JP2019157562A - Floor material - Google Patents

Floor material Download PDF

Info

Publication number
JP2019157562A
JP2019157562A JP2018048005A JP2018048005A JP2019157562A JP 2019157562 A JP2019157562 A JP 2019157562A JP 2018048005 A JP2018048005 A JP 2018048005A JP 2018048005 A JP2018048005 A JP 2018048005A JP 2019157562 A JP2019157562 A JP 2019157562A
Authority
JP
Japan
Prior art keywords
support
thickness
reinforced resin
insulating material
flooring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018048005A
Other languages
Japanese (ja)
Other versions
JP7067973B2 (en
Inventor
諭司 長瀬
Satoshi Nagase
諭司 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2018048005A priority Critical patent/JP7067973B2/en
Publication of JP2019157562A publication Critical patent/JP2019157562A/en
Application granted granted Critical
Publication of JP7067973B2 publication Critical patent/JP7067973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)
  • Floor Finish (AREA)

Abstract

To provide a light-weight floor material capable of reducing in particular heavy floor impact noises with high vibration suppression while being lightweight.SOLUTION: The floor material comprises: a layer of high thermal insulation material of 20-300 mm in thickness; and a layer of 0.1-30 mm in thickness formed over at least one side of the support member, in which the flexural rigidity is 1.5×10-1.5×10GPa*mm, and weight per unit area is 2-110 kg/m.SELECTED DRAWING: None

Description

本発明は軽量の建築材料に関し、詳しくは建築物の床構造の上面に設置して用いられる軽量な床材に関する。   The present invention relates to a lightweight building material, and more particularly to a lightweight flooring material used by being installed on the upper surface of a floor structure of a building.

木質材料は、軽量で加工性がよい材料的な特徴と、癒し効果やリラックス効果などの意匠的な特徴を合わせ持ち、従来から住宅用の建築物に多く使用されてきた。近年、木材、特に国産木材の利用がさらに進められており、住宅用の建築物を含む木造建築物の大型化と高層化の技術開発が盛んに行われている。   Woody materials have both material characteristics that are lightweight and have good processability, and design characteristics such as healing effects and relaxation effects, and have been widely used in residential buildings. In recent years, the use of timber, especially domestic timber, has been further promoted, and technical development of increasing the size and height of wooden buildings including residential buildings has been actively conducted.

住宅用木造建築物において複数階のフロアを有する場合、快適な居住性を得るために、断熱性や高い遮音性能が必要とされる。木造床の遮音性能を向上する方法として、例えば、緩衝材や充填剤を含むポリマーシートを木質板材に積層したものを床材として用いる方法がこれまで提案されている(特許文献1)。しかし、この方法で低減できるのはいわゆる軽量床衝撃音であり、集合住宅で問題となる重量床衝撃音(例えば子供の飛び跳ねなどで発生する音など)の低減には至っていない。   When a residential wooden building has a plurality of floors, heat insulation and high sound insulation performance are required in order to obtain comfortable living. As a method for improving the sound insulation performance of a wooden floor, for example, a method using a laminate of a polymer sheet containing a cushioning material and a filler on a wooden board has been proposed (Patent Document 1). However, what can be reduced by this method is a so-called lightweight floor impact sound and has not yet reduced a heavy floor impact sound (for example, a sound generated by jumping a child, etc.) which is a problem in an apartment house.

重量床衝撃音を低減する方法として、質量層を床構造内に設け、床構造自体の重量を積極的に増加させる方法が提案されている(特許文献2)。しかし、床重量を増加させるために、柱や梁の強度を高くせざるを得ず、梁や柱の断面積が大きくなる傾向にあり、居住空間を狭める原因となるばかりでなく、さらに質量層による重量や施工工程の増加により、施工性の低下を招き、最終的には建築物のコスト高を招いている。   As a method for reducing heavy floor impact sound, a method has been proposed in which a mass layer is provided in the floor structure and the weight of the floor structure itself is positively increased (Patent Document 2). However, in order to increase the floor weight, it is necessary to increase the strength of the columns and beams, and the cross-sectional area of the beams and columns tends to increase. Due to the increase in weight and construction process, the workability is lowered and finally the cost of the building is increased.

特開平6−93706号公報JP-A-6-93706 特開2003−293571号公報JP 2003-293571 A

本発明は、軽量でありながら高い振動抑制を得ることができ、特に重量床衝撃音を低減させることのできる軽量な床材を提供することを課題とする。   It is an object of the present invention to provide a lightweight floor material that can obtain high vibration suppression while being lightweight, and that can particularly reduce heavy floor impact sound.

すなわち本発明は、厚さ20〜300mmの高断熱材料の層およびその少なくとも一方の面に設けられた厚さ0.1〜30mmの支持体から成り、曲げ剛性が1.5×10〜1.5×1011GPa・mm、かつ単位面積あたりの重量が2〜110kg/mであることを特徴とする床材である。 That is, the present invention includes a layer of a high heat insulating material having a thickness of 20 to 300 mm and a support having a thickness of 0.1 to 30 mm provided on at least one surface thereof, and has a bending rigidity of 1.5 × 10 7 to 1. The flooring material is characterized in that it has a weight of 0.5 × 10 11 GPa · mm 4 and a weight per unit area of 2 to 110 kg / m 2 .

