JP2016127010A - Anisotropic conductive material, connection structure and method for producing connection structure - Google Patents

Anisotropic conductive material, connection structure and method for producing connection structure Download PDF

Info

Publication number
JP2016127010A
JP2016127010A JP2015242160A JP2015242160A JP2016127010A JP 2016127010 A JP2016127010 A JP 2016127010A JP 2015242160 A JP2015242160 A JP 2015242160A JP 2015242160 A JP2015242160 A JP 2015242160A JP 2016127010 A JP2016127010 A JP 2016127010A
Authority
JP
Japan
Prior art keywords
electrode
connection
solder
conductive material
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015242160A
Other languages
Japanese (ja)
Other versions
JP6592350B2 (en
Inventor
石澤 英亮
Hideaki Ishizawa
英亮 石澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Publication of JP2016127010A publication Critical patent/JP2016127010A/en
Application granted granted Critical
Publication of JP6592350B2 publication Critical patent/JP6592350B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic conductive material that allows solder particles to be disposed on electrodes efficiently and can improve conduction reliability between the electrodes.SOLUTION: An anisotropic conductive material according to the present invention is used for anisotropic conductive connection, and comprises a thermosetting component, a plurality of solder particles having solder on a conductive external surface, and flux. The solder particle is a surface-treated matter with dicarboxylic acid. A difference between second acid dissociation constant pKa2 of the dicarboxylic acid and first acid dissociation constant pKa1 of the flux: pKa2-pKa1 is 0.5 or more.SELECTED DRAWING: Figure 1

Description

本発明は、はんだ粒子を含む異方性導電材料に関する。また、本発明は、上記異方性導電材料を用いた接続構造体及び接続構造体の製造方法に関する。   The present invention relates to an anisotropic conductive material containing solder particles. The present invention also relates to a connection structure using the anisotropic conductive material and a method for manufacturing the connection structure.

異方性導電ペースト及び異方性導電フィルム等の異方性導電材料が広く知られている。上記異方性導電材料では、バインダー樹脂中に導電性粒子が分散されている。   Anisotropic conductive materials such as anisotropic conductive pastes and anisotropic conductive films are widely known. In the anisotropic conductive material, conductive particles are dispersed in a binder resin.

上記異方性導電材料は、各種の接続構造体を得るために、例えば、フレキシブルプリント基板とガラス基板との接続(FOG(Film on Glass))、半導体チップとフレキシブルプリント基板との接続(COF(Chip on Film))、半導体チップとガラス基板との接続(COG(Chip on Glass))、並びにフレキシブルプリント基板とガラスエポキシ基板との接続(FOB(Film on Board))等に使用されている。   In order to obtain various connection structures, the anisotropic conductive material is, for example, a connection between a flexible printed circuit board and a glass substrate (FOG (Film on Glass)) or a connection between a semiconductor chip and a flexible printed circuit board (COF ( Chip on Film)), connection between a semiconductor chip and a glass substrate (COG (Chip on Glass)), connection between a flexible printed circuit board and a glass epoxy substrate (FOB (Film on Board)), and the like.

上記異方性導電材料により、例えば、フレキシブルプリント基板の電極とガラスエポキシ基板の電極とを電気的に接続する際には、ガラスエポキシ基板上に、導電性粒子を含む異方性導電材料を配置する。次に、フレキシブルプリント基板を積層して、加熱及び加圧する。これにより、異方性導電材料を硬化させて、導電性粒子を介して電極間を電気的に接続して、接続構造体を得る。   For example, when electrically connecting the electrode of the flexible printed circuit board and the electrode of the glass epoxy substrate by the anisotropic conductive material, an anisotropic conductive material containing conductive particles is disposed on the glass epoxy substrate. To do. Next, a flexible printed circuit board is laminated, and heated and pressurized. As a result, the anisotropic conductive material is cured, and the electrodes are electrically connected via the conductive particles to obtain a connection structure.

上記異方性導電材料の一例として、下記の特許文献1には、熱硬化性樹脂を含む樹脂層と、はんだ粉と、硬化剤とを含み、上記はんだ粉と上記硬化剤とが上記樹脂層中に存在する接着テープが開示されている。この接着テープは、フィルム状であり、ペースト状ではない。   As an example of the anisotropic conductive material, the following Patent Document 1 includes a resin layer containing a thermosetting resin, solder powder, and a curing agent, and the solder powder and the curing agent include the resin layer. An adhesive tape present therein is disclosed. This adhesive tape is in the form of a film, not a paste.

また、特許文献1では、上記接着テープを用いた接着方法が開示されている。具体的には、第一基板、接着テープ、第二基板、接着テープ、及び第三基板を下からこの順に積層して、積層体を得る。このとき、第一基板の表面に設けられた第一電極と、第二基板の表面に設けられた第二電極とを対向させる。また、第二基板の表面に設けられた第二電極と第三基板の表面に設けられた第三電極とを対向させる。そして、積層体を所定の温度で加熱して接着する。これにより、接続構造体を得る。   Patent Document 1 discloses a bonding method using the above-mentioned adhesive tape. Specifically, a first substrate, an adhesive tape, a second substrate, an adhesive tape, and a third substrate are laminated in this order from the bottom to obtain a laminate. At this time, the first electrode provided on the surface of the first substrate is opposed to the second electrode provided on the surface of the second substrate. Moreover, the 2nd electrode provided in the surface of the 2nd board | substrate and the 3rd electrode provided in the surface of the 3rd board | substrate are made to oppose. Then, the laminate is heated and bonded at a predetermined temperature. Thereby, a connection structure is obtained.

WO2008/023452A1WO2008 / 023452A1

特許文献1に記載の接着テープは、フィルム状であり、ペースト状ではない。このため、はんだ粉を電極(ライン)上に効率的に配置することは困難である。例えば、特許文献1に記載の接着テープでは、はんだ粉の一部が、電極が形成されていない領域(スペース)にも配置されやすい。電極が形成されていない領域に配置されたはんだ粉は、電極間の導通に寄与しない。   The adhesive tape described in Patent Document 1 is in a film form and not in a paste form. For this reason, it is difficult to efficiently arrange the solder powder on the electrodes (lines). For example, in the adhesive tape described in Patent Document 1, a part of the solder powder is easily placed in a region (space) where no electrode is formed. Solder powder disposed in a region where no electrode is formed does not contribute to conduction between the electrodes.

また、はんだ粉を含む異方性導電ペーストであっても、はんだ粉が電極(ライン)上に効率的に配置されないことがある。   Moreover, even if it is the anisotropic conductive paste containing solder powder, solder powder may not be efficiently arrange | positioned on an electrode (line).

また、導電フィルムであっても、はんだ粉が電極(ライン)上に効率的に配置することが可能な導電材料が望まれる。   Moreover, even if it is an electroconductive film, the electroconductive material in which solder powder can arrange | position efficiently on an electrode (line) is desired.

本発明の目的は、はんだ粒子を電極上に効率的に配置することができ、電極間の導通信頼性を高めることができる異方性導電材料を提供することである。また、本発明は、上記異方性導電材料を用いた接続構造体及び接続構造体の製造方法を提供することである。   An object of the present invention is to provide an anisotropic conductive material that can efficiently arrange solder particles on electrodes and can improve conduction reliability between the electrodes. Moreover, this invention is providing the manufacturing method of the connection structure using the said anisotropic conductive material, and a connection structure.

本発明の広い局面によれば、異方導電接続に用いられる異方性導電材料であって、熱硬化性成分と、はんだを導電性の外表面に有する複数のはんだ粒子と、フラックスとを含み、前記はんだ粒子がジカルボン酸による表面処理物であり、前記ジカルボン酸の第2酸解離定数pKa2と、前記フラックスの第1酸解離定数pKa1との差:pKa2−pKa1が0.5以上である、異方性導電材料が提供される。   According to a wide aspect of the present invention, there is provided an anisotropic conductive material used for anisotropic conductive connection, including a thermosetting component, a plurality of solder particles having solder on a conductive outer surface, and a flux. The solder particles are a surface treatment product of dicarboxylic acid, and the difference between the second acid dissociation constant pKa2 of the dicarboxylic acid and the first acid dissociation constant pKa1 of the flux: pKa2−pKa1 is 0.5 or more. An anisotropic conductive material is provided.

前記はんだ粒子の含有量が10重量%以上、90重量%以下であることが好ましく、10重量%以上、60重量%以下であることがより好ましい。   The content of the solder particles is preferably 10% by weight or more and 90% by weight or less, and more preferably 10% by weight or more and 60% by weight or less.

本発明に係る異方性導電材料のある特定の局面では、前記はんだ粒子が、アニオンポリマー又はアニオンポリマーとなる化合物による表面処理物である。   On the specific situation with the anisotropic electrically-conductive material which concerns on this invention, the said solder particle is a surface treatment thing by the compound used as an anion polymer or an anion polymer.

本発明に係る異方性導電材料のある特定の局面では、前記異方性導電材料は、110℃に加熱したときに、前記フラックスが前記はんだ粒子の外表面に集まる性質を有する。   In a specific aspect of the anisotropic conductive material according to the present invention, the anisotropic conductive material has a property that the flux collects on the outer surface of the solder particles when heated to 110 ° C.

本発明に係る異方性導電材料のある特定の局面では、前記はんだ粒子の平均粒子径が1μm以上、60μm以下である。   On the specific situation with the anisotropic electrically-conductive material which concerns on this invention, the average particle diameter of the said solder particle is 1 micrometer or more and 60 micrometers or less.

本発明に係る異方性導電材料のある特定の局面では、前記異方性導電材料は、異方性導電ペーストである。   In a specific aspect of the anisotropic conductive material according to the present invention, the anisotropic conductive material is an anisotropic conductive paste.

本発明の広い局面によれば、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、前記接続部の材料が、上述した異方性導電材料であり、前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体が提供される。   According to a wide aspect of the present invention, a first connection target member having at least one first electrode on the surface, a second connection target member having at least one second electrode on the surface, and the first The connection target member and a connection part connecting the second connection target member, wherein the material of the connection part is the anisotropic conductive material described above, and the first electrode and the first There is provided a connection structure in which two electrodes are electrically connected by a solder portion in the connection portion.

本発明の広い局面によれば、上述した異方性導電材料を用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、前記異方性導電材料を配置する工程と、前記異方性導電材料の前記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、前記はんだ粒子の融点以上かつ前記熱硬化性成分の硬化温度以上に前記異方性導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記異方性導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法が提供される。   According to a wide aspect of the present invention, the anisotropic conductive material is disposed on the surface of the first connection target member having at least one first electrode on the surface, using the anisotropic conductive material described above. And a second connection target member having at least one second electrode on the surface opposite to the first connection target member side of the anisotropic conductive material, Arranging the electrode and the second electrode to face each other, and heating the anisotropic conductive material to a temperature equal to or higher than a melting point of the solder particles and a temperature equal to or higher than a curing temperature of the thermosetting component. A connection portion connecting the connection target member and the second connection target member is formed of the anisotropic conductive material, and the first electrode and the second electrode are connected to each other. And a step of electrically connecting with a solder part in the part Manufacturing method is provided.

本発明に係る接続構造体の製造方法のある特定の局面では、前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程において、加圧を行わず、前記異方性導電材料には、前記第2の接続対象部材の重量が加わるか、又は、前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程の内の少なくとも一方において、加圧を行い、かつ、前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程の双方において、加圧の圧力が1MPa未満である。   In a specific aspect of the method for manufacturing a connection structure according to the present invention, in the step of arranging the second connection target member and the step of forming the connection portion, the anisotropic conductive material is not subjected to pressure. The weight of the second connection target member is added, or at least one of the step of arranging the second connection target member and the step of forming the connection portion is pressurized, and In both of the step of arranging the second connection target member and the step of forming the connection portion, the pressure of pressurization is less than 1 MPa.

前記第2の接続対象部材が、半導体チップ、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル、又はリジッドフレキシブル基板であることが好ましい。   It is preferable that the second connection target member is a semiconductor chip, a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board.

本発明に係る異方性導電材料は、熱硬化性成分と、はんだを導電性の外表面に有する複数のはんだ粒子と、フラックスとを含み、上記はんだ粒子がジカルボン酸による表面処理物であり、上記ジカルボン酸の第2酸解離定数pKa2と、上記フラックスの第1酸解離定数pKa1との差:pKa2−pKa1が0.5以上であるので、電極間を電気的に接続した場合に、はんだ粒子を電極上に効率的に配置することができ、電極間の導通信頼性を高めることができる。   The anisotropic conductive material according to the present invention includes a thermosetting component, a plurality of solder particles having solder on a conductive outer surface, and a flux, and the solder particles are a surface-treated product of dicarboxylic acid, The difference between the second acid dissociation constant pKa2 of the dicarboxylic acid and the first acid dissociation constant pKa1 of the flux: pKa2−pKa1 is 0.5 or more. Therefore, when the electrodes are electrically connected, the solder particles Can be efficiently arranged on the electrodes, and the conduction reliability between the electrodes can be improved.

図1は、本発明の一実施形態に係る異方性導電材料を用いて得られる接続構造体を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using an anisotropic conductive material according to an embodiment of the present invention. 図2(a)〜(c)は、本発明の一実施形態に係る異方性導電材料を用いて、接続構造体を製造する方法の一例の各工程を説明するための断面図である。2A to 2C are cross-sectional views for explaining each step of an example of a method for manufacturing a connection structure using an anisotropic conductive material according to an embodiment of the present invention. 図3は、接続構造体の変形例を示す断面図である。FIG. 3 is a cross-sectional view showing a modification of the connection structure.

以下、本発明の詳細を説明する。   Details of the present invention will be described below.

(異方性導電材料)
本発明に係る異方性導電材料は、異方導電接続に用いられる。本明細書において、異方性導電材料を、導電材料と略記することがある。本発明に係る導電材料は、熱硬化性成分と、はんだを導電性の外表面に有する複数のはんだ粒子と、フラックスとを含む。
(Anisotropic conductive material)
The anisotropic conductive material according to the present invention is used for anisotropic conductive connection. In this specification, an anisotropic conductive material may be abbreviated as a conductive material. The conductive material according to the present invention includes a thermosetting component, a plurality of solder particles having solder on a conductive outer surface, and a flux.

本発明に係る導電材料では、上記はんだ粒子がジカルボン酸による表面処理物であり、上記ジカルボン酸の第2酸解離定数pKa2と、上記フラックスの第1酸解離定数pKa1との差:pKa2−pKa1が0.5以上である。即ち、本発明に係る導電材料では、上記はんだ粒子がジカルボン酸により表面処理されており、上記はんだ粒子の表面処理に用いた上記ジカルボン酸の第2酸解離定数pKa2と、上記フラックスの第1酸解離定数pKa1との差:pKa2−pKa1が0.5以上である。   In the conductive material according to the present invention, the solder particles are a surface-treated product of dicarboxylic acid, and the difference between the second acid dissociation constant pKa2 of the dicarboxylic acid and the first acid dissociation constant pKa1 of the flux is pKa2−pKa1 It is 0.5 or more. That is, in the conductive material according to the present invention, the solder particles are surface-treated with dicarboxylic acid, the second acid dissociation constant pKa2 of the dicarboxylic acid used for the surface treatment of the solder particles, and the first acid of the flux. Difference from dissociation constant pKa1: pKa2−pKa1 is 0.5 or more.

本発明に係る導電材料では、上記の構成が採用されているので、導電材料を加熱することによって電極間を電気的に接続した場合に、複数のはんだ粒子が上下の対向した電極間に集まりやすく、複数のはんだ粒子を電極(ライン)上に効率的に配置することができる。また、複数のはんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくすることができる。従って、電極間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。このような効果が得られるのは、以下の理由が考えられる。   In the conductive material according to the present invention, the above-described configuration is adopted. Therefore, when the electrodes are electrically connected by heating the conductive material, a plurality of solder particles are easily collected between the upper and lower electrodes facing each other. A plurality of solder particles can be efficiently arranged on the electrode (line). Moreover, it is difficult for some of the plurality of solder particles to be disposed in a region (space) where no electrode is formed, and the amount of solder particles disposed in a region where no electrode is formed can be considerably reduced. Therefore, the conduction reliability between the electrodes can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability. The following reason can be considered that such an effect is obtained.

はんだ粒子の表面処理に用いたジカルボン酸の一方のカルボキシル基を介して、ジカルボン酸が表面に結合されている場合、もう一方のカルボキシル基の酸性度は、ジカルボン酸の第2酸解離定数pKa2で表すことができる。フラックスの酸性度は、第1酸解離定数pKa1で表すことができる。フラックスが熱により活性化された場合、上記の酸解離定数の関係を満足するため、フラックスから優先的に酸が発生する。このため、はんだ粒子の表面に、発生した酸が移動し、従来あったはんだ粒子表面のマイナス電荷を打ち消すことができる。このため、はんだ粒子の表面電荷による、粒子同士の反発を抑制することができ、はんだ粒子が凝集しやすくなることが考えられる。これにより隣接する電極間距離が大きい場合でも、電極間にはんだ粒子が残り難くなり、高温高湿下での絶縁信頼性が高くなる。   When the dicarboxylic acid is bonded to the surface via one carboxyl group of the dicarboxylic acid used for the surface treatment of the solder particles, the acidity of the other carboxyl group is the second acid dissociation constant pKa2 of the dicarboxylic acid. Can be represented. The acidity of the flux can be expressed by the first acid dissociation constant pKa1. When the flux is activated by heat, the acid is preferentially generated from the flux in order to satisfy the relationship of the acid dissociation constant. For this reason, the generated acid moves to the surface of the solder particles, and the conventional negative charge on the surface of the solder particles can be canceled. For this reason, it is considered that the repulsion between the particles due to the surface charge of the solder particles can be suppressed, and the solder particles easily aggregate. As a result, even when the distance between adjacent electrodes is large, solder particles hardly remain between the electrodes, and the insulation reliability under high temperature and high humidity is increased.

