JP2019158652A - 誘電体材料評価装置 - Google Patents

誘電体材料評価装置 Download PDF

Info

Publication number
JP2019158652A
JP2019158652A JP2018046843A JP2018046843A JP2019158652A JP 2019158652 A JP2019158652 A JP 2019158652A JP 2018046843 A JP2018046843 A JP 2018046843A JP 2018046843 A JP2018046843 A JP 2018046843A JP 2019158652 A JP2019158652 A JP 2019158652A
Authority
JP
Japan
Prior art keywords
dielectric material
axis direction
probe
probes
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018046843A
Other languages
English (en)
Other versions
JP7065502B2 (ja
Inventor
亮 坂巻
Ryo Sakamaki
亮 坂巻
堀部 雅弘
Masahiro Horibe
雅弘 堀部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018046843A priority Critical patent/JP7065502B2/ja
Publication of JP2019158652A publication Critical patent/JP2019158652A/ja
Application granted granted Critical
Publication of JP7065502B2 publication Critical patent/JP7065502B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

【課題】小型で比誘電率が高い計測対象物であっても、実効比誘電率、比誘電率を正確かつ簡便に計測可能にする。【解決手段】誘電体材料の評価装置は、評価対象である誘電体材料3を載置するサンプルステージ6と、ベクトルネットワークアナライザ5に付属し、誘電体材料3のX軸方向に離隔した位置において誘電体材料3に接触する一対のプローブと、一対のプローブ2a、2bのそれぞれについて誘電体材料3に対するX軸方向、Y軸方向、Z軸方向の位置決めを独立して行う移動機構とを備えている。プローブ2a、2bのうち、一方のプローブに対する他方のプローブの誘電体材料3に対するX軸方向の位置を所定の距離ずつシフトさせるたびに、ベクトルネットワークアナライザ5が複素電力比の周波数特性を計測測定し、その振幅が極値となる共振周波数に基づいて、誘電体材料3の比誘電率εeffを求める。【選択図】 図3

