JP7077072B2 - Plasma processing equipment and plasma processing method - Google Patents

Plasma processing equipment and plasma processing method Download PDF

Info

Publication number
JP7077072B2
JP7077072B2 JP2018042025A JP2018042025A JP7077072B2 JP 7077072 B2 JP7077072 B2 JP 7077072B2 JP 2018042025 A JP2018042025 A JP 2018042025A JP 2018042025 A JP2018042025 A JP 2018042025A JP 7077072 B2 JP7077072 B2 JP 7077072B2
Authority
JP
Japan
Prior art keywords
groove
transmission window
microwave transmission
circular hole
fitting groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018042025A
Other languages
Japanese (ja)
Other versions
JP2019160460A (en
Inventor
大輔 廣庭
孝志 栗本
敦 奥田
和弘 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2018042025A priority Critical patent/JP7077072B2/en
Publication of JP2019160460A publication Critical patent/JP2019160460A/en
Application granted granted Critical
Publication of JP7077072B2 publication Critical patent/JP7077072B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)

Description

本発明は、マイクロ波プラズマを用いて対象を処理するプラズマ処理装置、および、プラズマ処理方法に関する。 The present invention relates to a plasma processing apparatus that processes an object using microwave plasma, and a plasma processing method.

上述したプラズマ処理装置は、マイクロ波源から出力されるマイクロ波をガスに照射してマイクロ波プラズマを生成し、マイクロ波プラズマに含まれるラジカルを主に処理対象に供給する。プラズマ処理装置は、マイクロ波プラズマを生成する生成空間と、生成空間と連通して処理対象を収容する処理空間とを備える。生成空間は、マイクロ波を透過するマイクロ波透過窓で区画されて、導波管の出力口がマイクロ波透過窓に連結される。そして、プラズマ処理装置は、生成空間にガスを供給し、また、導波管を伝播したマイクロ波をマイクロ波透過窓から生成空間の中に透過させて、生成空間にマイクロ波プラズマを生成する(例えば、特許文献1を参照)。 The above-mentioned plasma processing apparatus irradiates a gas with microwaves output from a microwave source to generate microwave plasma, and supplies radicals contained in the microwave plasma mainly to a processing target. The plasma processing apparatus includes a generation space for generating microwave plasma and a processing space for accommodating a processing target in communication with the generation space. The generation space is partitioned by a microwave transmission window that transmits microwaves, and the output port of the waveguide is connected to the microwave transmission window. Then, the plasma processing device supplies gas to the generation space, and also transmits the microwave propagating through the waveguide into the generation space through the microwave transmission window to generate microwave plasma in the generation space (). For example, see Patent Document 1).

特開2011-29559号公報Japanese Unexamined Patent Publication No. 2011-29559

ところで、生成空間を区画するチャンバ壁は、導波管の出力口に向けて開口した開口部、開口部を囲う環状の嵌着溝、および、嵌着溝に嵌められたシール部材を備える。マイクロ波透過窓は、シール部材に押し付けられて、開口部をチャンバ壁の外から閉じる。一方、生成空間に供給されたガスは、チャンバ壁とマイクロ波透過窓との僅かな隙間にも滞在して、マイクロ波プラズマを生成し得る。特に、嵌着溝とマイクロ波透過窓との隙間は、溝深さの分だけ他の部位よりも大きく、マイクロ波プラズマを生成しやすい。結果として、シール部材の一部は、マイクロ波プラズマに曝され続けて、亀裂の発生や硬化の進行を招く。上述したプラズマ処理の分野では、処理の効率を高めるためにマイクロ波の出力が高まる一途であるから、シール部材での劣化の抑制は、より深刻な課題となっている。 By the way, the chamber wall for partitioning the generation space includes an opening opened toward the output port of the waveguide, an annular fitting groove surrounding the opening, and a sealing member fitted in the fitting groove. The microwave transmission window is pressed against the sealing member to close the opening from outside the chamber wall. On the other hand, the gas supplied to the generation space may stay in a slight gap between the chamber wall and the microwave transmission window to generate microwave plasma. In particular, the gap between the fitting groove and the microwave transmission window is larger than that of other parts by the depth of the groove, and it is easy to generate microwave plasma. As a result, some of the sealing members continue to be exposed to microwave plasma, leading to the formation of cracks and the progress of hardening. In the above-mentioned field of plasma processing, the output of microwaves is steadily increasing in order to improve the efficiency of processing, so that suppression of deterioration in the sealing member has become a more serious problem.

本発明は、チャンバ壁とマイクロ波透過窓との間に介在するシール部材の劣化を抑制可能としたプラズマ処理装置、および、プラズマ処理方法を提供することを目的とする。 An object of the present invention is to provide a plasma processing apparatus capable of suppressing deterioration of a sealing member interposed between a chamber wall and a microwave transmission window, and a plasma processing method.

上記課題を解決するためのプラズマ処理装置は、嵌着溝を備えて接地されたチャンバ壁と、前記チャンバ壁と対向するマイクロ波透過窓と、前記チャンバ壁と前記マイクロ波透過窓との間に介在するシール部材と、を備える。前記シール部材は、前記嵌着溝に嵌められて、前記チャンバ壁と前記マイクロ波透過窓との間隙を、生成空間と外部空間とに区画する。前記嵌着溝は、生成空間側の第1溝側面と、外部空間側の第2溝側面とを備え、前記第1溝側面は、溝深さ方向に対して傾きを有し、前記マイクロ波透過窓に近い部位ほど前記生成空間から離れる形状を備え、かつ、溝底部と溝開口との間に前記シール部材と接触するシール箇所を備える。そして、前記溝開口と前記シール箇所との距離は、前記生成空間で生成されるプラズマのシース長未満である。 A plasma processing device for solving the above problems is provided between a chamber wall provided with a fitting groove and grounded, a microwave transmission window facing the chamber wall, and the chamber wall and the microwave transmission window. It is provided with an intervening seal member. The sealing member is fitted in the fitting groove to partition the gap between the chamber wall and the microwave transmission window into a generation space and an external space. The fitting groove includes a first groove side surface on the generation space side and a second groove side surface on the external space side, and the first groove side surface has an inclination with respect to the groove depth direction, and the microwave is used. A portion closer to the transmission window has a shape that is farther from the generation space, and a sealing portion that comes into contact with the sealing member is provided between the groove bottom and the groove opening. The distance between the groove opening and the sealing portion is less than the sheath length of the plasma generated in the generation space.

上記課題を解決するためのプラズマ処理方法は、嵌着溝を備えて接地されたチャンバ壁と、当該チャンバ壁と対向するマイクロ波透過窓との間に介在するシール部材を備え、前記シール部材が前記嵌着溝に嵌められて前記チャンバ壁と前記マイクロ波透過窓との間隙を生成空間と外部空間とに区画するプラズマ処理装置を用いたプラズマ処理方法である。前記嵌着溝は、生成空間側の第1溝側面と、外部空間側の第2溝側面とを備え、前記第1溝側面は、溝深さ方向に対して傾きを有し、前記マイクロ波透過窓に近い部位ほど前記生成空間から離れる形状を備え、かつ、溝底部と溝開口との間に前記シール部材と接触するシール箇所を備える。そして、前記溝開口と前記シール箇所との距離が、前記生成空間でのシース長未満であるように、前記生成空間にガスを供給し、かつ、前記マイクロ波透過窓から前記生成空間にマイクロ波を伝播させる。 A plasma processing method for solving the above problems includes a sealing member interposed between a chamber wall provided with a fitting groove and grounded, and a microwave transmission window facing the chamber wall, and the sealing member comprises a sealing member. It is a plasma processing method using a plasma processing apparatus that is fitted in the fitting groove and divides a gap between the chamber wall and the microwave transmission window into a generation space and an external space. The fitting groove includes a first groove side surface on the generation space side and a second groove side surface on the external space side, and the first groove side surface has an inclination with respect to the groove depth direction, and the microwave is used. A portion closer to the transmission window has a shape that is farther from the generation space, and a sealing portion that comes into contact with the sealing member is provided between the groove bottom and the groove opening. Then, gas is supplied to the generation space so that the distance between the groove opening and the sealing portion is less than the sheath length in the generation space, and microwaves are supplied from the microwave transmission window to the generation space. Propagate.