本発明によれば、軽量でありながら高い振動抑制を得ることができ、特に重量床衝撃音を低減させることのできる軽量な床材を提供することができる。   According to the present invention, it is possible to provide a lightweight floor material capable of obtaining high vibration suppression while being lightweight, and particularly capable of reducing heavy floor impact sound.

本発明の床材の概略図である。It is the schematic of the flooring of this invention. 本発明の複合成形体の概略図である。It is the schematic of the composite molded object of this invention. 本発明の繊維強化樹脂木材複合材の構造概略図である。It is the structure schematic of the fiber reinforced resin wood composite material of this invention.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

[積層構造]
本発明の床材は、厚さ20〜300mmの高断熱材料の層およびその少なくとも一方の面に設けられた厚さ0.1〜30mmの支持体から成る。
[Laminated structure]
The flooring of the present invention comprises a layer of highly heat insulating material having a thickness of 20 to 300 mm and a support having a thickness of 0.1 to 30 mm provided on at least one surface thereof.

本発明では重量床衝撃音を低減する観点から、建築材料の曲げ剛性を高く設計することが重要である。このことから、高断熱材料の層の一方の面のみに支持体を設けた構成よりも、高断熱材料の層の両方の面に支持体を設けた構成が好ましい。すなわち、本発明の好ましい態様は、厚さ20〜300mmの高断熱材料の層と、その両方の面に設けられた厚さ0.1〜30mmの支持体とから成る態様である。   In the present invention, it is important to design the building material with high bending rigidity from the viewpoint of reducing heavy floor impact sound. From this, the structure which provided the support body in the both surfaces of the layer of high heat insulation material is more preferable than the structure which provided the support body only in one side of the layer of high heat insulation material. That is, a preferred embodiment of the present invention is an embodiment comprising a layer of a highly heat insulating material having a thickness of 20 to 300 mm and a support having a thickness of 0.1 to 30 mm provided on both surfaces thereof.

さらに好ましい態様は、高断熱材料の層の両方の面と少なくとも二つの側面にも支持体を設けた構成である。すなわち、本発明のさらに好ましい態様は、厚さ20〜300mmの高断熱材料の層と、その両方の面および少なくとも二つの側面に設けられた厚さ0.1〜30mmの支持体とから成る態様である。この構造にすることで曲げ剛性を高く設計することができる。   Furthermore, a preferable aspect is the structure which provided the support body also on the both surfaces and the at least 2 side surface of the layer of highly heat-insulating material. That is, a further preferred embodiment of the present invention is an embodiment comprising a layer of a highly heat-insulating material having a thickness of 20 to 300 mm and a support having a thickness of 0.1 to 30 mm provided on both sides and at least two sides. It is. With this structure, the bending rigidity can be designed high.

[曲げ剛性、単位面積あたり重量]
本発明の床材は、曲げ剛性が1.5×10〜1.5×1011GPa・mm、好ましくは1.5×10〜1.5×1010GPa・mmである。曲げ剛性が1.5×10未満であると本発明の課題である重量床衝撃音を十分に低減させることができない。他方、1.5×1011GPa・mmを超える場合、支持体の厚さを30mmよりも厚くするか、高断熱材料の厚さを300mmより厚くするか、またはその両方の対策を取る必要があり、その場合、重量が大きくなることやコスト上昇、居住空間の圧迫など様々な問題を起こす可能性がある。
[Bending stiffness, weight per unit area]
The flooring material of the present invention has a flexural rigidity of 1.5 × 10 7 to 1.5 × 10 11 GPa · mm 4 , preferably 1.5 × 10 8 to 1.5 × 10 10 GPa · mm 4 . If the bending rigidity is less than 1.5 × 10 7 , the heavy floor impact sound, which is the subject of the present invention, cannot be sufficiently reduced. On the other hand, if it exceeds 1.5 × 10 11 GPa · mm 4 , it is necessary to take measures to make the thickness of the support more than 30 mm, the thickness of the highly insulating material more than 300 mm, or both. In such a case, there is a possibility of causing various problems such as an increase in weight, cost increase, and pressure on living space.

本発明の床材は、単位面積あたりの重量が2〜110kg/m、好ましくは2〜70kg/m、さらに好ましくは2〜45kg/mである。単位面積あたりの重量が2kg/m未満であると本発明の課題である重量床衝撃音を十分に低減させることができない。また110kg/mを超えると重量が大きいため、本発明の床材料が建築構造躯体に与える影響が大きく、構造設計において梁や柱の断面を大きくする検討をしなければならない可能性が高くなる。 The flooring of the present invention has a weight per unit area of 2 to 110 kg / m 2 , preferably 2 to 70 kg / m 2 , more preferably 2 to 45 kg / m 2 . If the weight per unit area is less than 2 kg / m 2 , the heavy floor impact sound, which is the subject of the present invention, cannot be sufficiently reduced. Moreover, since it will be heavy if it exceeds 110 kg / m < 2 >, the influence which the floor material of this invention has on a building structure frame | body will be large, and possibility that the examination which enlarges the cross section of a beam or a column in structural design will become high. .

