JP2019160460A - Plasma processing apparatus and plasma processing method - Google Patents

Plasma processing apparatus and plasma processing method Download PDF

Info

Publication number
JP2019160460A
JP2019160460A JP2018042025A JP2018042025A JP2019160460A JP 2019160460 A JP2019160460 A JP 2019160460A JP 2018042025 A JP2018042025 A JP 2018042025A JP 2018042025 A JP2018042025 A JP 2018042025A JP 2019160460 A JP2019160460 A JP 2019160460A
Authority
JP
Japan
Prior art keywords
groove
transmission window
microwave
microwave transmission
fitting groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018042025A
Other languages
Japanese (ja)
Other versions
JP7077072B2 (en
Inventor
大輔 廣庭
Daisuke Hironiwa
大輔 廣庭
孝志 栗本
Takashi Kurimoto
孝志 栗本
敦 奥田
Atsushi Okuda
敦 奥田
安田 和弘
Kazuhiro Yasuda
和弘 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2018042025A priority Critical patent/JP7077072B2/en
Publication of JP2019160460A publication Critical patent/JP2019160460A/en
Application granted granted Critical
Publication of JP7077072B2 publication Critical patent/JP7077072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

To provide a plasma processing apparatus and a plasma processing method, capable of suppressing deterioration of a seal member interposed between a chamber wall and a microwave transmission window.SOLUTION: A plasma processing apparatus comprises: a chamber wall to be grounded while having a fitting grove 11G; a microwave transmission window 21 opposite to the chamber wall; and a seal member 20 interposed between the chamber wall and the microwave transmission window 21. The seal member 20 is fitted to the fitting grove 11G, and defines a gap between the chamber wall and the microwave transmission window 21 to a generation space 20S and an outer space. The fitting grove 11G comprises: a first groove side surface 11G1 on the generation space 20S side and a second side surface 11G2 on the outer space side. The first groove side surface 11G1 comprises a seal portion having a form separated from the generation space 20S as closer to the microwave transmission window 21 in a portion, and contacted to the seal member 20 between a groove bottom part and a groove opening. A distance H between the groove opening and the seal portion is less than a sheath length of a plasma generated in the generation space 20S.SELECTED DRAWING: Figure 2

Description

本発明は、マイクロ波プラズマを用いて対象を処理するプラズマ処理装置、および、プラズマ処理方法に関する。   The present invention relates to a plasma processing apparatus and a plasma processing method for processing an object using microwave plasma.

上述したプラズマ処理装置は、マイクロ波源から出力されるマイクロ波をガスに照射してマイクロ波プラズマを生成し、マイクロ波プラズマに含まれるラジカルを主に処理対象に供給する。プラズマ処理装置は、マイクロ波プラズマを生成する生成空間と、生成空間と連通して処理対象を収容する処理空間とを備える。生成空間は、マイクロ波を透過するマイクロ波透過窓で区画されて、導波管の出力口がマイクロ波透過窓に連結される。そして、プラズマ処理装置は、生成空間にガスを供給し、また、導波管を伝播したマイクロ波をマイクロ波透過窓から生成空間の中に透過させて、生成空間にマイクロ波プラズマを生成する(例えば、特許文献1を参照)。   The above-described plasma processing apparatus generates microwave plasma by irradiating a microwave output from a microwave source to supply radicals contained in the microwave plasma mainly to a processing target. The plasma processing apparatus includes a generation space that generates microwave plasma and a processing space that communicates with the generation space and accommodates a processing target. The generation space is partitioned by a microwave transmission window that transmits microwaves, and the output port of the waveguide is connected to the microwave transmission window. Then, the plasma processing apparatus supplies gas to the generation space, and transmits the microwave propagated through the waveguide through the microwave transmission window into the generation space to generate microwave plasma in the generation space ( For example, see Patent Document 1).

特開2011−29559号公報JP 2011-29559 A

ところで、生成空間を区画するチャンバ壁は、導波管の出力口に向けて開口した開口部、開口部を囲う環状の嵌着溝、および、嵌着溝に嵌められたシール部材を備える。マイクロ波透過窓は、シール部材に押し付けられて、開口部をチャンバ壁の外から閉じる。一方、生成空間に供給されたガスは、チャンバ壁とマイクロ波透過窓との僅かな隙間にも滞在して、マイクロ波プラズマを生成し得る。特に、嵌着溝とマイクロ波透過窓との隙間は、溝深さの分だけ他の部位よりも大きく、マイクロ波プラズマを生成しやすい。結果として、シール部材の一部は、マイクロ波プラズマに曝され続けて、亀裂の発生や硬化の進行を招く。上述したプラズマ処理の分野では、処理の効率を高めるためにマイクロ波の出力が高まる一途であるから、シール部材での劣化の抑制は、より深刻な課題となっている。   By the way, the chamber wall that defines the generation space includes an opening that opens toward the output port of the waveguide, an annular fitting groove that surrounds the opening, and a seal member that is fitted in the fitting groove. The microwave transmitting window is pressed against the seal member to close the opening from outside the chamber wall. On the other hand, the gas supplied to the generation space may stay in a slight gap between the chamber wall and the microwave transmission window to generate microwave plasma. In particular, the gap between the fitting groove and the microwave transmission window is larger than the other part by the groove depth, and microwave plasma is easily generated. As a result, a part of the seal member continues to be exposed to the microwave plasma, causing cracks and progress of curing. In the field of the above-described plasma processing, since the output of microwaves is increasing in order to increase the processing efficiency, suppression of deterioration in the seal member has become a more serious problem.

本発明は、チャンバ壁とマイクロ波透過窓との間に介在するシール部材の劣化を抑制可能としたプラズマ処理装置、および、プラズマ処理方法を提供することを目的とする。   An object of the present invention is to provide a plasma processing apparatus and a plasma processing method capable of suppressing deterioration of a seal member interposed between a chamber wall and a microwave transmission window.

上記課題を解決するためのプラズマ処理装置は、嵌着溝を備えて接地されたチャンバ壁と、前記チャンバ壁と対向するマイクロ波透過窓と、前記チャンバ壁と前記マイクロ波透過窓との間に介在するシール部材と、を備える。前記シール部材は、前記嵌着溝に嵌められて、前記チャンバ壁と前記マイクロ波透過窓との間隙を、生成空間と外部空間とに区画する。前記嵌着溝は、生成空間側の第1溝側面と、外部空間側の第2溝側面とを備え、前記第1溝側面は、溝深さ方向に対して傾きを有し、前記マイクロ波透過窓に近い部位ほど前記生成空間から離れる形状を備え、かつ、溝底部と溝開口との間に前記シール部材と接触するシール箇所を備える。そして、前記溝開口と前記シール箇所との距離は、前記生成空間で生成されるプラズマのシース長未満である。   A plasma processing apparatus for solving the above problems includes a chamber wall provided with a fitting groove and grounded, a microwave transmission window facing the chamber wall, and the chamber wall and the microwave transmission window. And an intervening seal member. The seal member is fitted in the fitting groove, and divides a gap between the chamber wall and the microwave transmission window into a generation space and an external space. The fitting groove includes a first groove side surface on the generation space side and a second groove side surface on the external space side, and the first groove side surface is inclined with respect to a groove depth direction, and the microwave A portion closer to the transmission window has a shape that is separated from the generation space, and a seal portion that contacts the seal member is provided between the groove bottom and the groove opening. The distance between the groove opening and the seal portion is less than the sheath length of the plasma generated in the generation space.