上述したマイクロ波透過窓と対向する領域は、マイクロ波透過窓を透過したマイクロ波を照射される領域である。チャンバ壁は、マイクロ波透過窓と対向する領域に位置し、マイクロ波透過窓との間に僅かな間隙を形成する。嵌着溝とマイクロ波透過窓との間の距離は、チャンバ壁とマイクロ波透過窓との間隙の中でも、嵌着溝の深さの分だけ他の部位よりも大きい。この点、上述した各構成であれば、溝開口とシール箇所との距離が、生成空間でのシース長未満であるから、溝開口とシール箇所との間には、シースを形成するに足りる空間が存在し難い。そのため、嵌着溝の中でマイクロ波プラズマが生成されることが抑制可能となる。結果として、チャンバ壁とマイクロ波透過窓との間に介在するシール部材の劣化を抑制可能となる。 The region facing the above-mentioned microwave transmission window is a region to be irradiated with microwaves transmitted through the microwave transmission window. The chamber wall is located in the region facing the microwave transmission window and forms a slight gap with the microwave transmission window. The distance between the fitting groove and the microwave transmission window is larger than that of other parts in the gap between the chamber wall and the microwave transmission window by the depth of the fitting groove. In this respect, in each of the above-described configurations, the distance between the groove opening and the sealing portion is less than the sheath length in the generation space, so that there is sufficient space between the groove opening and the sealing portion to form a sheath. Is hard to exist. Therefore, it is possible to suppress the generation of microwave plasma in the fitting groove. As a result, deterioration of the sealing member interposed between the chamber wall and the microwave transmission window can be suppressed.

上記プラズマ処理装置は、進行方向に沿って前記マイクロ波透過窓までマイクロ波を導く導波部をさらに備える。前記マイクロ波透過窓は、前記進行方向を含む平面状に広がり、前記チャンバ壁は、前記嵌着溝に接続されて、前記嵌着溝の溝深さ以上の深さを有し、かつ、前記嵌着溝の溝幅と同じサイズの直径を有した円形孔をさらに備える。そして、前記マイクロ波透過窓と対向する方向から見て、前記マイクロ波透過窓の中心を通って前記進行方向に延在する直線が中心線であり、前記円形孔は、前記中心線上以外に位置してもよい。 The plasma processing apparatus further includes a waveguide that guides microwaves to the microwave transmission window along the traveling direction. The microwave transmission window extends in a plane including the traveling direction, and the chamber wall is connected to the fitting groove and has a depth equal to or higher than the groove depth of the fitting groove, and the above-mentioned Further provided with a circular hole having a diameter of the same size as the groove width of the fitting groove. When viewed from the direction facing the microwave transmission window, the straight line extending in the traveling direction through the center of the microwave transmission window is the center line, and the circular hole is located outside the center line. You may.

上記課題を解決するためのプラズマ処理装置は、嵌着溝を備えて接地されたチャンバ壁と、前記チャンバ壁と対向するマイクロ波透過窓と、前記チャンバ壁と前記マイクロ波透過窓との間に介在するシール部材と、進行方向に沿って前記マイクロ波透過窓までマイクロ波を導く導波部と、を備える。前記シール部材は、前記嵌着溝に嵌められて、前記チャンバ壁と前記マイクロ波透過窓との間隙を生成空間と外部空間とに区画し、前記マイクロ波透過窓は、前記進行方向を含む平面状に広がり、前記チャンバ壁は、前記嵌着溝に接続されて、前記嵌着溝の溝深さ以上の深さを有し、かつ、前記嵌着溝の溝幅を直径とした円形孔をさらに備る。そして、前記マイクロ波透過窓と対向する方向から見て、前記マイクロ波透過窓の中心を通って前記進行方向に延在する直線が中心線であり、前記円形孔は、前記中心線上以外に位置する。 A plasma processing device for solving the above problems is provided between a chamber wall provided with a fitting groove and grounded, a microwave transmission window facing the chamber wall, and the chamber wall and the microwave transmission window. It includes an intervening seal member and a waveguide that guides microwaves to the microwave transmission window along the traveling direction. The sealing member is fitted in the fitting groove to partition the gap between the chamber wall and the microwave transmission window into a generation space and an external space, and the microwave transmission window is a plane including the traveling direction. The chamber wall is connected to the fitting groove, has a depth equal to or larger than the groove depth of the fitting groove, and has a circular hole having a groove width of the fitting groove as a diameter. Further prepare. When viewed from the direction facing the microwave transmission window, the straight line extending in the traveling direction through the center of the microwave transmission window is the center line, and the circular hole is located outside the center line. do.

上記プラズマ処理装置において、前記中心線を基準とした前記中心の周りでの中心角が-60°以上60°以下である範囲が高照射領域であり、前記円形孔は、前記高照射領域以外に位置してもよい。 In the plasma processing apparatus, the range in which the central angle around the center with respect to the center line is −60 ° or more and 60 ° or less is the high irradiation region, and the circular hole is formed in a region other than the high irradiation region. It may be located.

上述した嵌着溝を形成する方法では、例えば、アリ溝を形成するように、先端に向けて拡径したドリルを用いてチャンバ壁を加工する。この際、チャンバ壁には、ドリルの先端による円形孔が、嵌着溝の形成よりも先に形成されて、次いで、円形孔の内周面から径方向に延びるように、嵌着溝が形成されはじめる。これによって、上述した円形孔は、嵌着溝に接続されて、嵌着溝の溝深さ以上の深さを有し、かつ、嵌着溝の溝幅を直径として有する。 In the method for forming the fitting groove described above, for example, the chamber wall is machined by using a drill whose diameter is increased toward the tip so as to form a dovetail groove. At this time, a circular hole formed by the tip of the drill is formed in the chamber wall prior to the formation of the fitting groove, and then the fitting groove is formed so as to extend radially from the inner peripheral surface of the circular hole. It begins to be done. As a result, the above-mentioned circular hole is connected to the fitting groove and has a depth equal to or higher than the groove depth of the fitting groove and has a groove width of the fitting groove as a diameter.