[高断熱材料]
高断熱材料には、有機系発泡体を用いることが好ましい。有機系発泡体として例えば、フェノールフォーム、フェノール−ウレタンフォーム、ウレタンフォームを挙げることができる。なかでも、高い耐熱性を得ることができることから、フェノールフォームが好ましい。
[High thermal insulation materials]
It is preferable to use an organic foam for the highly heat insulating material. Examples of organic foams include phenol foam, phenol-urethane foam, and urethane foam. Among these, phenol foam is preferable because high heat resistance can be obtained.

高断熱材料の層の厚さは20〜300mmである。高断熱材料の層の厚さが20mm未満であると曲げ剛性を担保することが難しくなることに加え、耐火性能を損なう。他方、厚さが300mmを超えると、本発明の床材を建築物の構造部材に取り付けて用いときに、床材の厚さが厚くなることで建物の居住空間を狭めてしまう。   The thickness of the layer of high thermal insulation material is 20 to 300 mm. If the thickness of the layer of the high heat insulating material is less than 20 mm, it becomes difficult to ensure bending rigidity, and fire resistance is impaired. On the other hand, if the thickness exceeds 300 mm, when the flooring of the present invention is attached to a structural member of a building and used, the living space of the building is narrowed due to the thickening of the flooring.

床材として高い断熱性を得るために、高断熱材料の熱伝導率は0.01〜0.40W/m・Kであることが好ましい。熱伝導率が0.01W/m・K未満の材料は空気よりも高い断熱性を発現する材料となり、特殊で非常に高価かつ工業的に扱い難いものとなり好ましくない。他方、0.40W/m・Kを超えると断熱性が不足して好ましくない。   In order to obtain high thermal insulation as a flooring material, the thermal conductivity of the high thermal insulation material is preferably 0.01 to 0.40 W / m · K. A material having a thermal conductivity of less than 0.01 W / m · K is a material that exhibits higher heat insulation than air, and is not preferable because it is special, extremely expensive, and industrially difficult to handle. On the other hand, if it exceeds 0.40 W / m · K, the heat insulation is insufficient, which is not preferable.

[支持体]
本発明では支持体として繊維強化樹脂を用いる。支持体は高断熱材料の形状を保持するために用いる。この支持体の厚さは0.1〜30mm、好ましくは0.3〜30mm、さらに好ましくは1〜30mmである。支持体の厚さが0.1mm未満であると、複合体の曲げ剛性を担保できなくなるばかりか、床材を使用するときに、支持体に割れ裂けが発生してしまう恐れがある。他方、30mmを超えると、支持体の成型時の発熱が高くなるため成形性が著しく損なわれる。
[Support]
In the present invention, a fiber reinforced resin is used as the support. The support is used to maintain the shape of the highly heat insulating material. The thickness of this support is 0.1 to 30 mm, preferably 0.3 to 30 mm, and more preferably 1 to 30 mm. If the thickness of the support is less than 0.1 mm, the flexural rigidity of the composite cannot be ensured, and when the flooring is used, the support may be cracked. On the other hand, if it exceeds 30 mm, the heat generation during molding of the support is increased, so that the moldability is significantly impaired.

支持体の曲げ弾性率は50〜500GPaである。曲げ弾性率が50GPa未満であると、床材の曲げ剛性が低くなるか、それを防ぐために支持体の厚さを厚くすることが必要になる。他方、500GPaを超える支持を得るためには支持体における繊維の体積分率を高くする必要があり成形難易度が上がる傾向にあるほか、物性が高く高価な繊維を用いる必要がある。   The flexural modulus of the support is 50 to 500 GPa. If the flexural modulus is less than 50 GPa, the flexural rigidity of the flooring material becomes low, or in order to prevent it, it is necessary to increase the thickness of the support. On the other hand, in order to obtain support exceeding 500 GPa, it is necessary to increase the volume fraction of the fiber in the support, which tends to increase the difficulty of molding, and it is necessary to use expensive fibers with high physical properties.

支持体の曲げ弾性率を50〜500GPaの範囲とし、高断熱材料の厚さを20〜300mmとし、かつ支持体の厚さを0.1〜30mmとすることで、重量床衝撃音を低減した床材を得ることができる。   The weight floor impact sound was reduced by setting the flexural modulus of the support in the range of 50 to 500 GPa, the thickness of the high heat insulating material to 20 to 300 mm, and the thickness of the support to 0.1 to 30 mm. Flooring can be obtained.