上記課題を解決するためのプラズマ処理方法は、嵌着溝を備えて接地されたチャンバ壁と、当該チャンバ壁と対向するマイクロ波透過窓との間に介在するシール部材を備え、前記シール部材が前記嵌着溝に嵌められて前記チャンバ壁と前記マイクロ波透過窓との間隙を生成空間と外部空間とに区画するプラズマ処理装置を用いたプラズマ処理方法である。前記嵌着溝は、生成空間側の第1溝側面と、外部空間側の第2溝側面とを備え、前記第1溝側面は、溝深さ方向に対して傾きを有し、前記マイクロ波透過窓に近い部位ほど前記生成空間から離れる形状を備え、かつ、溝底部と溝開口との間に前記シール部材と接触するシール箇所を備える。そして、前記溝開口と前記シール箇所との距離が、前記生成空間でのシース長未満であるように、前記生成空間にガスを供給し、かつ、前記マイクロ波透過窓から前記生成空間にマイクロ波を伝播させる。   A plasma processing method for solving the above-described problem includes a seal member interposed between a chamber wall grounded with a fitting groove and a microwave transmitting window facing the chamber wall, and the seal member It is a plasma processing method using a plasma processing apparatus that is fitted in the fitting groove and divides a gap between the chamber wall and the microwave transmission window into a generation space and an external space. The fitting groove includes a first groove side surface on the generation space side and a second groove side surface on the external space side, and the first groove side surface is inclined with respect to a groove depth direction, and the microwave A portion closer to the transmission window has a shape that is separated from the generation space, and a seal portion that contacts the seal member is provided between the groove bottom and the groove opening. Then, a gas is supplied to the generation space so that a distance between the groove opening and the seal location is less than a sheath length in the generation space, and a microwave is supplied from the microwave transmission window to the generation space. To propagate.

上述したマイクロ波透過窓と対向する領域は、マイクロ波透過窓を透過したマイクロ波を照射される領域である。チャンバ壁は、マイクロ波透過窓と対向する領域に位置し、マイクロ波透過窓との間に僅かな間隙を形成する。嵌着溝とマイクロ波透過窓との間の距離は、チャンバ壁とマイクロ波透過窓との間隙の中でも、嵌着溝の深さの分だけ他の部位よりも大きい。この点、上述した各構成であれば、溝開口とシール箇所との距離が、生成空間でのシース長未満であるから、溝開口とシール箇所との間には、シースを形成するに足りる空間が存在し難い。そのため、嵌着溝の中でマイクロ波プラズマが生成されることが抑制可能となる。結果として、チャンバ壁とマイクロ波透過窓との間に介在するシール部材の劣化を抑制可能となる。   The region facing the above-described microwave transmission window is a region irradiated with the microwave transmitted through the microwave transmission window. The chamber wall is located in a region facing the microwave transmission window, and forms a slight gap between the chamber wall and the microwave transmission window. The distance between the fitting groove and the microwave transmission window is larger than the other parts by the depth of the fitting groove in the gap between the chamber wall and the microwave transmission window. In this regard, in each configuration described above, since the distance between the groove opening and the seal portion is less than the sheath length in the generation space, a space sufficient to form a sheath between the groove opening and the seal portion. Is hard to exist. For this reason, generation of microwave plasma in the fitting groove can be suppressed. As a result, it is possible to suppress the deterioration of the seal member interposed between the chamber wall and the microwave transmission window.

上記プラズマ処理装置は、進行方向に沿って前記マイクロ波透過窓までマイクロ波を導く導波部をさらに備える。前記マイクロ波透過窓は、前記進行方向を含む平面状に広がり、前記チャンバ壁は、前記嵌着溝に接続されて、前記嵌着溝の溝深さ以上の深さを有し、かつ、前記嵌着溝の溝幅と同じサイズの直径を有した円形孔をさらに備える。そして、前記マイクロ波透過窓と対向する方向から見て、前記マイクロ波透過窓の中心を通って前記進行方向に延在する直線が中心線であり、前記円形孔は、前記中心線上以外に位置してもよい。   The plasma processing apparatus further includes a waveguide that guides the microwave to the microwave transmission window along the traveling direction. The microwave transmitting window extends in a planar shape including the traveling direction, the chamber wall is connected to the fitting groove, has a depth equal to or greater than the groove depth of the fitting groove, and A circular hole having a diameter of the same size as the groove width of the fitting groove is further provided. A straight line extending in the traveling direction through the center of the microwave transmission window as viewed from the direction facing the microwave transmission window is a center line, and the circular hole is located at a position other than the center line. May be.

上記課題を解決するためのプラズマ処理装置は、嵌着溝を備えて接地されたチャンバ壁と、前記チャンバ壁と対向するマイクロ波透過窓と、前記チャンバ壁と前記マイクロ波透過窓との間に介在するシール部材と、進行方向に沿って前記マイクロ波透過窓までマイクロ波を導く導波部と、を備える。前記シール部材は、前記嵌着溝に嵌められて、前記チャンバ壁と前記マイクロ波透過窓との間隙を生成空間と外部空間とに区画し、前記マイクロ波透過窓は、前記進行方向を含む平面状に広がり、前記チャンバ壁は、前記嵌着溝に接続されて、前記嵌着溝の溝深さ以上の深さを有し、かつ、前記嵌着溝の溝幅を直径とした円形孔をさらに備る。そして、前記マイクロ波透過窓と対向する方向から見て、前記マイクロ波透過窓の中心を通って前記進行方向に延在する直線が中心線であり、前記円形孔は、前記中心線上以外に位置する。   A plasma processing apparatus for solving the above problems includes a chamber wall provided with a fitting groove and grounded, a microwave transmission window facing the chamber wall, and the chamber wall and the microwave transmission window. An intervening seal member, and a waveguide section for guiding the microwave to the microwave transmission window along the traveling direction. The seal member is fitted in the fitting groove to partition a gap between the chamber wall and the microwave transmission window into a generation space and an external space, and the microwave transmission window is a plane including the traveling direction. The chamber wall has a circular hole connected to the fitting groove, having a depth equal to or greater than the groove depth of the fitting groove, and having a groove width of the fitting groove as a diameter. Further prepare. A straight line extending in the traveling direction through the center of the microwave transmission window as viewed from the direction facing the microwave transmission window is a center line, and the circular hole is located at a position other than the center line. To do.

上記プラズマ処理装置において、前記中心線を基準とした前記中心の周りでの中心角が−60°以上60°以下である範囲が高照射領域であり、前記円形孔は、前記高照射領域以外に位置してもよい。   In the plasma processing apparatus, a range in which a central angle around the center with respect to the center line is −60 ° or more and 60 ° or less is a high irradiation region, and the circular hole is other than the high irradiation region. May be located.