ここで、上記円形孔の内周面は、上述した第1溝側面を備えず、シール部材とは接触し難い。そして、円形孔の中でシール部材と接触する箇所は、円形孔の内周面ではなく、溝底部となる。その結果、シール部材と接触する箇所と溝開口との距離は、円形孔において、生成空間で生成されるプラズマのシース長以上となる場合がある。この点、上述した各構成であれば、マイクロ波の照射が相対的に高い領域を避けて、上記円形孔が配置される。そのため、円形孔が存在することに起因したシール部材の劣化が抑制可能となる。 Here, the inner peripheral surface of the circular hole does not have the above-mentioned first groove side surface, and it is difficult to come into contact with the sealing member. The portion of the circular hole that comes into contact with the seal member is not the inner peripheral surface of the circular hole but the bottom of the groove. As a result, the distance between the portion in contact with the seal member and the groove opening may be greater than or equal to the sheath length of the plasma generated in the generated space in the circular hole. In this respect, in each of the above-mentioned configurations, the circular holes are arranged so as to avoid the region where the microwave irradiation is relatively high. Therefore, deterioration of the sealing member due to the presence of the circular hole can be suppressed.

上記プラズマ処理装置において、前記嵌着溝は、アリ溝であってもよい。この構成によれば、シール部材の劣化を抑制し、かつ、嵌着溝に嵌められたシール部材が嵌着溝から外れることが抑制可能となる。 In the plasma processing apparatus, the fitting groove may be a dovetail groove. According to this configuration, deterioration of the seal member can be suppressed, and the seal member fitted in the fitting groove can be suppressed from coming off the fitting groove.

上記プラズマ処理装置において、前記第2溝側面は、前記溝深さ方向に延びてもよい。この構成によれば、嵌着溝に対するシール部材の嵌め込み負荷を軽減すること、嵌着溝に嵌められたシール部材が嵌着溝から外れることを抑制すること、これらの均衡を図ることが可能ともなる。 In the plasma processing apparatus, the side surface of the second groove may extend in the groove depth direction. According to this configuration, it is possible to reduce the fitting load of the sealing member on the fitting groove, suppress the sealing member fitted in the fitting groove from coming off from the fitting groove, and achieve a balance between them. Become.

プラズマ処理装置の一実施形態の装置構成を示す装置図。The apparatus diagram which shows the apparatus configuration of one Embodiment of a plasma processing apparatus. 一実施形態におけるシール構造の第1例を示す断面図。The cross-sectional view which shows the 1st example of the seal structure in one Embodiment. 一実施形態におけるシール構造の第2例を示す断面図。The cross-sectional view which shows the 2nd example of the seal structure in one Embodiment. 一実施形態における円形孔の配置を示す平面図。The plan view which shows the arrangement of the circular hole in one Embodiment.

プラズマ処理装置、および、プラズマ処理方法の一実施形態を説明する。
[プラズマ処理装置]
図1が示すように、プラズマ処理装置は、チャンバ11、区画部材13、拡散部材14、および、シール部材20を備える。また、プラズマ処理装置は、マイクロ波透過窓21、導波管22、および、マイクロ波源23を備える。
An embodiment of a plasma processing apparatus and a plasma processing method will be described.
[Plasma processing equipment]
As shown in FIG. 1, the plasma processing apparatus includes a chamber 11, a partition member 13, a diffusion member 14, and a seal member 20. Further, the plasma processing apparatus includes a microwave transmission window 21, a waveguide 22, and a microwave source 23.

チャンバ11は、例えば、アルミニウム製の箱体状を有して、処理空間11Sを区画する。チャンバ11は、接地されており、チャンバ壁の一例としてチャンバ11の上壁を備える。チャンバ11の上壁は、上方に向けて貫通する区画孔12を備える。 The chamber 11 has, for example, an aluminum box shape and partitions the processing space 11S. The chamber 11 is grounded and includes an upper wall of the chamber 11 as an example of the chamber wall. The upper wall of the chamber 11 includes a partition hole 12 that penetrates upward.

区画孔12は、処理空間11Sの上方に生成空間20Sを区画するための孔である。区画孔12は、例えば、上方に向けて縮径した二段の円形孔状を有する。区画孔12は、ガスポート11Hに連通する。 The partition hole 12 is a hole for partitioning the generation space 20S above the processing space 11S. The partition hole 12 has, for example, a two-stage circular hole shape whose diameter is reduced upward. The partition hole 12 communicates with the gas port 11H.

ガスポート11Hは、マイクロ波プラズマを生成するためのガスGの通路である。ガスポート11Hから供給されるガスGは、例えば、酸素やオゾンなどの酸化ガス、窒素やアンモニアなどの窒化ガス、ヘリウムやアルゴンなどの希ガスからなる群から選択される少なくとも1種である。 The gas port 11H is a passage for gas G for generating microwave plasma. The gas G supplied from the gas port 11H is at least one selected from the group consisting of, for example, an oxidizing gas such as oxygen and ozone, a nitride gas such as nitrogen and ammonia, and a rare gas such as helium and argon.

区画部材13は、区画孔12の中に生成空間20Sを区画するための部材である。区画部材13は、例えば、上方に向けて縮径したアルミニウム製の二段の円板状を有する。区画部材13は、区画孔12の内面に追従した外表面を備える。 The partition member 13 is a member for partitioning the generation space 20S in the partition hole 12. The partition member 13 has, for example, a two-stage disc shape made of aluminum whose diameter is reduced upward. The partition member 13 includes an outer surface that follows the inner surface of the partition hole 12.

区画部材13の小径部は、区画孔12の小径部に連結される。区画部材13の上端面は、区画孔12の上端部よりも下方に位置し、生成空間20Sの下端を区画する。区画部材13の大径部は、ガスポート11Hの出口と対向する。 The small diameter portion of the partition member 13 is connected to the small diameter portion of the partition hole 12. The upper end surface of the partition member 13 is located below the upper end of the partition hole 12, and partitions the lower end of the generation space 20S. The large diameter portion of the partition member 13 faces the outlet of the gas port 11H.

区画部材13の大径部は、ガスポート11Hから出るガスGを区画部材13の小径部内に導く。区画部材13の小径部は、区画部材13の上端面に開口した孔を備え、区画部材13の小径部に導かれたガスGは、区画部材13の上端面よりも上方(生成空間20S)に向けて導出させる。 The large diameter portion of the partition member 13 guides the gas G coming out of the gas port 11H into the small diameter portion of the partition member 13. The small diameter portion of the partition member 13 is provided with a hole opened in the upper end surface of the partition member 13, and the gas G guided to the small diameter portion of the partition member 13 is above the upper end surface of the partition member 13 (generation space 20S). Derived towards.

マイクロ波透過窓21は、区画孔12の中に生成空間20Sを区画するための部材である。マイクロ波透過窓21は、マイクロ波を透過する部材であり、例えば、石英製や酸化アルミニウム製の円板状を有する。 The microwave transmission window 21 is a member for partitioning the generation space 20S in the partition hole 12. The microwave transmission window 21 is a member that transmits microwaves, and has, for example, a disk shape made of quartz or aluminum oxide.

マイクロ波透過窓21は、区画孔12の小径部よりも大径である。マイクロ波透過窓21は、区画孔12の直上に位置し、生成空間20Sの上端を区画する。マイクロ波透過窓21の下面と、区画部材13の上端面とは、区画孔12の上端部を上下方向で挟み、それによって、区画孔12の中に生成空間20Sを区画する。生成空間20Sは、区画孔12の内面、区画部材13の上端面、および、マイクロ波透過窓21の下面によって囲まれる。 The microwave transmission window 21 has a larger diameter than the small diameter portion of the partition hole 12. The microwave transmission window 21 is located directly above the partition hole 12 and partitions the upper end of the generation space 20S. The lower surface of the microwave transmission window 21 and the upper end surface of the partition member 13 sandwich the upper end portion of the partition hole 12 in the vertical direction, thereby partitioning the generation space 20S in the partition hole 12. The generation space 20S is surrounded by the inner surface of the partition hole 12, the upper end surface of the partition member 13, and the lower surface of the microwave transmission window 21.