支持体の繊維強化樹脂は、無機繊維または融点もしくはガラス転移温度が200℃以上である有機繊維を含有する熱硬化性樹脂であることが好ましい。繊維強化樹脂の無機繊維としては、例えば炭素繊維、ガラス繊維を挙げることができる。有機繊維としては、例えばアラミド繊維、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサザール繊維、ポリフェニレンサルファイド繊維、ポリイミド繊維、四フッ化エチレン繊維を挙げることができる。繊維強化樹脂の繊維としてはこれらの無機繊維または有機繊維を単独または2種類以上を用いる。繊維の形態として、例えば一方向に引き揃えたUD基材やその2方向以上の組合せ、織物、不織布を用いることができる。繊維強化樹脂の樹脂としては熱硬化性樹脂を用いる。熱硬化性樹脂として、例えばフェノール樹脂、エポキシ樹脂、ビニルエステル樹脂を挙げることができる。   The fiber reinforced resin of the support is preferably a thermosetting resin containing inorganic fibers or organic fibers having a melting point or glass transition temperature of 200 ° C. or higher. Examples of the inorganic fiber of the fiber reinforced resin include carbon fiber and glass fiber. Examples of the organic fiber include aramid fiber, polyarylate fiber, polyparaphenylene benzobisoxazal fiber, polyphenylene sulfide fiber, polyimide fiber, and tetrafluoroethylene fiber. As the fiber of the fiber reinforced resin, these inorganic fibers or organic fibers are used alone or in combination of two or more. As the form of the fiber, for example, a UD base material aligned in one direction, a combination of two or more directions, a woven fabric, and a nonwoven fabric can be used. A thermosetting resin is used as the resin of the fiber reinforced resin. Examples of the thermosetting resin include a phenol resin, an epoxy resin, and a vinyl ester resin.

[複合成形体]
本発明の床材の好ましい態様は、繊維強化樹脂の引抜成形により得られた断面が中空の成形体の中空部に有機系発泡体を充填固着させた複合成形体である。この断面は矩形中空であることが好ましい。繊維強化樹脂の引抜成形により得られた断面が矩形中空の成形体の中空部に有機系発泡体を充填固着させた複合成形体の概略図を、図2に示す。この複合成形体において、形状を保つ支持体の機能を担うのは、繊維強化樹脂の引抜成形により得られた断面が矩形中空の成形体である。有機系発泡体は、高断熱材料の層を形成する。
[Composite molded body]
A preferred embodiment of the flooring material of the present invention is a composite molded body in which an organic foam is filled and fixed in a hollow portion of a molded body having a hollow section obtained by pultrusion molding of a fiber reinforced resin. This cross section is preferably rectangular hollow. FIG. 2 shows a schematic view of a composite molded body obtained by filling and fixing an organic foam in a hollow portion of a molded body having a rectangular cross section obtained by pultrusion molding of fiber reinforced resin. In this composite molded body, it is a molded body having a rectangular cross section obtained by the pultrusion molding of the fiber reinforced resin that plays the role of the support body that maintains the shape. The organic foam forms a layer of highly heat insulating material.

本発明において、支持体が繊維強化樹脂の引抜成形により得られた断面が矩形中空の引抜成形体であり、高断熱材料が引抜成形体の矩形中空部に充填固着された有機系発泡体である構成は、好ましい態様である。   In the present invention, the support body is a pultrusion body having a rectangular hollow section obtained by pultrusion molding of a fiber reinforced resin, and an organic foam in which a highly heat insulating material is filled and fixed in the rectangular hollow portion of the pultrusion body. The configuration is a preferred embodiment.

有機系発泡体は、中空の成形体の中空部で発泡性の有機物を発泡させることにより、高断熱材料の層となる。この有機系発泡体は、繊維強化樹脂の引抜成形体に固着され、両者が一体化させていることが好ましい。高い接着性を得るために、発泡性の有機物または有機系発泡体の注入前に、成形体の中空部の壁面に接着剤を塗付しておいてもよい。   The organic foam becomes a layer of a high heat insulating material by foaming a foamable organic material in the hollow portion of the hollow molded body. This organic foam is preferably fixed to a pultruded product of fiber reinforced resin and integrated with each other. In order to obtain high adhesiveness, an adhesive may be applied to the wall surface of the hollow portion of the molded body before the foamable organic material or the organic foam is injected.

引抜成形は、繊維を一方向に引き揃え金属製の口金より樹脂を含浸、固化しながら引き抜く成形方法である。本発明においては断面が矩形中空の口金を用いることで、矩形中空の引抜成形体を得ることができる。繊維強化樹脂における繊維と樹脂との体積比率は、例えば50/50〜60/40である。複合成形体を引抜成形で成形することにより、繊維方向が一方向であるためその方向に対する曲げ物性を最大限に発揮させることでき、複合成形体における繊維強化樹脂の厚さを薄く設計できる。   The pultrusion molding is a molding method in which fibers are aligned in one direction and are drawn out while impregnating and solidifying a resin from a metal base. In the present invention, a rectangular hollow pultruded body can be obtained by using a base having a rectangular cross section. The volume ratio of the fiber to the resin in the fiber reinforced resin is, for example, 50/50 to 60/40. By molding the composite molded body by pultrusion molding, since the fiber direction is one direction, it is possible to maximize the bending properties in that direction, and to design the thickness of the fiber reinforced resin in the composite molded body thin.

複合成形体において、高断熱材料の層とその支持体である断面が矩形中空の引抜成形体との高い接着性を得るために、高断熱材料の層と支持体との界面に、熱硬化性樹脂を含浸した多孔質基材を備えることが好ましい。この場合、未硬化熱硬化性樹脂が多孔質基材の孔部分に入り込み、物理的なアンカー効果を得ることができ、強い接着を得ることができる。多孔質基材としては、例えば紙を用いることができる。   In a composite molded body, in order to obtain high adhesion between a highly heat-insulating material layer and a pultruded body having a rectangular cross section as a support, a thermosetting property is provided at the interface between the high heat-insulating material layer and the support. It is preferable to provide a porous substrate impregnated with a resin. In this case, the uncured thermosetting resin enters the pores of the porous base material, so that a physical anchor effect can be obtained and strong adhesion can be obtained. For example, paper can be used as the porous substrate.

