JP2019160788A - Conductive material, connection structure and method for producing connection structure - Google Patents

Conductive material, connection structure and method for producing connection structure Download PDF

Info

Publication number
JP2019160788A
JP2019160788A JP2019038350A JP2019038350A JP2019160788A JP 2019160788 A JP2019160788 A JP 2019160788A JP 2019038350 A JP2019038350 A JP 2019038350A JP 2019038350 A JP2019038350 A JP 2019038350A JP 2019160788 A JP2019160788 A JP 2019160788A
Authority
JP
Japan
Prior art keywords
electrode
solder
conductive material
connection
solder particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019038350A
Other languages
Japanese (ja)
Other versions
JP7474029B2 (en
Inventor
弾一 宮崎
Danichi Miyazaki
弾一 宮崎
秀文 保井
Hidefumi Yasui
秀文 保井
周治郎 定永
Shujiro Sadanaga
周治郎 定永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2019160788A publication Critical patent/JP2019160788A/en
Priority to JP2023097675A priority Critical patent/JP2023138947A/en
Application granted granted Critical
Publication of JP7474029B2 publication Critical patent/JP7474029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Wire Bonding (AREA)

Abstract

To provide a conductive material that allows solder to be efficiently disposed on an electrode, and can effectively improve conduction reliability between vertical electrodes to be connected.SOLUTION: A conductive material has a thermosetting component and a solder particle. An absolute difference between a solidus temperature of the solder particle and a liquidus temperature of the solder particle is 5°C or more. In the conductive material 100 wt.%, the content of the solder particles is 15 wt.% or more.SELECTED DRAWING: Figure 1

Description

本発明は、熱硬化性成分とはんだ粒子とを含む導電材料に関する。また、本発明は、上記導電材料を用いた接続構造体及び接続構造体の製造方法に関する。   The present invention relates to a conductive material including a thermosetting component and solder particles. The present invention also relates to a connection structure using the conductive material and a method for manufacturing the connection structure.

異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。   Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin.

上記異方性導電材料は、各種の接続構造体を得るために使用されている。上記異方性導電材料による接続としては、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等が挙げられる。   The anisotropic conductive material is used to obtain various connection structures. Examples of the connection using the anisotropic conductive material include a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)), a connection between a semiconductor chip and a flexible printed circuit board (COF (Chip on Film)), and a semiconductor. Examples include connection between a chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.

上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。   For example, when electrically connecting the electrode of the flexible printed circuit board and the electrode of the glass epoxy substrate by the anisotropic conductive material, an anisotropic conductive material containing conductive particles is disposed on the glass epoxy substrate. To do. Next, a flexible printed circuit board is laminated, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.

下記の特許文献1には、熱硬化性樹脂中に多数の導電性粒子を含む異方性導電材料が開示されている。上記導電性粒子の固相線温度は125℃以上であり、ピーク温度は200℃以下である。上記導電性粒子の固相線温度と上記導電性粒子のピーク温度との温度差は15℃以上である。   Patent Document 1 below discloses an anisotropic conductive material containing a large number of conductive particles in a thermosetting resin. The conductive particles have a solidus temperature of 125 ° C. or higher and a peak temperature of 200 ° C. or lower. The temperature difference between the solidus temperature of the conductive particles and the peak temperature of the conductive particles is 15 ° C. or more.

下記の特許文献2には、はんだ粒子と、熱硬化性樹脂バインダーと、フラックス成分とを含む熱硬化性樹脂組成物が開示されている。上記はんだ粒子は、Snと、Ag、Cu、Bi、Zn、又はInとから選ばれる金属との合金から構成される。上記はんだ粒子の融点は240℃以下である。上記熱硬化性樹脂バインダーは、液状のエポキシ樹脂と液状のフェノール樹脂硬化剤とを含む。上記熱硬化性樹脂組成物では、上記はんだ粒子の含有量は、70質量%〜95質量%の範囲である。上記はんだ粒子が、上記熱硬化性樹脂組成物中に分散している。上記熱硬化性樹脂組成物は、配線板の表面に塗布可能である。   Patent Document 2 below discloses a thermosetting resin composition containing solder particles, a thermosetting resin binder, and a flux component. The solder particles are composed of an alloy of Sn and a metal selected from Ag, Cu, Bi, Zn, or In. The melting point of the solder particles is 240 ° C. or less. The thermosetting resin binder includes a liquid epoxy resin and a liquid phenol resin curing agent. In the said thermosetting resin composition, content of the said solder particle is the range of 70 mass%-95 mass%. The solder particles are dispersed in the thermosetting resin composition. The said thermosetting resin composition can be apply | coated to the surface of a wiring board.

WO2008/111615A1WO2008 / 111615A1 特開2014−98168号公報JP 2014-98168 A

はんだ粒子を含む導電材料を用いて導電接続を行う際には、上方の複数の電極と下方の複数の電極とが電気的に接続されて、導電接続が行われる。はんだは、上下の電極間に配置されることが望ましく、隣接する横方向の電極間には配置されないことが望ましい。隣接する横方向の電極間は、電気的に接続されないことが望ましい。   When conducting a conductive connection using a conductive material containing solder particles, the plurality of upper electrodes and the plurality of lower electrodes are electrically connected to perform conductive connection. The solder is preferably disposed between the upper and lower electrodes, and is preferably not disposed between adjacent lateral electrodes. It is desirable that the adjacent lateral electrodes are not electrically connected.

一般に、はんだ粒子を含む導電材料は、基板上に配置された後、リフロー等により加熱されて用いられる。導電材料がはんだ粒子の融点以上に加熱されることで、はんだ粒子が溶融し、電極間にはんだが凝集することで、上下の電極間が電気的に接続される。   In general, a conductive material containing solder particles is used after being placed on a substrate and then heated by reflow or the like. When the conductive material is heated to the melting point or higher of the solder particles, the solder particles are melted and the solder is aggregated between the electrodes, so that the upper and lower electrodes are electrically connected.

従来のはんだ粒子を含む導電材料では、導電材料を加熱したときに、はんだ粒子が溶融し、はんだの流動性が高くなりすぎることがある。はんだの流動性が高くなりすぎると、はんだの凝集速度が速くなりすぎることがある。従来のはんだ粒子を含む導電材料では、はんだの凝集速度が速すぎるために、はんだが隣接する横方向の電極間に残り、すべてのはんだが電極上に凝集することができず、接続されるべき上下の電極間にはんだを効率的に配置できないことがある。結果として、接続されるべき上下の電極間に配置されるはんだの量が減少し、接続されるべき上下の電極間の導通信頼性が低くなったり、隣接する横方向の電極間の絶縁信頼性が低くなったりすることがある。従来の導電材料では、はんだの凝集力を調整することは困難である。   In a conventional conductive material containing solder particles, when the conductive material is heated, the solder particles may melt and the fluidity of the solder may become too high. When the fluidity of the solder becomes too high, the solder aggregation rate may become too fast. In a conductive material containing conventional solder particles, the solder agglomeration rate is too fast, so that the solder remains between adjacent lateral electrodes and all the solder cannot agglomerate on the electrodes and should be connected Solder may not be efficiently arranged between the upper and lower electrodes. As a result, the amount of solder disposed between the upper and lower electrodes to be connected is reduced, the conduction reliability between the upper and lower electrodes to be connected is lowered, or the insulation reliability between adjacent lateral electrodes is reduced. May be lowered. With conventional conductive materials, it is difficult to adjust the cohesive strength of solder.

また、特許文献1に記載の異方性導電材料では、上記導電性粒子の含有量が少なく、電極間を電気的に接続することは困難である。   In the anisotropic conductive material described in Patent Document 1, the content of the conductive particles is small, and it is difficult to electrically connect the electrodes.

本発明の目的は、電極上にはんだを効率的に配置することができ、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる導電材料を提供することである。また、本発明の目的は、上記導電材料を用いた接続構造体及び接続構造体の製造方法を提供することである。   An object of the present invention is to provide a conductive material that can efficiently arrange solder on an electrode and can effectively improve the conduction reliability between upper and lower electrodes to be connected. Another object of the present invention is to provide a connection structure using the conductive material and a method for manufacturing the connection structure.

本発明の広い局面によれば、熱硬化性成分と、はんだ粒子とを含み、前記はんだ粒子の固相線温度と前記はんだ粒子の液相線温度との差の絶対値が、5℃以上であり、導電材料100重量%中、前記はんだ粒子の含有量が、15重量%以上である、導電材料が提供される。   According to a wide aspect of the present invention, the composition includes a thermosetting component and solder particles, and an absolute value of a difference between a solidus temperature of the solder particles and a liquidus temperature of the solder particles is 5 ° C. or more. A conductive material in which the content of the solder particles is 15% by weight or more in 100% by weight of the conductive material is provided.

本発明に係る導電材料のある特定の局面では、前記はんだ粒子の固相線温度における導電材料の粘度が、0.1Pa・s以上50Pa・s以下である。   On the specific situation with the electrically-conductive material which concerns on this invention, the viscosity of the electrically-conductive material in the solidus temperature of the said solder particle is 0.1 Pa.s or more and 50 Pa.s or less.

本発明に係る導電材料のある特定の局面では、前記はんだ粒子が、ビスマス、インジウム、銀、銅、又は錫を含む。   In a specific aspect of the conductive material according to the present invention, the solder particles include bismuth, indium, silver, copper, or tin.

本発明に係る導電材料のある特定の局面では、前記はんだ粒子に含まれる金属100重量%中、ビスマスの含有量が、1重量%以上58重量%以下である。   On the specific situation with the electrically-conductive material which concerns on this invention, content of bismuth is 1 to 58 weight% in 100 weight% of metals contained in the said solder particle.

本発明に係る導電材料のある特定の局面では、前記はんだ粒子に含まれる金属100重量%中、インジウムの含有量が、1重量%以上52重量%以下である。   On the specific situation with the electrically-conductive material which concerns on this invention, content of an indium is 1 to 52 weight% in 100 weight% of metals contained in the said solder particle.

本発明に係る導電材料のある特定の局面では、前記はんだ粒子の固相線温度が、115℃以上220℃以下である。   On the specific situation with the electrically-conductive material which concerns on this invention, the solidus line temperature of the said solder particle is 115 degreeC or more and 220 degrees C or less.

本発明に係る導電材料のある特定の局面では、前記はんだ粒子の粒子径が、0.01μm以上30μm以下である。   On the specific situation with the electrically-conductive material which concerns on this invention, the particle diameter of the said solder particle is 0.01 micrometer or more and 30 micrometers or less.

本発明に係る導電材料のある特定の局面では、前記導電材料が、導電ペーストである。   In a specific aspect of the conductive material according to the present invention, the conductive material is a conductive paste.

本発明の広い局面によれば、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した導電材料であり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。   According to a wide aspect of the present invention, a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, A connecting portion connecting the second connection target member, wherein the material of the connecting portion is the conductive material described above, and the first electrode and the second electrode are the connecting portion. A connection structure is provided that is electrically connected by a solder portion therein.

本発明に係る接続構造体のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている。   In a specific aspect of the connection structure according to the present invention, the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode. When the portion is viewed, the solder portion in the connection portion is arranged in 50% or more of the area of 100% of the portion where the first electrode and the second electrode face each other.

本発明の広い局面によれば、上述した導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、前記導電材料の前記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、前記はんだ粒子の液相線温度以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法が提供される。   According to a wide aspect of the present invention, using the conductive material described above, the step of disposing the conductive material on the surface of the first connection target member having the first electrode on the surface; On the surface opposite to the first connection target member side, the second connection target member having the second electrode on the surface is arranged so that the first electrode and the second electrode face each other. A step of connecting the first connection target member and the second connection target member by heating the conductive material to a temperature equal to or higher than a liquidus temperature of the solder particles; And a method of electrically connecting the first electrode and the second electrode with a solder portion in the connection portion.

本発明に係る接続構造体の製造方法のある特定の局面では、前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている接続構造体を得る。   In a specific aspect of the manufacturing method of the connection structure according to the present invention, the first electrode and the second electrode are stacked in the stacking direction of the first electrode, the connection portion, and the second electrode. A connection in which the solder part in the connection part is arranged in 50% or more of the area of 100% of the part where the first electrode and the second electrode face each other when the part facing each other is viewed. Get a structure.

本発明に係る導電材料は、熱硬化性成分と、はんだ粒子とを含む。本発明に係る導電材料では、上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値が、5℃以上である。本発明に係る導電材料では、導電材料100重量%中、上記はんだ粒子の含有量が、15重量%以上である。本発明に係る導電材料では、上記の構成が備えられているので、電極上にはんだを効率的に配置することができ、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。   The conductive material according to the present invention includes a thermosetting component and solder particles. In the conductive material according to the present invention, the absolute value of the difference between the solidus temperature of the solder particles and the liquidus temperature of the solder particles is 5 ° C. or more. In the conductive material according to the present invention, the content of the solder particles is 15% by weight or more in 100% by weight of the conductive material. In the conductive material according to the present invention, since the above-described configuration is provided, the solder can be efficiently arranged on the electrode, and the conduction reliability between the upper and lower electrodes to be connected is effectively increased. Can do.

図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention. 図2(a)〜(c)は、本発明の一実施形態に係る導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。2A to 2C are cross-sectional views for explaining each step of an example of a method for manufacturing a connection structure using a conductive material according to an embodiment of the present invention. 図3は、接続構造体の変形例を示す断面図である。FIG. 3 is a cross-sectional view showing a modification of the connection structure.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

(導電材料)
本発明に係る導電材料は、熱硬化性成分と、はんだ粒子とを含む。本発明に係る導電材料では、上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値が、5℃以上である。本発明に係る導電材料では、導電材料100重量%中、上記はんだ粒子の含有量が、15重量%以上である。
(Conductive material)
The conductive material according to the present invention includes a thermosetting component and solder particles. In the conductive material according to the present invention, the absolute value of the difference between the solidus temperature of the solder particles and the liquidus temperature of the solder particles is 5 ° C. or more. In the conductive material according to the present invention, the content of the solder particles is 15% by weight or more in 100% by weight of the conductive material.

本発明に係る導電材料では、上記の構成が備えられているので、電極上にはんだを効率的に配置することができ、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。   In the conductive material according to the present invention, since the above-described configuration is provided, the solder can be efficiently arranged on the electrode, and the conduction reliability between the upper and lower electrodes to be connected is effectively increased. Can do.

本発明に係る導電材料では、導電材料100重量%中の上記はんだ粒子の含有量が15重量%以上であるので、電極上にはんだを凝集させることができ、接続されるべき上下の電極間にはんだを効率的に配置することができる。本発明においては、上記はんだ粒子の含有量が上記の範囲を満足することは、本発明の効果を得るための重要な構成である。   In the conductive material according to the present invention, since the content of the solder particles in 100% by weight of the conductive material is 15% by weight or more, it is possible to agglomerate the solder on the electrode and between the upper and lower electrodes to be connected. Solder can be arranged efficiently. In the present invention, the content of the solder particles satisfying the above range is an important configuration for obtaining the effects of the present invention.