区画部材13は、区画部材13の中心に導出孔13Hを備える。導出孔13Hは、処理空間11Sと生成空間20Sとを連通する。拡散部材14は、区画部材13の下面に脚を介して連結されて、導出孔13Hの出口と対向する。
拡散部材14は、導出孔13Hから導出されるプラズマを受けて、処理空間11Sの全体にプラズマを拡散させる。
The partition member 13 includes a lead-out hole 13H at the center of the partition member 13. The lead-out hole 13H communicates the processing space 11S and the generation space 20S. The diffusion member 14 is connected to the lower surface of the partition member 13 via a leg and faces the outlet of the outlet hole 13H.
The diffusion member 14 receives the plasma derived from the outlet hole 13H and diffuses the plasma throughout the processing space 11S.

導波管22は、導波管22が区画する導波空間22Sに、マイクロ波源23から出力されたマイクロ波を伝播させる。マイクロ波透過窓21は、導波管22の出力口に接続されている。マイクロ波透過窓21と対向する方向から見て、導波管22の出力口の大きさは、区画孔12の小径部(生成空間20S)よりも広い。 The waveguide 22 propagates the microwave output from the microwave source 23 to the waveguide space 22S partitioned by the waveguide 22. The microwave transmission window 21 is connected to the output port of the waveguide 22. The size of the output port of the waveguide 22 is wider than the small diameter portion (generation space 20S) of the partition hole 12 when viewed from the direction facing the microwave transmission window 21.

導波管22は、マイクロ波源23から出力されたマイクロ波を進行方向に伝播させて、マイクロ波透過窓21のほぼ全体にマイクロ波を伝播させる。マイクロ波透過窓21は、マイクロ波の進行方向(紙面左から右に向く方向)を含む平面状に広がっている。マイクロ波源23が出力するマイクロ波の周波数は、860MHz、2.45GHz、8.35GHz、5.8GHz、1.98GHzなどである。 The waveguide 22 propagates the microwave output from the microwave source 23 in the traveling direction, and propagates the microwave to almost the entire microwave transmission window 21. The microwave transmission window 21 extends in a plane including the traveling direction of the microwave (direction from the left to the right of the paper). The frequency of the microwave output by the microwave source 23 is 860 MHz, 2.45 GHz, 8.35 GHz, 5.8 GHz, 1.98 GHz or the like.

プラズマ処理装置は、マイクロ波源23に出力させたマイクロ波を、マイクロ波透過窓21を通じて、生成空間20Sに伝播させる。生成空間20Sに伝播したマイクロ波は、無電極でのプラズマを、生成空間20Sに生成する。この際、プラズマ処理装置の制御部は、生成空間20Sに供給するガスGの流量と、マイクロ波源23に出力されるマイクロ波電力とを調整して、生成空間20Sでのプラズマ密度を10cm以上1011cm以下とする。また、プラズマ処理装置は、生成空間20Sに生成されるプラズマでのシース長を0.8mm以上1.0mm以下とする。生成空間20Sに生成されたマイクロ波プラズマは、導出孔13Hを通じて、拡散部材14で拡散されながら、処理空間11Sに供給される。 The plasma processing apparatus propagates the microwave output to the microwave source 23 to the generation space 20S through the microwave transmission window 21. The microwave propagating in the generation space 20S generates plasma without electrodes in the generation space 20S. At this time, the control unit of the plasma processing apparatus adjusts the flow rate of the gas G supplied to the generation space 20S and the microwave power output to the microwave source 23 to adjust the plasma density in the generation space 20S to 109 cm. 3 or more and 10 11 cm 3 or less. Further, the plasma processing apparatus has a sheath length of 0.8 mm or more and 1.0 mm or less in the plasma generated in the generation space 20S. The microwave plasma generated in the generation space 20S is supplied to the processing space 11S while being diffused by the diffusion member 14 through the lead-out hole 13H.

[シール構造]
図2は、チャンバ11の上壁とマイクロ波透過窓21との間のシール構造の一例を示し、図3は、シール構造の他の例を示す。なお、図2、および、図3では、チャンバ11の上壁とマイクロ波透過窓21との間隙と、そこにガスGが滞在することとを説明する都合上、チャンバ11の上壁とマイクロ波透過窓21との間隙の大きさが誇張されている。
[Seal structure]
FIG. 2 shows an example of a sealing structure between the upper wall of the chamber 11 and the microwave transmission window 21, and FIG. 3 shows another example of the sealing structure. In addition, in FIGS. 2 and 3, for convenience of explaining the gap between the upper wall of the chamber 11 and the microwave transmission window 21 and the stay of the gas G in the gap, the upper wall of the chamber 11 and the microwave are used. The size of the gap with the transmission window 21 is exaggerated.

図2が示すように、シール構造の第1例において、チャンバ11の上壁は、嵌着溝11Gを備える。嵌着溝11Gは、マイクロ波透過窓21の全周にわたる環状溝である。シール部材20は、フッ素ゴムやシリコーンゴムなどの絶縁樹脂製のOリングである。 As shown in FIG. 2, in the first example of the sealing structure, the upper wall of the chamber 11 includes a fitting groove 11G. The fitting groove 11G is an annular groove extending over the entire circumference of the microwave transmission window 21. The sealing member 20 is an O-ring made of an insulating resin such as fluororubber or silicone rubber.

シール部材20は、嵌着溝11Gに嵌められて、チャンバ11の上壁とマイクロ波透過窓21との間隙を、生成空間20Sと外部空間(大気空間)とに区画する。シール部材20は、生成空間20Sに供給されたガスGが大気空間に漏れることを抑える。 The seal member 20 is fitted in the fitting groove 11G, and divides the gap between the upper wall of the chamber 11 and the microwave transmission window 21 into the generation space 20S and the external space (atmospheric space). The seal member 20 suppresses the gas G supplied to the generation space 20S from leaking into the atmospheric space.

嵌着溝11Gは、2つの溝側面11G1,11G2を備えたアリ溝である。2つの溝側面は、生成空間20S側の第1溝側面11G1と、外部空間側の第2溝側面11G2とから構成される。第1溝側面11G1と第2溝側面11G2との間隔は、溝底部から溝開口に向けて徐々に減少する。 The fitting groove 11G is a dovetail groove provided with two groove side surfaces 11G1 and 11G2. The two groove side surfaces are composed of a first groove side surface 11G1 on the generation space 20S side and a second groove side surface 11G2 on the external space side. The distance between the first groove side surface 11G1 and the second groove side surface 11G2 gradually decreases from the groove bottom toward the groove opening.

第1溝側面11G1は、溝深さ方向に対して例えば25°の傾きを有し、マイクロ波透過窓21に近い部位ほど、生成空間20Sから離れた形状を有する。また、第1溝側面11G1は、シール部材20と接触するシール箇所Pを、溝深さ方向の途中に備える。溝開口とシール箇所Pとの距離Hは、生成空間20Sで生成されるプラズマのシース長未満である。 The first groove side surface 11G1 has an inclination of, for example, 25 ° with respect to the groove depth direction, and the portion closer to the microwave transmission window 21 has a shape farther from the generation space 20S. Further, the first groove side surface 11G1 is provided with a seal portion P in contact with the seal member 20 in the middle of the groove depth direction. The distance H between the groove opening and the sealing portion P is less than the sheath length of the plasma generated in the generation space 20S.