[繊維強化樹脂木材複合材]
本発明の床材の他の好ましい態様は、高断熱材料の層として木質材料の板を用い、木質材料の板の両面に、支持体として繊維強化樹脂板を設けた繊維強化樹脂木材複合材である。この繊維強化樹脂木材複合材の構造の概略図を図3に示す。
[Fiber-reinforced resin wood composite]
Another preferred embodiment of the flooring material of the present invention is a fiber reinforced resin wood composite material in which a wood material board is used as a layer of a high thermal insulation material, and a fiber reinforced resin board is provided as a support on both sides of the wood material board. is there. A schematic diagram of the structure of this fiber-reinforced resin wood composite is shown in FIG.

木質材料は、既存の木造建築で一般的に使用される木材であり、例えば、製材、合板、集成材、CLT、LVLを用いることができる。繊維強化樹脂板は、繊維強化樹脂の板状の引抜成形体である。   The woody material is wood generally used in existing wooden buildings, and for example, lumber, plywood, laminated lumber, CLT, and LVL can be used. The fiber reinforced resin plate is a plate-like pultruded molded body of fiber reinforced resin.

この繊維強化樹脂木材複合材は、木質材料の板の両方の面に接着剤を塗付し、繊維強化樹脂板をプレス接着して製造することができる。ここで用いる繊維強化樹脂板は、その表面にシボ加工を備えることが好ましい。また、木質材料の板と繊維強化樹脂板との界面には接着剤を含浸した多孔質基材の配置することが好ましい。   This fiber-reinforced resin wood composite material can be manufactured by applying an adhesive to both sides of a wooden material plate and press-bonding the fiber-reinforced resin plate. It is preferable that the fiber-reinforced resin plate used here has a textured surface. Moreover, it is preferable to arrange | position the porous base material which impregnated the adhesive agent in the interface of the board | plate of a wood material, and a fiber reinforced resin board.

繊維強化樹脂板の表面にシボ加工をすることにより、木質材料の板との強固な接着得ることができる。多孔質基材に含浸する接着剤として、集成材やCLTを製造する際に使用される接着剤を用いることでき、特にレゾルシノール系接着剤や水溶性高分子−イソシアネート系接着剤が好ましい。プレス接着としては、常温プレスや高周波など高温プレスを適用することができる。   By applying a texture to the surface of the fiber reinforced resin plate, it is possible to obtain a strong bond with the wood material plate. As an adhesive impregnating the porous substrate, an adhesive used when producing a laminated material or CLT can be used, and a resorcinol adhesive or a water-soluble polymer-isocyanate adhesive is particularly preferable. As the press bonding, a high temperature press such as a room temperature press or a high frequency can be applied.

[床材の取付]
本発明の床材は、従来の鉄やセメント製の床材に比べて非常に軽く、かつ剛性が高い材料である。本発明の床材は、化学的に接着剤によって床構造に固着することもでき、またはビスやボルト等を用いて物理的に固着することもできる。なお、ここでいう床構造は、建築物の構造のうち床材を支持する機能を有する構造を構成する部材である。
[Installation of flooring]
The flooring of the present invention is a material that is much lighter and more rigid than conventional flooring made of iron or cement. The flooring of the present invention can be chemically fixed to the floor structure with an adhesive, or can be physically fixed using screws, bolts or the like. In addition, a floor structure here is a member which comprises the structure which has a function which supports a flooring among the structures of a building.

床構造に本発明の床材を固定することで、床構造の剛性を高め、重量衝撃音を軽減する効果を得ることができる。また、重量が軽いため、床材を支え床構造を構成する梁や柱を補強する必要もなく、良好な施工性を得ることができる。   By fixing the flooring of the present invention to the floor structure, the effect of increasing the rigidity of the floor structure and reducing the weight impact sound can be obtained. Moreover, since the weight is light, it is not necessary to reinforce the beams and pillars that support the flooring and constitute the floor structure, and good workability can be obtained.