はんだ粒子を含む導電材料は、基板上に配置された後、リフロー等により加熱されて用いられる。導電材料がはんだ粒子の融点以上に加熱されることで、はんだ粒子が溶融し、電極間にはんだが凝集することで、上下の電極間が電気的に接続される。   The conductive material containing the solder particles is used after being placed on the substrate and then heated by reflow or the like. When the conductive material is heated to the melting point or higher of the solder particles, the solder particles are melted and the solder is aggregated between the electrodes, so that the upper and lower electrodes are electrically connected.

従来のはんだ粒子を含む導電材料では、導電材料を加熱したときに、はんだ粒子が溶融し、はんだの流動性が高くなりすぎることがある。はんだの流動性が高くなりすぎると、はんだの凝集速度が速くなりすぎることがある。従来のはんだ粒子を含む導電材料では、はんだの凝集速度が速すぎるために、はんだが隣接する横方向の電極間に残り、すべてのはんだが電極上に凝集することができず、接続されるべき上下の電極間にはんだを効率的に配置できないことがある。   In a conventional conductive material containing solder particles, when the conductive material is heated, the solder particles may melt and the fluidity of the solder may become too high. When the fluidity of the solder becomes too high, the solder aggregation rate may become too fast. In a conductive material containing conventional solder particles, the solder agglomeration rate is too fast, so that the solder remains between adjacent lateral electrodes and all the solder cannot agglomerate on the electrodes and should be connected Solder may not be efficiently arranged between the upper and lower electrodes.

本発明者らは、はんだ粒子の固相線温度とはんだ粒子の液相線温度との差の絶対値に着目し、特定のはんだ粒子を用いることで、はんだの流動性を調整し、はんだの凝集速度を調整できることを見出した。本発明では、はんだの流動性及びはんだの凝集力を適度に調整することによって、接続されるべき電極間にはんだを効率的に配置することができ、接続されるべき上下の電極間の導通信頼性を効果的に高めることができる。   The inventors pay attention to the absolute value of the difference between the solidus temperature of the solder particles and the liquidus temperature of the solder particles, and by using specific solder particles, adjust the solder fluidity, It has been found that the aggregation rate can be adjusted. In the present invention, by appropriately adjusting the solder fluidity and the solder cohesive force, the solder can be efficiently arranged between the electrodes to be connected, and the conduction reliability between the upper and lower electrodes to be connected. Sexually can be enhanced effectively.

また、はんだの流動性及びはんだの凝集力を適度に調整することによって、隣接する横方向の電極間に残るはんだを減らすことができる。結果として、接続されてはならない隣接する横方向の電極間の絶縁信頼性を効果的に高めることができる。   Moreover, the solder remaining between the adjacent lateral electrodes can be reduced by appropriately adjusting the solder fluidity and the solder cohesive force. As a result, it is possible to effectively increase the insulation reliability between adjacent lateral electrodes that should not be connected.

また、本発明では、上記の構成が備えられているので、電極間を電気的に接続した場合に、はんだが上下の対向した電極間に集まりやすく、はんだを電極(ライン)上に配置することができる。また、はんだの一部が、接続されてはならない横方向の電極間に配置され難く、接続されてはならない横方向の電極間に配置されるはんだの量をかなり少なくすることができる。結果として、本発明では、接続されてはならない横方向の電極間において、はんだの残存量を少なくすることができる。   In the present invention, since the above-described configuration is provided, when the electrodes are electrically connected, the solder is likely to gather between the upper and lower electrodes, and the solder is disposed on the electrode (line). Can do. Further, it is difficult for a part of the solder to be disposed between the lateral electrodes that should not be connected, and the amount of solder disposed between the lateral electrodes that should not be connected can be considerably reduced. As a result, according to the present invention, it is possible to reduce the remaining amount of solder between the lateral electrodes that should not be connected.

本発明では、上記のような効果を得るために、上記導電材料が特定のはんだ粒子を含むことは大きく寄与する。   In the present invention, in order to obtain the above effects, it is greatly contributed that the conductive material contains specific solder particles.

さらに、本発明では、電極間の位置ずれを防ぐことができる。本発明では、導電材料を上面に配置した第1の接続対象部材に、第2の接続対象部材を重ね合わせる際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態でも、そのずれを補正して電極同士を接続させることができる(セルフアライメント効果)。   Furthermore, in the present invention, it is possible to prevent positional deviation between the electrodes. In the present invention, when the second connection target member is superimposed on the first connection target member having the conductive material disposed on the upper surface, the electrode of the first connection target member and the electrode of the second connection target member Even in a state of misalignment, the electrodes can be connected by correcting the misalignment (self-alignment effect).

電極上にはんだをより一層効率的に配置する観点からは、上記導電材料は、25℃で液状であることが好ましく、導電ペーストであることが好ましい。上記導電材料は、25℃で導電ペーストであることが好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the conductive material is preferably liquid at 25 ° C., and preferably a conductive paste. The conductive material is preferably a conductive paste at 25 ° C.

電極上にはんだをより一層効率的に配置する観点からは、上記導電材料の25℃での粘度(η25)は、好ましくは0.1Pa・s以上、より好ましくは30Pa・s以上、さらに好ましくは50Pa・s以上であり、好ましくは400Pa・s以下、より好ましくは300Pa・s以下である。上記粘度(η25)は、配合成分の種類及び配合量により適宜調整することができる。   From the viewpoint of more efficiently arranging the solder on the electrode, the viscosity (η25) at 25 ° C. of the conductive material is preferably 0.1 Pa · s or more, more preferably 30 Pa · s or more, and still more preferably. It is 50 Pa · s or more, preferably 400 Pa · s or less, more preferably 300 Pa · s or less. The said viscosity ((eta) 25) can be suitably adjusted with the kind and compounding quantity of a compounding component.

上記粘度(η25)は、例えば、E型粘度計(東機産業社製「TVE22L」)等を用いて、25℃及び5rpmの条件で測定することができる。   The viscosity (η25) can be measured, for example, using an E-type viscometer (“TVE22L” manufactured by Toki Sangyo Co., Ltd.) and the like at 25 ° C. and 5 rpm.

上記はんだ粒子の固相線温度における導電材料の粘度(ηsp)は、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上であり、好ましくは50Pa・s以下、より好ましくは10Pa・s以下である。上記粘度(ηsp)が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。   The viscosity (ηsp) of the conductive material at the solidus temperature of the solder particles is preferably 0.1 Pa · s or more, more preferably 0.2 Pa · s or more, preferably 50 Pa · s or less, more preferably 10 Pa. -S or less. When the viscosity (ηsp) is not less than the above lower limit and not more than the above upper limit, the solder can be more efficiently arranged on the electrode, and the conduction reliability between the upper and lower electrodes to be connected is more effective. Can be enhanced.

上記はんだ粒子の固相線温度における導電材料の粘度(ηsp)は、STRESSTECH(REOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25℃〜200℃(但し、はんだ粒子の固相線温度が200℃を超える場合には温度上限をはんだ粒子の固相線温度とする)の条件で測定可能である。測定結果から、はんだ粒子の固相線温度(℃)での粘度が評価される。   The viscosity (ηsp) of the conductive material at the solidus temperature of the solder particles is STRESSTECH (manufactured by REOLOGICA) or the like, strain control 1 rad, frequency 1 Hz, temperature rising rate 20 ° C./min, measurement temperature range 25 ° C. to Measurement is possible under the condition of 200 ° C. (however, when the solidus temperature of the solder particles exceeds 200 ° C., the upper limit of the temperature is the solidus temperature of the solder particles). From the measurement results, the viscosity of the solder particles at the solidus temperature (° C.) is evaluated.

はんだ粒子の液相線温度(融点)での導電材料の粘度(ηmp)は、好ましくは50Pa・s以下、より好ましくは10Pa・s以下、さらに好ましくは1Pa・s以下であり、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上である。上記粘度(ηmp)が、上記上限以下であれば、電極上にはんだを効率的に凝集させることができる。上記粘度が、上記下限以上であれば、接続部でのボイドを抑制し、接続部以外への導電材料のはみだしを抑制することができる。   The viscosity (ηmp) of the conductive material at the liquidus temperature (melting point) of the solder particles is preferably 50 Pa · s or less, more preferably 10 Pa · s or less, still more preferably 1 Pa · s or less, preferably 0. 1 Pa · s or more, more preferably 0.2 Pa · s or more. When the viscosity (ηmp) is equal to or lower than the upper limit, the solder can be efficiently aggregated on the electrode. If the said viscosity is more than the said minimum, the void in a connection part can be suppressed and the protrusion of the electrically-conductive material other than a connection part can be suppressed.

上記粘度(ηmp)は、STRESSTECH(REOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25℃〜200℃(但し、はんだ粒子の液相線温度(融点)が200℃を超える場合には温度上限をはんだ粒子の液相線温度(融点)とする)の条件で測定可能である。測定結果から、はんだ粒子の液相線温度(融点)(℃)での粘度が評価される。   The viscosity (ηmp) is STRESSTECH (manufactured by REOLOGICA), etc., strain control 1 rad, frequency 1 Hz, temperature rising rate 20 ° C./min, measurement temperature range 25 ° C. to 200 ° C. (however, the liquidus of solder particles) When the temperature (melting point) exceeds 200 ° C., the temperature upper limit can be measured under the condition of the liquidus temperature (melting point) of the solder particles. From the measurement results, the viscosity of the solder particles at the liquidus temperature (melting point) (° C.) is evaluated.

上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電ペーストは異方性導電ペーストであることが好ましく、上記導電フィルムは異方性導電フィルムであることが好ましい。電極上にはんだをより一層効率的に配置する観点からは、上記導電材料は、導電ペーストであることが好ましい。上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。   The conductive material can be used as a conductive paste and a conductive film. The conductive paste is preferably an anisotropic conductive paste, and the conductive film is preferably an anisotropic conductive film. From the viewpoint of more efficiently disposing the solder on the electrode, the conductive material is preferably a conductive paste. The conductive material is preferably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.

以下、上記導電材料に含まれる各成分を説明する。なお、本明細書中において、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味する。   Hereinafter, each component contained in the conductive material will be described. In the present specification, “(meth) acryl” means one or both of “acryl” and “methacryl”.

(はんだ粒子)
上記はんだ粒子は、中心部分及び外表面のいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び外表面のいずれもがはんだである粒子である。上記はんだ粒子の代わりに、はんだ以外の材料から形成された基材粒子と該基材粒子の表面上に配置されたはんだ部とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まり難くなる。また、上記導電性粒子では、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる傾向があり、電極間の位置ずれの抑制効果も低くなる傾向がある。
(Solder particles)
As for the said solder particle, both a center part and an outer surface are formed with the solder. The solder particles are particles in which both the central portion and the outer surface are solder. In place of the solder particles, when conductive particles including base particles formed from a material other than solder and solder portions arranged on the surface of the base particles are used, the conductive particles are conductive on the electrodes. Particles are difficult to collect. Moreover, in the said electroconductive particle, since the solder joint property of electroconductive particles is low, there exists a tendency for the electroconductive particle which moved on the electrode to move out of an electrode easily, and also has the effect of suppressing the position shift between electrodes. Tend to be lower.

上記はんだは、液相線温度(融点)が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ粒子は、液相線温度(融点)が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、液相線温度(融点)が450℃以下の金属を示す。低融点金属の液相線温度(融点)は好ましくは300℃以下、より好ましくは220℃以下、さらに好ましくは190℃以下である。   The solder is preferably a metal (low melting point metal) having a liquidus temperature (melting point) of 450 ° C. or lower. The solder particles are preferably metal particles (low melting point metal particles) having a liquidus temperature (melting point) of 450 ° C. or lower. The low melting point metal particles are particles containing a low melting point metal. The low melting point metal is a metal having a liquidus temperature (melting point) of 450 ° C. or lower. The liquidus temperature (melting point) of the low melting point metal is preferably 300 ° C. or lower, more preferably 220 ° C. or lower, and further preferably 190 ° C. or lower.

上記はんだ粒子の液相線温度は、好ましくは140℃以上、より好ましくは145℃以上であり、好ましくは230℃以下、より好ましくは225℃以下である。上記はんだ粒子の液相線温度が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。   The liquidus temperature of the solder particles is preferably 140 ° C. or higher, more preferably 145 ° C. or higher, preferably 230 ° C. or lower, more preferably 225 ° C. or lower. When the liquidus temperature of the solder particles is not less than the above lower limit and not more than the above upper limit, the solder can be arranged more efficiently on the electrode, and the conduction reliability between the upper and lower electrodes to be connected is improved. It can be increased even more effectively.

上記はんだ粒子の固相線温度は、好ましくは115℃以上、より好ましくは120℃以上であり、好ましくは220℃以下、より好ましくは150℃以下、さらに好ましくは145℃以下である。上記はんだ粒子の固相線温度が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。   The solidus temperature of the solder particles is preferably 115 ° C. or higher, more preferably 120 ° C. or higher, preferably 220 ° C. or lower, more preferably 150 ° C. or lower, and further preferably 145 ° C. or lower. When the solidus temperature of the solder particles is not less than the above lower limit and not more than the above upper limit, the solder can be arranged more efficiently on the electrodes, and the conduction reliability between the upper and lower electrodes to be connected can be improved. It can be increased even more effectively.

上記導電材料では、上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値は、5℃以上である。上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値は、好ましくは5℃以上、より好ましくは8℃以上であり、好ましくは100℃以下、より好ましくは90℃以下である。上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。   In the conductive material, the absolute value of the difference between the solidus temperature of the solder particles and the liquidus temperature of the solder particles is 5 ° C. or more. The absolute value of the difference between the solidus temperature of the solder particles and the liquidus temperature of the solder particles is preferably 5 ° C or higher, more preferably 8 ° C or higher, preferably 100 ° C or lower, more preferably 90 ° C. It is below ℃. When the absolute value of the difference between the solidus temperature of the solder particles and the liquidus temperature of the solder particles is not less than the lower limit and not more than the upper limit, the solder can be disposed more efficiently on the electrode. In addition, the conduction reliability between the upper and lower electrodes to be connected can be further effectively improved.