はんだ粒子を電極上により一層効率的に配置し、導通信頼性及び絶縁信頼性をより一層高める観点からは、更に電極間の位置ずれをより一層抑制する観点からは、pKa2−pKa1は、好ましくは0.65以上、より好ましくは0.8以上である。   From the viewpoint of further efficiently arranging the solder particles on the electrode and further improving the conduction reliability and the insulation reliability, from the viewpoint of further suppressing the positional deviation between the electrodes, pKa2−pKa1 is preferably 0.65 or more, more preferably 0.8 or more.

酸解離定数pKaは以下のようにして測定される。   The acid dissociation constant pKa is measured as follows.

pHメーターを用いた滴定法や、電位差自動滴定装置により測定することができる。pHメーターでの滴定法としては、酸を水に溶解し、水酸化ナトリウム等の塩基による中和滴定を行い、滴定曲線を求める。この滴定曲線から、第1,第2酸解離定数を求めることができる。   It can be measured by a titration method using a pH meter or an automatic potentiometric titrator. As a titration method using a pH meter, an acid is dissolved in water, neutralization titration with a base such as sodium hydroxide is performed, and a titration curve is obtained. From this titration curve, the first and second acid dissociation constants can be determined.

さらに、本発明では、電極間の位置ずれを防ぐことができる。本発明では、導電材料を塗布した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極のアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材の電極とを接続させることができる(セルフアライメント効果)。このような効果を得るために、上記の酸解離定数の関係を満足する特定の組成を有する導電材料を用いることは、大きく寄与する。   Furthermore, in the present invention, it is possible to prevent positional deviation between the electrodes. In the present invention, when the second connection target member is superimposed on the first connection target member to which the conductive material is applied, the alignment of the electrode of the first connection target member and the electrode of the second connection target member is performed. Even when the first connection target member and the second connection target member are overlapped in a shifted state, the shift is corrected and the electrodes of the first connection target member and the second connection target member are corrected. Can be connected (self-alignment effect). In order to obtain such an effect, the use of a conductive material having a specific composition that satisfies the relationship of the acid dissociation constant contributes greatly.

なお、上記はんだ粒子ではなく、はんだにより形成されていない基材粒子と基材粒子の表面上に配置されたはんだ層とを備える導電性粒子を用いた場合には、電極上に導電性粒子が集まり難くなり、導電性粒子同士のはんだ接合性が低いために、電極上に移動した導電性粒子が電極外に移動しやすくなる。このため、電極間の位置ずれの抑制効果も低くなる。   In addition, when using conductive particles including base particles not formed of solder and a solder layer disposed on the surface of the base particles, the conductive particles are not formed on the electrodes. It becomes difficult to gather, and since the solder bonding property between the conductive particles is low, the conductive particles that have moved onto the electrode easily move out of the electrode. For this reason, the effect of suppressing the displacement between the electrodes is also reduced.

上記導電材料は、導電ペースト及び導電フィルム等として使用され得る。上記導電材料は異方性導電フィルムであってもよい。はんだを電極上により一層効率的に配置する観点からは、上記導電材料は、異方性導電ペーストであることが好ましい。   The conductive material can be used as a conductive paste and a conductive film. The conductive material may be an anisotropic conductive film. From the viewpoint of more efficiently arranging the solder on the electrode, the conductive material is preferably an anisotropic conductive paste.

はんだ粒子を電極上により一層効率的に配置するために、上記導電ペーストの25℃での粘度(η25)は好ましくは10Pa・s以上、より好ましくは50Pa・s以上、更に好ましくは100Pa・s以上、好ましくは800Pa・s以下、より好ましくは600Pa・s以下、更に好ましくは500Pa・s以下である。   In order to more efficiently arrange the solder particles on the electrode, the viscosity (η25) at 25 ° C. of the conductive paste is preferably 10 Pa · s or more, more preferably 50 Pa · s or more, and further preferably 100 Pa · s or more. , Preferably 800 Pa · s or less, more preferably 600 Pa · s or less, and even more preferably 500 Pa · s or less.

上記粘度(η25)は、配合成分の種類及び配合量に適宜調整可能である。また、フィラーの使用により、粘度を比較的高くすることができる。   The said viscosity ((eta) 25) can be suitably adjusted with the kind and compounding quantity of a compounding component. Further, the use of a filler can make the viscosity relatively high.

上記粘度(η25)は、例えば、E型粘度計(東機産業社製)等を用いて、25℃及び5rpmの条件で測定可能である。   The viscosity (η25) can be measured, for example, using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.) and the like at 25 ° C. and 5 rpm.

本発明に係る導電材料は、後述する本発明に係る接続構造体及び接続構造体の製造方法に好適に用いることができる。   The conductive material according to the present invention can be suitably used in a connection structure according to the present invention described later and a method for manufacturing the connection structure.

上記導電材料は、電極の電気的な接続に好適に用いられる。上記導電材料は、回路接続材料であることが好ましい。   The conductive material is preferably used for electrical connection of electrodes. The conductive material is preferably a circuit connection material.

以下、上記導電材料に含まれる各成分を説明する。   Hereinafter, each component contained in the conductive material will be described.

(はんだ粒子)
上記はんだ粒子は、はんだを導電性の外表面に有する。上記はんだ粒子は、中心部分及び導電性の外表面のいずれもがはんだにより形成されている。上記はんだ粒子は、中心部分及び導電性(導電性部分)の外表面のいずれもがはんだである粒子である。
(Solder particles)
The solder particles have solder on a conductive outer surface. As for the said solder particle, both a center part and an electroconductive outer surface are formed with the solder. The solder particles are particles in which both the central portion and the outer surface of the conductive (conductive portion) are solder.

電極上にはんだ粒子を効率的に集める観点からは、上記はんだ粒子の表面のゼータ電位がプラスであることが好ましい。但し、本発明では、上記はんだ粒子の表面のゼータ電位がプラスでなくてもよい。   From the viewpoint of efficiently collecting the solder particles on the electrode, the zeta potential on the surface of the solder particles is preferably positive. However, in the present invention, the zeta potential of the surface of the solder particle may not be positive.

ゼータ電位は以下のようにして測定される。   The zeta potential is measured as follows.

ゼータ電位の測定方法:
はんだ粒子0.05gを、メタノール10gに入れ、超音波処理等をすることで、均一に分散させて、分散液を得る。この分散液を用いて、かつBeckman Coulter社製「Delsamax PRO」を用いて、電気泳動測定法にて、23℃でゼータ電位を測定することができる。
Zeta potential measurement method:
0.05 g of solder particles are put in 10 g of methanol and subjected to ultrasonic treatment or the like to uniformly disperse to obtain a dispersion. Using this dispersion and using “Delsamax PRO” manufactured by Beckman Coulter, the zeta potential can be measured at 23 ° C. by electrophoretic measurement.

はんだ粒子のゼータ電位は好ましくは0mV以上、より好ましくは0mVを超え、好ましくは10mV以下、より好ましくは5mV以下、より一層好ましくは1mV以下、更に好ましくは0.7mV以下、特に好ましくは0.5mV以下である。ゼータ電位が上記上限以下であると、使用前の導電ペースト中にて、はんだ粒子が凝集し難くなる。ゼータ電位が0mV以上であると、実装時に電極上にはんだ粒子が効率的に凝集する。   The zeta potential of the solder particles is preferably 0 mV or more, more preferably more than 0 mV, preferably 10 mV or less, more preferably 5 mV or less, even more preferably 1 mV or less, still more preferably 0.7 mV or less, particularly preferably 0.5 mV. It is as follows. If the zeta potential is less than or equal to the above upper limit, the solder particles hardly aggregate in the conductive paste before use. When the zeta potential is 0 mV or more, the solder particles efficiently aggregate on the electrode during mounting.

表面のゼータ電位をプラスにすることが容易であることから、上記はんだ粒子は、はんだ粒子本体と、上記はんだ粒子本体の表面上に配置されたアニオンポリマーとを有することが好ましい。上記はんだ粒子は、はんだ粒子本体をアニオンポリマー又はアニオンポリマーとなる化合物で表面処理することにより得られることが好ましい。上記はんだ粒子は、アニオンポリマー又はアニオンポリマーとなる化合物による表面処理物であることが好ましい。上記アニオンポリマー及び上記アニオンポリマーとなる化合物はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。   Since it is easy to make the zeta potential of the surface positive, it is preferable that the solder particles have a solder particle main body and an anionic polymer disposed on the surface of the solder particle main body. The solder particles are preferably obtained by surface-treating the solder particle body with an anionic polymer or a compound that becomes an anionic polymer. The solder particles are preferably a surface treated product of an anion polymer or a compound that becomes an anion polymer. As for the said anion polymer and the compound used as the said anion polymer, only 1 type may respectively be used and 2 or more types may be used together.

はんだ粒子本体をアニオンポリマーで表面処理する方法としては、アニオンポリマーとして、例えば(メタ)アクリル酸を共重合した(メタ)アクリルポリマー、ジカルボン酸とジオールとから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、ジカルボン酸の分子間脱水縮合反応により得られかつ両末端にカルボキシル基を有するポリマー、ジカルボン酸とジアミンから合成されかつ両末端にカルボキシル基を有するポリエステルポリマー、並びにカルボキシル基を有する変性ポバール(日本合成化学社製「ゴーセネックスT」)等を用いて、アニオンポリマーのカルボキシル基と、はんだ粒子本体の表面の水酸基とを反応させる方法が挙げられる。   As a method of surface-treating the solder particle body with an anionic polymer, as an anionic polymer, for example, a (meth) acrylic polymer copolymerized with (meth) acrylic acid, synthesized from a dicarboxylic acid and a diol and having carboxyl groups at both ends Polyester polymer, polymer obtained by intermolecular dehydration condensation reaction of dicarboxylic acid and having carboxyl groups at both ends, polyester polymer synthesized from dicarboxylic acid and diamine and having carboxyl groups at both ends, and modified poval having carboxyl groups ( A method of reacting a carboxyl group of an anionic polymer with a hydroxyl group on the surface of a solder particle body using “GOHSEX T” manufactured by Nippon Synthetic Chemical Co., Ltd., etc.

上記アニオンポリマーのアニオン部分としては、上記カルボキシル基が挙げられ、それ以外には、トシル基(p−HCCS(=O) )、スルホン酸イオン基(−SO )、及びリン酸イオン基(−PO )等が挙げられる。 Examples of the anion portion of the anion polymer include the carboxyl group, and other than that, a tosyl group (p-H 3 CC 6 H 4 S (═O) 2 ), a sulfonate ion group (—SO 3 ), And phosphate ion groups (—PO 4 ) and the like.

また、他の方法としては、はんだ粒子本体の表面の水酸基と反応する官能基を有し、さらに、付加、縮合反応により重合可能な官能基を有する化合物を用いて、この化合物をはんだ粒子本体の表面上にてポリマー化する方法が挙げられる。はんだ粒子本体の表面の水酸基と反応する官能基としては、カルボキシル基、及びイソシアネート基等が挙げられ、付加、縮合反応により重合する官能基としては、水酸基、カルボキシル基、アミノ基、及び(メタ)アクリロイル基が挙げられる。   As another method, a compound having a functional group that reacts with a hydroxyl group on the surface of the solder particle body and having a functional group that can be polymerized by addition or condensation reaction is used. The method of polymerizing on the surface is mentioned. Examples of the functional group that reacts with the hydroxyl group on the surface of the solder particle body include a carboxyl group and an isocyanate group. Examples of the functional group that polymerizes by addition and condensation reactions include a hydroxyl group, a carboxyl group, an amino group, and (meth). An acryloyl group is mentioned.

上記アニオンポリマーの重量平均分子量は好ましくは2000以上、より好ましくは3000以上、好ましくは10000以下、より好ましくは8000以下である。   The weight average molecular weight of the anionic polymer is preferably 2000 or more, more preferably 3000 or more, preferably 10,000 or less, more preferably 8000 or less.

上記重量平均分子量が上記下限以上及び上記上限以下であると、はんだ粒子本体の表面上にアニオンポリマーを配置することが容易であり、はんだ粒子の表面のゼータ電位をプラスにすることが容易であり、電極上にはんだ粒子をより一層効率的に配置することができる。   When the weight average molecular weight is not less than the above lower limit and not more than the above upper limit, it is easy to dispose an anionic polymer on the surface of the solder particle body, and it is easy to make the zeta potential on the surface of the solder particle positive. The solder particles can be arranged on the electrodes even more efficiently.

上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。   The weight average molecular weight indicates a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography (GPC).

はんだ粒子本体をアニオンポリマーとなる化合物で表面処理することにより得られたポリマーの重量平均分子量は、はんだ粒子中のはんだを溶解し、ポリマーの分解を起こさない希塩酸等により、はんだ粒子を除去した後、残存しているポリマーの重量平均分子量を測定することで求めることができる。   The weight average molecular weight of the polymer obtained by surface-treating the solder particle body with a compound that becomes an anionic polymer is obtained by dissolving the solder in the solder particles and removing the solder particles with dilute hydrochloric acid or the like that does not cause decomposition of the polymer. It can be determined by measuring the weight average molecular weight of the remaining polymer.

上記はんだは、融点が450℃以下である金属(低融点金属)であることが好ましい。上記はんだ粒子は、融点が450℃以下である金属粒子(低融点金属粒子)であることが好ましい。上記低融点金属粒子は、低融点金属を含む粒子である。該低融点金属とは、融点が450℃以下の金属を示す。低融点金属の融点は好ましくは300℃以下、より好ましくは160℃以下である。また、上記はんだ粒子は錫を含む。上記はんだ粒子に含まれる金属100重量%中、錫の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、更に好ましくは70重量%以上、特に好ましくは90重量%以上である。上記はんだ粒子における錫の含有量が上記下限以上であると、はんだ部と電極との接続信頼性がより一層高くなる。   The solder is preferably a metal (low melting point metal) having a melting point of 450 ° C. or lower. The solder particles are preferably metal particles (low melting point metal particles) having a melting point of 450 ° C. or lower. The low melting point metal particles are particles containing a low melting point metal. The low melting point metal is a metal having a melting point of 450 ° C. or lower. The melting point of the low melting point metal is preferably 300 ° C. or lower, more preferably 160 ° C. or lower. The solder particles include tin. In 100% by weight of the metal contained in the solder particles, the content of tin is preferably 30% by weight or more, more preferably 40% by weight or more, still more preferably 70% by weight or more, and particularly preferably 90% by weight or more. When the content of tin in the solder particles is equal to or higher than the lower limit, the connection reliability between the solder portion and the electrode is further enhanced.

なお、上記錫の含有量は、高周波誘導結合プラズマ発光分光分析装置(堀場製作所社製「ICP−AES」)、又は蛍光X線分析装置(島津製作所社製「EDX−800HS」)等を用いて測定可能である。   The tin content is determined using a high frequency inductively coupled plasma optical emission spectrometer (“ICP-AES” manufactured by Horiba, Ltd.) or a fluorescent X-ray analyzer (“EDX-800HS” manufactured by Shimadzu). It can be measured.

上記はんだ粒子を用いることで、はんだが溶融して電極に接合し、はんだ部が電極間を導通させる。例えば、はんだ部と電極とが点接触ではなく面接触しやすいため、接続抵抗が低くなる。また、はんだ粒子の使用により、はんだ部と電極との接合強度が高くなる結果、はんだ部と電極との剥離がより一層生じ難くなり、導通信頼性及び接続信頼性が効果的に高くなる。   By using the solder particles, the solder is melted and joined to the electrodes, and the solder portion conducts between the electrodes. For example, since the solder portion and the electrode are not in point contact but in surface contact, the connection resistance is lowered. In addition, the use of solder particles increases the bonding strength between the solder portion and the electrode. As a result, peeling between the solder portion and the electrode is further less likely to occur, and the conduction reliability and the connection reliability are effectively increased.

上記はんだ粒子を構成する低融点金属は特に限定されない。該低融点金属は、錫、又は錫を含む合金であることが好ましい。該合金は、錫−銀合金、錫−銅合金、錫−銀−銅合金、錫−ビスマス合金、錫−亜鉛合金、錫−インジウム合金等が挙げられる。電極に対する濡れ性に優れることから、上記低融点金属は、錫、錫−銀合金、錫−銀−銅合金、錫−ビスマス合金、錫−インジウム合金であることが好ましい。錫−ビスマス合金、錫−インジウム合金であることがより好ましい。   The low melting point metal constituting the solder particles is not particularly limited. The low melting point metal is preferably tin or an alloy containing tin. Examples of the alloy include a tin-silver alloy, a tin-copper alloy, a tin-silver-copper alloy, a tin-bismuth alloy, a tin-zinc alloy, and a tin-indium alloy. The low melting point metal is preferably tin, a tin-silver alloy, a tin-silver-copper alloy, a tin-bismuth alloy, or a tin-indium alloy because of its excellent wettability with respect to the electrode. More preferred are a tin-bismuth alloy and a tin-indium alloy.

上記はんだ粒子は、JIS Z3001:溶接用語に基づき、液相線が450℃以下である溶加材であることが好ましい。上記はんだ粒子の組成としては、例えば亜鉛、金、銀、鉛、銅、錫、ビスマス、インジウム等を含む金属組成が挙げられる。低融点で鉛フリーである錫−インジウム系(117℃共晶)、又は錫−ビスマス系(139℃共晶)が好ましい。すなわち、上記はんだ粒子は、鉛を含まないことが好ましく、錫とインジウムとを含むか、又は錫とビスマスとを含むことが好ましい。   The solder particles are preferably a filler material having a liquidus line of 450 ° C. or lower based on JIS Z3001: welding terms. Examples of the composition of the solder particles include metal compositions containing zinc, gold, silver, lead, copper, tin, bismuth, indium and the like. A tin-indium system (117 ° C eutectic) or a tin-bismuth system (139 ° C eutectic) that has a low melting point and is free of lead is preferable. That is, the solder particles preferably do not contain lead, and preferably contain tin and indium, or contain tin and bismuth.