第2溝側面11G2は、溝深さ方向に対して例えば25°の傾きを有し、マイクロ波透過窓21に近い部位ほど、生成空間20Sに近い形状を有する。第2溝側面11G2もまた、シール部材20と接触するシール箇所を、溝深さ方向の途中に備える。すなわち、シール部材20は、嵌着溝11Gの溝開口から離れている。 The second groove side surface 11G2 has an inclination of, for example, 25 ° with respect to the groove depth direction, and the portion closer to the microwave transmission window 21 has a shape closer to the generation space 20S. The second groove side surface 11G2 also has a sealing portion in contact with the sealing member 20 in the middle of the groove depth direction. That is, the seal member 20 is separated from the groove opening of the fitting groove 11G.

チャンバ11の上壁は、マイクロ波透過窓21と対向する領域に位置し、マイクロ波透過窓21との間に、シール部材20による僅かな間隙を形成する。嵌着溝11Gとマイクロ波透過窓21との間の距離は、これらチャンバ11の上壁とマイクロ波透過窓21との間隙の中でも、嵌着溝11Gの深さの分だけ他の部位よりも大きい。そして、マイクロ波透過窓21と対向するこれらの領域は、マイクロ波透過窓21を透過したマイクロ波を照射される領域である。 The upper wall of the chamber 11 is located in a region facing the microwave transmission window 21, and forms a slight gap between the chamber 11 and the microwave transmission window 21 due to the sealing member 20. The distance between the fitting groove 11G and the microwave transmission window 21 is larger than that of other parts in the gap between the upper wall of the chamber 11 and the microwave transmission window 21 by the depth of the fitting groove 11G. big. These regions facing the microwave transmission window 21 are regions that are irradiated with the microwave transmitted through the microwave transmission window 21.

ここで、溝開口とシール箇所Pとの距離Hが、生成空間20Sでのシース長未満であるから、溝開口とシール箇所Pとの間には、シースを形成するに足りる空間が存在し難い。そのため、嵌着溝11Gに向けてマイクロ波が照射されるとしても、嵌着溝11Gの中でマイクロ波プラズマが生成されることが抑制可能となる。結果として、シール部材20の劣化を抑制可能となる。 Here, since the distance H between the groove opening and the seal portion P is less than the sheath length in the generation space 20S, it is difficult for a space sufficient for forming the sheath to exist between the groove opening and the seal portion P. .. Therefore, even if the microwave is irradiated toward the fitting groove 11G, it is possible to suppress the generation of microwave plasma in the fitting groove 11G. As a result, deterioration of the seal member 20 can be suppressed.

図3が示すように、シール構造の第2例において、チャンバ11の上壁は、嵌着溝11Gを備える。嵌着溝11Gは、マイクロ波透過窓21の全周にわたる環状溝である。嵌着溝11Gの第1溝側面11G1は、第1例と同じく、溝深さ方向に対して傾きを有し、マイクロ波透過窓21に近い部位ほど、生成空間20Sから離れた形状を有する。そして、第1溝側面11G1においても、溝開口とシール箇所Pとの距離Hは、生成空間20Sで生成されるプラズマのシース長未満である。 As shown in FIG. 3, in the second example of the sealing structure, the upper wall of the chamber 11 includes a fitting groove 11G. The fitting groove 11G is an annular groove extending over the entire circumference of the microwave transmission window 21. Similar to the first example, the first groove side surface 11G1 of the fitting groove 11G has an inclination with respect to the groove depth direction, and the portion closer to the microwave transmission window 21 has a shape farther from the generation space 20S. Also, on the first groove side surface 11G1, the distance H between the groove opening and the sealing portion P is less than the sheath length of the plasma generated in the generation space 20S.

第2溝側面11G2は、溝深さ方向(上下方向)に延び、チャンバ11の上壁における上端面や、マイクロ波透過窓21の下端面とほぼ直交する。嵌着溝11Gの溝開口は、溝底部の幅(溝幅)よりも狭く、第1溝側面11G1と第2溝側面11G2との間隔は、溝底部から溝開口に向けて徐々に減少する。第2溝側面11G2は、シール部材20から離れ、第2溝側面11G2とシール部材20との間に隙間を形成している。 The second groove side surface 11G2 extends in the groove depth direction (vertical direction) and is substantially orthogonal to the upper end surface of the upper wall of the chamber 11 and the lower end surface of the microwave transmission window 21. The groove opening of the fitting groove 11G is narrower than the width (groove width) of the groove bottom portion, and the distance between the first groove side surface 11G1 and the second groove side surface 11G2 gradually decreases from the groove bottom portion toward the groove opening. The second groove side surface 11G2 is separated from the seal member 20 and forms a gap between the second groove side surface 11G2 and the seal member 20.

ここでも、溝開口とシール箇所Pとの距離Hが、生成空間20Sでのシース長未満であるから、溝開口とシール箇所Pとの間には、シースを形成するに足りる空間が存在し難い。そのため、嵌着溝11Gの中でマイクロ波プラズマが生成されることが抑制可能となるから、シール部材20の劣化を抑制可能となる。 Again, since the distance H between the groove opening and the seal portion P is less than the sheath length in the generation space 20S, it is difficult for a space sufficient to form the sheath to exist between the groove opening and the seal portion P. .. Therefore, it is possible to suppress the generation of microwave plasma in the fitting groove 11G, and it is possible to suppress the deterioration of the seal member 20.

[嵌着溝]
図4が示すように、導波部の一例である導波管22は、マイクロ波源23からマイクロ波透過窓21に向けた一方向(進行方向)に沿って、マイクロ波透過窓21までマイクロ波を導く。マイクロ波透過窓21は、進行方向を含む平面状に広がる。
[Fit groove]
As shown in FIG. 4, the waveguide 22 which is an example of the waveguide is a microwave wave from the microwave source 23 to the microwave transmission window 21 along one direction (traveling direction) toward the microwave transmission window 21. To guide. The microwave transmission window 21 extends in a plane including the traveling direction.

マイクロ波透過窓21と対向する方向から見て、マイクロ波透過窓21の中心Cを通って進行方向に延在する直線は中心線である。この中心線を基準とした中心Cの周りでの中心角θが-60°以上60°以下である範囲は、マイクロ波の照射される強度が他の部位よりも高い高照射領域である。 When viewed from the direction facing the microwave transmission window 21, the straight line extending in the traveling direction through the center C of the microwave transmission window 21 is the center line. The range in which the central angle θ around the center C with respect to the center line is −60 ° or more and 60 ° or less is a high irradiation region where the intensity of microwave irradiation is higher than that of other parts.