上記はんだ粒子の液相線温度及び上記はんだ粒子の固相線温度は、示差走査熱量測定(DSC)により求めることができる。上記示差走査熱量測定(DSC)は、昇温範囲:30℃から500℃まで、昇温速度:5℃/分、窒素パージ量:5ml/分の条件で測定することが好ましい。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」等が挙げられる。得られた示差走査熱量測定(DSC)曲線について、低温側のベースラインを高温側に延長した直線を引き、溶融ピークの低温側における曲線の勾配が最大になる点で接線(接線1)を引く。高温側に延長した直線と接線(接線1)との交点における温度を固相線温度とする。また、得られた示差走査熱量測定(DSC)曲線について、高温側のベースラインを低温側に延長した直線を引き、溶融ピークの高温側における曲線の勾配が最大になる点で接線(接線2)を引く。低温側に延長した直線と接線(接線2)との交点における温度を液相線温度とする。   The liquidus temperature of the solder particles and the solidus temperature of the solder particles can be determined by differential scanning calorimetry (DSC). The differential scanning calorimetry (DSC) is preferably measured under the conditions of temperature increase range: 30 ° C. to 500 ° C., temperature increase rate: 5 ° C./min, nitrogen purge amount: 5 ml / min. Examples of the differential scanning calorimetry (DSC) apparatus include “EXSTAR DSC7020” manufactured by SII. With respect to the obtained differential scanning calorimetry (DSC) curve, a straight line obtained by extending the base line on the low temperature side to the high temperature side is drawn, and a tangent line (tangent line 1) is drawn at the point where the slope of the curve on the low temperature side of the melting peak becomes maximum. . The temperature at the intersection of the straight line extended to the high temperature side and the tangent (tangent 1) is defined as the solidus temperature. In addition, for the obtained differential scanning calorimetry (DSC) curve, a straight line obtained by extending the base line on the high temperature side to the low temperature side is drawn, and a tangent line (tangent line 2) is obtained at the point where the slope of the curve on the high temperature side of the melting peak becomes maximum. pull. The temperature at the intersection of the straight line extended to the low temperature side and the tangent line (tangent line 2) is defined as the liquidus temperature.

上記はんだ粒子の固相線温度、上記はんだ粒子の液相線温度、及び上記はんだ粒子の固相線温度と上記はんだ粒子の液相線温度との差の絶対値を上記の好ましい範囲に調整する方法としては、はんだ粒子に含まれる金属の種類及び含有量等を調整する方法等が挙げられる。   The solidus temperature of the solder particles, the liquidus temperature of the solder particles, and the absolute value of the difference between the solidus temperature of the solder particles and the liquidus temperature of the solder particles are adjusted to the preferred range. Examples of the method include a method of adjusting the type and content of the metal contained in the solder particles.

上記はんだ粒子は、ビスマス、インジウム、銀、銅、又は錫を含むことが好ましく、ビスマス、インジウム、又は錫を含むことがより好ましく、ビスマス、又はインジウムを含むことがさらに好ましい。上記はんだ粒子が、上記の好ましい態様を満足すると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。   The solder particles preferably include bismuth, indium, silver, copper, or tin, more preferably include bismuth, indium, or tin, and further preferably include bismuth or indium. When the solder particles satisfy the above-described preferred embodiment, the solder can be arranged more efficiently on the electrodes, and the conduction reliability between the upper and lower electrodes to be connected can be further effectively improved. it can.

上記はんだ粒子に含まれる金属100重量%中、錫の含有量は、好ましくは30重量%以上、より好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは70重量%以下である。上記はんだ粒子における錫の含有量が、上記下限以上及び上記上限以下であると、はんだ部と電極との導通信頼性及び接続信頼性がより一層高くなる。   The content of tin in 100% by weight of the metal contained in the solder particles is preferably 30% by weight or more, more preferably 40% by weight or more, preferably 90% by weight or less, more preferably 70% by weight or less. is there. When the content of tin in the solder particles is not less than the above lower limit and not more than the above upper limit, conduction reliability and connection reliability between the solder portion and the electrode are further enhanced.

上記はんだ粒子に含まれる金属100重量%中、ビスマスの含有量は、好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは58重量%以下、より好ましくは55重量%以下である。上記はんだ粒子におけるビスマスの含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。   In 100% by weight of the metal contained in the solder particles, the content of bismuth is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 58% by weight or less, more preferably 55% by weight or less. is there. When the content of bismuth in the solder particles is not less than the above lower limit and not more than the above upper limit, the solder can be arranged more efficiently on the electrode, and the conduction reliability between the upper and lower electrodes to be connected is improved. It can be increased even more effectively.

上記はんだ粒子に含まれる金属100重量%中、インジウムの含有量は、好ましくは1重量%以上、より好ましくは2重量%以上であり、好ましくは52重量%以下、より好ましくは45重量%以下である。上記はんだ粒子におけるインジウムの含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、接続されるべき上下の電極間の導通信頼性をより一層効果的に高めることができる。   The content of indium in 100% by weight of the metal contained in the solder particles is preferably 1% by weight or more, more preferably 2% by weight or more, preferably 52% by weight or less, more preferably 45% by weight or less. is there. When the content of indium in the solder particles is not less than the above lower limit and not more than the above upper limit, the solder can be arranged more efficiently on the electrode, and the conduction reliability between the upper and lower electrodes to be connected can be improved. It can be increased even more effectively.

なお、上記錫、ビスマス、又はインジウムの含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP−AES」)、又は蛍光X線分析装置(島津製作所社製「EDX−800HS」)等を用いて測定することができる。   The content of tin, bismuth, or indium is a high frequency inductively coupled plasma emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). ) And the like.

上記はんだ粒子を用いることで、はんだが溶融して電極に接合し、はんだ部が電極間を導通させる。例えば、はんだ部と電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、上記はんだ粒子の使用により、はんだ部と電極との接合強度が高くなる結果、はんだ部と電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性がより一層高くなる。   By using the solder particles, the solder is melted and joined to the electrodes, and the solder portion conducts between the electrodes. For example, since the solder portion and the electrode are not in point contact but in surface contact, the connection resistance is lowered. Moreover, as a result of the use of the solder particles, the bonding strength between the solder part and the electrode is increased. As a result, peeling between the solder part and the electrode is less likely to occur, and the conduction reliability and the connection reliability are further improved.

上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫−銀合金、錫−銅合金、錫−銀−銅合金、錫−ビスマス合金、錫−亜鉛合金、及び錫−インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫−銀合金、錫−銀−銅合金、錫−ビスマス合金、又は錫−インジウム合金であることが好ましい。上記低融点金属は、錫−ビスマス合金、又は錫−インジウム合金であることがより好ましい。   The low melting point metal constituting the solder particles is not particularly limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy. The low melting point metal is preferably tin, a tin-silver alloy, a tin-silver-copper alloy, a tin-bismuth alloy, or a tin-indium alloy because of its excellent wettability with respect to the electrode. The low melting point metal is more preferably a tin-bismuth alloy or a tin-indium alloy.

上記はんだ粒子は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだ粒子の組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、及びインジウム等を含む金属組成が挙げられる。上記はんだ粒子は、鉛を含まないことが好ましく、錫とインジウムとを含むか、又は錫とビスマスとを含むことが好ましい。上記はんだ粒子は、共晶はんだを含んでいてもよい。上記はんだ粒子が共晶はんだを含む場合には、複数のはんだ粒子を配合して、固相線温度と液相線温度との差の絶対値を5℃以上にすることが好ましい。   The solder particles are preferably a filler material having a liquidus line of 450 ° C. or lower based on JIS Z3001: welding terms. Examples of the composition of the solder particles include a metal composition containing zinc, gold, silver, lead, copper, tin, bismuth, indium, and the like. The solder particles preferably do not contain lead, and preferably contain tin and indium, or contain tin and bismuth. The solder particles may contain a eutectic solder. When the solder particles include eutectic solder, it is preferable to mix a plurality of solder particles so that the absolute value of the difference between the solidus temperature and the liquidus temperature is 5 ° C. or higher.

はんだ部と電極との接合強度をより一層高めるために、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、及びパラジウム等の金属を含んでいてもよい。また、はんだ部と電極との接合強度をさらに一層高める観点からは、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ粒子に含まれる金属100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。   In order to further increase the bonding strength between the solder part and the electrode, the solder particles include nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese, chromium, Metals such as molybdenum and palladium may be included. Moreover, from the viewpoint of further increasing the bonding strength between the solder portion and the electrode, the solder particles preferably contain nickel, copper, antimony, aluminum, or zinc. From the viewpoint of further increasing the bonding strength between the solder part and the electrode, the content of these metals for increasing the bonding strength is 100 wt% of the metal contained in the solder particles, preferably 0.0001 wt% or more, Preferably it is 1 weight% or less.

上記はんだ粒子の粒子径は、好ましくは0.01μm以上、より好ましくは1μm以上、さらに好ましくは2μm以上、特に好ましくは3μm以上であり、好ましくは30μm以下、より好ましくは20μm以下、さらに好ましくは10μm以下である。上記はんだ粒子の粒子径が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。上記はんだ粒子の粒子径は、3μm以上10μm以下であることが特に好ましい。   The particle size of the solder particles is preferably 0.01 μm or more, more preferably 1 μm or more, further preferably 2 μm or more, particularly preferably 3 μm or more, preferably 30 μm or less, more preferably 20 μm or less, and even more preferably 10 μm. It is as follows. When the particle diameter of the solder particles is not less than the above lower limit and not more than the above upper limit, the solder can be more efficiently disposed on the electrode. The particle diameter of the solder particles is particularly preferably 3 μm or more and 10 μm or less.

上記はんだ粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。はんだ粒子の粒子径は、例えば、任意のはんだ粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各はんだ粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりのはんだ粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個のはんだ粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりのはんだ粒子の粒子径は、球相当径での粒子径として求められる。上記はんだ粒子の平均粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。   The particle diameter of the solder particles is preferably an average particle diameter, and more preferably a number average particle diameter. The particle size of the solder particles is, for example, observing 50 arbitrary solder particles with an electron microscope or an optical microscope, calculating an average value of the particle size of each solder particle, or performing a laser diffraction particle size distribution measurement. Is required. In observation with an electron microscope or an optical microscope, the particle diameter of one solder particle is determined as a particle diameter in a circle-equivalent diameter. In observation with an electron microscope or an optical microscope, the average particle diameter at an equivalent circle diameter of any 50 solder particles is substantially equal to the average particle diameter at a sphere equivalent diameter. In the laser diffraction particle size distribution measurement, the particle diameter of one solder particle is obtained as a particle diameter in a sphere equivalent diameter. The average particle size of the solder particles is preferably calculated by laser diffraction particle size distribution measurement.

上記はんだ粒子の粒子径の変動係数(CV値)は、好ましくは5%以上、より好ましくは10%以上であり、好ましくは40%以下、より好ましくは30%以下である。上記はんだ粒子の粒子径の変動係数が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができる。但し、上記はんだ粒子の粒子径のCV値は、5%未満であってもよい。   The coefficient of variation (CV value) of the solder particle diameter is preferably 5% or more, more preferably 10% or more, preferably 40% or less, more preferably 30% or less. When the coefficient of variation of the particle diameter of the solder particles is not less than the above lower limit and not more than the above upper limit, the solder can be more efficiently arranged on the electrode. However, the CV value of the particle diameter of the solder particles may be less than 5%.

上記変動係数(CV値)は、以下のようにして測定できる。   The coefficient of variation (CV value) can be measured as follows.

CV値(%)=(ρ/Dn)×100
ρ:はんだ粒子の粒子径の標準偏差
Dn:はんだ粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of solder particles Dn: Average value of particle diameter of solder particles

上記はんだ粒子の形状は特に限定されない。上記はんだ粒子の形状は、球状であってもよく、扁平状等の球形状以外の形状であってもよい。   The shape of the solder particles is not particularly limited. The solder particles may have a spherical shape or a shape other than a spherical shape such as a flat shape.

上記導電材料では、導電材料100重量%中、上記はんだ粒子の含有量は、15重量%以上である。導電材料100重量%中、上記はんだ粒子の含有量は、好ましくは20重量%以上、より好ましくは30重量%以上、さらに好ましくは40重量%以上であり、好ましくは90重量%以下、より好ましくは85重量%以下、さらに好ましくは80重量%以下である。上記はんだ粒子の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置することができ、電極間にはんだを多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記はんだ粒子の含有量は多い方が好ましい。   In the conductive material, the content of the solder particles is 15% by weight or more in 100% by weight of the conductive material. In 100% by weight of the conductive material, the content of the solder particles is preferably 20% by weight or more, more preferably 30% by weight or more, further preferably 40% by weight or more, preferably 90% by weight or less, more preferably It is 85 wt% or less, more preferably 80 wt% or less. When the content of the solder particles is not less than the above lower limit and not more than the above upper limit, it is possible to more efficiently arrange the solder on the electrodes, and it is easy to dispose a lot of solder between the electrodes. Reliability becomes even higher. From the viewpoint of further improving the conduction reliability, it is preferable that the content of the solder particles is large.

(熱硬化性成分)
上記導電材料は、熱硬化性成分を含む。上記導電材料は、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含んでいてもよい。導電材料の硬化度を高めるために、上記導電材料は、熱硬化性成分として、熱硬化性化合物と熱硬化剤とを含むことが好ましい。導電材料の硬化度を高めるために、上記導電材料は、熱硬化性成分として硬化促進剤を含むことが好ましい。
(Thermosetting component)
The conductive material includes a thermosetting component. The conductive material may contain a thermosetting compound and a thermosetting agent as a thermosetting component. In order to increase the degree of curing of the conductive material, the conductive material preferably includes a thermosetting compound and a thermosetting agent as the thermosetting component. In order to increase the degree of curing of the conductive material, the conductive material preferably includes a curing accelerator as a thermosetting component.

(熱硬化性成分:熱硬化性化合物)
上記熱硬化性化合物は特に限定されない。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にする観点、導通信頼性をより一層効果的に高める観点、及び絶縁信頼性をより一層効果的に高める観点からは、上記熱硬化性化合物としては、エポキシ化合物又はエピスルフィド化合物が好ましく、エポキシ化合物がより好ましい。上記熱硬化性化合物は、エポキシ化合物を含むことが好ましい。上記熱硬化性化合物は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting component: thermosetting compound)
The thermosetting compound is not particularly limited. Examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. From the viewpoint of further improving the curability and viscosity of the conductive material, from the viewpoint of more effectively increasing the conduction reliability, and from the viewpoint of further increasing the insulation reliability more effectively, as the thermosetting compound, Epoxy compounds or episulfide compounds are preferred, and epoxy compounds are more preferred. The thermosetting compound preferably contains an epoxy compound. As for the said thermosetting compound, only 1 type may be used and 2 or more types may be used together.

上記エポキシ化合物は、少なくとも1個のエポキシ基を有する化合物である。上記エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、ビスフェノールS型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニル型エポキシ化合物、ビフェニルノボラック型エポキシ化合物、ビフェノール型エポキシ化合物、ナフタレン型エポキシ化合物、フルオレン型エポキシ化合物、フェノールアラルキル型エポキシ化合物、ナフトールアラルキル型エポキシ化合物、ジシクロペンタジエン型エポキシ化合物、アントラセン型エポキシ化合物、アダマンタン骨格を有するエポキシ化合物、トリシクロデカン骨格を有するエポキシ化合物、ナフチレンエーテル型エポキシ化合物、及びトリアジン核を骨格に有するエポキシ化合物等が挙げられる。上記エポキシ化合物は1種のみが用いられてもよく、2種以上が併用されてもよい。   The epoxy compound is a compound having at least one epoxy group. Examples of the epoxy compounds include bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, bisphenol S type epoxy compounds, phenol novolac type epoxy compounds, biphenyl type epoxy compounds, biphenyl novolac type epoxy compounds, biphenol type epoxy compounds, and naphthalene type epoxy compounds. Fluorene type epoxy compound, phenol aralkyl type epoxy compound, naphthol aralkyl type epoxy compound, dicyclopentadiene type epoxy compound, anthracene type epoxy compound, epoxy compound having adamantane skeleton, epoxy compound having tricyclodecane skeleton, naphthylene ether type Examples thereof include an epoxy compound and an epoxy compound having a triazine nucleus in the skeleton. As for the said epoxy compound, only 1 type may be used and 2 or more types may be used together.

