乃至3のいずれかの項目に係る操船システム20において、係船索Rの張力を測定する張力計52を更に備え、制御装置69は、張力計52で測定される係船索Rの張力が0より大きく且つ係船機10の最大巻込力より小さい所定の閾値以下の範囲に維持されるように、推進指令に対応する推力を複数の推進デバイス9へ配分するものである。 The ship maneuvering system 20 according to the fourth item of the present disclosure is the ship maneuvering system 20 according to any one of the first to third items, further including a tension meter 52 that measures the tension of the mooring line R, and the control device 69: A plurality of thrusts are applied to the propulsion command so that the tension of the mooring line R measured by the tension meter 52 is maintained within a range greater than 0 and less than a predetermined threshold value smaller than the maximum entrainment force of the mooring machine 10. It is to be distributed to the device 9.
 上記操船システム20では、船体5を接岸させるために係船機10に係船索Rの巻取り動作をさせている間、係船索Rの張力の範囲が維持されることから、係船索Rに過負荷が掛かることが防止される。 In the ship maneuvering system 20 described above, while the mooring machine 10 is winding up the mooring line R in order to bring the hull 5 to the berth, the tension range of the mooring line R is maintained, so there is no overload on the mooring line R. It is prevented from getting stuck.
 本開示の第5の項目に係る操船方法は、船体5を接岸方向D2へ推し進める推力を出力する推進機2,3と、係船索Rの巻取りによって船体5を接岸方向D2へ推し進める推力を出力する係船機10とを含む複数の推進デバイス9を船体5に搭載した船舶Sの操船方法であって、
船体5から着岸しようとする岸壁30までの距離である接岸距離dを取得し、
船体5に対する推進指令Ucを取得し、
接岸距離dが小さくなるのに伴って推進指令制限値Ulimが小さくなる所与の関係に基づいて接岸距離dと対応する推進指令制限値Ulimを求め、推進指令制限値Ulim以下に制限された推進指令Ucを求め、
制限された推進指令Ucに対応する推力を複数の推進デバイス9に配分し、
複数の推進デバイス9の各々から配分された推力が出力されるように複数の推進デバイス9を制御することを特徴としている。
The ship maneuvering method according to the fifth item of the present disclosure includes propulsion units 2 and 3 that output a thrust that propels the hull 5 in the berthing direction D2, and outputs a thrust that propels the hull 5 in the berthing direction D2 by winding the mooring rope R. A method for maneuvering a ship S in which a plurality of propulsion devices 9 including a mooring device 10 is mounted on a hull 5,
Obtain the berthing distance d, which is the distance from the hull 5 to the quay 30 where the ship is going to berth,
Obtain the propulsion command Uc for the hull 5,
Based on a given relationship in which the propulsion command limit value Ulim decreases as the berthing distance d becomes smaller, the propulsion command limit value Ulim corresponding to the berthing distance d is determined, and the propulsion command is limited to the propulsion command limit value Ulim or less. Find the command Uc,
Distributing the thrust corresponding to the limited propulsion command Uc to the plurality of propulsion devices 9,
It is characterized in that the plurality of propulsion devices 9 are controlled so that thrust distributed from each of the plurality of propulsion devices 9 is output.