上記はんだ部と電極との接合強度をより一層高めるために、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム、亜鉛、鉄、金、チタン、リン、ゲルマニウム、テルル、コバルト、ビスマス、マンガン、クロム、モリブデン、パラジウム等の金属を含んでいてもよい。また、はんだ部と電極との接合強度を更に一層高める観点からは、上記はんだ粒子は、ニッケル、銅、アンチモン、アルミニウム又は亜鉛を含むことが好ましい。はんだ部と電極との接合強度をより一層高める観点からは、接合強度を高めるためのこれらの金属の含有量は、はんだ粒子100重量%中、好ましくは0.0001重量%以上、好ましくは1重量%以下である。   In order to further increase the bonding strength between the solder part and the electrode, the solder particles include nickel, copper, antimony, aluminum, zinc, iron, gold, titanium, phosphorus, germanium, tellurium, cobalt, bismuth, manganese, chromium. Further, it may contain a metal such as molybdenum and palladium. Moreover, from the viewpoint of further increasing the bonding strength between the solder portion and the electrode, the solder particles preferably contain nickel, copper, antimony, aluminum, or zinc. From the viewpoint of further increasing the bonding strength between the solder part and the electrode, the content of these metals for increasing the bonding strength is preferably 0.0001% by weight or more, preferably 1% by weight in 100% by weight of the solder particles. % Or less.

上記はんだ粒子の平均粒子径は、好ましくは0.5μm以上、より好ましくは1μm以上、更に好ましくは3μm以上、特に好ましくは5μm以上、好ましくは100μm以下、より好ましくは60μm以下、より一層好ましくは40μm以下、更に好ましくは30μm以下、更に一層好ましくは20μm以下、特に好ましくは15μm以下、最も好ましくは10μm以下である。上記はんだ粒子の平均粒子径が上記下限以上及び上記上限以下であると、はんだ粒子を電極上により一層効率的に配置することができる。上記はんだ粒子の平均粒子径は、3μm以上、30μm以下であることが特に好ましい。   The average particle diameter of the solder particles is preferably 0.5 μm or more, more preferably 1 μm or more, further preferably 3 μm or more, particularly preferably 5 μm or more, preferably 100 μm or less, more preferably 60 μm or less, and even more preferably 40 μm. Hereinafter, it is more preferably 30 μm or less, still more preferably 20 μm or less, particularly preferably 15 μm or less, and most preferably 10 μm or less. When the average particle diameter of the solder particles is not less than the above lower limit and not more than the above upper limit, the solder particles can be more efficiently arranged on the electrode. The average particle diameter of the solder particles is particularly preferably 3 μm or more and 30 μm or less.

上記はんだ粒子の「平均粒子径」は、数平均粒子径を示す。はんだ粒子の平均粒子径は、例えば、任意のはんだ粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。   The “average particle diameter” of the solder particles indicates a number average particle diameter. The average particle diameter of the solder particles is obtained, for example, by observing 50 arbitrary solder particles with an electron microscope or an optical microscope, calculating an average value, or performing laser diffraction particle size distribution measurement.

上記はんだ粒子の粒子径の変動係数は、好ましくは5%以上、より好ましくは10%以上、好ましくは40%以下、より好ましくは30%以下である。上記粒子径の変動係数が上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができる。但し、上記はんだ粒子の粒子径の変動係数は、5%未満であってもよい。   The coefficient of variation of the particle diameter of the solder particles is preferably 5% or more, more preferably 10% or more, preferably 40% or less, more preferably 30% or less. When the variation coefficient of the particle diameter is not less than the above lower limit and not more than the above upper limit, the solder particles can be more efficiently arranged on the electrode. However, the coefficient of variation of the particle diameter of the solder particles may be less than 5%.

上記変動係数(CV値)は下記式で表される。   The coefficient of variation (CV value) is expressed by the following equation.

CV値(%)=(ρ/Dn)×100
ρ:はんだ粒子の粒子径の標準偏差
Dn:はんだ粒子の粒子径の平均値
CV value (%) = (ρ / Dn) × 100
ρ: Standard deviation of particle diameter of solder particles Dn: Average value of particle diameter of solder particles

上記はんだ粒子の形状は特に限定されない。上記はんだ粒子の形状は、球状であってもよく、扁平状などの球形状以外の形状であってもよい。   The shape of the solder particles is not particularly limited. The solder particles may have a spherical shape or a shape other than a spherical shape such as a flat shape.

上記導電材料100重量%中、上記はんだ粒子の含有量は好ましくは1重量%以上、より好ましくは2重量%以上、更に好ましくは10重量%以上、特に好ましくは20重量%以上、最も好ましくは30重量%以上、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは60重量%以下、特に好ましくは50重量%以下である。上記はんだ粒子の含有量が上記下限以上及び上記上限以下であると、電極上にはんだ粒子をより一層効率的に配置することができ、電極間にはんだ粒子を多く配置することが容易であり、導通信頼性がより一層高くなる。導通信頼性をより一層高める観点からは、上記はんだ粒子の含有量は多い方が好ましい。   The content of the solder particles in 100% by weight of the conductive material is preferably 1% by weight or more, more preferably 2% by weight or more, still more preferably 10% by weight or more, particularly preferably 20% by weight or more, and most preferably 30%. % By weight or more, preferably 90% by weight or less, more preferably 80% by weight or less, still more preferably 60% by weight or less, and particularly preferably 50% by weight or less. When the content of the solder particles is not less than the above lower limit and not more than the above upper limit, it is possible to more efficiently arrange the solder particles on the electrodes, and it is easy to arrange many solder particles between the electrodes, The conduction reliability is further increased. From the viewpoint of further improving the conduction reliability, it is preferable that the content of the solder particles is large.

電極が形成されている部分のライン(L)が50μm以上、150μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電材料100重量%中、上記はんだ粒子の含有量は好ましくは20重量%以上、より好ましくは30重量%以上、好ましくは55重量%以下、より好ましくは45重量%以下である。   When the line (L) where the electrode is formed is 50 μm or more and less than 150 μm, the content of the solder particles is preferably 100% by weight of the conductive material from the viewpoint of further improving the conduction reliability. Is 20% by weight or more, more preferably 30% by weight or more, preferably 55% by weight or less, more preferably 45% by weight or less.

電極が形成されていない部分のスペース(S)が50μm以上、150μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電材料100重量%中、上記はんだ粒子の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、好ましくは70重量%以下、より好ましくは60重量%以下である。   From the viewpoint of further improving the conduction reliability when the space (S) where the electrode is not formed is 50 μm or more and less than 150 μm, the content of the solder particles is preferably 100% by weight of the conductive material. Is 30% by weight or more, more preferably 40% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less.

電極が形成されている部分のライン(L)が150μm以上、1000μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電材料100重量%中、上記はんだ粒子の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、好ましくは70重量%以下、より好ましくは60重量%以下である。   When the line (L) where the electrode is formed is 150 μm or more and less than 1000 μm, the content of the solder particles is preferably 100% by weight of the conductive material from the viewpoint of further improving the conduction reliability. Is 30% by weight or more, more preferably 40% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less.

電極が形成されていない部分のスペース(S)が150μm以上、1000μm未満である場合に、導通信頼性をより一層高める観点からは、上記導電材料100重量%中、上記はんだ粒子の含有量は好ましくは30重量%以上、より好ましくは40重量%以上、好ましくは70重量%以下、より好ましくは60重量%以下である。   From the viewpoint of further improving the conduction reliability when the space (S) where the electrode is not formed is 150 μm or more and less than 1000 μm, the content of the solder particles is preferably 100% by weight of the conductive material. Is 30% by weight or more, more preferably 40% by weight or more, preferably 70% by weight or less, more preferably 60% by weight or less.

(熱硬化性化合物:熱硬化性成分)
上記熱硬化性化合物は、加熱により硬化可能な化合物である。上記熱硬化性化合物としては、オキセタン化合物、エポキシ化合物、エピスルフィド化合物、(メタ)アクリル化合物、フェノール化合物、アミノ化合物、不飽和ポリエステル化合物、ポリウレタン化合物、シリコーン化合物及びポリイミド化合物等が挙げられる。導電材料の硬化性及び粘度をより一層良好にし、接続信頼性をより一層高める観点から、エポキシ化合物が好ましい。
(Thermosetting compound: thermosetting component)
The thermosetting compound is a compound that can be cured by heating. Examples of the thermosetting compound include oxetane compounds, epoxy compounds, episulfide compounds, (meth) acrylic compounds, phenolic compounds, amino compounds, unsaturated polyester compounds, polyurethane compounds, silicone compounds, and polyimide compounds. From the viewpoint of further improving the curability and viscosity of the conductive material and further improving the connection reliability, an epoxy compound is preferable.

上記導電材料100重量%中、上記熱硬化性化合物の含有量は、好ましくは20重量%以上、より好ましくは40重量%以上、更に好ましくは50重量%以上、好ましくは99重量%以下、より好ましくは98重量%以下、更に好ましくは90重量%以下、特に好ましくは80重量%以下である。耐衝撃性をより一層高める観点からは、上記熱硬化性成分の含有量は多い方が好ましい。   The content of the thermosetting compound in 100% by weight of the conductive material is preferably 20% by weight or more, more preferably 40% by weight or more, still more preferably 50% by weight or more, and preferably 99% by weight or less. Is 98% by weight or less, more preferably 90% by weight or less, and particularly preferably 80% by weight or less. From the viewpoint of further improving the impact resistance, it is preferable that the content of the thermosetting component is large.

(熱硬化剤:熱硬化性成分)
上記熱硬化剤は、上記熱硬化性化合物を熱硬化させる。上記熱硬化剤としては、イミダゾール硬化剤、アミン硬化剤、フェノール硬化剤、ポリチオール硬化剤等のチオール硬化剤、酸無水物、熱カチオン開始剤(熱カチオン硬化剤)及び熱ラジカル発生剤等が挙げられる。上記熱硬化剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Thermosetting agent: thermosetting component)
The thermosetting agent thermosets the thermosetting compound. Examples of the thermosetting agent include imidazole curing agents, amine curing agents, phenol curing agents, polythiol curing agents, and other thiol curing agents, acid anhydrides, thermal cation initiators (thermal cation curing agents), and thermal radical generators. It is done. As for the said thermosetting agent, only 1 type may be used and 2 or more types may be used together.

導電材料を低温でより一層速やかに硬化可能であるので、イミダゾール硬化剤、チオール硬化剤又はアミン硬化剤が好ましい。また、加熱により硬化可能な硬化性化合物と上記熱硬化剤とを混合したときに保存安定性が高くなるので、潜在性の硬化剤が好ましい。潜在性の硬化剤は、潜在性イミダゾール硬化剤、潜在性チオール硬化剤又は潜在性アミン硬化剤であることが好ましい。なお、上記熱硬化剤は、ポリウレタン樹脂又はポリエステル樹脂等の高分子物質で被覆されていてもよい。   An imidazole curing agent, a thiol curing agent, or an amine curing agent is preferable because the conductive material can be cured more rapidly at a low temperature. Moreover, since a storage stability becomes high when the curable compound curable by heating and the thermosetting agent are mixed, a latent curing agent is preferable. The latent curing agent is preferably a latent imidazole curing agent, a latent thiol curing agent, or a latent amine curing agent. In addition, the said thermosetting agent may be coat | covered with polymeric substances, such as a polyurethane resin or a polyester resin.

上記イミダゾール硬化剤としては、特に限定されず、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジン及び2,4−ジアミノ−6−[2’−メチルイミダゾリル−(1’)]−エチル−s−トリアジンイソシアヌル酸付加物等が挙げられる。   The imidazole curing agent is not particularly limited, and 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine and 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s- Examples include triazine isocyanuric acid adducts.

上記チオール硬化剤としては、特に限定されず、トリメチロールプロパントリス−3−メルカプトプロピオネート、ペンタエリスリトールテトラキス−3−メルカプトプロピオネート及びジペンタエリスリトールヘキサ−3−メルカプトプロピオネート等が挙げられる。   The thiol curing agent is not particularly limited, and examples thereof include trimethylolpropane tris-3-mercaptopropionate, pentaerythritol tetrakis-3-mercaptopropionate, and dipentaerythritol hexa-3-mercaptopropionate. .

上記アミン硬化剤としては、特に限定されず、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ[5.5]ウンデカン、ビス(4−アミノシクロヘキシル)メタン、メタフェニレンジアミン及びジアミノジフェニルスルホン等が挙げられる。   The amine curing agent is not particularly limited, and hexamethylene diamine, octamethylene diamine, decamethylene diamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [5.5]. Examples include undecane, bis (4-aminocyclohexyl) methane, metaphenylenediamine, and diaminodiphenylsulfone.

上記熱カチオン開始剤としては、ヨードニウム系カチオン硬化剤、オキソニウム系カチオン硬化剤及びスルホニウム系カチオン硬化剤等が挙げられる。上記ヨードニウム系カチオン硬化剤としては、ビス(4−tert−ブチルフェニル)ヨードニウムヘキサフルオロホスファート等が挙げられる。上記オキソニウム系カチオン硬化剤としては、トリメチルオキソニウムテトラフルオロボラート等が挙げられる。上記スルホニウム系カチオン硬化剤としては、トリ−p−トリルスルホニウムヘキサフルオロホスファート等が挙げられる。   Examples of the thermal cation initiator include iodonium cation curing agents, oxonium cation curing agents, and sulfonium cation curing agents. Examples of the iodonium-based cationic curing agent include bis (4-tert-butylphenyl) iodonium hexafluorophosphate. Examples of the oxonium-based cationic curing agent include trimethyloxonium tetrafluoroborate. Examples of the sulfonium-based cationic curing agent include tri-p-tolylsulfonium hexafluorophosphate.

上記熱ラジカル発生剤としては、特に限定されず、アゾ化合物及び有機過酸化物等が挙げられる。上記アゾ化合物としては、アゾビスイソブチロニトリル(AIBN)等が挙げられる。上記有機過酸化物としては、ジ−tert−ブチルペルオキシド及びメチルエチルケトンペルオキシド等が挙げられる。   The thermal radical generator is not particularly limited, and examples thereof include azo compounds and organic peroxides. Examples of the azo compound include azobisisobutyronitrile (AIBN). Examples of the organic peroxide include di-tert-butyl peroxide and methyl ethyl ketone peroxide.

上記熱硬化剤の反応開始温度は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上、好ましくは250℃以下、より好ましくは200℃以下、更に好ましくは150℃以下、特に好ましくは140℃以下である。上記熱硬化剤の反応開始温度が上記下限以上及び上記上限以下であると、はんだ粒子が電極上により一層効率的に配置される。上記熱硬化剤の反応開始温度は80℃以上、140℃以下であることが特に好ましい。   The reaction initiation temperature of the thermosetting agent is preferably 50 ° C or higher, more preferably 70 ° C or higher, still more preferably 80 ° C or higher, preferably 250 ° C or lower, more preferably 200 ° C or lower, still more preferably 150 ° C or lower, Especially preferably, it is 140 degrees C or less. When the reaction start temperature of the thermosetting agent is not less than the above lower limit and not more than the above upper limit, the solder particles are more efficiently arranged on the electrode. The reaction initiation temperature of the thermosetting agent is particularly preferably 80 ° C. or higher and 140 ° C. or lower.

はんだを電極上により一層効率的に配置する観点からは、上記熱硬化剤の反応開始温度は、上記はんだ粒子におけるはんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the reaction initiation temperature of the thermosetting agent is preferably higher than the melting point of the solder in the solder particles, more preferably 5 ° C. or more, more preferably 10 It is more preferable that the temperature is higher than ° C.

上記熱硬化剤の反応開始温度は、DSCでの発熱ピークの立ち上がり開始の温度を意味する。   The reaction start temperature of the thermosetting agent means a temperature at which the exothermic peak of DSC starts to rise.

上記熱硬化剤の含有量は特に限定されない。上記熱硬化性化合物100重量部に対して、上記熱硬化剤の含有量は、好ましくは0.01重量部以上、より好ましくは1重量部以上、好ましくは200重量部以下、より好ましくは100重量部以下、更に好ましくは75重量部以下である。熱硬化剤の含有量が上記下限以上であると、導電材料を充分に硬化させることが容易である。熱硬化剤の含有量が上記上限以下であると、硬化後に硬化に関与しなかった余剰の熱硬化剤が残存し難くなり、かつ硬化物の耐熱性がより一層高くなる。   The content of the thermosetting agent is not particularly limited. The content of the thermosetting agent is preferably 0.01 parts by weight or more, more preferably 1 part by weight or more, preferably 200 parts by weight or less, more preferably 100 parts by weight with respect to 100 parts by weight of the thermosetting compound. Part or less, more preferably 75 parts by weight or less. When the content of the thermosetting agent is not less than the above lower limit, it is easy to sufficiently cure the conductive material. When the content of the thermosetting agent is not more than the above upper limit, it is difficult for an excess thermosetting agent that did not participate in curing after curing to remain, and the heat resistance of the cured product is further enhanced.

(フラックス)
上記導電材料は、フラックスを含むことが好ましい。フラックスの使用により、はんだを電極上により一層効果的に配置することができる。該フラックスは特に限定されない。フラックスとして、はんだ接合等に一般的に用いられているフラックスを使用できる。上記フラックスとしては、例えば、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、有機酸及び松脂等が挙げられる。上記フラックスは1種のみが用いられてもよく、2種以上が併用されてもよい。
(flux)
The conductive material preferably contains a flux. By using flux, the solder can be more effectively placed on the electrode. The flux is not particularly limited. As the flux, a flux generally used for soldering or the like can be used. Examples of the flux include zinc chloride, a mixture of zinc chloride and an inorganic halide, a mixture of zinc chloride and an inorganic acid, a molten salt, phosphoric acid, a derivative of phosphoric acid, an organic halide, hydrazine, an organic acid, and pine resin. Etc. As for the said flux, only 1 type may be used and 2 or more types may be used together.