上記エポキシ化合物は、常温(23℃)で液状又は固体であり、上記エポキシ化合物が常温で固体である場合には、上記エポキシ化合物の溶融温度は、上記はんだ粒子の液相線温度以下であることが好ましい。上記の好ましいエポキシ化合物を用いることで、接続対象部材を貼り合わせた段階では、粘度が高く、搬送等の衝撃により、加速度が付与された際に、第1の接続対象部材と、第2の接続対象部材との位置ずれを抑制することができる。さらに、硬化時の熱により、導電材料の粘度を大きく低下させることができ、はんだの凝集を効率よく進行させることができる。   The epoxy compound is liquid or solid at normal temperature (23 ° C.), and when the epoxy compound is solid at normal temperature, the melting temperature of the epoxy compound is not higher than the liquidus temperature of the solder particles. Is preferred. By using the above-mentioned preferable epoxy compound, the first connection target member and the second connection are high when the connection target member is pasted and when the viscosity is high and acceleration is applied by impact such as conveyance. The positional deviation with respect to the target member can be suppressed. Furthermore, the viscosity of the conductive material can be greatly reduced by heat at the time of curing, and the solder can be efficiently aggregated.

絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記熱硬化性化合物は、エポキシ化合物を含むことが好ましい。   From the viewpoint of further increasing the insulation reliability more effectively and from the viewpoint of increasing the conduction reliability more effectively, the thermosetting compound preferably contains an epoxy compound.

電極上にはんだをより一層効果的に配置する観点からは、上記熱硬化性化合物は、ポリエーテル骨格を有する熱硬化性化合物を含むことが好ましい。   From the viewpoint of more effectively disposing the solder on the electrode, the thermosetting compound preferably includes a thermosetting compound having a polyether skeleton.

上記ポリエーテル骨格を有する熱硬化性化合物としては、炭素数3〜12のアルキル鎖の両末端にグリシジルエーテル基を有する化合物、並びに炭素数2〜4のポリエーテル骨格を有し、該ポリエーテル骨格2〜10個が連続して結合した構造単位を有するポリエーテル型エポキシ化合物等が挙げられる。   Examples of the thermosetting compound having a polyether skeleton include a compound having a glycidyl ether group at both ends of an alkyl chain having 3 to 12 carbon atoms, and a polyether skeleton having 2 to 4 carbon atoms. Examples thereof include polyether type epoxy compounds having structural units in which 2 to 10 are bonded continuously.

硬化物の耐熱性をより一層効果的に高める観点からは、上記熱硬化性化合物は、イソシアヌル骨格を有する熱硬化性化合物を含むことが好ましい。   From the viewpoint of further effectively increasing the heat resistance of the cured product, the thermosetting compound preferably includes a thermosetting compound having an isocyanuric skeleton.

上記イソシアヌル骨格を有する熱硬化性化合物としてはトリイソシアヌレート型エポキシ化合物等が挙げられ、日産化学工業社製TEPICシリーズ(TEPIC−G、TEPIC−S、TEPIC−SS、TEPIC−HP、TEPIC−L、TEPIC−PAS、TEPIC−VL、TEPIC−UC)等が挙げられる。   Examples of the thermosetting compound having the above isocyanuric skeleton include triisocyanurate type epoxy compounds, etc., and TEPIC series (TEPIC-G, TEPIC-S, TEPIC-SS, TEPIC-HP, TEPIC-L, manufactured by Nissan Chemical Industries, Ltd.) TEPIC-PAS, TEPIC-VL, TEPIC-UC) and the like.

導電材料100重量%中、上記熱硬化性化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上であり、好ましくは85重量%以下、より好ましくは75重量%以下、さらに好ましくは65重量%以下、特に好ましくは55重量%以下である。上記熱硬化性化合物の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置し、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。耐衝撃性をより一層効果的に高める観点からは、上記熱硬化性化合物の含有量は多い方が好ましい。   In 100% by weight of the conductive material, the content of the thermosetting compound is preferably 5% by weight or more, more preferably 10% by weight or more, preferably 85% by weight or less, more preferably 75% by weight or less, Preferably it is 65 weight% or less, Most preferably, it is 55 weight% or less. When the content of the thermosetting compound is not less than the above lower limit and not more than the above upper limit, the solder can be disposed more efficiently on the electrodes, and the insulation reliability between the electrodes can be further effectively improved. Further, the conduction reliability between the electrodes can be further effectively improved. From the viewpoint of more effectively increasing the impact resistance, it is preferable that the content of the thermosetting compound is large.

導電材料100重量%中、上記エポキシ化合物の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上であり、好ましくは85重量%以下、より好ましくは75重量%以下、さらに好ましくは65重量%以下、特に好ましくは55重量%以下である。上記エポキシ化合物の含有量が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置し、電極間の絶縁信頼性をより一層効果的に高めることができ、電極間の導通信頼性をより一層効果的に高めることができる。耐衝撃性をより一層高める観点からは、上記エポキシ化合物の含有量は多い方が好ましい。   In 100% by weight of the conductive material, the content of the epoxy compound is preferably 5% by weight or more, more preferably 10% by weight or more, preferably 85% by weight or less, more preferably 75% by weight or less, and still more preferably. It is 65% by weight or less, particularly preferably 55% by weight or less. When the content of the epoxy compound is not less than the above lower limit and not more than the above upper limit, the solder can be more efficiently arranged on the electrodes, and the insulation reliability between the electrodes can be further effectively improved, The conduction reliability between them can be further effectively improved. From the viewpoint of further improving the impact resistance, it is preferable that the content of the epoxy compound is large.

(熱硬化性成分:熱硬化剤)
上記熱硬化剤は特に限定されない。上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤等のチオール硬化剤、酸無水物硬化剤、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting component: thermosetting agent)
The said thermosetting agent is not specifically limited. The thermosetting agent thermosets the thermosetting compound. Examples of the thermosetting agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents and other thiol curing agents, acid anhydride curing agents, thermal cation initiators (thermal cation curing agents), and thermal radical generators. Is mentioned. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.

導電材料を低温でより一層速やかに硬化可能とする観点からは、上記熱硬化剤は、イミダゾール硬化剤、チオール硬化剤、又はアミン硬化剤であることが好ましい。また、上記熱硬化性化合物と上記熱硬化剤とを混合したときの保存安定性を高める観点からは、上記熱硬化剤は、潜在性の硬化剤であることが好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。   From the viewpoint of allowing the conductive material to be cured more rapidly at a low temperature, the thermosetting agent is preferably an imidazole curing agent, a thiol curing agent, or an amine curing agent. Further, from the viewpoint of enhancing the storage stability when the thermosetting compound and the thermosetting agent are mixed, the thermosetting agent is preferably a latent curing agent. The latent curing agent is preferably a latent imidazole curing agent, a latent thiol curing agent, or a latent amine curing agent. In addition, the said thermosetting agent may be coat | covered with polymeric substances, such as a polyurethane resin or a polyester resin.

上記イミダゾール硬化剤は特に限定されない。上記イミダゾール硬化剤としては、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン及び2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2−フェニル−4−ベンジル−5−ヒドロキシメチルイミダゾール、2−パラトルイル−4−メチル−5−ヒドロキシメチルイミダゾール、2−メタトルイル−4−メチル−5−ヒドロキシメチルイミダゾール、2−メタトルイル−4,5−ジヒドロキシメチルイミダゾール、2−パラトルイル−4,5−ジヒドロキシメチルイミダゾール等における1H−イミダゾールの5位の水素をヒドロキシメチル基で、かつ、2位の水素をフェニル基またはトルイル基で置換したイミダゾール化合物等が挙げられる。   The imidazole curing agent is not particularly limited. Examples of the imidazole curing agent include 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6. -[2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adducts 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4-benzyl-5-hydroxymethylimidazole, 2-paratoluyl-4-methyl-5 -Hydroxymethylimidazole, 2-metatoluyl-4-methyl-5- Roxymethylimidazole, 2-metatoluyl-4,5-dihydroxymethylimidazole, 2-paratoluyl-4,5-dihydroxymethylimidazole, etc., the hydrogen at the 5-position of 1H-imidazole is a hydroxymethyl group and the hydrogen at the 2-position Examples thereof include an imidazole compound substituted with a phenyl group or a toluyl group.

上記チオール硬化剤は特に限定されない。上記チオール硬化剤としては、トリメチロールプロパントリス−3−メルカプトプロピオネート、ペンタエリスリトールテトラキス−3−メルカプトプロピオネート及びジペンタエリスリトールヘキサ−3−メルカプトプロピオネート等が挙げられる。   The thiol curing agent is not particularly limited. Examples of the thiol curing agent include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate.

上記アミン硬化剤は特に限定されない。上記アミン硬化剤としては、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ[5.5]ウンデカン、ビス(4−アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。   The amine curing agent is not particularly limited. Examples of the amine curing agent include hexamethylenediamine, octamethylenediamine, decamethylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5] undecane, bis (4 -Aminocyclohexyl) methane, metaphenylenediamine, diaminodiphenylsulfone and the like.

上記酸無水物硬化剤は特に限定されず、エポキシ化合物等の熱硬化性化合物の硬化剤として用いられる酸無水物であれば広く用いることができる。上記酸無水物硬化剤としては、無水フタル酸、テトラヒドロ無水フタル酸、トリアルキルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルブテニルテトラヒドロ無水フタル酸、フタル酸誘導体の無水物、無水マレイン酸、無水ナジック酸、無水メチルナジック酸、無水グルタル酸、無水コハク酸、グリセリンビス無水トリメリット酸モノアセテート、及びエチレングリコールビス無水トリメリット酸等の2官能の酸無水物硬化剤、無水トリメリット酸等の3官能の酸無水物硬化剤、並びに、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、メチルシクロヘキセンテトラカルボン酸無水物、及びポリアゼライン酸無水物等の4官能以上の酸無水物硬化剤等が挙げられる。   The acid anhydride curing agent is not particularly limited and can be widely used as long as it is an acid anhydride used as a curing agent for a thermosetting compound such as an epoxy compound. Examples of the acid anhydride curing agent include phthalic anhydride, tetrahydrophthalic anhydride, trialkyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylbutenyltetrahydrophthalic anhydride. Phthalic acid anhydride, maleic anhydride, nadic anhydride, methyl nadic anhydride, glutaric anhydride, succinic anhydride, glycerin bistrimellitic anhydride monoacetate, and ethylene glycol bistrimellitic anhydride Acid anhydride curing agent, trifunctional acid anhydride curing agent such as trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, methylcyclohexene tetracarboxylic acid anhydride, polyazeline acid anhydride, etc. 4 or more functional acid anhydrides Curing agents.

上記熱カチオン開始剤は特に限定されない。上記熱カチオン開始剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ−p−トリルスルホニウムヘキサフルオロホスファート等が挙げられる。   The thermal cation initiator is not particularly limited. Examples of the thermal cation initiator include iodonium cation curing agents, oxonium cation curing agents, and sulfonium cation curing agents. Examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate. Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate. Examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.

上記熱ラジカル発生剤は特に限定されない。上記熱ラジカル発生剤としては、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ−tert−ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。   The thermal radical generator is not particularly limited. Examples of the thermal radical generator include azo compounds and organic peroxides. Examples of the azo compound include azobisisobutyronitrile (AIBN). Examples of the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.

上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは250℃以下、より好ましくは200℃以下、さらに好ましくは150℃以下、特に好ましくは140℃以下である。上記熱硬化剤の反応開始温度が、上記下限以上及び上記上限以下であると、電極上にはんだをより一層効率的に配置される。上記熱硬化剤の反応開始温度は、80℃以上140℃以下であることが特に好ましい。   The reaction initiation temperature of the thermosetting agent is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, preferably 250 ° C. or lower, more preferably 200 ° C. or lower, and further preferably 150 ° C. Hereinafter, it is particularly preferably 140 ° C. or lower. When the reaction start temperature of the thermosetting agent is not less than the above lower limit and not more than the above upper limit, the solder is more efficiently disposed on the electrode. The reaction start temperature of the thermosetting agent is particularly preferably 80 ° C. or higher and 140 ° C. or lower.

電極上にはんだをより一層効率的に配置する観点からは、上記熱硬化剤の反応開始温度は、上記はんだ粒子の液相線温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことがさらに好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the reaction initiation temperature of the thermosetting agent is preferably higher than the liquidus temperature of the solder particles, more preferably 5 ° C. or more. More preferably, it is 10 ° C. or higher.

上記熱硬化剤の反応開始温度は、DSCでの発熱ピークの立ち上がり開始の温度を意味する。   The reaction start temperature of the thermosetting agent means a temperature at which the exothermic peak of DSC starts to rise.

上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上であり、好ましくは200重量部以下、より好ましくは100重量部以下、さらに好ましくは75重量部以下である。熱硬化剤の含有量が、上記下限以上であると、導電材料を十分に硬化させることが容易である。熱硬化剤の含有量が、上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。   The content of the thermosetting agent is not particularly limited. The content of the thermosetting agent with respect to 100 parts by weight of the thermosetting compound is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight or less, more preferably 75 parts by weight or less. When the content of the thermosetting agent is not less than the above lower limit, it is easy to sufficiently cure the conductive material. When the content of the thermosetting agent is not more than the above upper limit, it is difficult for an excess thermosetting agent that did not participate in curing after curing to remain, and the heat resistance of the cured product is further enhanced.

(熱硬化性成分:硬化促進剤)
上記導電材料は硬化促進剤を含んでいてもよい。上記硬化促進剤は特に限定されない。上記硬化促進剤は、上記熱硬化性化合物と上記熱硬化剤との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、上記熱硬化性化合物との反応において硬化触媒として作用することが好ましい。上記硬化促進剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting component: curing accelerator)
The conductive material may contain a curing accelerator. The said hardening accelerator is not specifically limited. The curing accelerator preferably acts as a curing catalyst in the reaction between the thermosetting compound and the thermosetting agent. The curing accelerator preferably acts as a curing catalyst in the reaction with the thermosetting compound. As for the said hardening accelerator, only 1 type may be used and 2 or more types may be used together.