上述した嵌着溝を形成する方法では、例えば、アリ溝を形成するように、先端に向けて拡径したドリルを用いてチャンバ壁を加工する。この際、チャンバ壁には、ドリルの先端による円形孔が、嵌着溝の形成よりも先に形成されて、次いで、円形孔の内周面から径方向に延びるように、嵌着溝が形成されはじめる。これによって、上述した円形孔は、嵌着溝に接続されて、嵌着溝の溝深さ以上の深さを有し、かつ、嵌着溝の溝幅を直径として有する。   In the method of forming the fitting groove described above, for example, the chamber wall is processed using a drill whose diameter is increased toward the tip so as to form a dovetail groove. At this time, a circular hole formed at the tip of the drill is formed in the chamber wall before the formation of the fitting groove, and then the fitting groove is formed so as to extend in the radial direction from the inner peripheral surface of the circular hole. It begins to be done. Accordingly, the circular hole described above is connected to the fitting groove, has a depth equal to or greater than the groove depth of the fitting groove, and has the groove width of the fitting groove as a diameter.

ここで、上記円形孔の内周面は、上述した第1溝側面を備えず、シール部材とは接触し難い。そして、円形孔の中でシール部材と接触する箇所は、円形孔の内周面ではなく、溝底部となる。その結果、シール部材と接触する箇所と溝開口との距離は、円形孔において、生成空間で生成されるプラズマのシース長以上となる場合がある。この点、上述した各構成であれば、マイクロ波の照射が相対的に高い領域を避けて、上記円形孔が配置される。そのため、円形孔が存在することに起因したシール部材の劣化が抑制可能となる。   Here, the inner peripheral surface of the circular hole does not include the first groove side surface described above, and is difficult to come into contact with the seal member. And the location which contacts a sealing member in a circular hole becomes a groove bottom part instead of the internal peripheral surface of a circular hole. As a result, the distance between the location in contact with the seal member and the groove opening may be longer than the sheath length of the plasma generated in the generation space in the circular hole. In this regard, in the above-described configurations, the circular holes are arranged avoiding a region where microwave irradiation is relatively high. Therefore, deterioration of the seal member due to the presence of the circular hole can be suppressed.

上記プラズマ処理装置において、前記嵌着溝は、アリ溝であってもよい。この構成によれば、シール部材の劣化を抑制し、かつ、嵌着溝に嵌められたシール部材が嵌着溝から外れることが抑制可能となる。   In the plasma processing apparatus, the fitting groove may be a dovetail groove. According to this configuration, it is possible to suppress deterioration of the seal member and to prevent the seal member fitted in the fitting groove from coming off from the fitting groove.

上記プラズマ処理装置において、前記第2溝側面は、前記溝深さ方向に延びてもよい。この構成によれば、嵌着溝に対するシール部材の嵌め込み負荷を軽減すること、嵌着溝に嵌められたシール部材が嵌着溝から外れることを抑制すること、これらの均衡を図ることが可能ともなる。   In the plasma processing apparatus, the second groove side surface may extend in the groove depth direction. According to this configuration, it is possible to reduce the fitting load of the seal member with respect to the fitting groove, to prevent the sealing member fitted in the fitting groove from coming off from the fitting groove, and to balance these. Become.

プラズマ処理装置の一実施形態の装置構成を示す装置図。The apparatus figure which shows the apparatus structure of one Embodiment of a plasma processing apparatus. 一実施形態におけるシール構造の第1例を示す断面図。Sectional drawing which shows the 1st example of the seal structure in one Embodiment. 一実施形態におけるシール構造の第2例を示す断面図。Sectional drawing which shows the 2nd example of the seal structure in one Embodiment. 一実施形態における円形孔の配置を示す平面図。The top view which shows arrangement | positioning of the circular hole in one Embodiment.

プラズマ処理装置、および、プラズマ処理方法の一実施形態を説明する。
[プラズマ処理装置]
図1が示すように、プラズマ処理装置は、チャンバ11、区画部材13、拡散部材14、および、シール部材20を備える。また、プラズマ処理装置は、マイクロ波透過窓21、導波管22、および、マイクロ波源23を備える。
An embodiment of a plasma processing apparatus and a plasma processing method will be described.
[Plasma processing equipment]
As shown in FIG. 1, the plasma processing apparatus includes a chamber 11, a partition member 13, a diffusion member 14, and a seal member 20. Further, the plasma processing apparatus includes a microwave transmission window 21, a waveguide 22, and a microwave source 23.

チャンバ11は、例えば、アルミニウム製の箱体状を有して、処理空間11Sを区画する。チャンバ11は、接地されており、チャンバ壁の一例としてチャンバ11の上壁を備える。チャンバ11の上壁は、上方に向けて貫通する区画孔12を備える。   The chamber 11 has, for example, an aluminum box shape and partitions the processing space 11S. The chamber 11 is grounded and includes an upper wall of the chamber 11 as an example of a chamber wall. The upper wall of the chamber 11 includes a partition hole 12 penetrating upward.

区画孔12は、処理空間11Sの上方に生成空間20Sを区画するための孔である。区画孔12は、例えば、上方に向けて縮径した二段の円形孔状を有する。区画孔12は、ガスポート11Hに連通する。   The partition hole 12 is a hole for partitioning the generation space 20S above the processing space 11S. The partition hole 12 has, for example, a two-stage circular hole shape whose diameter is reduced upward. The partition hole 12 communicates with the gas port 11H.

ガスポート11Hは、マイクロ波プラズマを生成するためのガスGの通路である。ガスポート11Hから供給されるガスGは、例えば、酸素やオゾンなどの酸化ガス、窒素やアンモニアなどの窒化ガス、ヘリウムやアルゴンなどの希ガスからなる群から選択される少なくとも1種である。   The gas port 11H is a gas G passage for generating microwave plasma. The gas G supplied from the gas port 11H is at least one selected from the group consisting of an oxidizing gas such as oxygen and ozone, a nitriding gas such as nitrogen and ammonia, and a rare gas such as helium and argon.

区画部材13は、区画孔12の中に生成空間20Sを区画するための部材である。区画部材13は、例えば、上方に向けて縮径したアルミニウム製の二段の円板状を有する。区画部材13は、区画孔12の内面に追従した外表面を備える。   The partition member 13 is a member for partitioning the generation space 20 </ b> S in the partition hole 12. The partition member 13 has, for example, a two-stage disk shape made of aluminum that has a diameter reduced upward. The partition member 13 includes an outer surface that follows the inner surface of the partition hole 12.

区画部材13の小径部は、区画孔12の小径部に連結される。区画部材13の上端面は、区画孔12の上端部よりも下方に位置し、生成空間20Sの下端を区画する。区画部材13の大径部は、ガスポート11Hの出口と対向する。   The small diameter portion of the partition member 13 is connected to the small diameter portion of the partition hole 12. The upper end surface of the partition member 13 is positioned below the upper end portion of the partition hole 12 and partitions the lower end of the generation space 20S. The large diameter portion of the partition member 13 faces the outlet of the gas port 11H.