Description

本発明は、チタン酸バリウムに代表される半導体セラミックス等、誘電体材料の誘電特性を計測するための誘電体材料評価装置に関する。
スマートフォンのような移動体通信機器の小型化、高性能化に伴い、マイクロ波回路構成用の誘電体基板の物性値、特に比誘電率といった誘電定数の高精度な計測の必要性が急速に高まっている。
特許文献1には、第1、第2の誘電体基板にリング状の共振器を一体的に形成し、両者の共振周波数、無負荷Q値を計測することにより、誘導体基板の電磁気的物性値を求めることが記載されている。
特許文献2には、誘導体支持基板上にリング状の間隙により内側導体と外側導体に分割された導体膜と、この導体膜の上面、下面に積層された誘導体薄膜を設け、内側導体、外側導体の一方から他方に向けて電界を発生する共振モードを得ることにより比誘電率や誘導正接の計測を高精度化することが記載されている。
特許第4373902号公報 特許第4540596公報
しかし、特許文献1、2の計測装置では、予め、専用のリング状共振器を備えた計測対象を作成し、リング共振を発生させるための実験条件を模索する必要があり、時間やコストを要するばかりでなく、高精度な計測結果を得ることができないといった問題があった。
これに対する解決手段として、リング共振器aの上に計測対象物である誘電体材料(DUT)を設置することで、実効比誘電率を変化させ、共振周波数の変化をみる手法が考えられる。
しかしながら、計測対象物の誘電率が高い場合、特に比誘電率が20以上の場合には、リング共振器aのリング回路における実効比誘電率が大きく変化するため、特性インピーダンスのずれによって、式(1)に従って回路での反射の影響が大きくなり、精度の高い計測ができず、比誘電率の評価値に50%程度の誤差が発生する場合もあった。
Figure 2019158652
なお、Γは反射係数、Z0は線路の特性インピーダンス(通常50Ω)、Zは誘電体設置部の特性インピーダンスである。
そこで、本発明の目的は、小型で、しかも比誘電率が高い計測対象物であっても、その実効比誘電率、比誘電率を正確かつ簡便に計測可能とすることにある。
本発明では、プローブを伝送路中にコンタクトさせ、その後方での反射波との共振を利用して、計測対象物である基板の誘電特性を計測・評価するものである。
より具体的には、本発明の誘電体材料の評価装置は、評価対象である誘電体材料を載置するサンプルステージと、ベクトルネットワークアナライザに付属するプローブであって、前記誘電体材料のX軸方向に離隔した位置において前記誘電体材料に接触する一対のプローブと、前記一対のプローブのそれぞれについて前記誘電体材料に対するX軸方向、Y軸方向、Z軸方向の位置決めを独立して行う移動機構と、前記一対のプローブのうち、一方のプローブに対する他方のプローブの前記誘電体材料に対するX軸方向の位置を所定の距離ずつシフトさせるたびに、前記ベクトルネットワークアナライザが複素電力比の周波数特性を計測し、その振幅が極値となる共振周波数に基づいて、前記誘電体材料の比誘電率εrを求めようにした。
本発明によれば、リング共振器のような特殊なデバイスは不要であるため、例えば屈曲した伝送線路や抵抗体、その他さまざまなデバイスを接続する伝送線路を利用してその誘電特性を評価することが可能となる。
図1は本発明の基本原理を示す図である。 図2は周波数測定装置が計測し得る最大測定周波数fmax(GHz)に対する最低ライン長の関係を示す図である。 図3は本発明による誘電体材料評価装置の実施例を示す図である。
以下、図面を用いて本発明の実施例を説明する。
図1は、本発明の基本原理を示すもので、計測対象物の誘電体材料である誘電体材料3(図3参照)上の導体パターン1の表面には、その一方の端部(図1における左端)から他方に端部(図1における右端)に向けて移動する可動高周波プローブ2aと、他方の端部に固定された固定高周波プローブ2bが電気的に接触している。
図1において、長さLのパターン1の左端を原点とし、長手方向をX軸としたとき、X=Xmのとき、可動高周波プローブ2aの基板左端までの距離(ライン長)はXm、可動高周波プローブ2aと固定高周波プローブ2bまでの距離は、L−Xmとなる。
ここで、周波数測定装置が計測し得る最大測定周波数fmaxに対する波長λr,e,0を式(2)で定義し(Coは定数)、実効比誘電率をεeff、共振を発生させるための最低ライン長をlr,minとしたとき、式(3)を満たすこと、すなわち、フィードライン長(給電線路長)lfeedが、最低ライン長lr,minより長いことが必要である。
Figure 2019158652
Figure 2019158652
図2は、計測対象物である基板がCPW⇔MSTL変換素子の場合(a)、ベンド式の場合(b)、デバイス接続の場合(c)を例に、周波数測定装置が計測し得る最大測定周波数fmax(GHz)に対する最低ライン長の関係を示すものである。なお、図2下方のグラフにおいて、上から順に比誘電率が1,4,9.8,40の基板の場合を示している。
図3に本発明による誘電体材料評価装置の実施例を示す。