上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を2個以上有する有機酸、松脂であることが好ましい。上記フラックスは、カルボキシル基を2個以上有する有機酸であってもよく、松脂であってもよい。カルボキシル基を2個以上有する有機酸、松脂の使用により、電極間の導通信頼性がより一層高くなる。   Examples of the molten salt include ammonium chloride. Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid, and glutaric acid. Examples of the pine resin include activated pine resin and non-activated pine resin. The flux is preferably an organic acid having two or more carboxyl groups, pine resin. The flux may be an organic acid having two or more carboxyl groups, or pine resin. By using an organic acid having two or more carboxyl groups, pine resin, the conduction reliability between the electrodes is further enhanced.

上記松脂はアビエチン酸を主成分とするロジン類である。フラックスは、ロジン類であることが好ましく、アビエチン酸であることがより好ましい。この好ましいフラックスの使用により、電極間の導通信頼性がより一層高くなる。   The rosin is a rosin composed mainly of abietic acid. The flux is preferably rosins, and more preferably abietic acid. By using this preferable flux, the conduction reliability between the electrodes is further enhanced.

電極間の導通信頼性を効果的に高める観点からは、上記フラックスが、カルボキシル基を2個以上有することが好ましく、上記フラックスが、カルボキシル基を3個以上有することがより好ましい。   From the viewpoint of effectively increasing the conduction reliability between the electrodes, the flux preferably has two or more carboxyl groups, and the flux more preferably has three or more carboxyl groups.

上記フラックスの活性温度(融点)は、好ましくは50℃以上、より好ましくは70℃以上、更に好ましくは80℃以上、好ましくは200℃以下、より好ましくは190℃以下、より一層好ましくは160℃以下、更に好ましくは150℃以下、更に一層好ましくは140℃以下である。上記フラックスの活性温度が上記下限以上及び上記上限以下であると、フラックス効果がより一層効果的に発揮され、はんだ粒子が電極上により一層効率的に配置される。上記フラックスの活性温度は80℃以上、190℃以下であることが好ましい。上記フラックスの活性温度は80℃以上、140℃以下であることが特に好ましい。   The active temperature (melting point) of the flux is preferably 50 ° C. or higher, more preferably 70 ° C. or higher, further preferably 80 ° C. or higher, preferably 200 ° C. or lower, more preferably 190 ° C. or lower, even more preferably 160 ° C. or lower. More preferably, it is 150 ° C. or less, and still more preferably 140 ° C. or less. When the activation temperature of the flux is not less than the above lower limit and not more than the above upper limit, the flux effect is more effectively exhibited, and the solder particles are more efficiently arranged on the electrode. The activation temperature of the flux is preferably 80 ° C. or higher and 190 ° C. or lower. The active temperature of the flux is particularly preferably 80 ° C. or higher and 140 ° C. or lower.

融点が80℃以上、190℃以下である上記フラックスとしては、コハク酸(融点186℃)、グルタル酸(融点96℃)、アジピン酸(融点152℃)、ピメリン酸(融点104℃)、スベリン酸(融点142℃)等のジカルボン酸、安息香酸(融点122℃)、リンゴ酸(融点130℃)等が挙げられる。   Examples of the flux having a melting point of 80 ° C. or higher and 190 ° C. or lower include succinic acid (melting point 186 ° C.), glutaric acid (melting point 96 ° C.), adipic acid (melting point 152 ° C.), pimelic acid (melting point 104 ° C.), suberic acid Examples thereof include dicarboxylic acids such as (melting point 142 ° C.), benzoic acid (melting point 122 ° C.), and malic acid (melting point 130 ° C.).

また、上記フラックスの沸点は200℃以下であることが好ましい。   The boiling point of the flux is preferably 200 ° C. or lower.

はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記はんだ粒子におけるはんだの融点よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the melting point of the flux is preferably higher than the melting point of the solder in the solder particles, preferably 5 ° C or higher, more preferably 10 ° C or higher. Is more preferable.

はんだを電極上により一層効率的に配置する観点からは、上記フラックスの融点は、上記熱硬化剤の反応開始温度よりも、高いことが好ましく、5℃以上高いことがより好ましく、10℃以上高いことが更に好ましい。   From the viewpoint of more efficiently arranging the solder on the electrode, the melting point of the flux is preferably higher than the reaction start temperature of the thermosetting agent, more preferably 5 ° C or higher, more preferably 10 ° C or higher. More preferably.

フラックスの融点が、はんだの融点より高いことにより、電極部分にはんだ粒子を効率的に凝集させることができる。これは、接合時に熱を付与した場合、接続対象部材上に形成された電極と、電極周辺の接続対象部材の部分とを比較すると、電極部分の熱伝導率が電極周辺の接続対象部材部分の熱伝導率よりも高いことにより、電極部分の昇温が速いことに起因する。はんだ粒子の融点を超えた段階では、はんだ粒子の内部は溶解するが、表面に形成された酸化被膜は、フラックスの融点(活性温度)に達していないので、除去されない。この状態で、電極部分の温度が先に、フラックスの融点(活性温度)に達するため、優先的に電極上に来たはんだ粒子の表面の酸化被膜が除去され、はんだ粒子が電極の表面上に濡れ拡がることができる。これにより、電極上に効率的にはんだ粒子を凝集させることができる。   When the melting point of the flux is higher than the melting point of the solder, the solder particles can be efficiently aggregated on the electrode portion. This is because, when heat is applied at the time of joining, when the electrode formed on the connection target member is compared with the portion of the connection target member around the electrode, the thermal conductivity of the electrode portion is that of the connection target member portion around the electrode. Due to the fact that it is higher than the thermal conductivity, the temperature rise of the electrode portion is fast. At the stage where the melting point of the solder particles is exceeded, the inside of the solder particles dissolves, but the oxide film formed on the surface does not reach the melting point (activation temperature) of the flux and is not removed. In this state, since the temperature of the electrode portion first reaches the melting point (activation temperature) of the flux, the oxide film on the surface of the solder particles preferentially on the electrode is removed, and the solder particles are placed on the surface of the electrode. Can spread wet. Thereby, solder particles can be efficiently aggregated on the electrode.

上記フラックスは、導電材料中に分散されていてもよく、はんだ粒子の表面上に付着していてもよい。   The flux may be dispersed in the conductive material or may be attached on the surface of the solder particles.

上記フラックスは、加熱によりカチオンを放出するフラックスであることが好ましい。加熱によりカチオンを放出するフラックスの使用により、はんだ粒子を電極上により一層効率的に配置することができる。   The flux is preferably a flux that releases cations by heating. By using a flux that releases cations upon heating, the solder particles can be arranged more efficiently on the electrode.

上記導電材料100重量%中、上記フラックスの含有量は好ましくは0.5重量%以上、好ましくは30重量%以下、より好ましくは25重量%以下である。上記導電材料は、フラックスを含んでいなくてもよい。フラックスの含有量が上記下限以上及び上記上限以下であると、はんだ及び電極の表面に酸化被膜がより一層形成され難くなり、さらに、はんだ及び電極の表面に形成された酸化被膜をより一層効果的に除去できる。   The content of the flux in 100% by weight of the conductive material is preferably 0.5% by weight or more, preferably 30% by weight or less, and more preferably 25% by weight or less. The conductive material may not contain flux. When the flux content is not less than the above lower limit and not more than the above upper limit, it becomes more difficult to form an oxide film on the surface of the solder and the electrode, and the oxide film formed on the surface of the solder and the electrode is more effective. Can be removed.

(フィラー)
上記導電材料には、フィラーを添加してもよい。フィラーは、有機フィラーであってもよく、無機フィラーであってもよい。フィラーの添加により、はんだ粒子の凝集する距離を抑制し、基板の全電極上に対して、はんだ粒子を均一に凝集させることができる。
(Filler)
A filler may be added to the conductive material. The filler may be an organic filler or an inorganic filler. By adding the filler, the distance at which the solder particles aggregate can be suppressed, and the solder particles can be uniformly aggregated on all the electrodes of the substrate.

上記導電材料100重量%中、上記フィラーの含有量は好ましくは0重量%以上、好ましくは5重量%以下、より好ましくは2重量%以下、更に好ましくは1重量%以下である。上記フィラーの含有量が上記下限以上及び上記上限以下であると、はんだ粒子が電極上により一層効率的に配置される。   The content of the filler in 100% by weight of the conductive material is preferably 0% by weight or more, preferably 5% by weight or less, more preferably 2% by weight or less, and further preferably 1% by weight or less. When the content of the filler is not less than the above lower limit and not more than the above upper limit, the solder particles are more efficiently arranged on the electrode.

(他の成分)
上記導電材料は、必要に応じて、例えば、充填剤、増量剤、軟化剤、可塑剤、重合触媒、硬化触媒、着色剤、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、滑剤、帯電防止剤及び難燃剤等の各種添加剤を含んでいてもよい。
(Other ingredients)
The conductive material may be, for example, a filler, an extender, a softener, a plasticizer, a polymerization catalyst, a curing catalyst, a colorant, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, and a lubricant as necessary. In addition, various additives such as an antistatic agent and a flame retardant may be included.

(接続構造体及び接続構造体の製造方法)
本発明に係る接続構造体は、少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、上記第1の接続対象部材と、上記第2の接続対象部材とを接続している接続部とを備える。本発明に係る接続構造体では、上記接続部が、上述した異方性導電材料により形成されている。本発明に係る接続構造体では、上記第1の電極と上記第2の電極とが、上記接続部中のはんだ部により電気的に接続されている。
(Connection structure and method of manufacturing connection structure)
A connection structure according to the present invention includes a first connection target member having at least one first electrode on the surface, a second connection target member having at least one second electrode on the surface, and the first The connection object member and the connection part which has connected the said 2nd connection object member are provided. In the connection structure according to the present invention, the connection portion is formed of the anisotropic conductive material described above. In the connection structure according to the present invention, the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.

本発明に係る接続構造体の製造方法は、上述した異方性導電材料を用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、上記異方性導電材料を配置する工程と、上記異方性導電材料の上記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、上記第1の電極と上記第2の電極とが対向するように配置する工程と、上記はんだ粒子の融点以上かつ上記熱硬化性成分の硬化温度以上に上記異方性導電材料を加熱することで、上記第1の接続対象部材と上記第2の接続対象部材とを接続している接続部を、上記異方性導電材料により形成し、かつ、上記第1の電極と上記第2の電極とを、上記接続部中のはんだ部により電気的に接続する工程とを備える。   The manufacturing method of the connection structure according to the present invention uses the above-described anisotropic conductive material to provide the anisotropic conductive material on the surface of the first connection target member having at least one first electrode on the surface. A step of disposing a material, and a second connection target member having at least one second electrode on the surface opposite to the first connection target member side of the anisotropic conductive material, A step of arranging the first electrode and the second electrode to face each other, and heating the anisotropic conductive material to a temperature equal to or higher than a melting point of the solder particles and a temperature equal to or higher than a curing temperature of the thermosetting component, The connecting portion connecting the first connection target member and the second connection target member is formed of the anisotropic conductive material, and the first electrode and the second electrode are formed. And a step of electrically connecting with a solder portion in the connection portion.

本発明に係る接続構造体及び本発明に係る接続構造体の製造方法では、特定の異方性導電材料を用いているので、複数のはんだ粒子が第1の電極と第2の電極との間に集まりやすく、複数のはんだ粒子を電極(ライン)上に効率的に配置することができる。また、複数のはんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくすることができる。従って、第1の電極と第2の電極との間の導通信頼性を高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続を防ぐことができ、絶縁信頼性を高めることができる。   In the connection structure according to the present invention and the method for manufacturing the connection structure according to the present invention, since a specific anisotropic conductive material is used, a plurality of solder particles are disposed between the first electrode and the second electrode. The plurality of solder particles can be efficiently arranged on the electrode (line). Moreover, it is difficult for some of the plurality of solder particles to be disposed in a region (space) where no electrode is formed, and the amount of solder particles disposed in a region where no electrode is formed can be considerably reduced. Therefore, the conduction reliability between the first electrode and the second electrode can be improved. In addition, it is possible to prevent electrical connection between laterally adjacent electrodes that should not be connected, and to improve insulation reliability.

また、複数のはんだ粒子を電極上に効率的に配置し、かつ電極が形成されていない領域に配置されるはんだ粒子の量をかなり少なくするためには、異方性導電フィルムではなく、異方性導電ペーストを用いることが望ましいことを、本発明者は見出した。   In order to arrange a plurality of solder particles efficiently on the electrode and to considerably reduce the amount of the solder particles arranged in the region where the electrode is not formed, an anisotropic conductive film is used instead of an anisotropic conductive film. The present inventors have found that it is desirable to use a conductive conductive paste.

本発明では、複数のはんだ粒子を電極間に効率的に集める他の方法を更に採用してもよい。複数のはんだ粒子を電極間に効率的に集める方法としては、第1の接続対象部材と、第2の接続対象部材との間の導電材料に、熱を付与した際、熱により導電材料の粘度が低下することで、第1の接続対象部材と、第2の接続対象部材との間の導電材料の対流を発生させる方法等が挙げられる。この方法において、接続対象部材の表面の電極とそれ以外の表面部材との熱容量の差異により対流を発生させる方法、接続対象部材の水分を、熱により水蒸気として対流を発生させる方法、並びに第1の接続対象部材と第2の接続対象部材との温度差により対流を発生させる方法等が挙げられる。これにより、導電材料中のはんだ粒子を、電極の表面に効率的に移動させることができる。   In the present invention, another method of efficiently collecting a plurality of solder particles between the electrodes may be further employed. As a method for efficiently collecting a plurality of solder particles between electrodes, when heat is applied to the conductive material between the first connection target member and the second connection target member, the viscosity of the conductive material by heat is applied. The method of generating the convection of the electrically-conductive material between a 1st connection object member and a 2nd connection object member, etc. are mentioned because it falls. In this method, a method of generating convection due to a difference in heat capacity between the electrode on the surface of the connection target member and the other surface member, a method of generating convection as water vapor from the heat of the connection target member, and the first Examples include a method of generating convection due to a temperature difference between the connection target member and the second connection target member. Thereby, the solder particles in the conductive material can be efficiently moved to the surface of the electrode.

本発明では、電極の表面に選択的にはんだ粒子を凝集させる方法を更に採用してもよい。電極の表面に選択的にはんだ粒子を凝集させる方法としては、溶融したはんだ粒子の濡れ性がよい電極材質と、溶融したはんだ粒子の濡れ性が悪いその他の表面材質とにより形成された接続対象部材を選択し、電極の表面に到達した溶融したはんだ粒子を選択的に電極に付着させ、その溶融したはんだ粒子に対し、別のはんだ粒子を溶融させて付着させる方法、熱伝導性がよい電極材質と、熱伝導性が悪いその他の表面材質とにより形成された接続対象部材を選択し、熱を付与した際に、電極の温度を他の表面部材に対し高くすることで、選択的に電極上ではんだを溶融させる方法、金属により形成された電極上に存在するマイナスの電荷に対して、プラスの電荷を持つように処理されたはんだ粒子を用いて、電極に選択的にはんだ粒子を凝集させる方法、並びに、親水性の金属表面を有する電極に対して、導電材料中のはんだ粒子以外の樹脂を疎水性とすることで、電極に選択的にはんだ粒子を凝集させる方法等が挙げられる。   In the present invention, a method of selectively aggregating solder particles on the surface of the electrode may be further employed. As a method of selectively agglomerating solder particles on the surface of the electrode, there is a connection target member formed of an electrode material having good wettability of molten solder particles and another surface material having poor wettability of molten solder particles. A method of selectively adhering molten solder particles that have reached the surface of the electrode to the electrode and then melting and adhering another solder particle to the molten solder particles, and an electrode material with good thermal conductivity And other surface materials with poor thermal conductivity are selected, and when heat is applied, the temperature of the electrode is raised relative to the other surface members to selectively In this method, the solder particles are selectively agglomerated on the electrodes by using solder particles that have been treated so as to have a positive charge with respect to the negative charges existing on the electrode formed of metal. Method of, and, the electrode having a hydrophilic metal surface, the resin other than the solder particles of the conductive material by a hydrophobic, a method to aggregate selectively solder particles on the electrode, and the like.

電極間でのはんだ部の厚みは、好ましくは10μm以上、より好ましくは20μm以上、好ましくは100μm以下、より好ましくは80μm以下である。電極の表面上のはんだ濡れ面積(電極の露出した面積100%中のはんだが接している面積)は、好ましくは50%以上、より好ましくは60%以上、更に好ましくは70%以上、好ましくは100%以下である。   The thickness of the solder part between the electrodes is preferably 10 μm or more, more preferably 20 μm or more, preferably 100 μm or less, more preferably 80 μm or less. The solder wetted area on the surface of the electrode (area where the solder is in contact with 100% of the exposed area of the electrode) is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, preferably 100. % Or less.