 上記操船方法では、最初に取得した推進指令Ucの値に関わらず、推進指令Ucの値は推進指令制限値Ulim以下に制限される。推進指令制限値Ulimは船体5が岸壁30へ近づくほど小さな値となるので、船体5が岸壁30に近接した状態では操縦機器80の誤操作が生じても推進指令Ucが十分に小さな値に制限されることから、船体5の岸壁30への衝突が阻止される。 In the above ship maneuvering method, the value of the propulsion command Uc is limited to the propulsion command limit value Ulim or less, regardless of the initially obtained value of the propulsion command Uc. The propulsion command limit value Ulim becomes a smaller value as the hull 5 approaches the quay 30, so when the hull 5 is close to the quay 30, even if an erroneous operation of the control device 80 occurs, the propulsion command Uc is limited to a sufficiently small value. This prevents the hull 5 from colliding with the quay 30.
 本明細書で開示する操船コントローラ6の機能は、開示された機能を実行するように構成又はプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、及び/又は、それらの組み合わせを含む回路、又は、処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路又は回路と見做される。本開示において、回路、ユニット、又は手段は、列挙された機能を実行するハードウェアである。ハードウェアは、本明細書に開示されているハードウェアであってもよいし、或いは、列挙された機能を実行するようにプログラム又は構成されているその他の既知のハードウェアであってもよい。ハードウェアが回路の一種と考えられるプロセッサである場合、回路、手段、又はユニットは、ハードウェアとソフトウェアの組み合わせであり、ソフトウェアはハードウェア及び/又はプロセッサの構成に使用される。 The functions of the vessel maneuvering controller 6 disclosed herein may be implemented using general purpose processors, special purpose processors, integrated circuits, ASICs (Application Specific Integrated Circuits), conventional circuits, and/or circuits configured or programmed to perform the disclosed functions. Alternatively, it can be implemented using a circuit or processing circuit including a combination thereof. Processors are considered processing circuits or circuits because they include transistors and other circuits. In this disclosure, a circuit, unit, or means is hardware that performs the recited functions. The hardware may be the hardware disclosed herein or other known hardware that is programmed or configured to perform the recited functions. If the hardware is a processor, which is considered a type of circuit, the circuit, means or unit is a combination of hardware and software, the software being used to configure the hardware and/or the processor.
 以上の本開示の議論は、例示及び説明の目的で提示されたものであり、本開示を本明細書に開示される形態に限定することを意図するものではない。例えば、前述の詳細な説明では、本開示の様々な特徴は、本開示を合理化する目的で1つの実施形態に纏められているが、複数の特徴のうち幾つかが組み合わされてもよい。また、本開示に含まれる複数の特徴は、上記で論じたもの以外の代替の実施形態、構成、又は態様に組み合わされてもよい。 The above discussion of the disclosure has been presented for purposes of illustration and description, and is not intended to limit the disclosure to the form disclosed herein. For example, although in the foregoing detailed description various features of the disclosure are grouped together in a single embodiment for the purpose of streamlining the disclosure, some of the features may also be combined. Additionally, features included in this disclosure may be combined in alternative embodiments, configurations, or aspects other than those discussed above.