本実施例では、可動高周波プローブ2aは、本体20aと、その左右両側に配置された2個のグランド端子21a、中央に配置されたシグナル端子22aを備えている。同様に、固定高周波プローブ2bは、本体20bと、その左右両側に配置された2個のグランド端子21b、中央に配置されたシグナル端子22bを備えている。可動高周波プローブ2a、固定高周波プローブ2bからなる一対の高周波プローブの各端子が、プローブステーションのサンプルステージ6上に載置された評価対象である誘電体材料3上のパターン1の左右両サイドにそれぞれ接触するよう配備されている。なお、本実施例では、パターン1は、電気的に3分割されており、可動高周波プローブ2aの左右両側に配置された2個のグランド端子21aが接触する両サイド部分がそれぞれグランドラインを、中央のシグナル端子22aが接触する中央部がシグナルラインを構成している。
各端子から延びる信号ラインは、それぞれ同軸ケーブル4a、4bを形成し、ベクトルネットワークアナライザ5の両接続端子に接続されている。なお、誘電体材料3は、可動高周波プローブ2a、固定高周波プローブ2bを支持するプローブステーションのサンプルステージ6上に位置決めされている。また、本実施例で使用するプローブは、グランド-シグナル-グランド(GSG)プローブであるが、原理的にはGS、GSGSGタイプ、SGSGSタイプのプローブでも同様に動作する。
こうしたプローブに関しては、50、75、100、150、250ミクロンなど、様々なピッチのものが市販されており、パターン1の線路幅等に合わせて、最適なピッチのプローブを選択する。
プローブステーション6には、可動高周波プローブ2aを支持し、図3に示す、パターン1に対するX軸方向、Y軸方向の位置決めを行うプローブステージ(図示せず)が設けられている。可動高周波プローブ2aのX軸方向、Y軸方向の位置決めについては、後述する比誘電率を演算により求める際、順路と復路で誤差が相殺されるため、必ずしも高精度である必要なく、工作機械などで使用されている位置決め機構を利用すればよい。可動高周波プローブ2a、固定高周波プローブ2bのZ軸方向の位置については、発明者らが先に提案した位置決め機構(WO2017/203876参照)を用いて、プローブステージをZ軸に沿って少しずつ下降させてパターン1に接近させ、プローブからの入出力信号から算出される反射係数によりZ軸方向の最適位置を求めるようにする。
以下、本実施例による誘電特性の計測について説明する。
図3において、可動高周波プローブ2a用のプローブステージのX軸移動機構を用いて、評価対象である誘電体材料に対し、ΔXずつ、0,X1,・・・・Xm-1,Xmと順次移動させる。
ベクトルネットワークアナライザ5は、その片側ポートからの入射波に対するそれぞれのポートへの出射波の複素電力比(透過特性を示すS21あるいは反射特性を示すS11)、すなわち、伝送波電力/入射波電力(順方向の伝送係数)の周波数特性を測定する。入力する信号は何らかのパルスであればよく、特に制限はない。
すなわち、可動高周波プローブ2aのシグナル端子22aから固定高周波プローブ2bのシグナル端子22bに直接伝搬するパルスと、可動高周波プローブ2aのシグナル端子22aから基板1の左側端面に向かい反射して固定高周波プローブ2bのシグナル端子22bに向かう反射パルスが発生する。ここで、可動高周波プローブ2aのX軸方向の座標がXmのとき、両者間の経路差は、
(L―Xm)−((L−Xm)+2Xm)=−2Xmとなる。
この差が伝搬するパルスの波長(2n−1)λ/2となるとき、一次共振が発生するので、S21の振幅が極小値となる時の周波数(すなわち、共振周波数:fr)を評価する。
frは比誘電率によって変化する。また、−2Xmがλ/2に等しくなる一次共振(n=1)だけではなく、(2n−1)λ/2(n>1)となる場合にも共振が発生するため、これらも解析に利用できる。
次に本発明の実験結果を説明する。
実験では、通常の伝送線路(インピーダンス基準基板101−190(カスケードマイクロテック製)上の5.25mmのLine基準器)を用いて検証を行なった。図3において、片側のプローブ位置をX軸方向に500μmずつ右側にシフトし、各位置(Xm)でS21を取得する。そのS21で特定された共振点におけるn次の共振周波数をfr(Xm,n)とする。なお、Xmは、プローブの座標から取得する。
以上により求めたパラメータに基づいて、下記の(4)、(5)に基づいて、実効比誘電率εeff(Xm,n)を求める。
Figure 2019158652
Figure 2019158652
基板の比誘電率εr(Xm,n)は、式(4)、(5)で求めたεeff(Xm,n)を用いて、
εr(Xm、n)=(εeff(Xm,n)+1)/2
により求めることができる。
今回はプローブのシフトは10回行い、得られたεr(Xm,n)から、33、67、97GHzでのεr(Xm,n)の評価結果の平均値と標準偏差を算出した。
なお、比誘電率εrの評価精度を向上するため、ΔX、すなわち1回のシフト量(実験では500μmずつ)をより小さくしてデータサンプリング数を増やすのが有効である。
また、計測ラインの端部のデータがノイズの原因となる場合は、評価対象である誘電体材料の端面(図では左側端面)から少なくとも100μm程度離れた位置からのデータを採用する。
以上説明したように、本発明によれば、特殊なデバイスを用いることなく、さまざまなデバイスを接続する伝送線路を利用してその誘電特性を正確に評価することが可能となり、誘電体材料の評価装置として広く採用されることが期待できる。
1・・・・・・導体パターン
2a・・・可動高周波プローブ
2b・・・・・固定高周波プローブ
3・・・誘電体材料(評価対象)
4a、4b・・同軸ケーブル
5・・・ベクトルネットワークアナライザ
6・・・・・・プローブステーションのサンプルステージ