本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料には、上記第2の接続対象部材の重量が加わるか、又は、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の内の少なくとも一方において、加圧を行い、かつ、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の双方において、加圧の圧力が1MPa未満であることが好ましい。1MPa以上の加圧の圧力を加えないことで、はんだ粒子の凝集がかなり促進される。接続対象部材の反りを抑える観点からは、本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の内の少なくとも一方において、加圧を行い、かつ、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程の双方において、加圧の圧力が1MPa未満であってもよい。加圧を行う場合に、上記第2の接続対象部材を配置する工程のみにおいて、加圧を行ってもよく、上記接続部を形成する工程のみにおいて、加圧を行ってもよく、上記第2の接続対象部材を配置する工程と上記接続部を形成する工程との双方において、加圧を行ってもよい。加圧の圧力が1MPa未満には、加圧していない場合が含まれる。加圧を行う場合に、加圧の圧力は、好ましくは0.9MPa以下、より好ましくは0.8MPa以下である。加圧の圧力が0.8MPa以下である場合に、加圧の圧力が0.8MPaを超える場合と比べて、はんだ粒子の凝集がより一層顕著に促進される。   In the method for manufacturing a connection structure according to the present invention, in the step of arranging the second connection target member and the step of forming the connection portion, no pressure is applied, and the second connection is applied to the conductive material. The weight of the target member is added, or pressure is applied in at least one of the step of arranging the second connection target member and the step of forming the connection portion, and the second connection target member It is preferable that the pressure of pressurization is less than 1 MPa in both the step of disposing and the step of forming the connecting portion. By not applying a pressure of 1 MPa or more, the aggregation of solder particles is considerably promoted. From the viewpoint of suppressing the warpage of the connection target member, in the method for manufacturing a connection structure according to the present invention, at least one of the step of arranging the second connection target member and the step of forming the connection portion is performed. The pressure of pressurization may be less than 1 MPa in both the step of performing pressure and arranging the second connection target member and the step of forming the connection portion. When pressurization is performed, the pressurization may be performed only in the step of arranging the second connection target member, or the pressurization may be performed only in the step of forming the connection portion. Pressurization may be performed in both the step of arranging the connection target member and the step of forming the connection portion. The case where the pressure is less than 1 MPa includes the case where no pressure is applied. When pressurizing, the pressure of pressurization is preferably 0.9 MPa or less, more preferably 0.8 MPa or less. When the pressure of the pressurization is 0.8 MPa or less, the aggregation of the solder particles is further promoted more remarkably than when the pressure of the pressurization exceeds 0.8 MPa.

本発明に係る接続構造体の製造方法では、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料には、上記第2の接続対象部材の重量が加わることが好ましく、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、上記導電材料には、上記第2の接続対象部材の重量の力を超える加圧圧力は加わらないことが好ましい。これらの場合には、複数のはんだ部において、はんだ量の均一性をより一層高めることができる。さらに、はんだ部の厚みをより一層効果的に厚くすることができ、複数のはんだ粒子が電極間に多く集まりやすくなり、複数のはんだ粒子を電極(ライン)上により一層効率的に配置することができる。また、複数のはんだ粒子の一部が、電極が形成されていない領域(スペース)に配置され難く、電極が形成されていない領域に配置されるはんだ粒子の量をより一層少なくすることができる。従って、電極間の導通信頼性をより一層高めることができる。しかも、接続されてはならない横方向に隣接する電極間の電気的な接続をより一層防ぐことができ、絶縁信頼性をより一層高めることができる。   In the method for manufacturing a connection structure according to the present invention, in the step of arranging the second connection target member and the step of forming the connection portion, no pressure is applied, and the second connection is applied to the conductive material. The weight of the target member is preferably added, and in the step of arranging the second connection target member and the step of forming the connection portion, the conductive material exceeds the weight force of the second connection target member. It is preferable that no pressure is applied. In these cases, the uniformity of the amount of solder can be further enhanced in the plurality of solder portions. Furthermore, the thickness of the solder portion can be increased more effectively, and a plurality of solder particles can be easily collected between the electrodes, and the plurality of solder particles can be arranged more efficiently on the electrodes (lines). it can. Moreover, it is difficult for some of the plurality of solder particles to be arranged in a region (space) where no electrode is formed, and the amount of solder particles arranged in a region where no electrode is formed can be further reduced. Therefore, the conduction reliability between the electrodes can be further enhanced. In addition, the electrical connection between the laterally adjacent electrodes that should not be connected can be further prevented, and the insulation reliability can be further improved.

さらに、上記第2の接続対象部材を配置する工程及び上記接続部を形成する工程において、加圧を行わず、上記導電材料に、上記第2の接続対象部材の重量が加われば、接続部が形成される前に電極が形成されていない領域(スペース)に配置されていたはんだ粒子が第1の電極と第2の電極との間により一層集まりやすくなり、複数のはんだ粒子を電極(ライン)上により一層効率的に配置することができることも、本発明者は見出した。本発明では、導電フィルムではなく、導電ペーストを用いるという構成と、加圧を行わず、上記導電ペーストには、上記第2の接続対象部材の重量が加わるようにするという構成とを組み合わせて採用することには、本発明の効果をより一層高いレベルで得るために大きな意味がある。   Furthermore, in the step of arranging the second connection target member and the step of forming the connection portion, if the weight of the second connection target member is added to the conductive material without applying pressure, the connection portion is Solder particles arranged in a region (space) where no electrode is formed before being formed are more easily collected between the first electrode and the second electrode, and a plurality of solder particles are separated into electrodes (lines). The inventor has also found that the arrangement can be made more efficient. In the present invention, a configuration in which a conductive paste is used instead of a conductive film and a configuration in which the weight of the second connection target member is added to the conductive paste without applying pressure are used in combination. This has a great meaning in order to obtain the effects of the present invention at a higher level.

なお、WO2008/023452A1では、はんだ粉を電極表面に押し流して効率よく移動させる観点からは、接着時に所定の圧力で加圧するとよいことが記載されており、加圧圧力は、はんだ領域をさらに確実に形成する観点では、例えば、0MPa以上、好ましくは1MPa以上とすることが記載されており、更に、接着テープに意図的に加える圧力が0MPaであっても、接着テープ上に配置された部材の自重により、接着テープに所定の圧力が加わってもよいことが記載されている。WO2008/023452A1では、接着テープに意図的に加える圧力が0MPaであってもよいことは記載されているが、0MPaを超える圧力を付与した場合と0MPaとした場合との効果の差異については、何ら記載されていない。また、WO2008/023452A1では、フィルム状ではなく、ペースト状の導電ペーストを用いることの重要性についても何ら認識されていない。   In addition, WO2008 / 023452A1 describes that it is preferable to pressurize with a predetermined pressure at the time of bonding from the viewpoint of efficiently moving the solder powder to the electrode surface, and the pressurizing pressure further ensures the solder area. For example, it is described that the pressure is set to 0 MPa or more, preferably 1 MPa or more. Further, even if the pressure intentionally applied to the adhesive tape is 0 MPa, the member disposed on the adhesive tape It is described that a predetermined pressure may be applied to the adhesive tape by its own weight. In WO2008 / 023452A1, it is described that the pressure applied intentionally to the adhesive tape may be 0 MPa, but there is no difference between the effect when the pressure exceeding 0 MPa is applied and when the pressure is set to 0 MPa. Not listed. In addition, WO2008 / 023452A1 recognizes nothing about the importance of using a paste-like conductive paste instead of a film.

また、導電フィルムではなく、導電ペーストを用いれば、導電ペーストの塗布量によって、接続部及びはんだ部の厚みを調整することが容易になる。一方で、導電フィルムでは、接続部の厚みを変更したり、調整したりするためには、異なる厚みの導電フィルムを用意したり、所定の厚みの導電フィルムを用意したりしなければならないという問題がある。また、導電フィルムでは、はんだの溶融温度で、導電フィルムの溶融粘度を十分に下げることができず、はんだ粒子の凝集が阻害されやすくなる傾向があるという問題がある。   Moreover, if a conductive paste is used instead of a conductive film, it becomes easy to adjust the thickness of the connection part and the solder part depending on the amount of the conductive paste applied. On the other hand, in the conductive film, in order to change or adjust the thickness of the connection portion, it is necessary to prepare a conductive film having a different thickness or to prepare a conductive film having a predetermined thickness. There is. Further, the conductive film has a problem that the melt viscosity of the conductive film cannot be sufficiently lowered at the melting temperature of the solder, and the aggregation of the solder particles tends to be hindered.

以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係る異方性導電材料を用いて得られる接続構造体を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing a connection structure obtained using an anisotropic conductive material according to an embodiment of the present invention.

図1に示す接続構造体1は、第1の接続対象部材2と、第2の接続対象部材3と、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4とを備える。接続部4は、熱硬化性化合物と、熱硬化剤と、複数のはんだ粒子とを含む導電材料により形成されている。接続部4の材料が、上記導電材料である。接続部4は、上記導電材料の硬化物である。上記熱硬化性化合物と上記熱硬化剤とは、熱硬化性成分である。   The connection structure 1 shown in FIG. 1 is a connection that connects a first connection target member 2, a second connection target member 3, and the first connection target member 2 and the second connection target member 3. Part 4. The connection part 4 is formed of a conductive material including a thermosetting compound, a thermosetting agent, and a plurality of solder particles. The material of the connection portion 4 is the conductive material. The connection part 4 is a cured product of the conductive material. The thermosetting compound and the thermosetting agent are thermosetting components.

接続部4は、複数のはんだ粒子が集まり互いに接合したはんだ部4Aと、熱硬化性成分が熱硬化された硬化物部4Bとを有する。   The connection portion 4 includes a solder portion 4A in which a plurality of solder particles are gathered and joined to each other, and a cured product portion 4B in which a thermosetting component is thermally cured.

第1の接続対象部材2は表面(上面)に、複数の第1の電極2aを有する。第2の接続対象部材3は表面(下面)に、複数の第2の電極3aを有する。第1の電極2aと第2の電極3aとが、はんだ部4Aにより電気的に接続されている。従って、第1の接続対象部材2と第2の接続対象部材3とが、はんだ部4Aにより電気的に接続されている。なお、接続部4において、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだは存在しない。はんだ部4Aとは異なる領域(硬化物部4B部分)では、はんだ部4Aと離れたはんだは存在しない。なお、少量であれば、第1の電極2aと第2の電極3aとの間に集まったはんだ部4Aとは異なる領域(硬化物部4B部分)に、はんだが存在していてもよい。なお、はんだが電極の表面に濡れ拡がっていることが好ましく、必ずしも、はんだが上下の電極間に集まっていなくてもよい。   The first connection target member 2 has a plurality of first electrodes 2a on the surface (upper surface). The second connection target member 3 has a plurality of second electrodes 3a on the surface (lower surface). The first electrode 2a and the second electrode 3a are electrically connected by the solder portion 4A. Therefore, the first connection target member 2 and the second connection target member 3 are electrically connected by the solder portion 4A. In the connection portion 4, no solder exists in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a. In an area different from the solder part 4A (hardened product part 4B part), there is no solder separated from the solder part 4A. If the amount is small, the solder may be present in a region (cured product portion 4B portion) different from the solder portion 4A gathered between the first electrode 2a and the second electrode 3a. In addition, it is preferable that the solder has spread on the surface of the electrode, and the solder does not necessarily have to be gathered between the upper and lower electrodes.

図1に示すように、接続構造体1では、第1の電極2aと第2の電極3aとの間に、複数のはんだ粒子が集まり、複数のはんだ粒子が溶融した後、はんだ粒子の溶融物が電極の表面を濡れ拡がった後に固化して、はんだ部4Aが形成されている。このため、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接続面積が大きくなる。すなわち、はんだ粒子を用いることにより、導電性の外表面がニッケル、金又は銅等の金属である導電性粒子を用いた場合と比較して、はんだ部4Aと第1の電極2a、並びにはんだ部4Aと第2の電極3aとの接触面積が大きくなる。このため、接続構造体1における導通信頼性及び接続信頼性が高くなる。なお、導電ペーストは、フラックスを含んでいてもよい。フラックスを用いた場合には、加熱により、一般にフラックスは次第に失活する。   As shown in FIG. 1, in the connection structure 1, a plurality of solder particles gather between the first electrode 2 a and the second electrode 3 a, and after the plurality of solder particles melt, After the electrode surface wets and spreads, it solidifies to form the solder portion 4A. For this reason, the connection area of 4 A of solder parts and the 1st electrode 2a, and 4 A of solder parts, and the 2nd electrode 3a becomes large. That is, by using the solder particles, the solder portion 4A, the first electrode 2a, and the solder portion are compared with the case where the conductive outer surface is made of a metal such as nickel, gold or copper. The contact area between 4A and the second electrode 3a increases. For this reason, the conduction | electrical_connection reliability and connection reliability in the connection structure 1 become high. Note that the conductive paste may contain a flux. When the flux is used, the flux is generally deactivated gradually by heating.

なお、図1に示す接続構造体1では、はんだ部4Aの全てが、第1,第2の電極2a,3a間の対向している領域に位置している。図3に示す変形例の接続構造体1Xは、接続部4Xのみが、図1に示す接続構造体1と異なる。接続部4Xは、はんだ部4XAと硬化物部4XBとを有する。接続構造体1Xのように、はんだ部4XAの多くが、第1,第2の電極2a,3aの対向している領域に位置しており、はんだ部4XAの一部が第1,第2の電極2a,3aの対向している領域から側方にはみ出していてもよい。第1,第2の電極2a,3aの対向している領域から側方にはみ出しているはんだ部4XAは、はんだ部4XAの一部であり、はんだ部4XAから離れたはんだではない。なお、本実施形態では、はんだ部から離れたはんだの量を少なくすることができるが、はんだ部から離れたはんだが硬化物部中に存在していてもよい。   In addition, in the connection structure 1 shown in FIG. 1, all the solder parts 4A are located in the area | region which the 1st, 2nd electrodes 2a and 3a oppose. The connection structure 1X of the modification shown in FIG. 3 is different from the connection structure 1 shown in FIG. 1 only in the connection portion 4X. The connection part 4X has the solder part 4XA and the hardened | cured material part 4XB. As in the connection structure 1X, most of the solder portions 4XA are located in regions where the first and second electrodes 2a and 3a are opposed to each other, and a part of the solder portion 4XA is first and second. You may protrude to the side from the area | region which electrode 2a, 3a has opposed. The solder part 4XA protruding laterally from the region where the first and second electrodes 2a and 3a are opposed is a part of the solder part 4XA and is not a solder separated from the solder part 4XA. In the present embodiment, the amount of solder away from the solder portion can be reduced, but the solder away from the solder portion may exist in the cured product portion.

はんだ粒子の使用量を少なくすれば、接続構造体1を得ることが容易になる。はんだ粒子の使用量を多くすれば、接続構造体1Xを得ることが容易になる。   If the amount of solder particles used is reduced, the connection structure 1 can be easily obtained. If the amount of the solder particles used is increased, it becomes easy to obtain the connection structure 1X.

導通信頼性をより一層高める観点からは、上記第1の電極と上記接続部と上記第2の電極との積層方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分の面積100%中の50%以上(より好ましくは60%以上、更に好ましくは70%以上、特に好ましくは80%以上、最も好ましくは90%以上)に、上記接続部中のはんだ部が配置されていることが好ましい。   From the viewpoint of further improving the conduction reliability, the portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is seen. Sometimes, 50% or more (more preferably 60% or more, still more preferably 70% or more, particularly preferably 80% or more) out of 100% of the area where the first electrode and the second electrode face each other. , Most preferably 90% or more), the solder portion in the connection portion is preferably disposed.

導通信頼性をより一層高める観点からは、上記第1の電極と上記接続部と上記第2の電極との積層方向と直交する方向に上記第1の電極と上記第2の電極との対向し合う部分をみたときに、上記第1の電極と上記第2の電極との対向し合う部分に、上記接続部中のはんだ部の70%以上(より好ましくは80%以上、更に好ましくは90%以上、特に好ましくは95%以上、最も好ましくは99%以上)が配置されていることが好ましい。   From the viewpoint of further improving the conduction reliability, the first electrode and the second electrode are opposed to each other in a direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode. When the matching portion is viewed, the portion where the first electrode and the second electrode face each other is 70% or more (more preferably 80% or more, more preferably 90%) of the solder portion in the connection portion. In particular, it is preferable that 95% or more, most preferably 99% or more) is disposed.

次に、本発明の一実施形態に係る異方性導電材料を用いて、接続構造体1を製造する方法の一例を説明する。   Next, an example of a method for manufacturing the connection structure 1 using the anisotropic conductive material according to the embodiment of the present invention will be described.

先ず、第1の電極2aを表面(上面)に有する第1の接続対象部材2を用意する。次に、図2(a)に示すように、第1の接続対象部材2の表面上に、熱硬化性成分11Bと、複数のはんだ粒子11Aとを含む導電材料11(異方性導電材料)を配置する(第1の工程)。本実施形態では、導電材料11は、導電ペーストである。第1の接続対象部材2の第1の電極2aが設けられた表面上に、導電材料11を配置する。導電材料11の配置の後に、はんだ粒子11Aは、第1の電極2a(ライン)上と、第1の電極2aが形成されていない領域(スペース)上との双方に配置されている。   First, the 1st connection object member 2 which has the 1st electrode 2a on the surface (upper surface) is prepared. Next, as shown in FIG. 2A, a conductive material 11 (anisotropic conductive material) including a thermosetting component 11B and a plurality of solder particles 11A on the surface of the first connection target member 2 is used. Is arranged (first step). In the present embodiment, the conductive material 11 is a conductive paste. The conductive material 11 is disposed on the surface of the first connection target member 2 on which the first electrode 2a is provided. After the conductive material 11 is disposed, the solder particles 11A are disposed both on the first electrode 2a (line) and on a region (space) where the first electrode 2a is not formed.

導電ペーストの配置方法としては、特に限定されないが、ディスペンサーによる塗布、スクリーン印刷、及びインクジェット装置による吐出等が挙げられる。   The method for arranging the conductive paste is not particularly limited, and examples thereof include application using a dispenser, screen printing, and ejection using an inkjet device.