上記硬化促進剤としては、ホスホニウム塩、三級アミン、三級アミン塩、四級オニウム塩、三級ホスフィン、クラウンエーテル錯体、及びホスホニウムイリド等が挙げられる。具体的には、上記硬化促進剤としては、イミダゾール化合物、イミダゾール化合物のイソシアヌル酸塩、ジシアンジアミド、ジシアンジアミドの誘導体、メラミン化合物、メラミン化合物の誘導体、ジアミノマレオニトリル、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ビス(ヘキサメチレン)トリアミン、トリエタノールアミン、ジアミノジフェニルメタン、有機酸ジヒドラジド等のアミン化合物、1,8−ジアザビシクロ[5,4,0]ウンデセン−7、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、三フッ化ホウ素、並びに、トリフェニルホスフィン、トリシクロヘキシルホスフィン、トリブチルホスフィン及びメチルジフェニルホスフィン等の有機リン化合物等が挙げられる。   Examples of the curing accelerator include phosphonium salts, tertiary amines, tertiary amine salts, quaternary onium salts, tertiary phosphines, crown ether complexes, and phosphonium ylides. Specifically, the curing accelerators include imidazole compounds, isocyanurates of imidazole compounds, dicyandiamide, dicyandiamide derivatives, melamine compounds, melamine compound derivatives, diaminomaleonitrile, diethylenetriamine, triethylenetetramine, tetraethylenepentamine. , Amine compounds such as bis (hexamethylene) triamine, triethanolamine, diaminodiphenylmethane, organic acid dihydrazide, 1,8-diazabicyclo [5,4,0] undecene-7, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraoxaspiro [5,5] undecane, boron trifluoride, and triphenylphosphine, tricyclohexylphosphine, tributylphosphine and methyldiphenylphosphine And the like organic phosphorus compounds.

上記ホスホニウム塩は特に限定されない。上記ホスホニウム塩としては、テトラノルマルブチルホスホニウムブロマイド、テトラノルマルブチルホスホニウムO,O−ジエチルジチオリン酸、メチルトリブチルホスホニウムジメチルリン酸塩、テトラノルマルブチルホスホニウムベンゾトリアゾール、テトラノルマルブチルホスホニウムテトラフルオロボレート、及びテトラノルマルブチルホスホニウムテトラフェニルボレート等が挙げられる。   The phosphonium salt is not particularly limited. Examples of the phosphonium salts include tetranormal butylphosphonium bromide, tetranormal butylphosphonium O, O-diethyldithiophosphoric acid, methyltributylphosphonium dimethyl phosphate, tetranormal butylphosphonium benzotriazole, tetranormal butylphosphonium tetrafluoroborate, and tetranormal borates. And butylphosphonium tetraphenylborate.

上記熱硬化性化合物が良好に硬化するように、上記硬化促進剤の含有量は適宜選択される。上記熱硬化性化合物100重量部に対する上記硬化促進剤の含有量は、好ましくは0.5重量部以上、より好ましくは0.8重量部以上であり、好ましくは10重量部以下、より好ましくは8重量部以下である。上記硬化促進剤の含有量が、上記下限以上及び上記上限以下であると、上記熱硬化性化合物を良好に硬化させることができる。   The content of the curing accelerator is appropriately selected so that the thermosetting compound is cured well. The content of the curing accelerator with respect to 100 parts by weight of the thermosetting compound is preferably 0.5 parts by weight or more, more preferably 0.8 parts by weight or more, preferably 10 parts by weight or less, more preferably 8 parts by weight. Less than parts by weight. When the content of the curing accelerator is not less than the above lower limit and not more than the above upper limit, the thermosetting compound can be cured well.

(フラックス)
上記導電材料は、フラックスを含んでいてもよい。フラックスを用いることで、電極上にはんだをより一層効率的に配置することができる。上記フラックスは特に限定されない。上記フラックスとして、はんだ接合等に一般的に用いられているフラックスを用いることができる。
(flux)
The conductive material may contain a flux. By using the flux, the solder can be arranged more efficiently on the electrode. The flux is not particularly limited. As said flux, the flux generally used for soldering etc. can be used.

上記フラックスとしては、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、アミン化合物、有機酸及び松脂等が挙げられる。上記フラックスは、1種のみが用いられてもよく、2種以上が併用されてもよい。   Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an amine compound, an organic acid, and Examples include pine resin. As for the said flux, only 1 type may be used and 2 or more types may be used together.

上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、又は松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。   Examples of the molten salt include ammonium chloride. Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid. Examples of the pine resin include activated pine resin and non-activated pine resin. The flux is preferably an organic acid having two or more carboxyl groups or pine resin. The flux may be an organic acid having two or more carboxyl groups, or pine resin. By using an organic acid having two or more carboxyl groups, pine resin, the conduction reliability between the electrodes is further enhanced.

上記カルボキシル基を2個以上有する有機酸としては、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、及びセバシン酸等が挙げられる。   Examples of the organic acid having two or more carboxyl groups include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, and sebacic acid.

上記アミン化合物としては、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、イミダゾール、ベンゾイミダゾール、フェニルイミダゾール、カルボキシベンゾイミダゾール、ベンゾトリアゾール、及びカルボキシベンゾトリアゾール等が挙げられる。   Examples of the amine compound include cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, imidazole, benzimidazole, phenylimidazole, carboxybenzimidazole, benzotriazole, and carboxybenzotriazole.

上記松脂はアビエチン酸を主成分とするロジン類である。上記ロジン類としては、アビエチン酸、及びアクリル変性ロジン等が挙げられる。フラックスはロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。   The rosin is a rosin composed mainly of abietic acid. Examples of the rosins include abietic acid and acrylic modified rosin. The flux is preferably a rosin, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.

上記フラックスの活性温度(融点)は、好ましくは50℃以上、より好ましくは70℃以上、さらに好ましくは80℃以上であり、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、さらに好ましくは150℃以下、更に一層好ましくは140℃以下である。上記フラックスの活性温度が、上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだが電極上により一層効率的に配置される。上記フラックスの活性温度(融点)は80℃以上190℃以下であることが好ましい。上記フラックスの活性温度(融点)は80℃以上140℃以下であることが特に好ましい。   The active temperature (melting point) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, and still more preferably 160 ° C or lower, more preferably 150 ° C or lower, still more preferably 140 ° C or lower. When the activation temperature of the flux is not less than the above lower limit and not more than the above upper limit, the flux effect is more effectively exhibited, and the solder is more efficiently arranged on the electrode. The active temperature (melting point) of the flux is preferably 80 ° C. or higher and 190 ° C. or lower. The activation temperature (melting point) of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.

フラックスの活性温度(融点)が80℃以上190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、及びスベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、並びにリンゴ酸(融点130℃)等が挙げられる。   Examples of the flux having an active temperature (melting point) of 80 to 190 ° C. include succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point 104 And dicarboxylic acids such as suberic acid (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), malic acid (melting point 130 ° C.), and the like.

また、上記フラックスの沸点は200℃以下であることが好ましい。   The boiling point of the flux is preferably 200 ° C. or lower.

電極上にはんだをより一層効率的に配置する観点からは、上記フラックスの融点は、上記はんだ粒子の液相線温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the melting point of the flux is preferably higher than the liquidus temperature of the solder particles, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably, it is high.

電極上にはんだをより一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the melting point of the flux is preferably higher than the reaction start temperature of the thermosetting agent, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably, it is high.

上記フラックスは、導電材料中に分散されていてもよく、はんだ粒子の表面上に付着していてもよい。   The flux may be dispersed in the conductive material or may be attached on the surface of the solder particles.

フラックスの融点が、はんだ粒子の液相線温度より高いことにより、電極部分にはんだを効率的に凝集させることができる。これは、接合時に熱を付与した場合、接続対象部材上に形成された電極と、電極周辺の接続対象部材の部分とを比較すると、電極部分の熱伝導率が電極周辺の接続対象部材部分の熱伝導率よりも高いことにより、電極部分の昇温が速いことに起因する。はんだ粒子の液相線温度を超えた段階では、はんだ粒子の内部は溶解するが、表面に形成された酸化被膜は、フラックスの融点(活性温度)に達していないので、除去されない。この状態で、電極部分の温度が先に、フラックスの融点(活性温度)に達するため、優先的に電極上に移動したはんだ粒子の表面の酸化被膜が除去され、はんだが電極の表面上に濡れ拡がることができる。これにより、電極上に効率的にはんだを凝集させることができる。   Since the melting point of the flux is higher than the liquidus temperature of the solder particles, the solder can be efficiently aggregated on the electrode portion. This is because, when heat is applied at the time of joining, when the electrode formed on the connection target member is compared with the portion of the connection target member around the electrode, the thermal conductivity of the electrode portion is that of the connection target member portion around the electrode. Due to the fact that it is higher than the thermal conductivity, the temperature rise of the electrode portion is fast. When the temperature exceeds the liquidus temperature of the solder particles, the inside of the solder particles dissolves, but the oxide film formed on the surface does not reach the melting point (activation temperature) of the flux and is not removed. In this state, since the temperature of the electrode portion first reaches the melting point (activation temperature) of the flux, the oxide film on the surface of the solder particles that have moved preferentially to the electrode is removed, and the solder wets on the surface of the electrode. Can be expanded. Thereby, a solder can be efficiently aggregated on an electrode.

上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、電極上にはんだをより一層効率的に配置することができる。   The flux is preferably a flux that releases cations by heating. By using a flux that releases cations by heating, the solder can be arranged more efficiently on the electrode.

上記加熱によりカチオンを放出するフラックスとしては、上記熱カチオン開始剤(熱カチオン硬化剤)が挙げられる。   Examples of the flux that releases cations by the heating include the thermal cation initiator (thermal cation curing agent).

電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記フラックスは、酸化合物と塩基化合物との塩であることが好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the viewpoint of increasing the insulation reliability more effectively, and the viewpoint of improving the conduction reliability more effectively, the above flux is composed of an acid compound and a base compound. And a salt thereof.

上記酸化合物は、カルボキシル基を有する有機化合物であることが好ましい。上記酸化合物としては、脂肪族系カルボン酸であるマロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、クエン酸、リンゴ酸、環状脂肪族カルボン酸であるシクロヘキシルカルボン酸、1,4−シクロヘキシルジカルボン酸、芳香族カルボン酸であるイソフタル酸、テレフタル酸、トリメリット酸、及びエチレンジアミン四酢酸等が挙げられる。電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記酸化合物は、グルタル酸、シクロヘキシルカルボン酸、又はアジピン酸であることが好ましい。   The acid compound is preferably an organic compound having a carboxyl group. Examples of the acid compound include aliphatic carboxylic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, citric acid, malic acid, and cyclic aliphatic carboxylic acid. Examples thereof include cyclohexyl carboxylic acid, 1,4-cyclohexyl dicarboxylic acid, aromatic carboxylic acid such as isophthalic acid, terephthalic acid, trimellitic acid, and ethylenediaminetetraacetic acid. From the viewpoint of more efficiently arranging the solder on the electrode, the viewpoint of increasing the insulation reliability more effectively, and the viewpoint of further improving the conduction reliability more effectively, the acid compound is glutaric acid, cyclohexyl. Carboxylic acid or adipic acid is preferred.

上記塩基化合物は、アミノ基を有する有機化合物であることが好ましい。上記塩基化合物としては、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、エチルジエタノールアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、2−メチルベンジルアミン、3−メチルベンジルアミン、4−tert−ブチルベンジルアミン、N−メチルベンジルアミン、N−エチルベンジルアミン、N−フェニルベンジルアミン、N−tert−ブチルベンジルアミン、N−イソプロピルベンジルアミン、N,N−ジメチルベンジルアミン、イミダゾール化合物、及びトリアゾール化合物が挙げられる。電極上にはんだをより一層効率的に配置する観点、絶縁信頼性をより一層効果的に高める観点、及び導通信頼性をより一層効果的に高める観点からは、上記塩基化合物は、ベンジルアミンであることが好ましい。   The base compound is preferably an organic compound having an amino group. Examples of the base compound include diethanolamine, triethanolamine, methyldiethanolamine, ethyldiethanolamine, cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, 2-methylbenzylamine, 3-methylbenzylamine, 4-tert-butylbenzylamine. N-methylbenzylamine, N-ethylbenzylamine, N-phenylbenzylamine, N-tert-butylbenzylamine, N-isopropylbenzylamine, N, N-dimethylbenzylamine, imidazole compounds, and triazole compounds. . From the viewpoint of more efficiently arranging the solder on the electrode, the viewpoint of increasing the insulation reliability more effectively, and the viewpoint of further improving the conduction reliability more effectively, the base compound is benzylamine. It is preferable.

導電材料100重量%中、上記フラックスの含有量は、好ましくは0.5重量%以上であり、好ましくは30重量%以下、より好ましくは25重量%以下である。上記導電材料は、フラックスを含んでいなくてもよい。上記フラックスの含有量が、上記下限以上及び上記上限以下であると、はんだ及び電極の表面に酸化被膜がより一層形成され難くなり、更に、はんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。   The content of the flux in 100% by weight of the conductive material is preferably 0.5% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less. The conductive material may not contain flux. When the content of the flux is not less than the above lower limit and not more than the above upper limit, it is more difficult to form an oxide film on the surface of the solder and the electrode, and further, the oxide film formed on the surface of the solder and the electrode is further increased. Can be effectively removed.

(フィラー)
本発明に係る導電材料は、フィラーを含んでいてもよい。フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。上記導電材料がフィラーを含むことにより、基板の全電極上に対して、はんだを均一に凝集させることができる。
(Filler)
The conductive material according to the present invention may contain a filler. The filler may be an organic filler or an inorganic filler. When the conductive material contains a filler, the solder can be uniformly aggregated over all the electrodes of the substrate.

上記導電材料は、上記フィラーを含まないか、又は上記フィラーを5重量%以下で含むことが好ましい。上記熱硬化性化合物を用いている場合には、フィラーの含有量が少ないほど、電極上にはんだが移動しやすくなる。   It is preferable that the conductive material does not contain the filler or contains the filler at 5% by weight or less. When the thermosetting compound is used, the smaller the filler content, the easier the solder moves on the electrode.

導電材料100重量%中、上記フィラーの含有量は、好ましくは0重量%(未含有)以上であり、好ましくは5重量%以下、より好ましくは2重量%以下、さらに好ましくは1重量%以下である。上記フィラーの含有量が、上記下限以上及び上記上限以下であると、はんだが電極上により一層均一に配置される。   The content of the filler in 100% by weight of the conductive material is preferably 0% by weight (not contained) or more, preferably 5% by weight or less, more preferably 2% by weight or less, and further preferably 1% by weight or less. is there. When the content of the filler is not less than the above lower limit and not more than the above upper limit, the solder is more uniformly arranged on the electrode.

(他の成分)
上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、チキソ剤、レベリング剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
(Other ingredients)
The conductive material may be, for example, a filler, an extender, a softener, a plasticizer, a thixotropic agent, a leveling agent, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, and a light stabilizer. In addition, various additives such as ultraviolet absorbers, lubricants, antistatic agents and flame retardants may be contained.

(接続構造体及び接続構造体の製造方法)
本発明に係る接続構造体は、第1の電極を表面に有する第1の接続対象部材と、第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部の材料が、上述した導電材料である。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
(Connection structure and method of manufacturing connection structure)
The connection structure according to the present invention includes a first connection target member having a first electrode on the surface, a second connection target member having a second electrode on the surface, the first connection target member, A connecting portion connecting the second connection target member. In the connection structure according to the present invention, the material of the connection portion is the conductive material described above. In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.