Claims (4)

  1. 評価対象である誘電体材料を載置するサンプルステージと、
    高周波電気特性評価装置に付属するプローブであって、前記誘電体材料のX軸方向に離隔した位置において前記誘電体材料に接触する一対のプローブと、
    前記一対のプローブのそれぞれについて前記誘電体材料に対するX軸方向、Y軸方向、Z軸方向の位置決めを独立して行う移動機構と、
    前記一対のプローブのうち、一方のプローブに対する他方のプローブの前記誘電体材料に対するX軸方向の位置を所定の距離ずつシフトさせるたびに、前記高周波電気特性評価装置が複素電力比の周波数特性を計測し、その振幅が極値となる共振周波数に基づいて、前記誘電体材料の比誘電率εeffを求めることを特徴とする誘電体材料の評価装置。
  2. 前記高周波電気特性評価装置はベクトルネットワークアナライザーであることを特徴とする請求項1に記載の装置。
  3. 前記一対のプローブのうち、シフトさせるプローブと前記誘電体材料の線路との接触位置と前記線路の端部までの距離lfeedが下記式(3)を満たす位置であることを特徴とする請求項1に記載された誘電体材料の評価装置。
    Figure 2019158652
    ただし、前記ベクトルネットワークアナライザが計測し得る最大測定周波数fmaxに対する波長λr,e,0を下記式(2)で定義し(Coは定数)、実効比誘電率をεeff、共振を発生させるための最低ライン長をlr,minとする。
    Figure 2019158652
  4. 下記の(4)、(5)を用いて、比誘電率εeff(Xm,n)を求める請求項1に記載された誘電体材料の評価装置。
    Figure 2019158652
    Figure 2019158652
    ただし、fr(Xm,n)は、X軸座標がXmにおけるn次の波形の共振周波数、λe(Xm,n)はその波長で、Xm、Xm-1は、前記移動機構から取得したプローブ座標である。
JP2018046843A 2018-03-14 2018-03-14 誘電体材料評価装置 Active JP7065502B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018046843A JP7065502B2 (ja) 2018-03-14 2018-03-14 誘電体材料評価装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046843A JP7065502B2 (ja) 2018-03-14 2018-03-14 誘電体材料評価装置

Publications (2)

Publication Number Publication Date
JP2019158652A true JP2019158652A (ja) 2019-09-19
JP7065502B2 JP7065502B2 (ja) 2022-05-12

Family

ID=67996249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046843A Active JP7065502B2 (ja) 2018-03-14 2018-03-14 誘電体材料評価装置

Country Status (1)