区画部材13の大径部は、ガスポート11Hから出るガスGを区画部材13の小径部内に導く。区画部材13の小径部は、区画部材13の上端面に開口した孔を備え、区画部材13の小径部に導かれたガスGは、区画部材13の上端面よりも上方(生成空間20S)に向けて導出させる。   The large diameter portion of the partition member 13 guides the gas G exiting from the gas port 11H into the small diameter portion of the partition member 13. The small-diameter portion of the partition member 13 includes a hole opened in the upper end surface of the partition member 13, and the gas G guided to the small-diameter portion of the partition member 13 is above the upper end surface of the partition member 13 (generation space 20S). Derived toward.

マイクロ波透過窓21は、区画孔12の中に生成空間20Sを区画するための部材である。マイクロ波透過窓21は、マイクロ波を透過する部材であり、例えば、石英製や酸化アルミニウム製の円板状を有する。   The microwave transmission window 21 is a member for partitioning the generation space 20 </ b> S in the partition hole 12. The microwave transmission window 21 is a member that transmits microwaves, and has, for example, a disk shape made of quartz or aluminum oxide.

マイクロ波透過窓21は、区画孔12の小径部よりも大径である。マイクロ波透過窓21は、区画孔12の直上に位置し、生成空間20Sの上端を区画する。マイクロ波透過窓21の下面と、区画部材13の上端面とは、区画孔12の上端部を上下方向で挟み、それによって、区画孔12の中に生成空間20Sを区画する。生成空間20Sは、区画孔12の内面、区画部材13の上端面、および、マイクロ波透過窓21の下面によって囲まれる。   The microwave transmission window 21 has a larger diameter than the small diameter portion of the partition hole 12. The microwave transmission window 21 is located immediately above the partition hole 12 and partitions the upper end of the generation space 20S. The lower surface of the microwave transmission window 21 and the upper end surface of the partition member 13 sandwich the upper end portion of the partition hole 12 in the vertical direction, thereby partitioning the generation space 20S in the partition hole 12. The generation space 20 </ b> S is surrounded by the inner surface of the partition hole 12, the upper end surface of the partition member 13, and the lower surface of the microwave transmission window 21.

区画部材13は、区画部材13の中心に導出孔13Hを備える。導出孔13Hは、処理空間11Sと生成空間20Sとを連通する。拡散部材14は、区画部材13の下面に脚を介して連結されて、導出孔13Hの出口と対向する。
拡散部材14は、導出孔13Hから導出されるプラズマを受けて、処理空間11Sの全体にプラズマを拡散させる。
The partition member 13 includes a lead-out hole 13 </ b> H at the center of the partition member 13. The lead-out hole 13H communicates the processing space 11S and the generation space 20S. The diffusion member 14 is connected to the lower surface of the partition member 13 via a leg and faces the outlet of the outlet hole 13H.
The diffusion member 14 receives the plasma derived from the outlet hole 13H and diffuses the plasma throughout the processing space 11S.

導波管22は、導波管22が区画する導波空間22Sに、マイクロ波源23から出力されたマイクロ波を伝播させる。マイクロ波透過窓21は、導波管22の出力口に接続されている。マイクロ波透過窓21と対向する方向から見て、導波管22の出力口の大きさは、区画孔12の小径部(生成空間20S)よりも広い。   The waveguide 22 propagates the microwave output from the microwave source 23 to the waveguide space 22 </ b> S defined by the waveguide 22. The microwave transmission window 21 is connected to the output port of the waveguide 22. When viewed from the direction facing the microwave transmission window 21, the size of the output port of the waveguide 22 is wider than the small diameter portion (generation space 20 </ b> S) of the partition hole 12.

導波管22は、マイクロ波源23から出力されたマイクロ波を進行方向に伝播させて、マイクロ波透過窓21のほぼ全体にマイクロ波を伝播させる。マイクロ波透過窓21は、マイクロ波の進行方向(紙面左から右に向く方向)を含む平面状に広がっている。マイクロ波源23が出力するマイクロ波の周波数は、860MHz、2.45GHz、8.35GHz、5.8GHz、1.98GHzなどである。   The waveguide 22 propagates the microwave output from the microwave source 23 in the traveling direction, and propagates the microwave to almost the entire microwave transmission window 21. The microwave transmission window 21 extends in a planar shape including the traveling direction of microwaves (the direction from the left to the right in the drawing). The frequency of the microwave output from the microwave source 23 is 860 MHz, 2.45 GHz, 8.35 GHz, 5.8 GHz, 1.98 GHz, or the like.

プラズマ処理装置は、マイクロ波源23に出力させたマイクロ波を、マイクロ波透過窓21を通じて、生成空間20Sに伝播させる。生成空間20Sに伝播したマイクロ波は、無電極でのプラズマを、生成空間20Sに生成する。この際、プラズマ処理装置の制御部は、生成空間20Sに供給するガスGの流量と、マイクロ波源23に出力されるマイクロ波電力とを調整して、生成空間20Sでのプラズマ密度を10cm以上1011cm以下とする。また、プラズマ処理装置は、生成空間20Sに生成されるプラズマでのシース長を0.8mm以上1.0mm以下とする。生成空間20Sに生成されたマイクロ波プラズマは、導出孔13Hを通じて、拡散部材14で拡散されながら、処理空間11Sに供給される。 The plasma processing apparatus propagates the microwave output from the microwave source 23 to the generation space 20 </ b> S through the microwave transmission window 21. The microwave propagated to the generation space 20S generates an electrodeless plasma in the generation space 20S. At this time, the control unit of the plasma processing apparatus adjusts the flow rate of the gas G supplied to the generation space 20S and the microwave power output to the microwave source 23 so that the plasma density in the generation space 20S is 10 9 cm. 3 or more and 10 11 cm 3 or less. In the plasma processing apparatus, the sheath length in the plasma generated in the generation space 20S is set to 0.8 mm or more and 1.0 mm or less. The microwave plasma generated in the generation space 20S is supplied to the processing space 11S while being diffused by the diffusion member 14 through the outlet hole 13H.

[シール構造]
図2は、チャンバ11の上壁とマイクロ波透過窓21との間のシール構造の一例を示し、図3は、シール構造の他の例を示す。なお、図2、および、図3では、チャンバ11の上壁とマイクロ波透過窓21との間隙と、そこにガスGが滞在することとを説明する都合上、チャンバ11の上壁とマイクロ波透過窓21との間隙の大きさが誇張されている。
[Seal structure]
FIG. 2 shows an example of a seal structure between the upper wall of the chamber 11 and the microwave transmission window 21, and FIG. 3 shows another example of the seal structure. 2 and 3, for convenience of explaining the gap between the upper wall of the chamber 11 and the microwave transmission window 21 and the gas G staying there, the upper wall of the chamber 11 and the microwave are not shown. The size of the gap with the transmission window 21 is exaggerated.