本発明に係る接続構造体の製造方法は、上述した導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、上記導電材料を配置する工程を備える。本発明に係る接続構造体の製造方法は、上記導電材料の上記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する工程を備える。本発明に係る接続構造体の製造方法は、上記はんだ粒子の液相線温度以上に上記導電材料を加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記導電材料により形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する工程を備える。   The manufacturing method of the connection structure which concerns on this invention comprises the process of arrange | positioning the said electrically-conductive material on the surface of the 1st connection object member which has a 1st electrode on the surface using the electrically conductive material mentioned above. In the method for manufacturing a connection structure according to the present invention, a second connection target member having a second electrode on a surface thereof is provided on the surface opposite to the first connection target member side of the conductive material. A step of disposing the first electrode and the second electrode so as to face each other. The manufacturing method of the connection structure according to the present invention connects the first connection target member and the second connection target member by heating the conductive material to a temperature higher than the liquidus temperature of the solder particles. A connecting portion formed of the conductive material, and electrically connecting the first electrode and the second electrode with a solder portion in the connecting portion.

本発明に係る接続構造体及び接続構造体の製造方法では、特定の導電材料を用いているので、はんだが第1の電極と第2の電極との間に集まりやすく、はんだを電極(ライン)上に効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。   In the connection structure and the manufacturing method of the connection structure according to the present invention, since a specific conductive material is used, the solder is likely to gather between the first electrode and the second electrode, and the solder is an electrode (line). Can be efficiently placed on top. In addition, a part of the solder is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability.

また、電極上にはんだを効率的に配置し、かつ電極が形成されていない領域に配置されるはんだの量をかなり少なくするためには、上記導電材料は、導電フィルムではなく、導電ペーストを用いることが好ましい。   Moreover, in order to dispose the solder efficiently on the electrode and to considerably reduce the amount of the solder disposed in the region where the electrode is not formed, the conductive material is not a conductive film but a conductive paste. It is preferable.

電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上であり、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは70%以上であり、好ましくは100%以下である。   The thickness of the solder part between the electrodes is preferably 10 μm or more, more preferably 20 μm or more, preferably 100 μm or less, more preferably 80 μm or less. The solder wetted area on the surface of the electrode (area where the solder is in contact with 100% of the exposed area of the electrode) is preferably 50% or more, more preferably 70% or more, and preferably 100% or less.

本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料には、上記第2の接続対象部材の重量が加わることが好ましい。本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、上記導電材料には、上記第2の接続対象部材の重量の力を超える加圧圧力は加わらないことが好ましい。これらの場合には、複数のはんだ部において、はんだ量の均一性をより一層高めることができる。さらに、はんだ部の厚みをより一層効果的に厚くすることができ、はんだが電極間に多く集まりやすくなり、はんだを電極(ライン)上により一層効率的に配置することができる。また、はんだの一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだの量をより一層少なくすることができる。従って、電極間の導通信頼性をより一層高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続をより一層防ぐことができ、絶縁信頼性をより一層高めることができる。   In the method for manufacturing a connection structure according to the present invention, in the step of arranging the second connection target member and the step of forming the connection portion, no pressure is applied, and the second connection is applied to the conductive material. The weight of the target member is preferably added. In the method for manufacturing a connection structure according to the present invention, in the step of disposing the second connection target member and the step of forming the connection portion, the conductive material has a weight force of the second connection target member. It is preferable not to apply a pressure higher than. In these cases, the uniformity of the amount of solder can be further enhanced in the plurality of solder portions. Furthermore, the thickness of the solder portion can be increased more effectively, so that a large amount of solder is easily collected between the electrodes, and the solder can be arranged more efficiently on the electrodes (lines). Further, a part of the solder is difficult to be disposed in a region (space) where no electrode is formed, and the amount of solder disposed in a region where no electrode is formed can be further reduced. Therefore, the conduction reliability between the electrodes can be further enhanced. In addition, the electrical connection between the laterally adjacent electrodes that should not be connected can be further prevented, and the insulation reliability can be further improved.

また、導電フィルムではなく、導電ペーストを用いれば、導電ペーストの塗布量によって、接続部及びはんだ部の厚みを調整することが容易になる。一方で、導電フィルムでは、接続部の厚みを変更したり、調整したりするためには、異なる厚みの導電フィルムを用意したり、所定の厚みの導電フィルムを用意したりしなければならないという問題がある。また、導電フィルムでは、導電ペーストと比べて、はんだの溶融温度で、導電フィルムの溶融粘度を十分に下げることができず、はんだの凝集が阻害されやすい傾向がある。   Moreover, if a conductive paste is used instead of a conductive film, it becomes easy to adjust the thickness of the connection part and the solder part depending on the amount of the conductive paste applied. On the other hand, in the conductive film, in order to change or adjust the thickness of the connection portion, it is necessary to prepare a conductive film having a different thickness or to prepare a conductive film having a predetermined thickness. There is. Moreover, in the conductive film, compared with the conductive paste, the melt viscosity of the conductive film cannot be sufficiently lowered at the melting temperature of the solder, and the aggregation of the solder tends to be hindered.

以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る導電材料を用いて得られる接続構造体を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using a conductive material according to an embodiment of the present invention.

図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、上述した導電材料により形成されている。本実施形態では、上記導電材料は、熱硬化性成分と、はんだ粒子とを含む。上記熱硬化性成分は、熱硬化性化合物と熱硬化剤とを含む。本実施形態では、導電材料として、導電ペーストが用いられている。   The connection structure 1 shown in FIG. 1 is a connection that connects a first connection target member 2, a second connection target member 3, and the first connection target member 2 and the second connection target member 3. Part 4. The connection part 4 is formed of the conductive material described above. In the present embodiment, the conductive material includes a thermosetting component and solder particles. The thermosetting component includes a thermosetting compound and a thermosetting agent. In the present embodiment, a conductive paste is used as the conductive material.

接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性化合物が熱硬化された硬化物部4Bとを有する。   The connection portion 4 includes a solder portion 4A in which a plurality of solder particles are gathered and joined to each other, and a cured product portion 4B in which a thermosetting compound is thermally cured.

第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。   The first connection target member 2 has a plurality of first electrodes 2a on the surface (upper surface). The second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface). The first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A. In the connection portion 4, no solder exists in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a. In an area different from the solder part 4A (hardened product part 4B part), there is no solder separated from the solder part 4A. If the amount is small, the solder may be present in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a.

図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電性の外表面がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このことによっても、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電材料にフラックスが含まれる場合に、フラックスは、一般に、加熱により次第に失活する。   As shown in FIG. 1, in the connection structure 1, a plurality of solder particles gather between the first electrode 2 a and the second electrode 3 a, and after the plurality of solder particles melt, After the electrode surface wets and spreads, it solidifies to form the solder portion 4A. For this reason, the connection area of 4 A of solder parts and the 1st electrode 2a, and 4 A of solder parts, and the 2nd electrode 3a becomes large. That is, by using the solder particles, the solder portion 4A, the first electrode 2a, and the solder portion are compared with the case where the conductive outer surface is made of a metal such as nickel, gold or copper. The contact area between 4A and the second electrode 3a increases. This also increases the conduction reliability and connection reliability in the connection structure 1. In addition, when a flux is contained in the conductive material, the flux is generally gradually deactivated by heating.

なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。   In addition, in the connection structure 1 shown in FIG. 1, all the solder parts 4A are located in the area | region which the 1st, 2nd electrodes 2a and 3a oppose. The connection structure 1X of the modification shown in FIG. 3 is different from the connection structure 1 shown in FIG. 1 only in the connection portion 4X. The connection part 4X has the solder part 4XA and the hardened | cured material part 4XB. As in the connection structure 1X, most of the solder portions 4XA are located in regions where the first and second electrodes 2a and 3a are opposed to each other, and a part of the solder portion 4XA is first and second. You may protrude to the side from the area | region which electrode 2a, 3a has opposed. The solder part 4XA protruding laterally from the region where the first and second electrodes 2a and 3a are opposed is a part of the solder part 4XA and is not a solder separated from the solder part 4XA. In the present embodiment, the amount of solder away from the solder portion can be reduced, but the solder away from the solder portion may exist in the cured product portion.

はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。   If the amount of solder particles used is reduced, the connection structure 1 can be easily obtained. If the amount of the solder particles used is increased, it becomes easy to obtain the connection structure 1X.

接続構造体1,1Xでは、第1の電極2aと接続部4,4Xと第2の電極3aとの積層方向に第1の電極2aと第2の電極3aとの対向し合う部分をみたときに、第1の電極2aと第2の電極3aとの対向し合う部分の面積100%中の50%以上に、接続部4,4X中のはんだ部4A,4XAが配置されていることが好ましい。接続部4,4X中のはんだ部4A,4XAが、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。   In connection structure 1, 1X, when the part which 1st electrode 2a and 2nd electrode 3a oppose in the lamination direction of 1st electrode 2a, connection part 4, 4X, and 2nd electrode 3a is seen In addition, it is preferable that the solder portions 4A and 4XA in the connection portions 4 and 4X are arranged in 50% or more of the area of 100% of the facing portion between the first electrode 2a and the second electrode 3a. . When the solder portions 4A and 4XA in the connection portions 4 and 4X satisfy the above-described preferable mode, the conduction reliability can be further improved.

上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上に、上記接続部中のはんだ部が配置されていることが好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の60%以上に、上記接続部中のはんだ部が配置されていることがより好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の70%以上に、上記接続部中のはんだ部が配置されていることがさらに好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の80%以上に、上記接続部中のはんだ部が配置されていることが特に好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の90%以上に、上記接続部中のはんだ部が配置されていることが最も好ましい。上記接続部中のはんだ部が、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。   When the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the second electrode It is preferable that the solder portion in the connecting portion is arranged in 50% or more of the area of 100% of the portion facing the two electrodes. When the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the second electrode It is more preferable that the solder portion in the connection portion is disposed in 60% or more of 100% of the area of the portion facing the two electrodes. When the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the second electrode More preferably, the solder portion in the connecting portion is arranged in 70% or more of the area of 100% of the portion facing the two electrodes. When the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the second electrode It is particularly preferable that the solder portion in the connecting portion is disposed in 80% or more of 100% of the area facing the two electrodes. When the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the second electrode It is most preferable that the solder portion in the connection portion is disposed in 90% or more of the area of 100% of the portion facing the two electrodes. When the solder part in the connection part satisfies the above-described preferable aspect, the conduction reliability can be further improved.

上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の60%以上が配置されていることが好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の70%以上が配置されていることがより好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の90%以上が配置されていることがさらに好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の95%以上が配置されていることが特に好ましい。上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の99%以上が配置されていることが最も好ましい。上記接続部中のはんだ部が、上記の好ましい態様を満足することで、導通信頼性をより一層高めることができる。   When the portion where the first electrode and the second electrode face each other in the direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode is seen, It is preferable that 60% or more of the solder portion in the connection portion is disposed in a portion where the electrode and the second electrode face each other. When the portion where the first electrode and the second electrode face each other in the direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode is seen, More preferably, 70% or more of the solder portion in the connection portion is disposed in a portion where the electrode and the second electrode face each other. When the portion where the first electrode and the second electrode face each other in the direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode is seen, More preferably, 90% or more of the solder portion in the connection portion is disposed in a portion where the electrode and the second electrode face each other. When the portion where the first electrode and the second electrode face each other in the direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode is seen, It is particularly preferable that 95% or more of the solder portion in the connection portion is disposed at a portion where the electrode and the second electrode face each other. When the portion where the first electrode and the second electrode face each other in the direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode is seen, It is most preferable that 99% or more of the solder portion in the connection portion is disposed in a portion where the electrode and the second electrode face each other. When the solder part in the connection part satisfies the above-described preferable aspect, the conduction reliability can be further improved.

次に、図2では、本発明の一実施形態に係る導電材料を用いて、接続構造体1を製造する方法の一例を説明する。   Next, FIG. 2 illustrates an example of a method for manufacturing the connection structure 1 using the conductive material according to the embodiment of the present invention.

先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、はんだ粒子11Aとを含む導電材料11を配置する(第1の工程)。用いた導電材料11は、熱硬化性成分11Bとして、熱硬化性化合物と熱硬化剤とを含む。   First, the 1st connection object member 2 which has the 1st electrode 2a on the surface (upper surface) is prepared. Next, as shown in FIG. 2A, a conductive material 11 including a thermosetting component 11B and solder particles 11A is disposed on the surface of the first connection target member 2 (first step). . The used conductive material 11 contains a thermosetting compound and a thermosetting agent as the thermosetting component 11B.

第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。   The conductive material 11 is disposed on the surface of the first connection target member 2 on which the first electrode 2a is provided. After the conductive material 11 is disposed, the solder particles 11A are disposed both on the first electrode 2a (line) and on a region (space) where the first electrode 2a is not formed.

導電材料11の配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。   The arrangement method of the conductive material 11 is not particularly limited, and examples thereof include application using a dispenser, screen printing, and ejection using an inkjet apparatus.

また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。   Moreover, the 2nd connection object member 3 which has the 2nd electrode 3a on the surface (lower surface) is prepared. Next, as shown in FIG. 2B, in the conductive material 11 on the surface of the first connection target member 2, on the surface opposite to the first connection target member 2 side of the conductive material 11, The 2nd connection object member 3 is arrange | positioned (2nd process). On the surface of the conductive material 11, the second connection target member 3 is disposed from the second electrode 3a side. At this time, the first electrode 2a and the second electrode 3a are opposed to each other.

次に、はんだ粒子11Aの融点以上に導電材料11を加熱する(第3の工程)。好ましくは、熱硬化性成分11B(熱硬化性化合物)の硬化温度以上に導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。導電フィルムではなく、導電ペーストを用いた場合には、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4が、導電材料11により形成される。導電材料11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。   Next, the conductive material 11 is heated above the melting point of the solder particles 11A (third step). Preferably, the conductive material 11 is heated above the curing temperature of the thermosetting component 11B (thermosetting compound). At the time of this heating, the solder particles 11A that existed in the region where no electrode is formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect). When the conductive paste is used instead of the conductive film, the solder particles 11A are more effectively collected between the first electrode 2a and the second electrode 3a. Also, the solder particles 11A are melted and joined together. Further, the thermosetting component 11B is thermoset. As a result, as shown in FIG. 2C, the connection portion 4 that connects the first connection target member 2 and the second connection target member 3 is formed of the conductive material 11. The connection part 4 is formed of the conductive material 11, the solder part 4A is formed by joining a plurality of solder particles 11A, and the cured part 4B is formed by thermosetting the thermosetting component 11B. If the solder particles 11A are sufficiently moved, the first electrode 2a and the second electrode are moved after the movement of the solder particles 11A not located between the first electrode 2a and the second electrode 3a starts. It is not necessary to keep the temperature constant until the movement of the solder particles 11A is completed.