チャンバ11の上壁は、嵌着溝11Gに接続された円形孔11G3を備える。円形孔11G3は、嵌着溝11Gの溝深さ以上の深さを有し、かつ、嵌着溝11Gの溝底部の幅(溝幅)と同じサイズの直径を有する。なお、図4では、嵌着溝11Gの溝開口が太い実線で示され、嵌着溝11Gの溝幅が円形孔11G3の直径と同じサイズを有する。円形孔11G3は、上記中心線上以外に位置する。円形孔11G3は、高照射領域以外に位置することが好ましい。 The upper wall of the chamber 11 comprises a circular hole 11G3 connected to the fitting groove 11G. The circular hole 11G3 has a depth equal to or greater than the groove depth of the fitting groove 11G, and has a diameter having the same size as the width (groove width) of the groove bottom portion of the fitting groove 11G. In FIG. 4, the groove opening of the fitting groove 11G is shown by a thick solid line, and the groove width of the fitting groove 11G has the same size as the diameter of the circular hole 11G3. The circular hole 11G3 is located outside the center line. The circular hole 11G3 is preferably located outside the high irradiation region.

上記第1例の嵌着溝11Gを形成するには、例えば、先端に向けて拡径したドリルを用いて、チャンバ11の上壁を加工する。この際、チャンバ11の上壁には、まず、ドリルの先端を用いた切削によって円形孔11G3が形成され、次いで、円形孔11G3から嵌着溝11Gを描くようにドリルが移動して、それによって、嵌着溝11Gが形成される。 In order to form the fitting groove 11G of the first example, for example, the upper wall of the chamber 11 is machined by using a drill whose diameter is expanded toward the tip. At this time, a circular hole 11G3 is first formed on the upper wall of the chamber 11 by cutting with the tip of the drill, and then the drill moves from the circular hole 11G3 so as to draw a fitting groove 11G, thereby drawing a fitting groove 11G. , The fitting groove 11G is formed.

円形孔11G3の内周面は、シール部材20と接触する箇所を形成し難く、円形孔11G3においてシール部材20と接触する箇所は、円形孔11G3の溝底部となる。その結果、円形孔11G3では、シール部材20に接触する箇所と溝開口との距離が、生成空間20Sで生成されるプラズマのシース長以上である場合がある。すなわち、円形孔11G3の中では、嵌着溝11Gの中よりもマイクロ波プラズマが生成されやすい。 It is difficult to form a portion of the inner peripheral surface of the circular hole 11G3 that comes into contact with the seal member 20, and the portion of the circular hole 11G3 that comes into contact with the seal member 20 is the groove bottom portion of the circular hole 11G3. As a result, in the circular hole 11G3, the distance between the portion in contact with the seal member 20 and the groove opening may be longer than the sheath length of the plasma generated in the generation space 20S. That is, microwave plasma is more likely to be generated in the circular hole 11G3 than in the fitting groove 11G.

この点、円形孔11G3が中心線上以外に位置し、特に、高照射領域以外に位置する構成であれば、マイクロ波の照射が相対的に高い領域を避けて、円形孔11G3が配置される。そのため、円形孔11G3が存在することに起因したシール部材20の劣化も抑制可能となる。 In this respect, if the circular hole 11G3 is located outside the center line, and in particular, if the configuration is located outside the high irradiation region, the circular hole 11G3 is arranged while avoiding the region where the microwave irradiation is relatively high. Therefore, deterioration of the sealing member 20 due to the presence of the circular hole 11G3 can be suppressed.

以上、上記実施形態によれば、以下に列挙する効果が得られる。
(1)溝開口とシール箇所Pとの距離が、生成空間20Sでのシース長未満であるから、溝開口とシール箇所Pとの間には、シースを形成するに足りる空間が存在し難い。そのため、嵌着溝11Gの中でマイクロ波プラズマが生成されることが抑制可能となる。結果として、チャンバ11とマイクロ波透過窓21との間に介在するシール部材20の劣化を抑制可能となる。
As described above, according to the above embodiment, the effects listed below can be obtained.
(1) Since the distance between the groove opening and the seal portion P is less than the sheath length in the generation space 20S, it is difficult for a space sufficient for forming the sheath to exist between the groove opening and the seal portion P. Therefore, it is possible to suppress the generation of microwave plasma in the fitting groove 11G. As a result, deterioration of the seal member 20 interposed between the chamber 11 and the microwave transmission window 21 can be suppressed.

(2)第1溝側面11G1を備えない円形孔11G3は、マイクロ波の照射が相対的に高い領域を避けて配置される。そのため、円形孔11G3が存在することに起因したシール部材20の劣化も抑制可能となる。 (2) The circular hole 11G3 not provided with the first groove side surface 11G1 is arranged so as to avoid a region where microwave irradiation is relatively high. Therefore, deterioration of the sealing member 20 due to the presence of the circular hole 11G3 can be suppressed.

(3)嵌着溝11Gが第1溝側面11G1を備えたアリ溝である場合には、シール部材20の劣化を抑制し、かつ、嵌着溝11Gに嵌められたシール部材20が嵌着溝11Gから外れることが抑制可能となる。 (3) When the fitting groove 11G is a dovetail groove provided with the first groove side surface 11G1, deterioration of the sealing member 20 is suppressed, and the sealing member 20 fitted in the fitting groove 11G is the fitting groove. It is possible to suppress deviation from 11G.

(4)嵌着溝11Gの第2溝側面11G2が溝深さ方向に延びる場合には、嵌着溝11Gに対するシール部材20の嵌め込み負荷を軽減すること、嵌着溝11Gに嵌められたシール部材20が嵌着溝11Gから外れることを抑制すること、これらの均衡を図ることが可能ともなる。 (4) When the second groove side surface 11G2 of the fitting groove 11G extends in the groove depth direction, the fitting load of the sealing member 20 on the fitting groove 11G should be reduced, and the sealing member fitted in the fitting groove 11G should be reduced. It is also possible to prevent the 20 from coming off the fitting groove 11G and to balance these.

なお、上記実施形態は、以下のように適宜変更して実施することができる。
・シール構造の第1例において、嵌着溝11Gの第2溝側面11G2とシール部材20との間に、第2溝側面11G2と密着するバックアップリングをさらに備えることも可能である。
・プラズマ処理装置は、マイクロ波透過窓21に対する生成空間20Sとは反対側に、導電性を有したスロットアンテナをさらに備えることも可能である。
The above embodiment can be appropriately modified and implemented as follows.
-In the first example of the seal structure, it is also possible to further provide a backup ring in close contact with the second groove side surface 11G2 between the second groove side surface 11G2 of the fitting groove 11G and the seal member 20.
-The plasma processing device may further include a slot antenna having conductivity on the side opposite to the generation space 20S with respect to the microwave transmission window 21.

θ…中心角、C…中心、H…距離、P…シール箇所、11…チャンバ、11G…嵌着溝、11G1…第1溝側面、11G2…第2溝側面、11G3…円形孔、11H…ガスポート、11S…処理空間、12…区画孔、13…区画部材、13H…導出孔、14…拡散部材、20…シール部材、20S…生成空間、21…マイクロ波透過窓、22…導波管、22S…導波空間、23…マイクロ波源。
θ ... central angle, C ... center, H ... distance, P ... seal location, 11 ... chamber, 11G ... fitting groove, 11G1 ... first groove side surface, 11G2 ... second groove side surface, 11G3 ... circular hole, 11H ... gas Port, 11S ... processing space, 12 ... partition hole, 13 ... partition member, 13H ... lead hole, 14 ... diffusion member, 20 ... seal member, 20S ... generation space, 21 ... microwave transmission window, 22 ... waveguide, 22S ... Waveguide space, 23 ... Microwave source.