図2が示すように、シール構造の第1例において、チャンバ11の上壁は、嵌着溝11Gを備える。嵌着溝11Gは、マイクロ波透過窓21の全周にわたる環状溝である。シール部材20は、フッ素ゴムやシリコーンゴムなどの絶縁樹脂製のOリングである。   As shown in FIG. 2, in the first example of the seal structure, the upper wall of the chamber 11 includes a fitting groove 11G. The fitting groove 11 </ b> G is an annular groove over the entire circumference of the microwave transmission window 21. The seal member 20 is an O-ring made of an insulating resin such as fluorine rubber or silicone rubber.

シール部材20は、嵌着溝11Gに嵌められて、チャンバ11の上壁とマイクロ波透過窓21との間隙を、生成空間20Sと外部空間(大気空間)とに区画する。シール部材20は、生成空間20Sに供給されたガスGが大気空間に漏れることを抑える。   The seal member 20 is fitted in the fitting groove 11G, and divides the gap between the upper wall of the chamber 11 and the microwave transmission window 21 into a generation space 20S and an external space (atmospheric space). The seal member 20 suppresses the gas G supplied to the generation space 20S from leaking into the atmospheric space.

嵌着溝11Gは、2つの溝側面11G1,11G2を備えたアリ溝である。2つの溝側面は、生成空間20S側の第1溝側面11G1と、外部空間側の第2溝側面11G2とから構成される。第1溝側面11G1と第2溝側面11G2との間隔は、溝底部から溝開口に向けて徐々に減少する。   The fitting groove 11G is a dovetail groove having two groove side surfaces 11G1 and 11G2. The two groove side surfaces include a first groove side surface 11G1 on the generation space 20S side and a second groove side surface 11G2 on the external space side. The distance between the first groove side surface 11G1 and the second groove side surface 11G2 gradually decreases from the groove bottom toward the groove opening.

第1溝側面11G1は、溝深さ方向に対して例えば25°の傾きを有し、マイクロ波透過窓21に近い部位ほど、生成空間20Sから離れた形状を有する。また、第1溝側面11G1は、シール部材20と接触するシール箇所Pを、溝深さ方向の途中に備える。溝開口とシール箇所Pとの距離Hは、生成空間20Sで生成されるプラズマのシース長未満である。   The first groove side surface 11G1 has an inclination of, for example, 25 ° with respect to the groove depth direction, and a portion closer to the microwave transmission window 21 has a shape farther from the generation space 20S. Further, the first groove side surface 11G1 includes a seal portion P that contacts the seal member 20 in the middle of the groove depth direction. The distance H between the groove opening and the seal location P is less than the sheath length of the plasma generated in the generation space 20S.

第2溝側面11G2は、溝深さ方向に対して例えば25°の傾きを有し、マイクロ波透過窓21に近い部位ほど、生成空間20Sに近い形状を有する。第2溝側面11G2もまた、シール部材20と接触するシール箇所を、溝深さ方向の途中に備える。すなわち、シール部材20は、嵌着溝11Gの溝開口から離れている。   The second groove side surface 11G2 has an inclination of, for example, 25 ° with respect to the groove depth direction, and a portion closer to the microwave transmission window 21 has a shape closer to the generation space 20S. The second groove side surface 11G2 also includes a seal portion that comes into contact with the seal member 20 in the middle of the groove depth direction. That is, the seal member 20 is separated from the groove opening of the fitting groove 11G.

チャンバ11の上壁は、マイクロ波透過窓21と対向する領域に位置し、マイクロ波透過窓21との間に、シール部材20による僅かな間隙を形成する。嵌着溝11Gとマイクロ波透過窓21との間の距離は、これらチャンバ11の上壁とマイクロ波透過窓21との間隙の中でも、嵌着溝11Gの深さの分だけ他の部位よりも大きい。そして、マイクロ波透過窓21と対向するこれらの領域は、マイクロ波透過窓21を透過したマイクロ波を照射される領域である。   The upper wall of the chamber 11 is located in a region facing the microwave transmission window 21, and a slight gap is formed between the microwave transmission window 21 and the seal member 20. The distance between the fitting groove 11G and the microwave transmission window 21 is larger than the other parts in the gap between the upper wall of the chamber 11 and the microwave transmission window 21 by the depth of the fitting groove 11G. large. These regions facing the microwave transmission window 21 are regions irradiated with the microwave transmitted through the microwave transmission window 21.

ここで、溝開口とシール箇所Pとの距離Hが、生成空間20Sでのシース長未満であるから、溝開口とシール箇所Pとの間には、シースを形成するに足りる空間が存在し難い。そのため、嵌着溝11Gに向けてマイクロ波が照射されるとしても、嵌着溝11Gの中でマイクロ波プラズマが生成されることが抑制可能となる。結果として、シール部材20の劣化を抑制可能となる。   Here, since the distance H between the groove opening and the seal portion P is less than the sheath length in the generation space 20S, it is difficult for a space sufficient to form a sheath to exist between the groove opening and the seal portion P. . Therefore, even if the microwave is irradiated toward the fitting groove 11G, generation of microwave plasma in the fitting groove 11G can be suppressed. As a result, deterioration of the seal member 20 can be suppressed.

図3が示すように、シール構造の第2例において、チャンバ11の上壁は、嵌着溝11Gを備える。嵌着溝11Gは、マイクロ波透過窓21の全周にわたる環状溝である。嵌着溝11Gの第1溝側面11G1は、第1例と同じく、溝深さ方向に対して傾きを有し、マイクロ波透過窓21に近い部位ほど、生成空間20Sから離れた形状を有する。そして、第1溝側面11G1においても、溝開口とシール箇所Pとの距離Hは、生成空間20Sで生成されるプラズマのシース長未満である。   As shown in FIG. 3, in the second example of the seal structure, the upper wall of the chamber 11 includes a fitting groove 11G. The fitting groove 11 </ b> G is an annular groove over the entire circumference of the microwave transmission window 21. As in the first example, the first groove side surface 11G1 of the fitting groove 11G has an inclination with respect to the groove depth direction, and a portion closer to the microwave transmission window 21 has a shape that is farther from the generation space 20S. Also in the first groove side surface 11G1, the distance H between the groove opening and the seal portion P is less than the sheath length of the plasma generated in the generation space 20S.

第2溝側面11G2は、溝深さ方向(上下方向)に延び、チャンバ11の上壁における上端面や、マイクロ波透過窓21の下端面とほぼ直交する。嵌着溝11Gの溝開口は、溝底部の幅(溝幅)よりも狭く、第1溝側面11G1と第2溝側面11G2との間隔は、溝底部から溝開口に向けて徐々に減少する。第2溝側面11G2は、シール部材20から離れ、第2溝側面11G2とシール部材20との間に隙間を形成している。   The second groove side surface 11G2 extends in the groove depth direction (vertical direction) and is substantially orthogonal to the upper end surface of the upper wall of the chamber 11 and the lower end surface of the microwave transmission window 21. The groove opening of the fitting groove 11G is narrower than the width (groove width) of the groove bottom portion, and the distance between the first groove side surface 11G1 and the second groove side surface 11G2 gradually decreases from the groove bottom portion toward the groove opening. The second groove side surface 11G2 is separated from the seal member 20, and a gap is formed between the second groove side surface 11G2 and the seal member 20.