本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行わない方が好ましい。この場合には、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間により一層効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子11Aが第1の電極2aと第2の電極3aとの間に集まろうとする作用が阻害される傾向が高くなる。   In the present embodiment, it is preferable that no pressure is applied in the second step and the third step. In this case, the weight of the second connection target member 3 is added to the conductive material 11. For this reason, the solder particles 11A are more effectively collected between the first electrode 2a and the second electrode 3a when the connection portion 4 is formed. In addition, if pressure is applied in at least one of the second step and the third step, the solder particles 11A tend to collect between the first electrode 2a and the second electrode 3a. The tendency to be inhibited becomes high.

また、本実施形態では、加圧を行っていないため、第1の電極2aと第2の電極3aとのアライメントがずれた状態で、第1の接続対象部材2と第2の接続対象部材3とが重ね合わされた場合でも、そのずれを補正して、第1の電極2aと第2の電極3aとを接続させることができる(セルフアライメント効果)。これは、第1の電極2aと第2の電極3aとの間に自己凝集している溶融したはんだが、第1の電極2aと第2の電極3aとの間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料のはんだ粒子以外の成分の粘度が十分低いことが望ましい。   Moreover, in this embodiment, since pressurization is not performed, the first connection target member 2 and the second connection target member 3 are in a state where the alignment between the first electrode 2a and the second electrode 3a is shifted. Can be corrected, the first electrode 2a and the second electrode 3a can be connected (self-alignment effect). This is because the molten solder self-aggregating between the first electrode 2a and the second electrode 3a is different from the solder between the first electrode 2a and the second electrode 3a and other conductive materials. This is because, when the area in contact with the component is minimized, the energy becomes more stable, and thus the force for forming the aligned connection structure, which is the connection structure having the minimum area, acts. At this time, it is desirable that the conductive material is not cured and that the viscosity of components other than the solder particles of the conductive material is sufficiently low at that temperature and time.

このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。   In this way, the connection structure 1 shown in FIG. 1 is obtained. The second step and the third step may be performed continuously. Moreover, after performing the said 2nd process, the laminated body of the 1st connection object member 2, the electrically-conductive material 11, and the 2nd connection object member 3 which are obtained is moved to a heating part, and the said 3rd connection object is carried out. You may perform a process. In order to perform the heating, the laminate may be disposed on a heating member, or the laminate may be disposed in a heated space.

上記第3の工程における上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上であり、好ましくは450℃以下、より好ましくは250℃以下、さらに好ましくは200℃以下である。   The heating temperature in the third step is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, and even more preferably 200 ° C. or lower.

上記第3の工程における加熱方法としては、はんだ粒子の液相線温度(融点)以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。   As a heating method in the third step, the entire connection structure is heated using a reflow furnace or an oven above the liquidus temperature (melting point) of the solder particles and above the curing temperature of the thermosetting component. And a method of locally heating only the connection part of the connection structure.

局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。   As a tool used for the method of heating locally, a hot plate, a heat gun for applying hot air, a soldering iron, an infrared heater, and the like can be given.

また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。   In addition, when heating locally with a hot plate, the metal directly under the connection is made of a metal with high thermal conductivity, and other places where heating is not preferred are made of a material with low thermal conductivity such as a fluororesin. The upper surface of the hot plate is preferably formed.

上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板等の電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。   The said 1st, 2nd connection object member is not specifically limited. Specifically as said 1st, 2nd connection object member, electronic components, such as a semiconductor chip, a semiconductor package, LED chip, LED package, a capacitor | condenser, a diode, and a resin film, a printed circuit board, a flexible printed circuit board, flexible Examples thereof include electronic components such as circuit boards such as flat cables, rigid flexible boards, glass epoxy boards, and glass boards. The first and second connection target members are preferably electronic components.

上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだが電極上に集まりにくい傾向がある。これに対して、導電ペーストを用いることで、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、はんだを電極上に効率的に集めることで、電極間の導通信頼性を十分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。   It is preferable that at least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. The second connection target member is preferably a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. Resin films, flexible printed boards, flexible flat cables, and rigid flexible boards have the property of being highly flexible and relatively lightweight. When a conductive film is used for connection of such a connection object member, there exists a tendency for a solder not to gather on an electrode. On the other hand, by using a conductive paste, even if a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board is used, the conductive reliability between the electrodes can be efficiently collected by collecting the solder on the electrodes. Can be increased sufficiently. When using a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board, compared to the case of using other connection target members such as a semiconductor chip, the conduction reliability between the electrodes by not applying pressure is improved. The improvement effect can be obtained more effectively.

上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極、及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。   Examples of the electrode provided on the connection target member include metal electrodes such as a gold electrode, a nickel electrode, a tin electrode, an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, a SUS electrode, and a tungsten electrode. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.

本発明に係る接続構造体では、上記第1の電極及び上記第2の電極は、エリアアレイ又はペリフェラルにて配置されていることが好ましい。上記第1の電極及び上記第2の電極が、エリアアレイ又はペリフェラルにて配置されている場合において、本発明の効果がより一層効果的に発揮される。上記エリアアレイとは、接続対象部材の電極が配置されている面にて、格子状に電極が配置されている構造のことである。上記ペリフェラルとは、接続対象部材の外周部に電極が配置されている構造のことである。電極が櫛型に並んでいる構造の場合は、櫛に垂直な方向に沿ってはんだが凝集すればよいのに対して、上記エリアアレイ又はペリフェラル構造では電極が配置されている面において、全面にて均一にはんだが凝集する必要がある。そのため、従来の方法では、はんだ量が不均一になりやすいのに対して、本発明の方法では、本発明の効果がより一層効果的に発揮される。   In the connection structure according to the present invention, it is preferable that the first electrode and the second electrode are arranged in an area array or a peripheral. In the case where the first electrode and the second electrode are arranged in an area array or a peripheral, the effect of the present invention is more effectively exhibited. The area array is a structure in which electrodes are arranged in a grid pattern on the surface on which the electrodes of the connection target members are arranged. The peripheral is a structure in which electrodes are arranged on the outer periphery of a connection target member. In the case of a structure in which the electrodes are arranged in a comb shape, the solder may be aggregated along the direction perpendicular to the comb, whereas in the area array or the peripheral structure, the electrode is disposed on the entire surface. It is necessary that the solder agglomerates uniformly. Therefore, in the conventional method, the amount of solder tends to be non-uniform, whereas in the method of the present invention, the effect of the present invention is more effectively exhibited.

以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited only to the following examples.

熱硬化性成分(熱硬化性化合物):
熱硬化性化合物1:ビスフェノールF型エポキシ化合物、新日鉄住金化学社製「YDF−8170C」
熱硬化性化合物2:ビスフェノールA型エポキシ化合物、新日鉄住金化学社製「YD−8125」
熱硬化性化合物3:フェノールノボラック型エポキシ化合物、DOW社製「DEN431」
熱硬化性化合物4:脂肪族エポキシ化合物、共栄社化学社製「エポライト1600」
熱硬化性化合物5:イソシアヌル骨格含有エポキシ化合物、日産化学社製「TEPIC−SP」
Thermosetting component (thermosetting compound):
Thermosetting compound 1: Bisphenol F type epoxy compound, “YDF-8170C” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
Thermosetting compound 2: bisphenol A type epoxy compound, “YD-8125” manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
Thermosetting compound 3: phenol novolac type epoxy compound, “DEN431” manufactured by DOW
Thermosetting compound 4: Aliphatic epoxy compound, “Epolite 1600” manufactured by Kyoeisha Chemical Co., Ltd.
Thermosetting compound 5: epoxy compound containing isocyanuric skeleton, “TEPIC-SP” manufactured by Nissan Chemical Co., Ltd.

熱硬化性成分(熱硬化剤):
熱硬化剤1:酸無水物硬化剤、新日本理化社製「リカシッドTH」
熱硬化剤2:酸無水物硬化剤、新日本理化社製「リカシッドMH」
Thermosetting component (thermosetting agent):
Thermosetting agent 1: Acid anhydride curing agent, “Ricacid TH” manufactured by Shin Nippon Chemical Co., Ltd.
Thermosetting agent 2: Acid anhydride curing agent, “Ricacid MH” manufactured by Shin Nippon Chemical Co., Ltd.

熱硬化性成分(硬化促進剤):
硬化促進剤1:有機ホスホニウム塩、日本化学工業社製「PX−4MP」
Thermosetting component (curing accelerator):
Curing accelerator 1: Organic phosphonium salt, “PX-4MP” manufactured by Nippon Chemical Industry Co., Ltd.

フラックス:
フラックス1:「グルタル酸ベンジルアミン塩」、融点108℃
フラックス1の作製方法:
ガラスビンに、反応溶媒である水24gと、グルタル酸(和光純薬工業社製)13.212gとを入れ、室温で均一になるまで溶解させた。その後、ベンジルアミン(和光純薬工業社製)10.715gを入れて、約5分間撹拌し、混合液を得た。得られた混合液を5℃〜10℃の冷蔵庫に入れて、一晩放置した。析出した結晶をろ過により分取し、水で洗浄し、真空乾燥し、フラックス1を得た。
flux:
Flux 1: “Benzylamine glutarate”, melting point 108 ° C.
Preparation method of flux 1:
In a glass bottle, 24 g of water as a reaction solvent and 13.212 g of glutaric acid (manufactured by Wako Pure Chemical Industries, Ltd.) were added and dissolved at room temperature until uniform. Thereafter, 10.715 g of benzylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was added and stirred for about 5 minutes to obtain a mixed solution. The resulting mixture was placed in a refrigerator at 5 ° C. to 10 ° C. and left overnight. The precipitated crystals were collected by filtration, washed with water, and vacuum-dried to obtain flux 1.

はんだ粒子:
はんだ粒子1:Sn42Bi58はんだ粒子、平均粒子径10μm
はんだ粒子2:Sn66Bi34はんだ粒子、平均粒子径10μm
はんだ粒子3:Sn53Bi47はんだ粒子、平均粒子径10μm
はんだ粒子4:Sn90In10はんだ粒子、平均粒子径10μm
はんだ粒子5:SnIn8Ag3.5はんだ粒子、平均粒子径10μm
はんだ粒子6:SnAg3Cu0.5はんだ粒子、平均粒子径10μm
Solder particles:
Solder particles 1: Sn42Bi58 solder particles, average particle size 10 μm
Solder particles 2: Sn66Bi34 solder particles, average particle size 10 μm
Solder particles 3: Sn53Bi47 solder particles, average particle size 10 μm
Solder particles 4: Sn90In10 solder particles, average particle diameter 10 μm
Solder particles 5: SnIn8Ag3.5 solder particles, average particle diameter 10 μm
Solder particles 6: SnAg3Cu0.5 solder particles, average particle size 10 μm

(実施例1〜24及び比較例1〜12)
(1)導電材料(異方性導電ペースト)の作製
下記の表1〜3に示す成分を下記の表1〜3に示す配合量で配合して、導電材料(異方性導電ペースト)を得た。
(Examples 1-24 and Comparative Examples 1-12)
(1) Preparation of conductive material (anisotropic conductive paste) The components shown in Tables 1 to 3 below are blended in the blending amounts shown in Tables 1 to 3 to obtain conductive materials (anisotropic conductive paste). It was.

(2)接続構造体の作製
第1の接続対象部材として、L/S=50μm/50μmの銅電極(電極長さ:3mm、電極厚み:12μm)を表面に有するガラスエポキシ基板(材質:FR−4、厚み:0.6mm)を用意した。
(2) Production of connection structure As a first connection target member, a glass epoxy substrate (material: FR−) having a copper electrode (electrode length: 3 mm, electrode thickness: 12 μm) of L / S = 50 μm / 50 μm on the surface. 4, thickness: 0.6 mm).

第2の接続対象部材として、L/S=50μm/50μmの銅電極(電極長さ:3mm、電極厚み:12μm)を表面に有するフレキシブルプリント基板(材質:ポリイミド、厚み:0.1mm)を用意した。   As a second connection target member, a flexible printed circuit board (material: polyimide, thickness: 0.1 mm) having a copper electrode (electrode length: 3 mm, electrode thickness: 12 μm) of L / S = 50 μm / 50 μm is prepared. did.

上記ガラスエポキシ基板の上面に、作製直後の導電材料(異方性導電ペースト)を厚さ100μmとなるように塗工し、導電材料(異方性導電ペースト)層を形成した。次に、導電材料(異方性導電ペースト)層の上面にフレキシブルプリント基板を電極同士が対向するように積層した。導電材料(異方性導電ペースト)層には、上記フレキシブルプリント基板の重量は加わる。その状態から、導電材料(異方性導電ペースト)層の温度が、昇温開始から5秒後にはんだ粒子の固相線温度となるように加熱した。さらに、昇温開始から15秒後に、導電材料(異方性導電ペースト)層の温度が200℃となるように加熱し、導電材料(異方性導電ペースト)層を硬化させ、接続構造体を得た。加熱時には、加圧を行わなかった。   A conductive material (anisotropic conductive paste) immediately after fabrication was applied to the upper surface of the glass epoxy substrate so as to have a thickness of 100 μm, thereby forming a conductive material (anisotropic conductive paste) layer. Next, a flexible printed circuit board was laminated on the upper surface of the conductive material (anisotropic conductive paste) layer so that the electrodes face each other. The weight of the flexible printed circuit board is added to the conductive material (anisotropic conductive paste) layer. From this state, heating was performed so that the temperature of the conductive material (anisotropic conductive paste) layer became the solidus temperature of the solder particles 5 seconds after the start of temperature increase. Further, 15 seconds after the start of temperature increase, the conductive material (anisotropic conductive paste) layer is heated so that the temperature becomes 200 ° C., the conductive material (anisotropic conductive paste) layer is cured, and the connection structure is Obtained. No pressure was applied during heating.

(評価)
(1)はんだ粒子の固相線温度、はんだ粒子の液相線温度、及びはんだ粒子の固相線温度とはんだ粒子の液相線温度との差の絶対値
はんだ粒子の固相線温度及びはんだ粒子の液相線温度を、示差走査熱量測定(DSC)を用いて、以下のようにして測定した。示差走査熱量測定(DSC)装置としては、SII社製「EXSTAR DSC7020」を用いた。
(Evaluation)
(1) Solidus temperature of solder particles, liquidus temperature of solder particles, and absolute value of difference between solidus temperature of solder particles and liquidus temperature of solder particles Solidus temperature of solder particles and solder The liquidus temperature of the particles was measured using differential scanning calorimetry (DSC) as follows. As a differential scanning calorimetry (DSC) apparatus, “EXSTAR DSC7020” manufactured by SII was used.