Claims (6)

嵌着溝を備えて接地されたチャンバ壁と、
前記チャンバ壁と対向するマイクロ波透過窓と、
前記チャンバ壁と前記マイクロ波透過窓との間に介在するシール部材と、を備え、
前記シール部材は、前記嵌着溝に嵌められて、前記チャンバ壁と前記マイクロ波透過窓との間隙を生成空間と外部空間とに区画し、
前記嵌着溝は、生成空間側の第1溝側面と、外部空間側の第2溝側面とを備え、
前記第1溝側面は、溝深さ方向に対して傾きを有し、前記マイクロ波透過窓に近い部位ほど前記生成空間から離れる形状を備え、かつ、溝底部と溝開口との間に前記シール部材と接触するシール箇所を備え、
前記溝開口と前記シール箇所との距離は、前記生成空間で生成されるプラズマのシース長未満であり、
進行方向に沿って前記マイクロ波透過窓までマイクロ波を導く導波部をさらに備え、
前記マイクロ波透過窓は、前記進行方向を含む平面状に広がり、
前記チャンバ壁は、円形孔を有し、
前記円形孔は、
前記マイクロ波透過窓と対向する方向から見て、前記溝開口と一部が重なる円形の孔開口を有し、前記孔開口と前記第1溝側面の上端とが接続されるように前記嵌着溝に接続されると共に、前記円形孔の内周面に前記嵌着溝を接続されるように前記嵌着溝の深さ方向に沿って延びて、前記嵌着溝の溝深さ以上の深さを有し、かつ、前記嵌着溝の前記溝底部における溝幅と同じサイズの直径を有し
前記マイクロ波透過窓と対向する方向から見て、前記マイクロ波透過窓の中心を通って前記進行方向に延在する直線が中心線であり、前記円形孔は、前記中心線上以外に位置す
プラズマ処理装置。
A grounded chamber wall with a fitting groove,
A microwave transmission window facing the chamber wall,
A sealing member interposed between the chamber wall and the microwave transmission window is provided.
The sealing member is fitted in the fitting groove to partition the gap between the chamber wall and the microwave transmission window into a generation space and an external space.
The fitting groove includes a first groove side surface on the generation space side and a second groove side surface on the external space side.
The side surface of the first groove has an inclination with respect to the depth direction of the groove, has a shape in which a portion closer to the microwave transmission window is separated from the generation space, and the seal is provided between the bottom of the groove and the opening of the groove. Equipped with a sealing point that comes into contact with the member,
The distance between the groove opening and the sealing portion is less than the sheath length of the plasma generated in the generation space .
Further provided with a waveguide that guides microwaves along the traveling direction to the microwave transmission window.
The microwave transmission window spreads in a plane including the traveling direction,
The chamber wall has a circular hole and has a circular hole.
The circular hole is
The fitting has a circular hole opening that partially overlaps the groove opening when viewed from a direction facing the microwave transmission window, and the hole opening and the upper end of the side surface of the first groove are connected to each other. It is connected to the groove and extends along the depth direction of the fitting groove so that the fitting groove is connected to the inner peripheral surface of the circular hole, and is deeper than the groove depth of the fitting groove. And has a diameter of the same size as the groove width at the groove bottom of the fitting groove.
When viewed from the direction facing the microwave transmission window, the straight line extending in the traveling direction through the center of the microwave transmission window is the center line, and the circular hole is located outside the center line. To do
Plasma processing equipment.
前記嵌着溝は、アリ溝である
請求項に記載のプラズマ処理装置。
The plasma processing apparatus according to claim 1 , wherein the fitting groove is a dovetail groove.
前記第2溝側面は、前記溝深さ方向に延びる
請求項に記載のプラズマ処理装置。
The plasma processing apparatus according to claim 1 , wherein the side surface of the second groove extends in the depth direction of the groove.
嵌着溝を備えて接地されたチャンバ壁と、
前記チャンバ壁と対向するマイクロ波透過窓と、
前記チャンバ壁と前記マイクロ波透過窓との間に介在するシール部材と、
進行方向に沿って前記マイクロ波透過窓までマイクロ波を導く導波部と、を備え、
前記シール部材は、前記嵌着溝に嵌められて、前記チャンバ壁と前記マイクロ波透過窓との間隙を生成空間と外部空間とに区画し、
前記嵌着溝は、生成空間側の第1溝側面と、外部空間側の第2溝側面とを備え、
前記マイクロ波透過窓は、前記進行方向を含む平面状に広がり、
前記チャンバ壁は、円形孔を有し、
前記円形孔は、
前記マイクロ波透過窓と対向する方向から見て、前記嵌着溝の溝開口と一部が重なる円形の孔開口を有し、前記孔開口と前記第1溝側面の上端とが接続されるように前記嵌着溝に接続されると共に、前記円形孔の内周面に前記嵌着溝を接続されるように前記嵌着溝の深さ方向に沿って延びて、前記嵌着溝の溝深さ以上の深さを有し、かつ、前記嵌着溝の溝幅と同じサイズの直径を有し
前記マイクロ波透過窓と対向する方向から見て、前記マイクロ波透過窓の中心を通って前記進行方向に延在する直線が中心線であり、前記円形孔は、前記中心線上以外に位置する
プラズマ処理装置。
A grounded chamber wall with a fitting groove,
A microwave transmission window facing the chamber wall,
A sealing member interposed between the chamber wall and the microwave transmission window,
A waveguide that guides microwaves to the microwave transmission window along the traveling direction is provided.
The sealing member is fitted in the fitting groove to partition the gap between the chamber wall and the microwave transmission window into a generation space and an external space.
The fitting groove includes a first groove side surface on the generation space side and a second groove side surface on the external space side.
The microwave transmission window spreads in a plane including the traveling direction,
The chamber wall has a circular hole and has a circular hole.
The circular hole is
When viewed from the direction facing the microwave transmission window, it has a circular hole opening that partially overlaps the groove opening of the fitting groove, and the hole opening and the upper end of the side surface of the first groove are connected to each other. The fitting groove is connected to the fitting groove and extends along the depth direction of the fitting groove so that the fitting groove is connected to the inner peripheral surface of the circular hole. It has a depth greater than that and has a diameter of the same size as the groove width of the fitting groove.
When viewed from the direction facing the microwave transmission window, the straight line extending in the traveling direction through the center of the microwave transmission window is the center line, and the circular hole is located outside the center line. Plasma processing equipment.
前記中心線を基準とした前記中心の周りでの中心角であって前記中心から前記進行方向を0°とする前記中心角が-60°以上60°以下である範囲が高照射領域であり、
前記円形孔は、前記高照射領域以外に位置する
請求項1から4のいずれか一項に記載のプラズマ処理装置。
The high irradiation region is a range in which the central angle around the center with respect to the center line is -60 ° or more and 60 ° or less with the traveling direction as 0 ° from the center .
The plasma processing apparatus according to any one of claims 1 to 4 , wherein the circular hole is located outside the high irradiation region.
嵌着溝を備えて接地されたチャンバ壁と、当該チャンバ壁と対向するマイクロ波透過窓との間に介在するシール部材を備え、前記シール部材が前記嵌着溝に嵌められて前記チャンバ壁と前記マイクロ波透過窓との間隙を生成空間と外部空間とに区画するプラズマ処理装置を用いたプラズマ処理方法であって、
前記嵌着溝は、生成空間側の第1溝側面と、外部空間側の第2溝側面とを備え、
前記第1溝側面は、溝深さ方向に対して傾きを有し、前記マイクロ波透過窓に近い部位ほど前記生成空間から離れる形状を備え、かつ、溝底部と溝開口との間に前記シール部材と接触するシール箇所を備え、
前記プラズマ処理装置は、
進行方向に沿って前記マイクロ波透過窓までマイクロ波を導く導波部をさらに備え、
前記マイクロ波透過窓は、前記進行方向を含む平面状に広がり、
前記チャンバ壁は、円形孔を有し、
前記円形孔は、
前記マイクロ波透過窓と対向する方向から見て、前記溝開口と一部が重なる円形の孔開口を有し、前記孔開口と前記第1溝側面の上端とが接続されるように前記嵌着溝に接続されると共に、前記円形孔の内周面に前記嵌着溝を接続されるように前記嵌着溝の深さ方向に沿って延びて、前記嵌着溝の溝深さ以上の深さを有し、かつ、前記嵌着溝の前記溝底部における溝幅と同じサイズの直径を有し、
前記マイクロ波透過窓と対向する方向から見て、前記マイクロ波透過窓の中心を通って前記進行方向に延在する直線が中心線であり、前記円形孔は、前記中心線上以外に位置し、
前記溝開口と前記シール箇所との距離が、前記生成空間でのシース長未満であるように、前記生成空間にガスを供給し、かつ、前記マイクロ波透過窓から前記生成空間にマイクロ波を伝播させる
プラズマ処理方法。
A sealing member is provided between a chamber wall grounded with a fitting groove and a microwave transmission window facing the chamber wall, and the sealing member is fitted into the fitting groove to the chamber wall. It is a plasma processing method using a plasma processing apparatus that divides a gap between the microwave transmission window into a generation space and an external space.
The fitting groove includes a first groove side surface on the generation space side and a second groove side surface on the external space side.
The side surface of the first groove has an inclination with respect to the depth direction of the groove, has a shape in which a portion closer to the microwave transmission window is separated from the generation space, and the seal is provided between the bottom of the groove and the opening of the groove. Equipped with a sealing point that comes into contact with the member,
The plasma processing device is
Further provided with a waveguide that guides microwaves along the traveling direction to the microwave transmission window.
The microwave transmission window spreads in a plane including the traveling direction,
The chamber wall has a circular hole and has a circular hole.
The circular hole is
The fitting has a circular hole opening that partially overlaps the groove opening when viewed from a direction facing the microwave transmission window, and the hole opening and the upper end of the side surface of the first groove are connected to each other. It is connected to the groove and extends along the depth direction of the fitting groove so that the fitting groove is connected to the inner peripheral surface of the circular hole, and is deeper than the groove depth of the fitting groove. And has a diameter of the same size as the groove width at the groove bottom of the fitting groove.
When viewed from the direction facing the microwave transmission window, the straight line extending in the traveling direction through the center of the microwave transmission window is the center line, and the circular hole is located outside the center line.
Gas is supplied to the generation space and microwaves are propagated from the microwave transmission window to the generation space so that the distance between the groove opening and the sealing portion is less than the sheath length in the generation space. Plasma processing method to make.
JP2018042025A 2018-03-08 2018-03-08 Plasma processing equipment and plasma processing method Active JP7077072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018042025A JP7077072B2 (en) 2018-03-08 2018-03-08 Plasma processing equipment and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018042025A JP7077072B2 (en) 2018-03-08 2018-03-08 Plasma processing equipment and plasma processing method