ここでも、溝開口とシール箇所Pとの距離Hが、生成空間20Sでのシース長未満であるから、溝開口とシール箇所Pとの間には、シースを形成するに足りる空間が存在し難い。そのため、嵌着溝11Gの中でマイクロ波プラズマが生成されることが抑制可能となるから、シール部材20の劣化を抑制可能となる。   Also here, since the distance H between the groove opening and the seal portion P is less than the sheath length in the generation space 20S, there is hardly enough space between the groove opening and the seal portion P to form a sheath. . Therefore, generation of microwave plasma in the fitting groove 11G can be suppressed, so that deterioration of the seal member 20 can be suppressed.

[嵌着溝]
図4が示すように、導波部の一例である導波管22は、マイクロ波源23からマイクロ波透過窓21に向けた一方向(進行方向)に沿って、マイクロ波透過窓21までマイクロ波を導く。マイクロ波透過窓21は、進行方向を含む平面状に広がる。
[Fitting groove]
As shown in FIG. 4, the waveguide 22, which is an example of a waveguide unit, is microwaved to the microwave transmission window 21 along one direction (traveling direction) from the microwave source 23 toward the microwave transmission window 21. Lead. The microwave transmission window 21 extends in a planar shape including the traveling direction.

マイクロ波透過窓21と対向する方向から見て、マイクロ波透過窓21の中心Cを通って進行方向に延在する直線は中心線である。この中心線を基準とした中心Cの周りでの中心角θが−60°以上60°以下である範囲は、マイクロ波の照射される強度が他の部位よりも高い高照射領域である。   A straight line extending in the traveling direction through the center C of the microwave transmission window 21 when viewed from the direction facing the microwave transmission window 21 is a center line. The range in which the central angle θ around the center C with respect to the center line is −60 ° or more and 60 ° or less is a high irradiation region in which the intensity of microwave irradiation is higher than other portions.

チャンバ11の上壁は、嵌着溝11Gに接続された円形孔11G3を備える。円形孔11G3は、嵌着溝11Gの溝深さ以上の深さを有し、かつ、嵌着溝11Gの溝底部の幅(溝幅)と同じサイズの直径を有する。なお、図4では、嵌着溝11Gの溝開口が太い実線で示され、嵌着溝11Gの溝幅が円形孔11G3の直径と同じサイズを有する。円形孔11G3は、上記中心線上以外に位置する。円形孔11G3は、高照射領域以外に位置することが好ましい。   The upper wall of the chamber 11 includes a circular hole 11G3 connected to the fitting groove 11G. The circular hole 11G3 has a depth equal to or greater than the groove depth of the fitting groove 11G, and has a diameter of the same size as the width (groove width) of the groove bottom of the fitting groove 11G. In FIG. 4, the groove opening of the fitting groove 11G is indicated by a thick solid line, and the groove width of the fitting groove 11G has the same size as the diameter of the circular hole 11G3. The circular hole 11G3 is located other than on the center line. The circular hole 11G3 is preferably located outside the high irradiation region.

上記第1例の嵌着溝11Gを形成するには、例えば、先端に向けて拡径したドリルを用いて、チャンバ11の上壁を加工する。この際、チャンバ11の上壁には、まず、ドリルの先端を用いた切削によって円形孔11G3が形成され、次いで、円形孔11G3から嵌着溝11Gを描くようにドリルが移動して、それによって、嵌着溝11Gが形成される。   In order to form the fitting groove 11G of the first example, for example, the upper wall of the chamber 11 is processed using a drill whose diameter is increased toward the tip. At this time, the circular hole 11G3 is first formed on the upper wall of the chamber 11 by cutting using the tip of the drill, and then the drill moves so as to draw the fitting groove 11G from the circular hole 11G3. The fitting groove 11G is formed.

円形孔11G3の内周面は、シール部材20と接触する箇所を形成し難く、円形孔11G3においてシール部材20と接触する箇所は、円形孔11G3の溝底部となる。その結果、円形孔11G3では、シール部材20に接触する箇所と溝開口との距離が、生成空間20Sで生成されるプラズマのシース長以上である場合がある。すなわち、円形孔11G3の中では、嵌着溝11Gの中よりもマイクロ波プラズマが生成されやすい。   The inner peripheral surface of the circular hole 11G3 does not easily form a portion that contacts the seal member 20, and the portion that contacts the seal member 20 in the circular hole 11G3 is a groove bottom of the circular hole 11G3. As a result, in the circular hole 11G3, the distance between the location in contact with the seal member 20 and the groove opening may be longer than the sheath length of the plasma generated in the generation space 20S. That is, microwave plasma is more easily generated in the circular hole 11G3 than in the fitting groove 11G.

この点、円形孔11G3が中心線上以外に位置し、特に、高照射領域以外に位置する構成であれば、マイクロ波の照射が相対的に高い領域を避けて、円形孔11G3が配置される。そのため、円形孔11G3が存在することに起因したシール部材20の劣化も抑制可能となる。   In this regard, if the circular hole 11G3 is located at a position other than the center line, and particularly located outside the high irradiation area, the circular hole 11G3 is arranged while avoiding a relatively high microwave irradiation area. Therefore, deterioration of the seal member 20 due to the presence of the circular hole 11G3 can be suppressed.

以上、上記実施形態によれば、以下に列挙する効果が得られる。
(1)溝開口とシール箇所Pとの距離が、生成空間20Sでのシース長未満であるから、溝開口とシール箇所Pとの間には、シースを形成するに足りる空間が存在し難い。そのため、嵌着溝11Gの中でマイクロ波プラズマが生成されることが抑制可能となる。結果として、チャンバ11とマイクロ波透過窓21との間に介在するシール部材20の劣化を抑制可能となる。
As mentioned above, according to the said embodiment, the effect enumerated below is acquired.
(1) Since the distance between the groove opening and the seal location P is less than the sheath length in the generation space 20S, a space sufficient to form a sheath is unlikely to exist between the groove opening and the seal location P. Therefore, generation of microwave plasma in the fitting groove 11G can be suppressed. As a result, deterioration of the seal member 20 interposed between the chamber 11 and the microwave transmission window 21 can be suppressed.

(2)第1溝側面11G1を備えない円形孔11G3は、マイクロ波の照射が相対的に高い領域を避けて配置される。そのため、円形孔11G3が存在することに起因したシール部材20の劣化も抑制可能となる。   (2) The circular hole 11G3 that does not include the first groove side surface 11G1 is disposed to avoid a region where microwave irradiation is relatively high. Therefore, deterioration of the seal member 20 due to the presence of the circular hole 11G3 can be suppressed.