また、第2の電極3aを表面(下面)に有する第2の接続対象部材3を用意する。次に、図2(b)に示すように、第1の接続対象部材2の表面上の導電材料11において、導電材料11の第1の接続対象部材2側とは反対側の表面上に、第2の接続対象部材3を配置する(第2の工程)。導電材料11の表面上に、第2の電極3a側から、第2の接続対象部材3を配置する。このとき、第1の電極2aと第2の電極3aとを対向させる。   Moreover, the 2nd connection object member 3 which has the 2nd electrode 3a on the surface (lower surface) is prepared. Next, as shown in FIG. 2B, in the conductive material 11 on the surface of the first connection target member 2, on the surface opposite to the first connection target member 2 side of the conductive material 11, The 2nd connection object member 3 is arrange | positioned (2nd process). On the surface of the conductive material 11, the second connection target member 3 is disposed from the second electrode 3a side. At this time, the first electrode 2a and the second electrode 3a are opposed to each other.

次に、はんだ粒子11Aの融点以上及び熱硬化性成分11Bの硬化温度以上に導電材料11を加熱する(第3の工程)。すなわち、はんだ粒子11Aの融点及び熱硬化性成分11Bの硬化温度の内のより高い温度以上に、導電材料11を加熱する。この加熱時には、電極が形成されていない領域に存在していたはんだ粒子11Aは、第1の電極2aと第2の電極3aとの間に集まる(自己凝集効果)。本実施形態では、導電フィルムではなく、導電ペーストを用いているために、更に導電ペーストが特定の構成を有するために、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。また、はんだ粒子11Aは溶融し、互いに接合する。また、熱硬化性成分11Bは熱硬化する。この結果、図2(c)に示すように、第1の接続対象部材2と第2の接続対象部材3とを接続している接続部4を、導電材料11により形成する。導電材料11により接続部4が形成され、複数のはんだ粒子11Aが接合することによってはんだ部4Aが形成され、熱硬化性成分11Bが熱硬化することによって硬化物部4Bが形成される。はんだ粒子11Aが十分に移動すれば、第1の電極2aと第2の電極3aとの間に位置していないはんだ粒子11Aの移動が開始してから、第1の電極2aと第2の電極3aとの間にはんだ粒子11Aの移動が完了するまでに、温度を一定に保持しなくてもよい。   Next, the conductive material 11 is heated above the melting point of the solder particles 11A and above the curing temperature of the thermosetting component 11B (third step). That is, the conductive material 11 is heated to a temperature higher than the melting point of the solder particles 11A and the curing temperature of the thermosetting component 11B. At the time of this heating, the solder particles 11A that existed in the region where no electrode is formed gather between the first electrode 2a and the second electrode 3a (self-aggregation effect). In the present embodiment, since the conductive paste is used instead of the conductive film, the conductive paste further has a specific configuration. Therefore, the solder particles 11A are disposed between the first electrode 2a and the second electrode 3a. To gather effectively. Also, the solder particles 11A are melted and joined together. Further, the thermosetting component 11B is thermoset. As a result, as shown in FIG. 2C, the connection portion 4 that connects the first connection target member 2 and the second connection target member 3 is formed of the conductive material 11. The connection part 4 is formed of the conductive material 11, the solder part 4A is formed by joining a plurality of solder particles 11A, and the cured part 4B is formed by thermosetting the thermosetting component 11B. If the solder particles 11A are sufficiently moved, the first electrode 2a and the second electrode are moved after the movement of the solder particles 11A not located between the first electrode 2a and the second electrode 3a starts. It is not necessary to keep the temperature constant until the movement of the solder particles 11A is completed.

本実施形態では、上記第2の工程及び上記第3の工程において、加圧を行っていない。本実施形態では、導電材料11には、第2の接続対象部材3の重量が加わる。このため、接続部4の形成時に、はんだ粒子11Aが、第1の電極2aと第2の電極3aとの間に効果的に集まる。なお、上記第2の工程及び上記第3の工程の内の少なくとも一方において、加圧を行えば、はんだ粒子が第1の電極と第2の電極との間に集まろうとする作用が阻害される傾向が高くなる。このことは、本発明者によって見出された。   In the present embodiment, no pressure is applied in the second step and the third step. In the present embodiment, the weight of the second connection target member 3 is added to the conductive material 11. For this reason, when the connection part 4 is formed, the solder particles 11A are effectively collected between the first electrode 2a and the second electrode 3a. In addition, if pressure is applied in at least one of the second step and the third step, the action of the solder particles trying to collect between the first electrode and the second electrode is hindered. The tendency to become higher. This has been found by the inventor.

また、本実施形態では、加圧を行っていないため、導電材料を塗布した第1の接続対象部材に、第2の接続対象部材を重ね合わせた際に、第1の接続対象部材の電極と第2の接続対象部材の電極とのアライメントがずれた状態で、第1の接続対象部材と第2の接続対象部材とが重ね合わされた場合でも、そのずれを補正して、第1の接続対象部材の電極と第2の接続対象部材の電極と接続させることができる(セルフアライメント効果)。これは、第1の接続対象部材の電極と第2の接続対象部材の電極との間に自己凝集した溶融したはんだが、第1の接続対象部材の電極と第2の接続対象部材の電極との間のはんだと導電材料のその他の成分とが接する面積が最小となる方がエネルギー的に安定になるため、その最小の面積となる接続構造であるアライメントのあった接続構造にする力が働くためである。この際、導電材料が硬化していないこと、及び、その温度、時間にて、導電材料のはんだ粒子以外の成分の粘度が十分低いことが望ましい。   Moreover, in this embodiment, since pressurization is not performed, when the second connection target member is superimposed on the first connection target member to which the conductive material is applied, the electrode of the first connection target member Even when the first connection target member and the second connection target member are overlapped in a state where the alignment with the electrode of the second connection target member is shifted, the shift is corrected and the first connection target is corrected. It is possible to connect the electrode of the member and the electrode of the second connection target member (self-alignment effect). This is because the molten solder self-aggregated between the electrode of the first connection target member and the electrode of the second connection target member is the electrode of the first connection target member and the electrode of the second connection target member. As the area where the solder and the other components of the conductive material are in contact with each other is minimized, the energy becomes more stable. Therefore, the force that makes the connection structure with alignment, which is the connection structure with the smallest area, works. Because. At this time, it is desirable that the conductive material is not cured and that the viscosity of components other than the solder particles of the conductive material is sufficiently low at that temperature and time.

はんだの融点での導電材料の粘度は、好ましくは50Pa・s以下、より好ましくは10Pa・s以下、更に好ましくは1Pa・s以下、好ましくは0.1Pa・s以上、より好ましくは0.2Pa・s以上である。粘度が上記上限以下であれば、はんだ粒子を効率的に凝集させることができ、粘度が上記下限以上であれば、接続部でのボイドを抑制し、接続部以外への導電材料のはみだしを抑制することができる。   The viscosity of the conductive material at the melting point of the solder is preferably 50 Pa · s or less, more preferably 10 Pa · s or less, still more preferably 1 Pa · s or less, preferably 0.1 Pa · s or more, more preferably 0.2 Pa · s. s or more. If the viscosity is below the above upper limit, the solder particles can be efficiently aggregated. If the viscosity is above the above lower limit, voids at the connection part are suppressed, and the overflow of the conductive material outside the connection part is suppressed. can do.

はんだの融点での導電材料の粘度は以下のようにして測定される。   The viscosity of the conductive material at the melting point of the solder is measured as follows.

上記はんだの融点での導電材料の粘度は、STRESSTECH(EOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25〜200℃(但し、はんだの融点が200℃を超える場合には温度上限をはんだの融点とする)の条件で測定可能である。測定結果から、はんだの融点(℃)での粘度が評価される。   The viscosity of the conductive material at the melting point of the solder is as follows: STRESSTECH (manufactured by EOLOGICA), etc., strain control 1 rad, frequency 1 Hz, temperature rising rate 20 ° C./min, measurement temperature range 25-200 ° C. When the melting point exceeds 200 ° C., the upper limit of the temperature is taken as the melting point of the solder). From the measurement results, the viscosity at the melting point (° C.) of the solder is evaluated.

このようにして、図1に示す接続構造体1が得られる。なお、上記第2の工程と上記第3の工程とは連続して行われてもよい。また、上記第2の工程を行った後に、得られる第1の接続対象部材2と導電材料11と第2の接続対象部材3との積層体を、加熱部に移動させて、上記第3の工程を行ってもよい。上記加熱を行うために、加熱部材上に上記積層体を配置してもよく、加熱された空間内に上記積層体を配置してもよい。   In this way, the connection structure 1 shown in FIG. 1 is obtained. The second step and the third step may be performed continuously. Moreover, after performing the said 2nd process, the laminated body of the 1st connection object member 2, the electrically-conductive material 11, and the 2nd connection object member 3 which are obtained is moved to a heating part, and the said 3rd connection object is carried out. You may perform a process. In order to perform the heating, the laminate may be disposed on a heating member, or the laminate may be disposed in a heated space.

上記第3の工程における加熱温度は、はんだ粒子の融点以上及び熱硬化性成分の硬化温度以上であれば特に限定されない。上記加熱温度は、好ましくは140℃以上、より好ましくは160℃以上、好ましくは450℃以下、より好ましくは250℃以下、更に好ましくは200℃以下である。   The heating temperature in the third step is not particularly limited as long as it is not lower than the melting point of the solder particles and not lower than the curing temperature of the thermosetting component. The heating temperature is preferably 140 ° C. or higher, more preferably 160 ° C. or higher, preferably 450 ° C. or lower, more preferably 250 ° C. or lower, and still more preferably 200 ° C. or lower.

なお、上記第3の工程の後に、位置の修正や製造のやり直しを目的として、第1の接続対象部材又は第2の接続対象部材を、接続部から剥離することができる。この剥離を行うための加熱温度は、好ましくははんだ粒子の融点以上、より好ましくははんだ粒子の融点(℃)+10℃以上である。この剥離を行うための加熱温度は、はんだ粒子の融点(℃)+100℃以下であってもよい。   In addition, after the said 3rd process, a 1st connection object member or a 2nd connection object member can be peeled from a connection part for the purpose of correction of a position or re-production. The heating temperature for performing this peeling is preferably not lower than the melting point of the solder particles, more preferably not lower than the melting point (° C.) of the solder particles + 10 ° C. The heating temperature for performing this peeling may be the melting point (° C.) of the solder particles + 100 ° C. or less.

上記第3の工程における加熱方法としては、はんだ粒子の融点以上及び熱硬化性成分の硬化温度以上に、接続構造体全体を、リフロー炉を用いて又はオーブンを用いて加熱する方法や、接続構造体の接続部のみを局所的に加熱する方法が挙げられる。   As the heating method in the third step, a method of heating the entire connection structure using a reflow furnace or an oven above the melting point of the solder particles and the curing temperature of the thermosetting component, or a connection structure The method of heating only the connection part of a body locally is mentioned.

局所的に加熱する方法に用いる器具としては、ホットプレート、熱風を付与するヒートガン、はんだゴテ、及び赤外線ヒーター等が挙げられる。   As a tool used for the method of heating locally, a hot plate, a heat gun for applying hot air, a soldering iron, an infrared heater, and the like can be given.

また、ホットプレートにて局所的に加熱する際、接続部直下は、熱伝導性の高い金属にて、その他の加熱することが好ましくない個所は、フッ素樹脂等の熱伝導性の低い材質にて、ホットプレート上面を形成することが好ましい。   In addition, when heating locally with a hot plate, the metal directly under the connection is made of a metal with high thermal conductivity, and other places where heating is not preferred are made of a material with low thermal conductivity such as a fluororesin. The upper surface of the hot plate is preferably formed.

上記第1,第2の接続対象部材は、特に限定されない。上記第1,第2の接続対象部材としては、具体的には、半導体チップ、半導体パッケージ、LEDチップ、LEDパッケージ、コンデンサ及びダイオード等の電子部品、並びに樹脂フィルム、プリント基板、フレキシブルプリント基板、フレキシブルフラットケーブル、リジッドフレキシブル基板、ガラスエポキシ基板及びガラス基板等の回路基板などの電子部品等が挙げられる。上記第1,第2の接続対象部材は、電子部品であることが好ましい。   The said 1st, 2nd connection object member is not specifically limited. Specifically as said 1st, 2nd connection object member, electronic components, such as a semiconductor chip, a semiconductor package, LED chip, LED package, a capacitor | condenser, a diode, and a resin film, a printed circuit board, a flexible printed circuit board, flexible Examples include electronic components such as flat cables, rigid flexible substrates, glass epoxy substrates, and circuit boards such as glass substrates. The first and second connection target members are preferably electronic components.

本発明によって電極間の導通信頼性を効果的に高めることができるので、上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、半導体チップ、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。本発明によって電極間の導通信頼性を効果的に高めることができるので、上記第2の接続対象部材が、半導体チップ、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。   Since the conduction reliability between electrodes can be effectively increased by the present invention, at least one of the first connection object member and the second connection object member is a semiconductor chip, a resin film, or a flexible printed circuit board. A flexible flat cable or a rigid flexible substrate is preferable. Since the conduction reliability between the electrodes can be effectively increased by the present invention, the second connection target member is preferably a semiconductor chip, a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. .

上記第1の接続対象部材及び上記第2の接続対象部材の内の少なくとも一方が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。上記第2の接続対象部材が、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板であることが好ましい。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル及びリジッドフレキシブル基板は、柔軟性が高く、比較的軽量であるという性質を有する。このような接続対象部材の接続に導電フィルムを用いた場合には、はんだ粒子が電極上に集まりにくい傾向がある。これに対して、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いたとしても、導電ペーストを用いることで、はんだ粒子を電極上に効率的に集めることができ、電極間の導通信頼性を充分に高めることができる。樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板を用いる場合に、半導体チップ等の他の接続対象部材を用いた場合と比べて、加圧を行わないことによる電極間の導通信頼性の向上効果がより一層効果的に得られる。   It is preferable that at least one of the first connection target member and the second connection target member is a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. The second connection target member is preferably a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. Resin films, flexible printed boards, flexible flat cables, and rigid flexible boards have the property of being highly flexible and relatively lightweight. When a conductive film is used for connection of such a connection object member, there exists a tendency for a solder particle not to gather on an electrode. On the other hand, even if a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board is used, by using a conductive paste, solder particles can be efficiently collected on the electrodes, and conduction between the electrodes. Reliability can be sufficiently increased. When using a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible circuit board, compared to the case of using other connection target members such as a semiconductor chip, the conduction reliability between the electrodes by not applying pressure is improved. The improvement effect can be obtained more effectively.

上記接続対象部材の形態にはペリフェラルやエリアアレイ等が存在する。各部材の特徴として、ペリフェラル基板では、電極が基板の外周部のみに存在する。エリアアレイ基板では、面内に電極が存在する。   Peripherals, area arrays, etc. exist in the form of the connection object member. As a feature of each member, in the peripheral substrate, the electrodes are present only on the outer peripheral portion of the substrate. In the area array substrate, there are electrodes in the plane.

上記接続対象部材に設けられている電極としては、金電極、ニッケル電極、錫電極、アルミニウム電極、銅電極、モリブデン電極、銀電極、SUS電極及びタングステン電極等の金属電極が挙げられる。上記接続対象部材がフレキシブルプリント基板である場合には、上記電極は金電極、ニッケル電極、錫電極、銀電極又は銅電極であることが好ましい。上記接続対象部材がガラス基板である場合には、上記電極はアルミニウム電極、銅電極、モリブデン電極、銀電極又はタングステン電極であることが好ましい。なお、上記電極がアルミニウム電極である場合には、アルミニウムのみで形成された電極であってもよく、金属酸化物層の表面にアルミニウム層が積層された電極であってもよい。上記金属酸化物層の材料としては、3価の金属元素がドープされた酸化インジウム及び3価の金属元素がドープされた酸化亜鉛等が挙げられる。上記3価の金属元素としては、Sn、Al及びGa等が挙げられる。   Examples of the electrodes provided on the connection target member include metal electrodes such as gold electrodes, nickel electrodes, tin electrodes, aluminum electrodes, copper electrodes, molybdenum electrodes, silver electrodes, SUS electrodes, and tungsten electrodes. When the connection object member is a flexible printed board, the electrode is preferably a gold electrode, a nickel electrode, a tin electrode, a silver electrode, or a copper electrode. When the connection target member is a glass substrate, the electrode is preferably an aluminum electrode, a copper electrode, a molybdenum electrode, a silver electrode, or a tungsten electrode. In addition, when the said electrode is an aluminum electrode, the electrode formed only with aluminum may be sufficient and the electrode by which the aluminum layer was laminated | stacked on the surface of the metal oxide layer may be sufficient. Examples of the material for the metal oxide layer include indium oxide doped with a trivalent metal element and zinc oxide doped with a trivalent metal element. Examples of the trivalent metal element include Sn, Al, and Ga.

以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. The present invention is not limited only to the following examples.