Country Link
JP (1) JP7065502B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113789A (zh) * 2021-11-25 2022-03-01 天津大学 一种高频下测量金属薄膜电导率的装置及方法
JP7370060B2 (ja) 2020-03-25 2023-10-27 国立研究開発法人産業技術総合研究所 誘電体材料の評価方法、評価装置及び評価システム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146742A1 (en) * 2014-11-26 2016-05-26 National Tsing Hua University System and method for measuring permittivity
WO2017203876A1 (ja) * 2016-05-27 2017-11-30 国立研究開発法人産業技術総合研究所 高周波プローブ位置補正技術

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160146742A1 (en) * 2014-11-26 2016-05-26 National Tsing Hua University System and method for measuring permittivity
WO2017203876A1 (ja) * 2016-05-27 2017-11-30 国立研究開発法人産業技術総合研究所 高周波プローブ位置補正技術

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
加藤悠人: "共振現象を利用した高誘電体材料評価法の開発", 電子情報通信学会2016年総合大会講演論文集 エレクトロニクス1, JPN6021040720, 2016, pages 111 - 2, ISSN: 0004619173 *
坂巻亮: "ミリ波帯平面回路計測における誘電体導波路の実証", 電子情報通信学会総合大会 2018年総合大会プログラム, vol. エレクトロニクス講演論文集1, JPN6022014008, 6 March 2018 (2018-03-06), pages 66 - 2, ISSN: 0004747617 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7370060B2 (ja) 2020-03-25 2023-10-27 国立研究開発法人産業技術総合研究所 誘電体材料の評価方法、評価装置及び評価システム
CN114113789A (zh) * 2021-11-25 2022-03-01 天津大学 一种高频下测量金属薄膜电导率的装置及方法
CN114113789B (zh) * 2021-11-25 2023-07-21 天津大学 一种高频下测量金属薄膜电导率的装置及方法

Also Published As

Publication number Publication date
JP7065502B2 (ja) 2022-05-12

Similar Documents

Publication Publication Date Title
KR100865112B1 (ko) 피시험 장치 테스트용 프로브
US20120176145A1 (en) Impedance tuner systems and probes
US9804195B2 (en) HF measuring probe contacting assembly
JP7065502B2 (ja) 誘電体材料評価装置
JP2011247720A (ja) Trl校正標準器およびそれを備えた校正装置
JP7370060B2 (ja) 誘電体材料の評価方法、評価装置及び評価システム
JP2007010522A (ja) スルー標準器基板及びライン標準器基板
CN112599948A (zh) 定向耦合器
EP3028339B1 (en) Ultra-wideband impedance tuner
JP4370463B2 (ja) 広帯域高周波誘電率測定方法およびその装置
RU2710514C1 (ru) Способ измерения S-параметров объектов в нестандартных направляющих системах
JP7012349B2 (ja) 走査型マイクロ波顕微鏡、及びこれを用いた被測定物の表面の電気特性の測定方法
JP5566747B2 (ja) ミリ波伝送線路、これを用いた回路基板、および回路基板の測定方法
JP2010175378A (ja) アンテナ測定用プローブ及びこれを用いた測定方法
JP3659461B2 (ja) 高周波測定用基板
TW201500742A (zh) 印刷電路板輻射干擾的估測方法
JP7011806B2 (ja) 誘電体材料評価装置
JP2018151211A (ja) 高周波インピーダンス測定方法
JP6288447B2 (ja) 高周波導電率測定用装置及び高周波導電率測定方法
KR102124032B1 (ko) 마이크로파 센서
Hoffmann et al. A new interferometric sensor for scanning near-field microwave microscopy
Urakami et al. A Study on Design of Microstrip Linear Tapered Line Impedance Transformer Using FFT
Jing et al. A well-designed sensor based on split-ring resonators at microwave frequencies
JP4698244B2 (ja) 電磁気的物性値の測定方法
JP6378387B1 (ja) 伝送線路−導波管変換器及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220419

R150 Certificate of patent or registration of utility model

Ref document number: 7065502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150