本発明を、さらに実施例を挙げて具体的に説明する。
(1)木造床構造
本発明の建築材料を固定する木造床構造として、幅300mm×長さ600mmの木造床構造(木造住宅の実寸大の1/3スケール)を木材製材ならびに合板(9mm厚)を用いて作成した。梁と柱、および梁同士はL字金具を用いてビス留め固定とした。
(2)振動抑制効果(重量床衝撃音の低減効果)
試験体の中心を衝撃印加点し、インパルスハンマーで打撃し、衝撃印加点と試験体短辺までの距離の中心に設置した加速度計により振動データを取得した。このデータのフーリエ変換解析により、周波数63Hz(重量床衝撃音に相当する周波数)での機械インピーダンス値を算出し、衝撃音(dB)に変換した。なお、この値は低いほど遮音試験体への衝撃印加時の振動抑制効果(重量床衝撃音の低減効果)が大きいことを示す。
(3)支持体の曲げ弾性率
支持体から幅15mm、長さ100mmの試験片を、繊維方向が長さ方向になるように切り出し、支点間距離80mmで中心点加力の3点曲げ試験により、荷重−たわみ曲線を求めた。試験速度は5mm/minとした。得られた破断点荷重と荷重−たわみ曲線から、次式を用いて曲げ弾性率を算出した。
曲げ弾性率=L×ΔF/4×b×h×ΔS
ΔF:S’とS”の差
(ここで、S’=0.0005×L/6×h、S” =0.0025×L/6×h)
ΔS:S’とS”におけるたわみの差
(4)床材料の曲げ剛性
セメントスラブや木材のような無垢材料の場合は、各材料の基準曲げ弾性率と断面2次モーメントの積により剛性を算出した。支持体と高断熱材料の複合材料の場合は、支持体および高断熱材料のそれぞれの材料において曲げ弾性率と断面2次モーメントの積により各材料の剛性を算出し、それぞれの剛性を足し合わせることで曲げ剛性とした。
(5)高断熱材料の熱伝導率
高断熱材料を300mm×300mmの大きさに切り出し(厚さは使用する厚さ)、厚さ方向の熱伝導率を測定した。測定温度は20℃とした。測定機器は英弘精機社製HC−074を用いた。
The present invention will be specifically described with reference to examples.
(1) Wooden floor structure As a wooden floor structure for fixing the building material of the present invention, a wooden floor structure of width 300 mm x length 600 mm (1/3 scale of the actual size of a wooden house) is made of wood lumber and plywood (9 mm thick) It was created using. The beams and columns, and the beams were fixed with screws using L-shaped metal fittings.
(2) Vibration suppression effect (reduction effect of heavy floor impact sound)
The impact point was applied to the center of the specimen, and the impact data was struck with an impulse hammer, and vibration data was acquired with an accelerometer placed at the center of the distance between the impact point and the short side of the specimen. A mechanical impedance value at a frequency of 63 Hz (a frequency corresponding to a heavy floor impact sound) was calculated by Fourier transform analysis of this data, and converted into an impact sound (dB). In addition, it shows that the vibration suppression effect at the time of the impact application to a sound-insulation test body (the reduction effect of a heavy floor impact sound) is so large that this value is low.
(3) Bending elastic modulus of the support A test piece having a width of 15 mm and a length of 100 mm was cut out from the support so that the fiber direction was the length direction, and a three-point bending test with a center point force of 80 mm between fulcrums was performed. The load-deflection curve was obtained. The test speed was 5 mm / min. The bending elastic modulus was calculated from the obtained breaking point load and load-deflection curve using the following formula.
Flexural modulus = L 3 × ΔF / 4 × b × h 3 × ΔS
[Delta] F: S 'and S "difference (here, S' = 0.0005 × L 2 /6 × h, S" = 0.0025 × L 2/6 × h)
ΔS: Difference in deflection between S 'and S "(4) Flexural rigidity of floor material In the case of solid materials such as cement slab and wood, the rigidity is calculated by the product of the standard bending elastic modulus of each material and the secondary moment of section. In the case of a composite material of a support and a highly heat-insulating material, the rigidity of each material is calculated from the product of the bending elastic modulus and the moment of inertia of the cross-section for each of the support and the highly heat-insulating material, and the respective rigidity is added. The bending rigidity was obtained by combining them.
(5) Thermal conductivity of highly heat-insulating material The highly heat-insulating material was cut into a size of 300 mm x 300 mm (thickness is the thickness used), and the thermal conductivity in the thickness direction was measured. The measurement temperature was 20 ° C. The measuring instrument used was HC-074 manufactured by Eihiro Seiki Co., Ltd.

[実施例1]
繊維強化樹脂として、炭素繊維強化ビニルエステル樹脂を用いた。この繊維強化樹脂において、炭素繊維とビニルエステル樹脂(熱硬化性樹脂)の体積比率を55体積%/60体積%とした。繊維強化樹脂を引抜成形法により、矩形中空断面(外寸:幅300mm、長さ600mm、高さ102mm)で引き抜き、肉厚1mmの引抜成形体とした。この引抜成形体から平面状の板材(15mm×100mm)を採取して曲げ弾性率は測定したところ80GPaであった。
[Example 1]
A carbon fiber reinforced vinyl ester resin was used as the fiber reinforced resin. In this fiber reinforced resin, the volume ratio of carbon fiber to vinyl ester resin (thermosetting resin) was 55% by volume / 60% by volume. The fiber reinforced resin was drawn out with a rectangular hollow cross section (outer dimensions: width 300 mm, length 600 mm, height 102 mm) by a pultrusion method to obtain a pultruded body having a thickness of 1 mm. A planar plate material (15 mm × 100 mm) was sampled from this pultruded product and the bending elastic modulus was measured and found to be 80 GPa.