(はんだ粒子の固相線温度及びはんだ粒子の液相線温度の測定方法)
上記はんだ粒子を約10mg量り、アルミニウム製容器(試料容器)のほぼ中央部に試料を配置し、該容器のアルミニウム製ふたを載せてクランプした。得られた試料容器を示差走査熱量測定(DSC)装置の一方の容器ホルダーに装着した。他方の容器ホルダーには、アルミニウム製容器(試料容器)に試料を入れずにアルミニウム製ふたをクランプした空容器を装着した。また、窒素ガス流量を10ml/分から50ml/分の範囲の適切な値に設定し、測定終了まで流入させた。昇温速度を10℃/分とし、溶融ピーク終了時より約30℃高い温度まで加熱しながら測定した。得られた示差走査熱量測定(DSC)曲線について、低温側のベースラインを高温側に延長した直線を引き、溶融ピークの低温側における曲線の勾配が最大になる点で接線(接線1)を引いた。高温側に延長した直線と接線(接線1)との交点における温度を固相線温度とした。また、得られた示差走査熱量測定(DSC)曲線について、高温側のベースラインを低温側に延長した直線を引き、溶融ピークの高温側における曲線の勾配が最大になる点で接線(接線2)を引いた。低温側に延長した直線と接線(接線2)との交点における温度を液相線温度とした。
(Measurement method of solidus temperature of solder particles and liquidus temperature of solder particles)
About 10 mg of the solder particles were weighed, and a sample was placed at a substantially central portion of an aluminum container (sample container), and the aluminum lid of the container was placed and clamped. The obtained sample container was attached to one container holder of a differential scanning calorimetry (DSC) apparatus. The other container holder was equipped with an empty container in which an aluminum lid was clamped without putting a sample in an aluminum container (sample container). The nitrogen gas flow rate was set to an appropriate value in the range of 10 ml / min to 50 ml / min, and was allowed to flow until the measurement was completed. The heating rate was 10 ° C./min, and the measurement was performed while heating to a temperature about 30 ° C. higher than the end of the melting peak. With respect to the obtained differential scanning calorimetry (DSC) curve, a straight line obtained by extending the base line on the low temperature side to the high temperature side is drawn, and a tangent line (tangent line 1) is drawn at the point where the slope of the curve on the low temperature side of the melting peak becomes maximum. It was. The temperature at the intersection of the straight line extended to the high temperature side and the tangent (tangent 1) was defined as the solidus temperature. In addition, for the obtained differential scanning calorimetry (DSC) curve, a straight line obtained by extending the base line on the high temperature side to the low temperature side is drawn, and a tangent line (tangent line 2) is obtained at the point where the slope of the curve on the high temperature side of the melting peak becomes maximum Drew. The temperature at the intersection of the straight line extended to the low temperature side and the tangent (tangent 2) was defined as the liquidus temperature.

得られた測定結果から、はんだ粒子の固相線温度とはんだ粒子の液相線温度との差の絶対値を算出した。   From the obtained measurement results, the absolute value of the difference between the solidus temperature of the solder particles and the liquidus temperature of the solder particles was calculated.

(2)はんだ粒子に含まれる金属100重量%中の錫、ビスマス、及びインジウムの含有量
はんだ粒子に含まれる金属100重量%中の錫、ビスマス、及びインジウムの含有量を、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP−AES」)を用いて測定した。
(2) Content of tin, bismuth, and indium in 100% by weight of metal contained in solder particles The content of tin, bismuth, and indium in 100% by weight of metal contained in solder particles was determined by high frequency inductively coupled plasma emission. Measurement was performed using a spectroscopic analyzer (“ICP-AES” manufactured by Horiba, Ltd.).

(3)はんだ粒子の固相線温度における導電材料の粘度(ηsp)
得られた導電材料を用いて、はんだ粒子の固相線温度における導電材料の粘度(ηsp)を測定した。はんだ粒子の固相線温度における導電材料の粘度(ηsp)は、STRESSTECH(REOLOGICA社製)を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25℃〜200℃(但し、はんだ粒子の固相線温度が200℃を超える場合には温度上限をはんだ粒子の固相線温度とする)の条件で測定した。
(3) Viscosity of conductive material (ηsp) at solidus temperature of solder particles
Using the obtained conductive material, the viscosity (ηsp) of the conductive material at the solidus temperature of the solder particles was measured. The viscosity (ηsp) of the conductive material at the solidus temperature of the solder particles is STRESSTECH (manufactured by REOLOGICA), strain control 1 rad, frequency 1 Hz, heating rate 20 ° C./min, measurement temperature range 25 ° C. to 200 ° C. (However, when the solidus temperature of the solder particles exceeds 200 ° C., the upper limit of the temperature is taken as the solidus temperature of the solder particles).

(4)電極上のはんだの配置精度
得られた接続構造体おいて、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度を以下の基準で判定した。
(4) Solder placement accuracy on the electrode In the obtained connection structure, the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode. When the portion was viewed, the ratio X of the area where the solder portion in the connection portion was arranged in the area of 100% of the portion where the first electrode and the second electrode face each other was evaluated. The placement accuracy of the solder on the electrode was determined according to the following criteria.

[電極上のはんだの配置精度の判定基準]
〇〇〇:割合Xが90%以上
〇〇:割合Xが80%以上90%未満
〇:割合Xが70%以上80%未満
×:割合Xが70%未満
[Criteria for solder placement accuracy on electrodes]
〇〇〇: Ratio X is 90% or more 〇: Ratio X is 80% or more and less than 90% 〇: Ratio X is 70% or more and less than 80% ×: Ratio X is less than 70%

(5)上下の電極間の導通信頼性
得られた接続構造体(n=15個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を以下の基準で判定した。
(5) Conductivity reliability between upper and lower electrodes In the obtained connection structure (n = 15), the connection resistance per connection portion between the upper and lower electrodes was measured by a four-terminal method. The average value of connection resistance was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The conduction reliability was determined according to the following criteria.

[導通信頼性の判定基準]
〇〇〇:接続抵抗の平均値が50mΩ以下
〇〇:接続抵抗の平均値が50mΩを超え70mΩ以下
〇:接続抵抗の平均値が70mΩを超え100mΩ以下
×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
[Judgment criteria for conduction reliability]
〇〇〇: Average value of connection resistance is 50mΩ or less 〇〇: Average value of connection resistance is more than 50mΩ and less than 70mΩ 〇: Average value of connection resistance is more than 70mΩ and less than 100mΩ ×: Average value of connection resistance is more than 100mΩ Or there is a bad connection

結果を下記の表1〜3に示す。   The results are shown in Tables 1 to 3 below.

Figure 2019160788
Figure 2019160788

Figure 2019160788
Figure 2019160788

Figure 2019160788
Figure 2019160788

樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。   The same tendency was observed even when using a resin film, a flexible flat cable, and a rigid flexible substrate.

1,1X…接続構造体
2…第1の接続対象部材
2a…第1の電極
3…第2の接続対象部材
3a…第2の電極
4,4X…接続部
4A,4XA…はんだ部
4B,4XB…硬化物部
11…導電材料
11A…はんだ粒子
11B…熱硬化性成分
DESCRIPTION OF SYMBOLS 1,1X ... Connection structure 2 ... 1st connection object member 2a ... 1st electrode 3 ... 2nd connection object member 3a ... 2nd electrode 4, 4X ... Connection part 4A, 4XA ... Solder part 4B, 4XB ... Cured part 11 ... Conductive material 11A ... Solder particles 11B ... Thermosetting component

Claims (12)

熱硬化性成分と、はんだ粒子とを含み、
前記はんだ粒子の固相線温度と前記はんだ粒子の液相線温度との差の絶対値が、5℃以上であり、
導電材料100重量%中、前記はんだ粒子の含有量が、15重量%以上である、導電材料。
Including a thermosetting component and solder particles;
The absolute value of the difference between the solidus temperature of the solder particles and the liquidus temperature of the solder particles is 5 ° C. or more,
The conductive material in which the content of the solder particles is 15% by weight or more in 100% by weight of the conductive material.
前記はんだ粒子の固相線温度における導電材料の粘度が、0.1Pa・s以上50Pa・s以下である、請求項1に記載の導電材料。   The conductive material according to claim 1, wherein a viscosity of the conductive material at a solidus temperature of the solder particles is 0.1 Pa · s or more and 50 Pa · s or less. 前記はんだ粒子が、ビスマス、インジウム、銀、銅、又は錫を含む、請求項1又は2に記載の導電材料。   The conductive material according to claim 1, wherein the solder particles include bismuth, indium, silver, copper, or tin. 前記はんだ粒子に含まれる金属100重量%中、ビスマスの含有量が、1重量%以上58重量%以下である、請求項3に記載の導電材料。   The conductive material according to claim 3, wherein a content of bismuth is 1 wt% or more and 58 wt% or less in 100 wt% of the metal contained in the solder particles. 前記はんだ粒子に含まれる金属100重量%中、インジウムの含有量が、1重量%以上52重量%以下である、請求項3又は4に記載の導電材料。   5. The conductive material according to claim 3, wherein the content of indium is 1 wt% or more and 52 wt% or less in 100 wt% of the metal contained in the solder particles. 前記はんだ粒子の固相線温度が、115℃以上220℃以下である、請求項1〜5のいずれか1項に記載の導電材料。   The conductive material according to claim 1, wherein a solidus temperature of the solder particles is 115 ° C. or higher and 220 ° C. or lower. 前記はんだ粒子の粒子径が、0.01μm以上30μm以下である、請求項1〜6のいずれか1項に記載の導電材料。   The conductive material according to claim 1, wherein a particle diameter of the solder particles is 0.01 μm or more and 30 μm or less. 導電ペーストである、請求項1〜7のいずれか1項に記載の導電材料。   The conductive material according to claim 1, which is a conductive paste. 第1の電極を表面に有する第1の接続対象部材と、
第2の電極を表面に有する第2の接続対象部材と、
前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
前記接続部の材料が、請求項1〜8のいずれか1項に記載の導電材料であり、
前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
A first connection object member having a first electrode on its surface;
A second connection target member having a second electrode on its surface;
A connecting portion connecting the first connection target member and the second connection target member;
The material of the connection part is the conductive material according to any one of claims 1 to 8,
A connection structure in which the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている、請求項9に記載の接続構造体。   When the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the second electrode 10. The connection structure according to claim 9, wherein the solder portion in the connection portion is arranged in 50% or more of the area of 100% of the portion facing the two electrodes. 請求項1〜8のいずれか1項に記載の導電材料を用いて、第1の電極を表面に有する第1の接続対象部材の表面上に、前記導電材料を配置する工程と、
前記導電材料の前記第1の接続対象部材側とは反対の表面上に、第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、
前記はんだ粒子の液相線温度以上に前記導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法。
Using the conductive material according to claim 1, disposing the conductive material on the surface of the first connection target member having the first electrode on the surface;
On the surface opposite to the first connection target member side of the conductive material, the second connection target member having the second electrode on the surface is opposed to the first electrode and the second electrode. A step of arranging to
By heating the conductive material above the liquidus temperature of the solder particles, a connection portion connecting the first connection target member and the second connection target member is formed of the conductive material. And the manufacturing method of a connection structure provided with the process of electrically connecting a said 1st electrode and a said 2nd electrode with the solder part in the said connection part.
前記第1の電極と前記接続部と前記第2の電極との積層方向に前記第1の電極と前記第2の電極との対向し合う部分をみたときに、前記第1の電極と前記第2の電極との対向し合う部分の面積100%中の50%以上に、前記接続部中のはんだ部が配置されている接続構造体を得る、請求項11に記載の接続構造体の製造方法。   When the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode, the first electrode and the second electrode The manufacturing method of the connection structure of Claim 11 which obtains the connection structure by which the solder part in the said connection part is arrange | positioned in 50% or more out of 100% of the area of the part which opposes two electrodes .
JP2019038350A 2018-03-07 2019-03-04 Conductive material, connection structure, and method for manufacturing the connection structure Active JP7474029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023097675A JP2023138947A (en) 2018-03-07 2023-06-14 Conductive material, connection structure and method for producing connection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040938 2018-03-07
JP2018040938 2018-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023097675A Division JP2023138947A (en) 2018-03-07 2023-06-14 Conductive material, connection structure and method for producing connection structure

Publications (2)

Publication Number Publication Date
JP2019160788A true JP2019160788A (en) 2019-09-19
JP7474029B2 JP7474029B2 (en) 2024-04-24

Family

ID=67993675

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019038350A Active JP7474029B2 (en) 2018-03-07 2019-03-04 Conductive material, connection structure, and method for manufacturing the connection structure
JP2023097675A Withdrawn JP2023138947A (en) 2018-03-07 2023-06-14 Conductive material, connection structure and method for producing connection structure

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023097675A Withdrawn JP2023138947A (en) 2018-03-07 2023-06-14 Conductive material, connection structure and method for producing connection structure

Country Status (1)

Country Link
JP (2) JP7474029B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092047A1 (en) * 2020-10-29 2022-05-05 デクセリアルズ株式会社 Electrically conductive adhesive, anisotropic electrically conductive film, connection structure, and method for producing connection structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530705A (en) * 2012-08-09 2015-10-15 オーメット サーキッツ インク Electrically conductive composition comprising non-eutectic solder alloy
WO2017033930A1 (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Electroconductive material and connection structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530705A (en) * 2012-08-09 2015-10-15 オーメット サーキッツ インク Electrically conductive composition comprising non-eutectic solder alloy
WO2017033930A1 (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Electroconductive material and connection structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022092047A1 (en) * 2020-10-29 2022-05-05 デクセリアルズ株式会社 Electrically conductive adhesive, anisotropic electrically conductive film, connection structure, and method for producing connection structure

Also Published As

Publication number Publication date
JP2023138947A (en) 2023-10-03
JP7474029B2 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
JP7356217B2 (en) Conductive material, connected structure, and method for manufacturing connected structure
JP5966101B1 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP7184759B2 (en) Conductive material, method for storing conductive material, method for manufacturing conductive material, and method for manufacturing connection structure
JP7184758B2 (en) Conductive material, method for storing conductive material, method for manufacturing conductive material, and method for manufacturing connection structure
JP5966102B1 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP2016127010A (en) Anisotropic conductive material, connection structure and method for producing connection structure
JP2023138947A (en) Conductive material, connection structure and method for producing connection structure
JP2016126878A (en) Conductive paste, connection structure and method for producing connection structure
JP2021028895A (en) Conductive material, connection structure and production method of connection structure
JP2016126877A (en) Conductive paste, connection structure and method for producing connection structure
JP7277289B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
WO2020255874A1 (en) Electroconductive material, connection structure, and method for manufacturing connection structure
JP7332458B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP7271312B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP7312105B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP2020119955A (en) Connection structure, method for manufacturing connection structure, conductive material, and method for manufacturing conductive material
JP2019175844A (en) Conductive material, connection structure and method for producing connection structure
JP7372745B2 (en) Conductive material, connected structure, and method for manufacturing connected structure
JP2019016595A (en) Conductive material, connection structure and method for producing connection structure
JP7303675B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP2019096550A (en) Conductive material, connection structure and production method of connection structure
JP7284699B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP7421317B2 (en) Conductive film and connected structure
JP7267685B2 (en) Conductive material, connection structure, and method for manufacturing connection structure
JP7389657B2 (en) Conductive paste and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230614

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230626

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20230714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240412

R150 Certificate of patent or registration of utility model

Ref document number: 7474029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150