(3)嵌着溝11Gが第1溝側面11G1を備えたアリ溝である場合には、シール部材20の劣化を抑制し、かつ、嵌着溝11Gに嵌められたシール部材20が嵌着溝11Gから外れることが抑制可能となる。   (3) When the fitting groove 11G is a dovetail groove having the first groove side surface 11G1, the deterioration of the seal member 20 is suppressed, and the seal member 20 fitted in the fitting groove 11G is fitted into the fitting groove. It is possible to suppress the deviation from 11G.

(4)嵌着溝11Gの第2溝側面11G2が溝深さ方向に延びる場合には、嵌着溝11Gに対するシール部材20の嵌め込み負荷を軽減すること、嵌着溝11Gに嵌められたシール部材20が嵌着溝11Gから外れることを抑制すること、これらの均衡を図ることが可能ともなる。   (4) When the second groove side surface 11G2 of the fitting groove 11G extends in the groove depth direction, the fitting load of the sealing member 20 on the fitting groove 11G is reduced, and the sealing member fitted in the fitting groove 11G It is also possible to suppress the separation of 20 from the fitting groove 11G and to balance these.

なお、上記実施形態は、以下のように適宜変更して実施することができる。
・シール構造の第1例において、嵌着溝11Gの第2溝側面11G2とシール部材20との間に、第2溝側面11G2と密着するバックアップリングをさらに備えることも可能である。
・プラズマ処理装置は、マイクロ波透過窓21に対する生成空間20Sとは反対側に、導電性を有したスロットアンテナをさらに備えることも可能である。
In addition, the said embodiment can be changed and implemented suitably as follows.
In the first example of the seal structure, it is also possible to further include a backup ring that is in close contact with the second groove side surface 11G2 between the second groove side surface 11G2 of the fitting groove 11G and the seal member 20.
The plasma processing apparatus can further include a slot antenna having conductivity on the side opposite to the generation space 20 </ b> S with respect to the microwave transmission window 21.

θ…中心角、C…中心、H…距離、P…シール箇所、11…チャンバ、11G…嵌着溝、11G1…第1溝側面、11G2…第2溝側面、11G3…円形孔、11H…ガスポート、11S…処理空間、12…区画孔、13…区画部材、13H…導出孔、14…拡散部材、20…シール部材、20S…生成空間、21…マイクロ波透過窓、22…導波管、22S…導波空間、23…マイクロ波源。
θ ... center angle, C ... center, H ... distance, P ... seal location, 11 ... chamber, 11G ... fitting groove, 11G1 ... first groove side, 11G2 ... second groove side, 11G3 ... circular hole, 11H ... gas Port, 11S ... processing space, 12 ... partition hole, 13 ... partition member, 13H ... lead-out hole, 14 ... diffusion member, 20 ... seal member, 20S ... generation space, 21 ... microwave transmission window, 22 ... waveguide, 22S ... guide space, 23 ... microwave source.

Claims (7)

嵌着溝を備えて接地されたチャンバ壁と、
前記チャンバ壁と対向するマイクロ波透過窓と、
前記チャンバ壁と前記マイクロ波透過窓との間に介在するシール部材と、を備え、
前記シール部材は、前記嵌着溝に嵌められて、前記チャンバ壁と前記マイクロ波透過窓との間隙を生成空間と外部空間とに区画し、
前記嵌着溝は、生成空間側の第1溝側面と、外部空間側の第2溝側面とを備え、
前記第1溝側面は、溝深さ方向に対して傾きを有し、前記マイクロ波透過窓に近い部位ほど前記生成空間から離れる形状を備え、かつ、溝底部と溝開口との間に前記シール部材と接触するシール箇所を備え、
前記溝開口と前記シール箇所との距離は、前記生成空間で生成されるプラズマのシース長未満である
プラズマ処理装置。
A chamber wall grounded with a fitting groove;
A microwave transmitting window facing the chamber wall;
A seal member interposed between the chamber wall and the microwave transmission window,
The seal member is fitted in the fitting groove, and divides a gap between the chamber wall and the microwave transmission window into a generation space and an external space,
The fitting groove includes a first groove side surface on the generation space side and a second groove side surface on the external space side,
The first groove side surface is inclined with respect to the groove depth direction, has a shape that is closer to the microwave transmission window, and away from the generation space, and the seal is provided between the groove bottom and the groove opening. It has a sealing part that contacts the member,
The distance between the groove opening and the seal portion is less than the sheath length of the plasma generated in the generation space.
進行方向に沿って前記マイクロ波透過窓までマイクロ波を導く導波部をさらに備え、
前記マイクロ波透過窓は、前記進行方向を含む平面状に広がり、
前記チャンバ壁は、前記嵌着溝に接続されて、前記嵌着溝の溝深さ以上の深さを有し、かつ、前記嵌着溝の溝幅と同じサイズの直径を有した円形孔をさらに備え、
前記マイクロ波透過窓と対向する方向から見て、
前記マイクロ波透過窓の中心を通って前記進行方向に延在する直線が中心線であり、
前記円形孔は、前記中心線上以外に位置する
請求項1に記載のプラズマ処理装置。
Further comprising a waveguide section for guiding the microwave along the traveling direction to the microwave transmission window,
The microwave transmission window extends in a plane including the traveling direction,
The chamber wall is connected to the fitting groove and has a circular hole having a depth equal to or greater than the groove depth of the fitting groove and having a diameter of the same size as the groove width of the fitting groove. In addition,
Seen from the direction facing the microwave transmission window,
A straight line extending in the traveling direction through the center of the microwave transmitting window is a center line,
The plasma processing apparatus according to claim 1, wherein the circular hole is positioned other than on the center line.
前記嵌着溝は、アリ溝である
請求項1または2に記載のプラズマ処理装置。
The plasma processing apparatus according to claim 1, wherein the fitting groove is a dovetail groove.
前記第2溝側面は、前記溝深さ方向に延びる
請求項1または2に記載のプラズマ処理装置。
The plasma processing apparatus according to claim 1, wherein the second groove side surface extends in the groove depth direction.
嵌着溝を備えて接地されたチャンバ壁と、
前記チャンバ壁と対向するマイクロ波透過窓と、
前記チャンバ壁と前記マイクロ波透過窓との間に介在するシール部材と、
進行方向に沿って前記マイクロ波透過窓までマイクロ波を導く導波部と、を備え、
前記シール部材は、前記嵌着溝に嵌められて、前記チャンバ壁と前記マイクロ波透過窓との間隙を生成空間と外部空間とに区画し、
前記マイクロ波透過窓は、前記進行方向を含む平面状に広がり、
前記チャンバ壁は、前記嵌着溝に接続されて、前記嵌着溝の溝深さ以上の深さを有し、かつ、前記嵌着溝の溝幅を直径とした円形孔をさらに備え、
前記マイクロ波透過窓と対向する方向から見て、
前記マイクロ波透過窓の中心を通って前記進行方向に延在する直線が中心線であり、
前記円形孔は、前記中心線上以外に位置する
プラズマ処理装置。
A chamber wall grounded with a fitting groove;
A microwave transmitting window facing the chamber wall;
A seal member interposed between the chamber wall and the microwave transmitting window;
A waveguide section for guiding the microwave along the traveling direction to the microwave transmission window,
The seal member is fitted in the fitting groove, and divides a gap between the chamber wall and the microwave transmission window into a generation space and an external space,
The microwave transmission window extends in a plane including the traveling direction,
The chamber wall is further connected to the fitting groove, has a depth greater than or equal to the groove depth of the fitting groove, and further includes a circular hole having a groove width of the fitting groove as a diameter,
Seen from the direction facing the microwave transmission window,
A straight line extending in the traveling direction through the center of the microwave transmitting window is a center line,
The circular hole is located at a position other than the center line.
前記中心線を基準とした前記中心の周りでの中心角が−60°以上60°以下である範囲が高照射領域であり、
前記円形孔は、前記高照射領域以外に位置する
請求項5に記載のプラズマ処理装置。
A range in which a central angle around the center with respect to the center line is −60 ° or more and 60 ° or less is a high irradiation region,
The plasma processing apparatus according to claim 5, wherein the circular hole is located outside the high irradiation region.
嵌着溝を備えて接地されたチャンバ壁と、当該チャンバ壁と対向するマイクロ波透過窓との間に介在するシール部材を備え、前記シール部材が前記嵌着溝に嵌められて前記チャンバ壁と前記マイクロ波透過窓との間隙を生成空間と外部空間とに区画するプラズマ処理装置を用いたプラズマ処理方法であって、
前記嵌着溝は、生成空間側の第1溝側面と、外部空間側の第2溝側面とを備え、
前記第1溝側面は、溝深さ方向に対して傾きを有し、前記マイクロ波透過窓に近い部位ほど前記生成空間から離れる形状を備え、かつ、溝底部と溝開口との間に前記シール部材と接触するシール箇所を備え、
前記溝開口と前記シール箇所との距離が、前記生成空間でのシース長未満であるように、前記生成空間にガスを供給し、かつ、前記マイクロ波透過窓から前記生成空間にマイクロ波を伝播させる
プラズマ処理方法。
A sealing member interposed between a chamber wall grounded with a fitting groove and a microwave transmitting window facing the chamber wall, the sealing member being fitted into the fitting groove, A plasma processing method using a plasma processing apparatus that partitions a gap with the microwave transmission window into a generation space and an external space,
The fitting groove includes a first groove side surface on the generation space side and a second groove side surface on the external space side,
The first groove side surface is inclined with respect to the groove depth direction, has a shape that is closer to the microwave transmission window, and away from the generation space, and the seal is provided between the groove bottom and the groove opening. It has a sealing part that contacts the member,
Gas is supplied to the generation space so that the distance between the groove opening and the seal location is less than the sheath length in the generation space, and the microwave is propagated from the microwave transmission window to the generation space. Plasma processing method.
JP2018042025A 2018-03-08 2018-03-08 Plasma processing equipment and plasma processing method Active JP7077072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018042025A JP7077072B2 (en) 2018-03-08 2018-03-08 Plasma processing equipment and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018042025A JP7077072B2 (en) 2018-03-08 2018-03-08 Plasma processing equipment and plasma processing method