Claims (5)

  1.  船体を接岸方向へ推し進める推力を出力する推進機と、係船索の巻取りによって前記船体を前記接岸方向へ推し進める推力を出力する係船機とを含む、前記船体に搭載された複数の推進デバイスと、
     前記船体から着岸しようとする岸壁までの距離である接岸距離を検出する距離計と、
     推進指令を出力する操縦機器と、
     前記接岸距離及び前記推進指令を取得し、前記接岸距離が小さくなるのに伴って推進指令制限値が小さくなる所与の関係に基づいて前記接岸距離と対応する前記推進指令制限値を求め、前記操縦機器から出力される前記推進指令が前記推進指令制限値以上である場合は、前記推進指令を前記推進指令制限値とし、制限された前記推進指令に対応する推力を前記複数の推進デバイスに配分し、前記複数の推進デバイスの各々から配分された推力が出力されるように前記複数の推進デバイスを制御する制御装置と、を備える、
    操船システム。
    a plurality of propulsion devices mounted on the hull, including a propulsion machine that outputs a thrust that propels the hull in the berthing direction; and a mooring machine that outputs a thrust that propels the hull in the berthing direction by winding a mooring line;
    a distance meter that detects a berthing distance, which is a distance from the ship's hull to a quay to which it is attempting to berth;
    A control device that outputs a propulsion command;
    Obtaining the berthing distance and the propulsion command, determining the propulsion command limit value corresponding to the berthing distance based on a given relationship in which the propulsion command limit value decreases as the berthing distance decreases, and If the propulsion command output from the control device is equal to or greater than the propulsion command limit value, the propulsion command is set as the propulsion command limit value, and the thrust corresponding to the limited propulsion command is distributed to the plurality of propulsion devices. and a control device that controls the plurality of propulsion devices so that thrust distributed from each of the plurality of propulsion devices is output.
    Ship handling system.
  2.  前記船体の速度を検出する速度計を、更に備え、
     前記制御装置は、前記推進指令制限値を前記船体の前記接岸方向の速度が大きくなるのに伴って小さくなるように補正する、
    請求項1に記載の操船システム。
    further comprising a speedometer that detects the speed of the hull,
    The control device corrects the propulsion command limit value so that it decreases as the speed of the ship in the berthing direction increases.
    The ship maneuvering system according to claim 1.
  3.  前記制御装置は、前記船体のおかれた環境の外乱情報を取得し、前記外乱情報に基づいて前記船体に作用する前記接岸方向の外乱力を推定し、前記推進指令制限値を前記外乱力に応じて補正する、
    請求項1又は2に記載の操船システム。
    The control device acquires disturbance information of the environment in which the ship is placed, estimates a disturbance force acting on the ship in the berthing direction based on the disturbance information, and sets the propulsion command limit value to the disturbance force. Correct accordingly.
    A ship maneuvering system according to claim 1 or 2.
  4.  前記係船索の張力を測定する張力計を更に備え、
     前記制御装置は、前記張力計で測定される前記係船索の張力が0より大きく且つ前記係船機の最大巻込力より小さい所定の閾値以下の範囲に維持されるように、前記推進指令に対応する推力を前記複数の推進デバイスに配分する、
    請求項1又は2に記載の操船システム。
    Further comprising a tension meter for measuring the tension of the mooring line,
    The control device responds to the propulsion command so that the tension of the mooring line measured by the tension meter is maintained within a predetermined threshold value that is greater than 0 and smaller than the maximum retraction force of the mooring machine. allocating the thrust to the plurality of propulsion devices;
    A ship maneuvering system according to claim 1 or 2.
  5.  船体を接岸方向へ推し進める推力を出力する推進機と、係船索の巻取りによって前記船体を前記接岸方向へ推し進める推力を出力する係船機とを含む複数の推進デバイスを前記船体に搭載した船舶の操船方法であって、
     前記船体から着岸しようとする岸壁までの距離である接岸距離を取得し、
     前記船体に対する推進指令を取得し、
     前記接岸距離が小さくなるのに伴って推進指令制限値が小さくなる所与の関係に基づいて前記接岸距離と対応する前記推進指令制限値を求め、前記推進指令制限値以下に制限された前記推進指令を求め、
     制限された前記推進指令に対応する推力を前記複数の推進デバイスに配分し、
     前記複数の推進デバイスの各々から配分された推力が出力されるように前記複数の推進デバイスを制御する、
    操船方法。
    Maneuvering a ship in which a plurality of propulsion devices are mounted on the hull, including a propulsion machine that outputs a thrust that propels the hull in the berthing direction, and a mooring machine that outputs a thrust that propels the hull in the berthing direction by winding a mooring line. A method,
    Obtaining the berthing distance, which is the distance from the ship's hull to the quay where the ship is attempting to berth;
    obtaining a propulsion command for the hull;
    The propulsion command limit value corresponding to the berthing distance is determined based on a given relationship in which the propulsion command limit value decreases as the berthing distance becomes smaller, and the propulsion command limit value is determined to be less than or equal to the propulsion command limit value. Ask for instructions,
    allocating thrust corresponding to the limited propulsion command to the plurality of propulsion devices;
    controlling the plurality of propulsion devices so that thrust distributed from each of the plurality of propulsion devices is output;
    How to operate the ship.
PCT/JP2023/008261 2022-06-03 2023-03-06 Vessel handling system and vessel handling method WO2023233742A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-090677 2022-06-03
JP2022090677A JP2023177805A (en) 2022-06-03 2022-06-03 Maneuvering system and maneuvering method