Publications (2)

Publication Number Publication Date
JP2019160460A JP2019160460A (en) 2019-09-19
JP7077072B2 true JP7077072B2 (en) 2022-05-30

Family

ID=67993542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018042025A Active JP7077072B2 (en) 2018-03-08 2018-03-08 Plasma processing equipment and plasma processing method

Country Status (1)

Country Link
JP (1) JP7077072B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268763A (en) 2004-02-16 2005-09-29 Tokyo Electron Ltd Plasma treatment apparatus and plasma treatment method
JP2008047883A (en) 2006-07-20 2008-02-28 Hokuriku Seikei Kogyo Kk Shower plate and its fabrication process, plasma processing equipment employing it, plasma processing method and process for fabricating electronic device
JP2010251064A (en) 2009-04-14 2010-11-04 Ulvac Japan Ltd Plasma generator
JP2011029559A (en) 2009-07-29 2011-02-10 Ulvac Japan Ltd Plasma treating apparatus and tray for the same
US20150303036A1 (en) 2014-04-16 2015-10-22 Semes Co., Ltd. Substrate treatment apparatus including sealing member having atypical section
US20160189938A1 (en) 2014-12-31 2016-06-30 Applied Materials, Inc. One-piece process kit shield
JP2016534299A (en) 2013-08-16 2016-11-04 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Sealing groove method for semiconductor devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268763A (en) 2004-02-16 2005-09-29 Tokyo Electron Ltd Plasma treatment apparatus and plasma treatment method
JP2008047883A (en) 2006-07-20 2008-02-28 Hokuriku Seikei Kogyo Kk Shower plate and its fabrication process, plasma processing equipment employing it, plasma processing method and process for fabricating electronic device
JP2010251064A (en) 2009-04-14 2010-11-04 Ulvac Japan Ltd Plasma generator
JP2011029559A (en) 2009-07-29 2011-02-10 Ulvac Japan Ltd Plasma treating apparatus and tray for the same
JP2016534299A (en) 2013-08-16 2016-11-04 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Sealing groove method for semiconductor devices
US20150303036A1 (en) 2014-04-16 2015-10-22 Semes Co., Ltd. Substrate treatment apparatus including sealing member having atypical section
US20160189938A1 (en) 2014-12-31 2016-06-30 Applied Materials, Inc. One-piece process kit shield

Also Published As

Publication number Publication date
JP2019160460A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
TWI436697B (en) Plasma processing device
KR101096950B1 (en) Plasma Treatment Apparatus and Plasma Treatment Method
TWI643236B (en) Plasma processing device
JP5792315B2 (en) Plasma processing equipment
KR101176061B1 (en) Top plate and plasma processing apparatus
JP2015072885A (en) Plasma processing device
KR102279533B1 (en) Dielectric window, antenna and plasma processing apparatus
WO2003105544A1 (en) Plasma processing device
JP2010258461A (en) Plasma processing apparatus and top plate for plasma processing apparatus
TW201320142A (en) Antenna, dielectric window, plasma processing apparatus and plasma processing method
US10886097B2 (en) Plasma processing apparatus and plasma processing method
US20230005722A1 (en) Plasma processing apparatus and plasma processing method
KR102068861B1 (en) Antenna and plasma processing apparatus
JP7077072B2 (en) Plasma processing equipment and plasma processing method
JP6501493B2 (en) Plasma processing system
JP2006040638A (en) Plasma processing device
JP2004186303A (en) Plasma processing device
WO2021179637A1 (en) Dielectric filter capable of improving harmonics
KR102337936B1 (en) Plasma processing apparatus
KR101427720B1 (en) Plasma waveguide using step part and block part
JP2007109670A (en) Plasma processing device
JP6046985B2 (en) Microwave plasma generator
JP4390604B2 (en) Plasma processing equipment
JP2016091603A (en) Microwave plasma processing device
JP2019192420A (en) Microwave processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220518

R150 Certificate of patent or registration of utility model

Ref document number: 7077072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150