Publications (2)

Publication Number Publication Date
JP2019160460A true JP2019160460A (en) 2019-09-19
JP7077072B2 JP7077072B2 (en) 2022-05-30

Family

ID=67993542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018042025A Active JP7077072B2 (en) 2018-03-08 2018-03-08 Plasma processing equipment and plasma processing method

Country Status (1)

Country Link
JP (1) JP7077072B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268763A (en) * 2004-02-16 2005-09-29 Tokyo Electron Ltd Plasma treatment apparatus and plasma treatment method
JP2008047883A (en) * 2006-07-20 2008-02-28 Hokuriku Seikei Kogyo Kk Shower plate and its fabrication process, plasma processing equipment employing it, plasma processing method and process for fabricating electronic device
JP2010251064A (en) * 2009-04-14 2010-11-04 Ulvac Japan Ltd Plasma generator
JP2011029559A (en) * 2009-07-29 2011-02-10 Ulvac Japan Ltd Plasma treating apparatus and tray for the same
US20150303036A1 (en) * 2014-04-16 2015-10-22 Semes Co., Ltd. Substrate treatment apparatus including sealing member having atypical section
US20160189938A1 (en) * 2014-12-31 2016-06-30 Applied Materials, Inc. One-piece process kit shield
JP2016534299A (en) * 2013-08-16 2016-11-04 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Sealing groove method for semiconductor devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268763A (en) * 2004-02-16 2005-09-29 Tokyo Electron Ltd Plasma treatment apparatus and plasma treatment method
JP2008047883A (en) * 2006-07-20 2008-02-28 Hokuriku Seikei Kogyo Kk Shower plate and its fabrication process, plasma processing equipment employing it, plasma processing method and process for fabricating electronic device
JP2010251064A (en) * 2009-04-14 2010-11-04 Ulvac Japan Ltd Plasma generator
JP2011029559A (en) * 2009-07-29 2011-02-10 Ulvac Japan Ltd Plasma treating apparatus and tray for the same
JP2016534299A (en) * 2013-08-16 2016-11-04 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Sealing groove method for semiconductor devices
US20150303036A1 (en) * 2014-04-16 2015-10-22 Semes Co., Ltd. Substrate treatment apparatus including sealing member having atypical section
US20160189938A1 (en) * 2014-12-31 2016-06-30 Applied Materials, Inc. One-piece process kit shield

Also Published As

Publication number Publication date
JP7077072B2 (en) 2022-05-30

Similar Documents

Publication Publication Date Title
JP5717888B2 (en) Plasma processing equipment
KR101096950B1 (en) Plasma Treatment Apparatus and Plasma Treatment Method
JP5792315B2 (en) Plasma processing equipment
KR101751200B1 (en) Microwave radiation antenna, microwave plasma source and plasma processing apparatus
TWI436697B (en) Plasma processing device
TWI643236B (en) Plasma processing device
TWI239795B (en) Plasma processing device
KR101176061B1 (en) Top plate and plasma processing apparatus
JP2010258461A (en) Plasma processing apparatus and top plate for plasma processing apparatus
KR102279533B1 (en) Dielectric window, antenna and plasma processing apparatus
KR102426265B1 (en) Plasma processing apparatus
JP2006040638A (en) Plasma processing device
JP7077072B2 (en) Plasma processing equipment and plasma processing method
JP2004186303A (en) Plasma processing device
WO2021124898A1 (en) Plasma treatment device and plasma treatment method
KR102337936B1 (en) Plasma processing apparatus
KR102131539B1 (en) Microwave plasma processing apparatus
JP4390604B2 (en) Plasma processing equipment
JP2007109670A (en) Plasma processing device
KR20190125185A (en) Antenna device and plasma processing apparatus
JP2016091603A (en) Microwave plasma processing device
JP2005116362A (en) Plasma treatment device and plasma treatment method by microwave excitation
JP4469199B2 (en) Plasma processing equipment
KR20240028934A (en) Plasma processing apparatus
KR20130056987A (en) Substrate processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7077072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150