ポリマーA:
ビスフェノールFと1,6−ヘキサンジオールジグリシジルエーテル、及びビスフェノールF型エポキシ樹脂との反応物(ポリマーA)の合成:
ビスフェノールF(4,4’−メチレンビスフェノールと2,4’−メチレンビスフェノールと2,2’−メチレンビスフェノールとを重量比で2:3:1で含む)100重量部、1,6−ヘキサンジオールジグリシジルエーテル130重量部、及びビスフェノールF型エポキシ樹脂(DIC社製「EPICLON EXA−830CRP」)5重量部、レゾルシノール型エポキシ化合物(ナガセケムテックス社製「EX−201」)10重量部を、3つ口フラスコに入れ、窒素フロー下にて、100℃で溶解させた。その後、水酸基とエポキシ基の付加反応触媒であるトリフェニルブチルホスホニウムブロミド0.15重量部を添加し、窒素フロー下にて、140℃で4時間、付加重合反応させることにより、反応物(ポリマーA)を得た。
Polymer A:
Synthesis of reaction product (polymer A) of bisphenol F with 1,6-hexanediol diglycidyl ether and bisphenol F type epoxy resin:
Bisphenol F (containing 4,4′-methylene bisphenol, 2,4′-methylene bisphenol and 2,2′-methylene bisphenol in a weight ratio of 2: 3: 1) 100 parts by weight, 1,6-hexanediol Three parts: 130 parts by weight of glycidyl ether, 5 parts by weight of bisphenol F type epoxy resin (“EPICLON EXA-830CRP” manufactured by DIC), and 10 parts by weight of resorcinol type epoxy compound (“EX-201” manufactured by Nagase ChemteX) It put into the neck flask and it was made to melt | dissolve at 100 degreeC under nitrogen flow. Thereafter, 0.15 part by weight of triphenylbutylphosphonium bromide, which is a catalyst for addition reaction of hydroxyl group and epoxy group, was added and subjected to an addition polymerization reaction at 140 ° C. for 4 hours under a nitrogen flow to obtain a reaction product (Polymer A). )

NMRにより、付加重合反応が進行したことを確認して、反応物(ポリマーA)が、ビスフェノールFに由来する水酸基と1,6−ヘキサンジオールジグリシジルエーテル、及びビスフェノールF型エポキシ樹脂のエポキシ基とが結合した構造単位を主鎖に有し、かつエポキシ基を両末端に有することを確認した。   By confirming that the addition polymerization reaction has progressed by NMR, the reaction product (polymer A) is composed of a hydroxyl group derived from bisphenol F, 1,6-hexanediol diglycidyl ether, and an epoxy group of bisphenol F type epoxy resin. It was confirmed that it has a structural unit bonded to the main chain and has an epoxy group at both ends.

GPCにより得られた反応物(ポリマーA)の重量平均分子量は28000、数平均分子量は8000であった。   The reaction product (polymer A) obtained by GPC had a weight average molecular weight of 28,000 and a number average molecular weight of 8,000.

ポリマーB:両末端エポキシ基剛直骨格フェノキシ樹脂、三菱化学社製「YX6900BH45」、重量平均分子量16000   Polymer B: both end epoxy group rigid skeleton phenoxy resin, “YX6900BH45” manufactured by Mitsubishi Chemical Corporation, weight average molecular weight 16000

熱硬化性化合物1:レゾルシノール型エポキシ化合物、ナガセケムテックス社製「EX−201」   Thermosetting compound 1: Resorcinol type epoxy compound, “EX-201” manufactured by Nagase ChemteX Corporation

熱硬化性化合物2:エポキシ化合物、DIC社製「EXA−4850−150」   Thermosetting compound 2: Epoxy compound, “EXA-4850-150” manufactured by DIC

熱硬化剤1:トリメチロールプロパントリス(3−メルカプトプロピネート)、SC有機化学社製「TMMP」   Thermosetting agent 1: Trimethylolpropane tris (3-mercaptopropinate), “TMMP” manufactured by SC Organic Chemical Co., Ltd.

潜在性エポキシ熱硬化剤1:T&K TOKA社製「フジキュア7000」   Latent epoxy thermosetting agent 1: “Fujicure 7000” manufactured by T & K TOKA

フラックス1:グルタル酸、和光純薬工業社製、融点(活性温度)95℃、pKa1=4.13   Flux 1: glutaric acid, manufactured by Wako Pure Chemical Industries, melting point (activation temperature) 95 ° C., pKa1 = 4.13

フラックス2:ピメリン酸、和光純薬工業社製、融点(活性温度)103℃、pKa1=4.31   Flux 2: Pimelic acid, manufactured by Wako Pure Chemical Industries, Ltd., melting point (activity temperature) 103 ° C., pKa1 = 4.31

はんだ粒子1の作製方法:
アニオンポリマー1を有するはんだ粒子:はんだ粒子本体200gと、ピメリン酸(pKa2=5.08)40gと、アセトン70gとを3つ口フラスコに秤量し、次にはんだ粒子本体の表面の水酸基とピメリン酸のカルボキシル基との脱水縮合触媒であるジブチル錫オキサイド0.3gを添加し、60℃で4時間反応させた。その後、はんだ粒子をろ過することで回収した。
Method for producing solder particles 1:
Solder particles having anionic polymer 1: 200 g of solder particle body, 40 g of pimelic acid (pKa2 = 5.08), and 70 g of acetone are weighed in a three-necked flask, and then the hydroxyl group and pimelic acid on the surface of the solder particle body 0.3 g of dibutyltin oxide which is a dehydration condensation catalyst with the carboxyl group of was added and reacted at 60 ° C. for 4 hours. Thereafter, the solder particles were collected by filtration.

回収したはんだ粒子と、ピメリン酸50gと、トルエン200gと、パラトルエンスルホン酸0.3gとを3つ口フラスコに秤量し、真空引き、及び還流を行いながら、120℃で、3時間反応させた。この際、ディーンスターク抽出装置を用いて、脱水縮合により生成した水を除去しながら反応させた。   The collected solder particles, 50 g of pimelic acid, 200 g of toluene, and 0.3 g of paratoluenesulfonic acid were weighed in a three-necked flask and allowed to react at 120 ° C. for 3 hours while evacuating and refluxing. . At this time, the reaction was carried out while removing water produced by dehydration condensation using a Dean-Stark extraction device.

その後、ろ過によりはんだ粒子を回収し、ヘキサンにて洗浄し、乾燥した。その後、得られたはんだ粒子をボールミルで解砕した後、所定のCV値となるように篩を選択した。   Thereafter, the solder particles were collected by filtration, washed with hexane, and dried. Thereafter, the obtained solder particles were crushed with a ball mill, and then a sieve was selected so as to obtain a predetermined CV value.

(ゼータ電位測定)
また、得られたはんだ粒子0.05gを、メタノール10gに入れ、超音波処理をすることで、均一に分散させて、分散液を得た。この分散液を用いて、かつBeckman Coulter社製「Delsamax PRO」を用いて、電気泳動測定法にて、ゼータ電位を測定した。
(Zeta potential measurement)
Further, 0.05 g of the obtained solder particles were put in 10 g of methanol and subjected to ultrasonic treatment to uniformly disperse to obtain a dispersion. The zeta potential was measured by electrophoretic measurement using this dispersion and “Delsamax PRO” manufactured by Beckman Coulter.

(酸解離定数pKaの測定)
電位差自動滴定装置 AT−610(京都電子工業社製)を用いて、NaOHにより滴定を実施し、得られた滴定曲線から、酸解離定数を求めた。
(Measurement of acid dissociation constant pKa)
Titration was performed with NaOH using a potentiometric automatic titrator AT-610 (manufactured by Kyoto Electronics Industry Co., Ltd.), and the acid dissociation constant was determined from the obtained titration curve.

(アニオンポリマーの重量平均分子量)
はんだ粒子の表面のアニオンポリマー1の重量平均分子量は、0.1Nの塩酸を用い、はんだを溶解した後、ポリマーをろ過により回収し、GPCにより求めた。
(Weight average molecular weight of anionic polymer)
The weight average molecular weight of the anionic polymer 1 on the surface of the solder particles was obtained by dissolving the solder using 0.1N hydrochloric acid, collecting the polymer by filtration, and determining by GPC.

(はんだ粒子の粒子径のCV値)
CV値を、レーザー回折式粒度分布測定装置(堀場製作所社製「LA−920」)にて、測定した。
(CV value of particle diameter of solder particles)
The CV value was measured with a laser diffraction particle size distribution analyzer (“LA-920” manufactured by Horiba, Ltd.).

はんだ粒子1(SnBiはんだ粒子、融点139℃、三井金属社製「DS10」を選別したはんだ粒子本体を用い、表面処理を行ったアニオンポリマー1を有するはんだ粒子、平均粒子径:13μm、CV値:20%、表面のゼータ電位:+0.48mV、ポリマー分子量:Mw=7000)   Solder particle 1 (SnBi solder particle, melting point 139 ° C., solder particle body selected from “DS10” manufactured by Mitsui Kinzoku Co., Ltd., surface-treated solder particle having anionic polymer 1, average particle diameter: 13 μm, CV value: (20%, surface zeta potential: +0.48 mV, polymer molecular weight: Mw = 7000)

はんだ粒子2:はんだ粒子1の作製方法にてピメリン酸をシュウ酸(pKa2=3.82)に変更したことを除いては同様にして、はんだ粒子2を作製した。   Solder particles 2: Solder particles 2 were prepared in the same manner except that pimelic acid was changed to oxalic acid (pKa2 = 3.82) in the method for producing solder particles 1.

はんだ粒子3:はんだ粒子1の作製方法にてピメリン酸をリンゴ酸(pKa2=4.71)に変更したことを除いては同様にして、はんだ粒子3を作製した。   Solder particles 3: Solder particles 3 were prepared in the same manner except that pimelic acid was changed to malic acid (pKa2 = 4.71) by the method for producing solder particles 1.

導電性粒子1:樹脂粒子の表面上に厚み1μmの銅層が形成されており、該銅層の表面に厚み3μmのはんだ層(錫:ビスマス=42重量%:58重量%)が形成されている導電性粒子   Conductive particles 1: A copper layer having a thickness of 1 μm is formed on the surface of the resin particles, and a solder layer having a thickness of 3 μm (tin: bismuth = 42 wt%: 58 wt%) is formed on the surface of the copper layer. Conductive particles

導電性粒子1の作製方法:
平均粒子径10μmのジビニルベンゼン樹脂粒子(積水化学工業社製「ミクロパールSP−210」)を無電解ニッケルめっきし、樹脂粒子の表面上に厚さ0.1μmの下地ニッケルめっき層を形成した。次いで、下地ニッケルめっき層が形成された樹脂粒子を電解銅めっきし、厚さ1μmの銅層を形成した。更に、錫及びビスマスを含有する電解めっき液を用いて、電解めっきし、厚さ3μmのはんだ層を形成した。このようにして、樹脂粒子の表面上に厚み1μmの銅層が形成されており、該銅層の表面に厚み3μmのはんだ層(錫:ビスマス=42重量%:58重量%)が形成されている導電性粒子1を作製した。
Production method of conductive particles 1:
Divinylbenzene resin particles having an average particle diameter of 10 μm (“Micropearl SP-210” manufactured by Sekisui Chemical Co., Ltd.) were subjected to electroless nickel plating to form a base nickel plating layer having a thickness of 0.1 μm on the surface of the resin particles. Next, the resin particles on which the base nickel plating layer was formed were subjected to electrolytic copper plating to form a 1 μm thick copper layer. Furthermore, electrolytic plating was performed using an electrolytic plating solution containing tin and bismuth to form a solder layer having a thickness of 3 μm. In this way, a 1 μm thick copper layer is formed on the surface of the resin particles, and a 3 μm thick solder layer (tin: bismuth = 42 wt%: 58 wt%) is formed on the surface of the copper layer. Conductive particles 1 were prepared.

(実施例1〜5及び比較例1〜3)
(1)異方性導電ペーストの作製
下記の表1に示す成分を下記の表1に示す配合量で配合して、異方性導電ペーストを得た。
(Examples 1-5 and Comparative Examples 1-3)
(1) Preparation of anisotropic conductive paste The components shown in Table 1 below were blended in the blending amounts shown in Table 1 to obtain anisotropic conductive paste.

(2)第1の接続構造体(L/S=200μm/800μm)の作製
L/Sが200μm/800μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR−4基板)(第1の接続対象部材)を用意した。また、L/Sが200μm/800μm、電極長さ1mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
(2) Fabrication of first connection structure (L / S = 200 μm / 800 μm) Glass epoxy substrate having a L / S of 200 μm / 800 μm and an electrode length of 3 mm on a copper electrode pattern (copper electrode thickness 12 μm) on the upper surface (FR-4 substrate) (first connection target member) was prepared. Moreover, the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of copper electrode 12 micrometers) of L / S of 200 micrometers / 800 micrometers and electrode length 1mm on the lower surface was prepared.

ガラスエポキシ基板とフレキシブルプリント基板との重ね合わせ面積は、1.5cm×3mmとし、接続した電極数は14対とした。   The overlapping area of the glass epoxy substrate and the flexible printed circuit board was 1.5 cm × 3 mm, and the number of connected electrodes was 14 pairs.

上記ガラスエポキシ基板の上面に、作製直後の異方性導電ペーストを、ガラスエポキシ基板の電極上で厚さ100μmとなるように、メタルマスクを用い、スクリーン印刷にて塗工し、異方性導電ペースト層を形成した。次に、異方性導電ペースト層の上面に上記フレキシブルプリント基板を、電極同士が対向するように積層した。このとき、加圧を行わなかった。異方性導電ペースト層には、上記フレキシブルプリント基板の重量は加わる。その後、異方性導電ペースト層の温度が190℃となるように加熱しながら、はんだを溶融させ、かつ異方性導電ペースト層を190℃及び10秒で硬化させ、第1の接続構造体を得た。   On the upper surface of the glass epoxy substrate, the anisotropic conductive paste immediately after production is applied by screen printing using a metal mask so that the thickness is 100 μm on the electrode of the glass epoxy substrate, and anisotropic conductive A paste layer was formed. Next, the flexible printed circuit board was laminated on the upper surface of the anisotropic conductive paste layer so that the electrodes face each other. At this time, no pressure was applied. The weight of the flexible printed board is added to the anisotropic conductive paste layer. Thereafter, while heating the anisotropic conductive paste layer to 190 ° C., the solder is melted, and the anisotropic conductive paste layer is cured at 190 ° C. for 10 seconds. Obtained.

(3)第2の接続構造体(L/S=500μm/500μm)の作製
L/Sが500μm/500μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR−4基板)(第1の接続対象部材)を用意した。また、L/Sが500μm/500μm、電極長さ1mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
(3) Fabrication of Second Connection Structure (L / S = 500 μm / 500 μm) Glass epoxy substrate having a copper electrode pattern (copper electrode thickness 12 μm) with L / S of 500 μm / 500 μm and electrode length of 3 mm on the upper surface (FR-4 substrate) (first connection target member) was prepared. Moreover, the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of a copper electrode 12 micrometers) of L / S 500 micrometers / 500 micrometers and electrode length 1mm on the lower surface was prepared.

L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、第2の接続構造体を得た。   A second connection structure was obtained in the same manner as the production of the first connection structure except that the glass epoxy substrate and the flexible printed circuit board having different L / S were used.

(4)第3の接続構造体(L/S=800μm/200μm)の作製
L/Sが800μm/200μm、電極長さ3mmの銅電極パターン(銅電極の厚み12μm)を上面に有するガラスエポキシ基板(FR−4基板)(第1の接続対象部材)を用意した。また、L/Sが800μm/200μm、電極長さ1mmの銅電極パターン(銅電極の厚み12μm)を下面に有するフレキシブルプリント基板(第2の接続対象部材)を用意した。
(4) Production of third connection structure (L / S = 800 μm / 200 μm) Glass epoxy board having a copper electrode pattern (copper electrode thickness 12 μm) having an L / S of 800 μm / 200 μm and an electrode length of 3 mm on the upper surface (FR-4 substrate) (first connection target member) was prepared. Moreover, the flexible printed circuit board (2nd connection object member) which has a copper electrode pattern (thickness of copper electrode 12 micrometers) of L / S of 800 micrometers / 200 micrometers and electrode length 1mm on the lower surface was prepared.

L/Sが異なる上記ガラスエポキシ基板及びフレキシブルプリント基板を用いたこと以外は第1の接続構造体の作製と同様にして、第3の接続構造体を得た。   A third connection structure was obtained in the same manner as the production of the first connection structure except that the glass epoxy substrate and the flexible printed circuit board having different L / S were used.

(評価)
(1)25℃での粘度
異方性導電ペーストの25℃での粘度(η25)を、E型粘度計(東機産業社製)を用いて、25℃及び5rpmの条件で測定した。
(Evaluation)
(1) Viscosity at 25 ° C. The viscosity (η25) of the anisotropic conductive paste at 25 ° C. was measured using an E-type viscometer (manufactured by Toki Sangyo Co., Ltd.) at 25 ° C. and 5 rpm.

(2)はんだの融点での粘度
上記はんだの融点での導電材料の粘度を、STRESSTECH(EOLOGICA社製)等を用いて、歪制御1rad、周波数1Hz、昇温速度20℃/分、測定温度範囲25〜200℃(但し、はんだの融点が200℃を超える場合には温度上限をはんだの融点とする)の条件で測定した。
(2) Viscosity at the melting point of the solder Using the STRESSTECH (manufactured by EOLOGICA), etc., the viscosity of the conductive material at the melting point of the solder is 1 rad, frequency 1 Hz, heating rate 20 ° C./min, measurement temperature range It was measured under conditions of 25 to 200 ° C. (however, when the melting point of the solder exceeds 200 ° C., the upper temperature limit is the melting point of the solder).

(3)はんだ部の厚み
得られた接続構造体を断面観察することにより、上下の電極の間に位置しているはんだ部の厚みを評価した。
(3) Thickness of solder part By observing a cross section of the obtained connection structure, the thickness of the solder part located between the upper and lower electrodes was evaluated.

(4)電極上のはんだの配置精度1
得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極と第2の電極との対向し合う部分の面積100%中の、接続部中のはんだ部が配置されている面積の割合Xを評価した。電極上のはんだの配置精度1を下記の基準で判定した。
(4) Solder placement accuracy on electrode 1
In the obtained first, second, and third connection structures, a portion where the first electrode and the second electrode face each other in the stacking direction of the first electrode, the connection portion, and the second electrode is provided. When viewed, the ratio X of the area where the solder portion in the connection portion is arranged in the area of 100% of the portion where the first electrode and the second electrode face each other was evaluated. The solder placement accuracy 1 on the electrode was determined according to the following criteria.