引抜成形体の矩形中空部においてフェノールフォームを発泡成形して矩形中空部に充填固着させ、図2に示す形状の複合成形体を得た。矩形中空部に充填固着されたフェノールフォームの厚さは100mmであった。このフェノールフォームの熱伝導率は0.02W/m・Kであった。得られた複合成形体を木造床構造に50mm間隔でビス止めし、振動抑制効果を測定した。試験体の重量・曲げ剛性・測定した振動抑制効果の結果を表1に示す。   In the rectangular hollow portion of the pultruded molded body, phenol foam was foam-molded and filled and fixed in the rectangular hollow portion to obtain a composite molded body having the shape shown in FIG. The thickness of the phenol foam filled and fixed in the rectangular hollow portion was 100 mm. The thermal conductivity of this phenol foam was 0.02 W / m · K. The obtained composite molded body was screwed to a wooden floor structure at intervals of 50 mm, and the vibration suppression effect was measured. Table 1 shows the results of the weight, bending rigidity, and measured vibration suppression effect of the specimen.

[実施例2]
繊維強化樹脂として、実施例1と同じものを用いた。繊維強化樹脂を引抜成形により、板状断面(外寸:幅300mm、長さ600mm)で引き抜き、肉厚2mmの引抜成形体とした。この引抜成形体より採取した板材の曲げ弾性率は80GPaであった。引抜成形体の表面にエポキシ樹脂を含浸した多孔質基材を配置し、シボ加工も施した。予め30mm厚のスギラミナを2枚集成した60mm厚の集成材の両面に、水溶性高分子−イソシアネート系接着剤を塗付し、引抜成形体を常温プレスにて両面に接着した。このとき、炭素繊維の配列方向と木材の木質繊維の方向は同じ方向となるように接着した。図3に示す繊維強化樹脂木材複合材を得た。得られた繊維強化樹脂木材複合材を、木造床構造に50mm間隔でビス止めを行い、振動抑制効果を測定した。試験体の重量・曲げ剛性・測定した振動抑制効果の結果を表1に示す。スギラミナの集成材の熱伝導率は0.10W/m・Kであった。
[Example 2]
The same fiber reinforced resin as in Example 1 was used. The fiber reinforced resin was drawn by a pultrusion molding with a plate-like cross section (outer dimensions: width 300 mm, length 600 mm) to obtain a pultruded product having a thickness of 2 mm. The bending elastic modulus of the plate material collected from this pultruded product was 80 GPa. A porous base material impregnated with an epoxy resin was placed on the surface of the pultruded body and subjected to graining. A water-soluble polymer-isocyanate adhesive was applied to both surfaces of a 60 mm thick laminated material in which two sheets of 30 mm thick cedarmina were preliminarily assembled, and the pultruded product was adhered to both surfaces by a room temperature press. At this time, the carbon fibers were bonded so that the arrangement direction of the carbon fibers and the direction of the wood fibers of the wood were the same. The fiber reinforced resin wood composite shown in FIG. 3 was obtained. The obtained fiber reinforced resin wood composite material was screwed to the wooden floor structure at intervals of 50 mm, and the vibration suppression effect was measured. Table 1 shows the results of the weight, bending rigidity, and measured vibration suppression effect of the specimen. The thermal conductivity of the cedar laminate was 0.10 W / m · K.

[比較例1]
木造床構造の上面に厚さ70mm、幅300mm、長さ600mmのセメントスラブを載せることで床を作成した。この床の振動抑制効果を測定した。重量・曲げ剛性・振動抑制効果の測定結果を表1に示す。
[Comparative Example 1]
A floor was prepared by placing a cement slab having a thickness of 70 mm, a width of 300 mm, and a length of 600 mm on the upper surface of the wooden floor structure. The vibration suppression effect of this floor was measured. Table 1 shows the measurement results of weight, bending rigidity, and vibration suppression effect.

[比較例2]
木造床構造のみで振動抑制効果を測定した。重量・曲げ剛性・振動抑制効果の測定結果を表1に示す。
[Comparative Example 2]
The vibration suppression effect was measured only with the wooden floor structure. Table 1 shows the measurement results of weight, bending rigidity, and vibration suppression effect.

Figure 2019157562
Figure 2019157562

本発明の床材は、建築物の床構造に取り付けて用いる軽量な床材として好適に用いることができる。   The flooring of the present invention can be suitably used as a lightweight flooring used by being attached to a building floor structure.

1 繊維強化樹脂
2 高断熱材料
3 有機系発泡体
4 木質材料
1 Fiber Reinforced Resin 2 High Thermal Insulation Material 3 Organic Foam 4 Woody Material

Claims (6)