Publications (1)

Publication Number Publication Date
WO2023233742A1 true WO2023233742A1 (en) 2023-12-07

Family

ID=89026063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008261 WO2023233742A1 (en) 2022-06-03 2023-03-06 Vessel handling system and vessel handling method

Country Status (2)

Country Link
JP (1) JP2023177805A (en)
WO (1) WO2023233742A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255058A (en) * 2004-03-12 2005-09-22 Shin Kurushima Dockyard Co Ltd Automated pier-docking/mooring device and automatic pier-docking/mooring method of ship
KR20060072293A (en) * 2004-12-23 2006-06-28 재단법인 포항산업과학연구원 System for docking of ship
JP2019162977A (en) * 2018-03-20 2019-09-26 三井E&S造船株式会社 Automatic maneuvering system for vessel
JP2020026208A (en) * 2018-08-10 2020-02-20 日本無線株式会社 Maneuvering support device
JP2021076537A (en) * 2019-11-12 2021-05-20 国立研究開発法人 海上・港湾・航空技術研究所 Pier docking support program for vessel, pier docking support system for vessel, and vessel equipped with pier docking support system for vessel
JP2021187374A (en) * 2020-06-03 2021-12-13 ジャパン・ハムワージ株式会社 Control method for vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255058A (en) * 2004-03-12 2005-09-22 Shin Kurushima Dockyard Co Ltd Automated pier-docking/mooring device and automatic pier-docking/mooring method of ship
KR20060072293A (en) * 2004-12-23 2006-06-28 재단법인 포항산업과학연구원 System for docking of ship
JP2019162977A (en) * 2018-03-20 2019-09-26 三井E&S造船株式会社 Automatic maneuvering system for vessel
JP2020026208A (en) * 2018-08-10 2020-02-20 日本無線株式会社 Maneuvering support device
JP2021076537A (en) * 2019-11-12 2021-05-20 国立研究開発法人 海上・港湾・航空技術研究所 Pier docking support program for vessel, pier docking support system for vessel, and vessel equipped with pier docking support system for vessel
JP2021187374A (en) * 2020-06-03 2021-12-13 ジャパン・ハムワージ株式会社 Control method for vessel

Also Published As

Publication number Publication date
JP2023177805A (en) 2023-12-14

Similar Documents

Publication Publication Date Title
DK180271B1 (en) A method and system for operating one or more tugboats
US8622778B2 (en) Programmable automatic docking system
DK180297B1 (en) A method and system for operating one or more tugboats
JP6969047B2 (en) Automatic ship maneuvering system
US20160187883A1 (en) A Programmable Automatic Docking System
WO2017167905A1 (en) A boat or ship with a collision prevention system
EP3436340B1 (en) A tugboat with a capsizing and sinking prevention system
DK179634B1 (en) A tugboat with a crane for handling a towing line
JP7386041B2 (en) Ship maneuvering support system and method
WO2019093416A1 (en) Sailing support system for ship
CN110254648A (en) A kind of control system for assisting ship entering and leaving port using DP
NO341050B1 (en) Motion compensating crane system
JP2005255058A (en) Automated pier-docking/mooring device and automatic pier-docking/mooring method of ship
DK201670190A1 (en) Boat with connection to shore
WO2022118753A1 (en) Ship steering system and ship steering method
WO2017167888A1 (en) A tugboat
WO2023233742A1 (en) Vessel handling system and vessel handling method
WO2023233741A1 (en) Berthing and vessel handling monitoring device and method, and vessel handling system and method
WO2020070841A1 (en) System and program for assisting prevention of vessel from colliding with mooring facility
DK179117B1 (en) Tugboat with crane or robot arm

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815505

Country of ref document: EP

Kind code of ref document: A1