[電極上のはんだの配置精度1の判定基準]
○○:割合Xが70%以上
○:割合Xが60%以上、70%未満
△:割合Xが50%以上、60%未満
×:割合Xが50%未満
[Criteria for solder placement accuracy 1 on electrode]
○○: Ratio X is 70% or more ○: Ratio X is 60% or more and less than 70% Δ: Ratio X is 50% or more and less than 60% X: Ratio X is less than 50%

(5)電極上のはんだの配置精度2
得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向と直交する方向に第1の電極と第2の電極との対向し合う部分をみたときに、接続部中のはんだ部100%中、第1の電極と第2の電極との対向し合う部分に配置されている接続部中のはんだ部の割合Yを評価した。電極上のはんだの配置精度2を下記の基準で判定した。
(5) Solder placement accuracy on electrode 2
In the obtained first, second, and third connection structures, the first electrode and the second electrode are opposed to each other in a direction orthogonal to the stacking direction of the first electrode, the connection portion, and the second electrode. When looking at the mating part, the ratio Y of the solder part in the connecting part arranged in the part where the first electrode and the second electrode face each other in 100% of the solder part in the connecting part was evaluated. . The solder placement accuracy 2 on the electrode was determined according to the following criteria.

[電極上のはんだの配置精度2の判定基準]
○○:割合Yが99%以上
○:割合Yが90%以上、99%未満
△:割合Yが70%以上、90%未満
×:割合Yが70%未満
[Criteria for solder placement accuracy 2 on electrode]
◯: Ratio Y is 99% or more ○: Ratio Y is 90% or more and less than 99% △: Ratio Y is 70% or more and less than 90% X: Ratio Y is less than 70%

(6)上下の電極間の導通信頼性
得られた第1,第2,第3の接続構造体(n=15個)において、上下の電極間の1接続箇所当たりの接続抵抗をそれぞれ、4端子法により、測定した。接続抵抗の平均値を算出した。なお、電圧=電流×抵抗の関係から、一定の電流を流した時の電圧を測定することにより接続抵抗を求めることができる。導通信頼性を下記の基準で判定した。
(6) Conduction reliability between upper and lower electrodes In the obtained first, second, and third connection structures (n = 15), the connection resistance per connection portion between the upper and lower electrodes is 4 respectively. It was measured by the terminal method. The average value of connection resistance was calculated. Note that the connection resistance can be obtained by measuring the voltage when a constant current is passed from the relationship of voltage = current × resistance. The conduction reliability was determined according to the following criteria.

[導通信頼性の判定基準]
○○:接続抵抗の平均値が50mΩ以下
○:接続抵抗の平均値が50mΩを超え、70mΩ以下
△:接続抵抗の平均値が70mΩを超え、100mΩ以下
×:接続抵抗の平均値が100mΩを超える、又は接続不良が生じている
[Judgment criteria for conduction reliability]
◯: Average connection resistance is 50 mΩ or less ○: Average connection resistance exceeds 50 mΩ, 70 mΩ or less △: Average connection resistance exceeds 70 mΩ, 100 mΩ or less ×: Average connection resistance exceeds 100 mΩ Or there is a bad connection

(7)隣接する電極間の絶縁信頼性
得られた第1,第2,第3の接続構造体(n=15個)において、121℃、湿度100%の雰囲気中に100時間放置後、隣接する電極間に、5Vを印加し、抵抗値を25箇所で測定した。絶縁信頼性を下記の基準で判定した。
(7) Insulation reliability between adjacent electrodes In the obtained first, second, and third connection structures (n = 15), they are left in an atmosphere of 121 ° C. and 100% humidity for 100 hours and then adjacent to each other. 5V was applied between the electrodes to be measured, and the resistance value was measured at 25 locations. Insulation reliability was judged according to the following criteria.

[絶縁信頼性の判定基準]
○○:接続抵抗の平均値が10Ω以上
○:接続抵抗の平均値が10Ω以上、10Ω未満
△:接続抵抗の平均値が10Ω以上、10Ω未満
×:接続抵抗の平均値が10Ω未満
[Criteria for insulation reliability]
◯: Average value of connection resistance is 10 7 Ω or more ○: Average value of connection resistance is 10 6 Ω or more, less than 10 7 Ω △: Average value of connection resistance is 10 5 Ω or more, less than 10 6 Ω ×: Connection The average resistance is less than 10 5 Ω

(8)上下の電極間の位置ずれ
得られた第1,第2,第3の接続構造体において、第1の電極と接続部と第2の電極との積層方向に第1の電極と第2の電極との対向し合う部分をみたときに、第1の電極の中心線と第2の電極の中心線とが揃っているか否か、並びに位置ずれの距離を評価した。上下の電極間の位置ずれを下記の基準で判定した。
(8) Position shift between upper and lower electrodes In the obtained first, second, and third connection structures, the first electrode and the second electrode are stacked in the stacking direction of the first electrode, the connection portion, and the second electrode. Whether the center line of the first electrode and the center line of the second electrode were aligned when the portion facing the two electrodes was viewed, and the distance of the positional deviation were evaluated. The positional deviation between the upper and lower electrodes was determined according to the following criteria.

[上下の電極間の位置ずれの判定基準]
○○:位置ずれが15μm未満
○:位置ずれが15μm以上、25μm未満
△:位置ずれが25μm以上、40μm未満
×:位置ずれが40μm以上
[Criteria for misregistration between upper and lower electrodes]
○: Misalignment is less than 15 μm ○: Misalignment is 15 μm or more and less than 25 μm Δ: Misalignment is 25 μm or more and less than 40 μm ×: Misalignment is 40 μm or more

結果を下記の表1に示す。   The results are shown in Table 1 below.

Figure 2016127010
Figure 2016127010

フレキシブルプリント基板にかえて、樹脂フィルム、フレキシブルフラットケーブル及びリジッドフレキシブル基板を用いた場合でも、同様の傾向が見られた。   The same tendency was observed when a resin film, a flexible flat cable, and a rigid flexible board were used instead of the flexible printed board.

1,1X…接続構造体
2…第1の接続対象部材
2a…第1の電極
3…第2の接続対象部材
3a…第2の電極
4,4X…接続部
4A,4XA…はんだ部
4B,4XB…硬化物部
11…異方性導電材料
11A…はんだ粒子
11B…熱硬化性成分
DESCRIPTION OF SYMBOLS 1,1X ... Connection structure 2 ... 1st connection object member 2a ... 1st electrode 3 ... 2nd connection object member 3a ... 2nd electrode 4, 4X ... Connection part 4A, 4XA ... Solder part 4B, 4XB ... Cured part 11 ... Anisotropic conductive material 11A ... Solder particles 11B ... Thermosetting component

Claims (12)

異方導電接続に用いられる異方性導電材料であって、
熱硬化性成分と、はんだを導電性の外表面に有する複数のはんだ粒子と、フラックスとを含み、
前記はんだ粒子がジカルボン酸による表面処理物であり、
前記ジカルボン酸の第2酸解離定数pKa2と、前記フラックスの第1酸解離定数pKa1との差:pKa2−pKa1が0.5以上である、異方性導電材料。
An anisotropic conductive material used for anisotropic conductive connection,
Including a thermosetting component, a plurality of solder particles having solder on a conductive outer surface, and a flux;
The solder particles are surface-treated with dicarboxylic acid,
An anisotropic conductive material having a difference between the second acid dissociation constant pKa2 of the dicarboxylic acid and the first acid dissociation constant pKa1 of the flux: pKa2−pKa1 is 0.5 or more.
前記はんだ粒子の含有量が10重量%以上、90重量%以下である、請求項1に記載の異方性導電材料。   2. The anisotropic conductive material according to claim 1, wherein the content of the solder particles is 10% by weight or more and 90% by weight or less. 前記はんだ粒子の含有量が10重量%以上、60重量%以下である、請求項2に記載の異方性導電材料。   The anisotropic conductive material according to claim 2, wherein the content of the solder particles is 10 wt% or more and 60 wt% or less. 前記はんだ粒子が、アニオンポリマー又はアニオンポリマーとなる化合物による表面処理物である、請求項1〜3のいずれか1項に記載の異方性導電材料。   The anisotropic conductive material according to claim 1, wherein the solder particles are an anionic polymer or a surface-treated product made of an anionic polymer. 110℃に加熱したときに、前記フラックスが前記はんだ粒子の外表面に集まる性質を有する、請求項1〜4のいずれか1項に記載の異方性導電材料。   5. The anisotropic conductive material according to claim 1, wherein the anisotropic conductive material has a property that the flux collects on an outer surface of the solder particles when heated to 110 ° C. 6. 前記はんだ粒子の平均粒子径が1μm以上、60μm以下である、請求項1〜5のいずれか1項に記載の異方性導電材料。   The anisotropic conductive material according to claim 1, wherein the solder particles have an average particle diameter of 1 μm or more and 60 μm or less. 異方性導電ペーストである、請求項1〜6のいずれか1項に記載の異方性導電材料。   The anisotropic conductive material according to claim 1, which is an anisotropic conductive paste. 少なくとも1つの第1の電極を表面に有する第1の接続対象部材と、
少なくとも1つの第2の電極を表面に有する第2の接続対象部材と、
前記第1の接続対象部材と、前記第2の接続対象部材とを接続している接続部とを備え、
前記接続部の材料が、請求項1〜7のいずれか1項に記載の異方性導電材料であり、
前記第1の電極と前記第2の電極とが、前記接続部中のはんだ部により電気的に接続されている、接続構造体。
A first connection target member having at least one first electrode on its surface;
A second connection target member having at least one second electrode on its surface;
A connecting portion connecting the first connection target member and the second connection target member;
The material of the connection portion is the anisotropic conductive material according to any one of claims 1 to 7,
A connection structure in which the first electrode and the second electrode are electrically connected by a solder portion in the connection portion.
前記第2の接続対象部材が、半導体チップ、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板である、請求項8に記載の接続構造体。   The connection structure according to claim 8, wherein the second connection target member is a semiconductor chip, a resin film, a flexible printed board, a flexible flat cable, or a rigid flexible board. 請求項1〜7のいずれか1項に記載の異方性導電材料を用いて、少なくとも1つの第1の電極を表面に有する第1の接続対象部材の表面上に、前記異方性導電材料を配置する工程と、
前記異方性導電材料の前記第1の接続対象部材側とは反対の表面上に、少なくとも1つの第2の電極を表面に有する第2の接続対象部材を、前記第1の電極と前記第2の電極とが対向するように配置する工程と、
前記はんだ粒子の融点以上かつ前記熱硬化性成分の硬化温度以上に前記異方性導電材料を加熱することで、前記第1の接続対象部材と前記第2の接続対象部材とを接続している接続部を、前記異方性導電材料により形成し、かつ、前記第1の電極と前記第2の電極とを、前記接続部中のはんだ部により電気的に接続する工程とを備える、接続構造体の製造方法。
Using the anisotropic conductive material according to claim 1, the anisotropic conductive material is formed on a surface of a first connection target member having at least one first electrode on the surface. A step of arranging
On the surface opposite to the first connection target member side of the anisotropic conductive material, a second connection target member having at least one second electrode on the surface, the first electrode and the first Arranging the two electrodes so as to face each other;
The first connection object member and the second connection object member are connected by heating the anisotropic conductive material to a temperature equal to or higher than the melting point of the solder particles and equal to or higher than the curing temperature of the thermosetting component. A connection structure including a step of forming a connection portion from the anisotropic conductive material and electrically connecting the first electrode and the second electrode by a solder portion in the connection portion. Body manufacturing method.
前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程において、加圧を行わず、前記異方性導電材料には、前記第2の接続対象部材の重量が加わるか、又は、
前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程の内の少なくとも一方において、加圧を行い、かつ、前記第2の接続対象部材を配置する工程及び前記接続部を形成する工程の双方において、加圧の圧力が1MPa未満である、請求項10に記載の接続構造体の製造方法。
In the step of arranging the second connection target member and the step of forming the connection portion, pressure is not applied and the weight of the second connection target member is added to the anisotropic conductive material, or ,
In at least one of the step of arranging the second connection target member and the step of forming the connection portion, pressurizing and forming the second connection target member and the connection portion are formed. The manufacturing method of the connection structure according to claim 10, wherein the pressure of pressurization is less than 1 MPa in both of the steps to be performed.
前記第2の接続対象部材が、半導体チップ、樹脂フィルム、フレキシブルプリント基板、フレキシブルフラットケーブル又はリジッドフレキシブル基板である、請求項10又は11に記載の接続構造体の製造方法。   The manufacturing method of the connection structure of Claim 10 or 11 whose said 2nd connection object member is a semiconductor chip, a resin film, a flexible printed circuit board, a flexible flat cable, or a rigid flexible substrate.
JP2015242160A 2014-12-26 2015-12-11 Anisotropic conductive material, connection structure, and manufacturing method of connection structure Active JP6592350B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014265713 2014-12-26
JP2014265713 2014-12-26

Publications (2)

Publication Number Publication Date
JP2016127010A true JP2016127010A (en) 2016-07-11
JP6592350B2 JP6592350B2 (en) 2019-10-16

Family

ID=56358173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015242160A Active JP6592350B2 (en) 2014-12-26 2015-12-11 Anisotropic conductive material, connection structure, and manufacturing method of connection structure

Country Status (1)

Country Link
JP (1) JP6592350B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045542A (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Conducive material and connection structure
JP2018046003A (en) * 2016-09-07 2018-03-22 積水化学工業株式会社 Conductive material and connection structure
JP2018060786A (en) * 2016-09-28 2018-04-12 積水化学工業株式会社 Conductive material and connection structure
CN112166653A (en) * 2018-03-15 2021-01-01 以色列商普林特电路板有限公司 Two-component printable conductive composition

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085365A (en) * 1990-05-15 1992-02-04 Hughes Aircraft Company Water-soluble soldering flux
JPH04262891A (en) * 1990-10-31 1992-09-18 Hughes Aircraft Co Water-soluble solder paste
US5150832A (en) * 1991-06-28 1992-09-29 At&T Bell Laboratories Solder paste
JPH0663788A (en) * 1992-08-12 1994-03-08 Showa Denko Kk Cream solder
JP2006236759A (en) * 2005-02-24 2006-09-07 Sony Chemical & Information Device Corp Insulation coated conductive particle
US20070284412A1 (en) * 2006-05-31 2007-12-13 Prakash Anna M Solder flux composition
WO2013125517A1 (en) * 2012-02-21 2013-08-29 積水化学工業株式会社 Conductive particles, method for producing conductive particles, conductive material and connection structure
JP2014144462A (en) * 2013-01-28 2014-08-14 Mitsubishi Materials Corp SnAgCu-BASED SOLDER POWDER AND PASTE FOR SOLDER USING THIS POWDER

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085365A (en) * 1990-05-15 1992-02-04 Hughes Aircraft Company Water-soluble soldering flux
US5085365B1 (en) * 1990-05-15 1995-08-08 Hughes Aircraft Co Water soluble soldering flux
JPH04262891A (en) * 1990-10-31 1992-09-18 Hughes Aircraft Co Water-soluble solder paste
US5150832A (en) * 1991-06-28 1992-09-29 At&T Bell Laboratories Solder paste
JPH05185277A (en) * 1991-06-28 1993-07-27 American Teleph & Telegr Co <Att> Soldering paste
JPH0663788A (en) * 1992-08-12 1994-03-08 Showa Denko Kk Cream solder
JP2006236759A (en) * 2005-02-24 2006-09-07 Sony Chemical & Information Device Corp Insulation coated conductive particle
US20070284412A1 (en) * 2006-05-31 2007-12-13 Prakash Anna M Solder flux composition
WO2013125517A1 (en) * 2012-02-21 2013-08-29 積水化学工業株式会社 Conductive particles, method for producing conductive particles, conductive material and connection structure
JP2014144462A (en) * 2013-01-28 2014-08-14 Mitsubishi Materials Corp SnAgCu-BASED SOLDER POWDER AND PASTE FOR SOLDER USING THIS POWDER

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017045542A (en) * 2015-08-24 2017-03-02 積水化学工業株式会社 Conducive material and connection structure
JP2018046003A (en) * 2016-09-07 2018-03-22 積水化学工業株式会社 Conductive material and connection structure
JP2018060786A (en) * 2016-09-28 2018-04-12 積水化学工業株式会社 Conductive material and connection structure
CN112166653A (en) * 2018-03-15 2021-01-01 以色列商普林特电路板有限公司 Two-component printable conductive composition

Also Published As

Publication number Publication date
JP6592350B2 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP5830196B1 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP6067149B2 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP6577867B2 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP6557591B2 (en) Conductive film, connection structure, and manufacturing method of connection structure
JP5966101B1 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP6592350B2 (en) Anisotropic conductive material, connection structure, and manufacturing method of connection structure
JP5966102B1 (en) Conductive paste, connection structure, and manufacturing method of connection structure
JP2016126878A (en) Conductive paste, connection structure and method for producing connection structure
JP6062106B1 (en) Method for manufacturing connection structure
JP2016100443A (en) Manufacturing method of electronic component and manufacturing method of connection structure
JP2016126877A (en) Conductive paste, connection structure and method for producing connection structure
JP6085031B2 (en) Method for manufacturing connection structure
JP2016062768A (en) Manufacturing method of connection structure, and connection structure
JP6514610B2 (en) Method of manufacturing connection structure
JP6514615B2 (en) Method of manufacturing connection structure
JP2019160788A (en) Conductive material, connection structure and method for producing connection structure
WO2016035637A1 (en) Method of manufacturing connection structure
JP2016066614A (en) Conductive paste, connection structure and method for producing connection structure
JP6514614B2 (en) Method of manufacturing connection structure and connection structure
JP2016054296A (en) Method of manufacturing connection structure
JP2016076355A (en) Manufacturing method of connection structure, and connection structure
JP2016126876A (en) Conductive material, connection structure and method for producing connection structure
JP2016066615A (en) Conductive paste, connection structure and method for producing connection structure
JP2019145501A (en) Conductive material, connection structure and method for producing connection structure
JP2016076693A (en) Manufacturing method of connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190827

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190920

R151 Written notification of patent or utility model registration

Ref document number: 6592350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151