厚さ20〜300mmの高断熱材料の層およびその少なくとも一方の面に設けられた厚さ0.1〜30mmの支持体から成り、曲げ剛性が1.5×10〜1.5×1011GPa・mm、かつ単位面積あたりの重量が2〜110kg/mであることを特徴とする床材。 It consists of a layer of high heat insulating material having a thickness of 20 to 300 mm and a support having a thickness of 0.1 to 30 mm provided on at least one surface thereof, and has a flexural rigidity of 1.5 × 10 7 to 1.5 × 10 11. GPa · mm 4 , and the weight per unit area is 2 to 110 kg / m 2 . 支持体が繊維強化樹脂の引抜成形により得られた断面が矩形中空の引抜成形体であり、高断熱材料が該引抜成形体の矩形中空部に充填固着された有機系発泡体である、請求項1記載の床材。   The support is a rectangular hollow pultruded body obtained by pultrusion molding of fiber reinforced resin, and the highly heat insulating material is an organic foam filled and fixed in the rectangular hollow portion of the pultruded body. The flooring according to 1. 支持体の曲げ弾性率が50〜500GPaである、請求項2記載の床材。   The flooring according to claim 2, wherein the flexural modulus of the support is from 50 to 500 GPa. 繊維強化樹脂が、無機繊維または融点もしくはガラス転移温度が200℃以上である有機繊維を含有する熱硬化性樹脂である、請求項2記載の床材。   The flooring according to claim 2, wherein the fiber reinforced resin is a thermosetting resin containing inorganic fibers or organic fibers having a melting point or glass transition temperature of 200 ° C or higher. 高断熱材料が熱伝導率0.01〜0.40W/m・Kの有機系発泡体である、請求項1または2記載の床材。   The flooring according to claim 1 or 2, wherein the highly heat-insulating material is an organic foam having a thermal conductivity of 0.01 to 0.40 W / m · K. 高断熱材料の層と支持体との界面に、熱硬化性樹脂を含浸した多孔質基材を備える、請求項1または2記載の床材。   The flooring of Claim 1 or 2 provided with the porous base material which impregnated the thermosetting resin in the interface of the layer of a highly heat-insulating material, and a support body.
JP2018048005A 2018-03-15 2018-03-15 Flooring material Active JP7067973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018048005A JP7067973B2 (en) 2018-03-15 2018-03-15 Flooring material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018048005A JP7067973B2 (en) 2018-03-15 2018-03-15 Flooring material

Publications (2)

Publication Number Publication Date
JP2019157562A true JP2019157562A (en) 2019-09-19
JP7067973B2 JP7067973B2 (en) 2022-05-16

Family

ID=67992380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018048005A Active JP7067973B2 (en) 2018-03-15 2018-03-15 Flooring material

Country Status (1)

Country Link
JP (1) JP7067973B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112127493A (en) * 2020-09-22 2020-12-25 南通远顺耐纤有限公司 Superfine glass fiber VIP heat-insulating plate

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003898A1 (en) * 1995-07-14 1997-02-06 Toray Industries, Inc. Cargo container
JPH11173356A (en) * 1997-12-11 1999-06-29 Toray Ind Inc Shock absorbing member made of aluminum/fiber reinforced resin
JP2003328550A (en) * 2002-05-16 2003-11-19 Sumitomo Kinzoku Kozan Siporex Kk Alc composite soundproof floor panel
US20050153613A1 (en) * 2004-01-13 2005-07-14 Mel Bingenheimer Article and process for maintaining orientation of a fiber reinforced matt layer in a sandwiched urethane construction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003898A1 (en) * 1995-07-14 1997-02-06 Toray Industries, Inc. Cargo container
JPH11173356A (en) * 1997-12-11 1999-06-29 Toray Ind Inc Shock absorbing member made of aluminum/fiber reinforced resin
JP2003328550A (en) * 2002-05-16 2003-11-19 Sumitomo Kinzoku Kozan Siporex Kk Alc composite soundproof floor panel
US20050153613A1 (en) * 2004-01-13 2005-07-14 Mel Bingenheimer Article and process for maintaining orientation of a fiber reinforced matt layer in a sandwiched urethane construction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112127493A (en) * 2020-09-22 2020-12-25 南通远顺耐纤有限公司 Superfine glass fiber VIP heat-insulating plate
CN112127493B (en) * 2020-09-22 2021-10-22 南通远顺耐纤有限公司 Superfine glass fiber VIP heat-insulating plate

Also Published As

Publication number Publication date
JP7067973B2 (en) 2022-05-16

Similar Documents

Publication Publication Date Title
CN102348857B (en) Laminated acoustic soundproofing panel
WO2009058107A2 (en) Polymer-based composite structural sheathing board and wall and/or ceiling system
JPH04505297A (en) Sound deadening composite products
US20030102184A1 (en) Acoustical support panel
CA2994498C (en) Multilayer laminate panel
JP7067973B2 (en) Flooring material
JP2005307731A (en) Residential access floor system composed of highly rigid sandwich board for sound insulation
JP7239339B2 (en) wooden building material
JP6434760B2 (en) Sound insulation floor structure
JP2019137976A (en) Wooden floor structure
JP6374664B2 (en) Construction method of sound insulation floor structure
JP2020133283A (en) Floor ceiling structure
JP2019120090A (en) Wooden floor material and construction method
JP7171299B2 (en) COMPOSITE MATERIAL AND METHOD FOR RECOVERING BASE MATERIAL FROM COMPOSITE
JP7015632B2 (en) Glulam manufacturing method
WO2020050276A1 (en) Floor structure
JP2012236386A (en) Laminated lumber and method of manufacturing the same
KR100741454B1 (en) Polyurethane foam to reduce impact sound
JP2019157563A (en) Lightweight building materials
JP2013023997A (en) Soundproofing thermal insulation structure and soundproofing thermal insulation material
JP6608626B2 (en) Joist, floor structure
JP2018089898A (en) Fiber-reinforced woody laminated lumber
JPH0245369Y2 (en)
EP3235974A1 (en) A building part with high sound insulation performance
JP2008255609A (en) Floor panel structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220428

R150 Certificate of patent or registration of utility model

Ref document number: 7067973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150