JP7171299B2 - COMPOSITE MATERIAL AND METHOD FOR RECOVERING BASE MATERIAL FROM COMPOSITE - Google Patents

COMPOSITE MATERIAL AND METHOD FOR RECOVERING BASE MATERIAL FROM COMPOSITE Download PDF

Info

Publication number
JP7171299B2
JP7171299B2 JP2018149036A JP2018149036A JP7171299B2 JP 7171299 B2 JP7171299 B2 JP 7171299B2 JP 2018149036 A JP2018149036 A JP 2018149036A JP 2018149036 A JP2018149036 A JP 2018149036A JP 7171299 B2 JP7171299 B2 JP 7171299B2
Authority
JP
Japan
Prior art keywords
fiber
composite material
reinforced resin
base material
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018149036A
Other languages
Japanese (ja)
Other versions
JP2020023123A (en
Inventor
諭司 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2018149036A priority Critical patent/JP7171299B2/en
Publication of JP2020023123A publication Critical patent/JP2020023123A/en
Application granted granted Critical
Publication of JP7171299B2 publication Critical patent/JP7171299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Veneer Processing And Manufacture Of Plywood (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

本発明は、建築材料として用いる木質材の複合材料に関し、詳しくは繊維強化樹脂部材によって補強されて著しく曲げ性能が改善された複合材料に関する。 TECHNICAL FIELD The present invention relates to a composite material of wood used as a building material, and more particularly to a composite material reinforced with a fiber-reinforced resin member to remarkably improve bending performance.

単一木材や、木材の繊維方向に長く切削加工した引き板(ラミナ)あるいは小角材をその繊維方向を互いに平行にして接着剤を用いて貼り合わせて得た集成材は、建築において柱や梁といった骨組材として用いられ、また、木橋や大型ドームの構造材として用いられている。 Laminated lumber obtained by laminating a single piece of wood, lamina cut long in the fiber direction of the wood, or small square lumber with the fiber direction parallel to each other with an adhesive, is used in construction for columns and beams. It is also used as a structural material for wooden bridges and large domes.

集成材は、ひき板や小角材を集成するため、寸法や形状の自由度が高く、集成材としての製品強度のばらつきや干割れ、狂いなどが小さく、さらに、曲がり材を容易に製造できるという優れた特性を備える。 Laminated lumber is made by laminating sawn boards and small square lumber, so it has a high degree of freedom in terms of size and shape. It has excellent properties.

ところが、集成材を大型建築物や構造物に用いる場合、集成材の剛性や強度を高くする必要があるため集成材の断面高さを大きくしなければならない。このため、建築物や構造物の天井高を低く設定せざるを得ないという問題や、意匠性が損なわれるという問題がある。この課題を解決するために、軽量で剛性や強度が高い強化繊維を、接着剤を介して集成材に接着した繊維補強集成材を用いることが提案されている。 However, when laminated lumber is used for a large-scale building or structure, it is necessary to increase the rigidity and strength of the laminated lumber, so the cross-sectional height of the laminated lumber must be increased. For this reason, there is a problem that the ceiling height of buildings and structures must be set low, and a problem that designability is impaired. In order to solve this problem, it has been proposed to use a fiber-reinforced laminated timber in which reinforced fibers that are lightweight and have high rigidity and strength are adhered to the laminated timber via an adhesive.

例えば特許文献1では、木材素材の層間に、開繊処理で薄く拡げられた帯状の補強用の繊維を含む繊維強化集成材が開示されている。しかし、この発明は接着力を重視するために「開繊処理で薄く拡げられた繊維」を用いることを必須要件としており、具体的には繊維層の厚さを数十μmに抑えることを前提にした技術である。繊維層が厚くなる場合には、接着性が低下するものと考えられていたからである(特許文献1、第[0029]項)。しかし、特許文献1に記載の技術のように薄く広げられた繊維束では、繊維の絶対量が不足し、十分な補強強度を確保できない。 For example, Patent Literature 1 discloses a fiber-reinforced laminated lumber containing belt-shaped reinforcing fibers thinly spread by fiber opening between layers of a wooden material. However, this invention requires the use of "fibers thinly spread by the fiber opening process" in order to emphasize adhesive strength, and specifically, it is premised on suppressing the thickness of the fiber layer to several tens of μm. It is a technology that makes This is because it was thought that the adhesiveness would decrease when the fiber layer was thick (Patent Document 1, Section [0029]). However, with the thinly spread fiber bundle as in the technique described in Patent Document 1, the absolute amount of fibers is insufficient, and sufficient reinforcing strength cannot be ensured.

また、繊維層を厚く用いる技術を開示する特許文献2では、炭素繊維などの高強度繊維または高剛性繊維を樹脂によって固めてなる繊維強化樹脂により、棒状あるいは板状に形成された曲げ補強材を、集成材の一部として挟み込む方法が提案されている。また、同様に集成材に繊維補強材を挟み込む方法に関して、特許文献3においても、凹凸を設けた木質部に繊維シートを挟み込む方法が記載されている。 In addition, in Patent Document 2, which discloses a technique of using a thick fiber layer, a bending reinforcing member formed in a rod shape or plate shape is made of a fiber reinforced resin obtained by solidifying high-strength fibers such as carbon fibers or high-rigidity fibers with a resin. , a method of sandwiching as part of laminated lumber has been proposed. Further, regarding a method of sandwiching a fiber reinforcing material between laminated lumbers, Patent Document 3 also describes a method of sandwiching a fiber sheet between uneven wooden portions.

特開2007-245431号公報JP-A-2007-245431 実開平1-159018号公報Japanese Utility Model Laid-Open No. 1-159018 特許第5306008号公報Japanese Patent No. 5306008

これらの技術では、建築材料として使用した後に木質の集成材を再利用することができず、全体を廃棄物として処理することになる。 With these techniques, the wood-based laminated lumber cannot be reused after being used as a building material, and the whole is disposed of as waste.

近年、地球規模で問題視されている地球温暖化に関して、大気中の二酸化炭素を削減すべく、様々な技術が開発・研究されている。建築業界においては、二酸化炭素を吸収する木材の活用を見直し、中低層建物の木造化などが促進されている。上記技術により、木材の低強度・低剛性を改善することができれば、木材の利用範囲が広がる可能性がある。 In recent years, various techniques have been developed and researched to reduce carbon dioxide in the atmosphere with respect to global warming, which has been viewed as a problem on a global scale. In the construction industry, the use of wood, which absorbs carbon dioxide, is being reviewed, and the use of wood in middle- and low-rise buildings is being promoted. If the low strength and low rigidity of wood can be improved by the above technology, the range of utilization of wood may be expanded.

しかし、廃棄物として建築材料の全体を焼却することになれば、木質材の集成材に貯蔵されていた二酸化炭素を排出することになる。木質の集成材の部分が再利用できるように補強されていることが、現代社会において望ましいことであるが、そのような補強形態はまだ実用化に至っていない。 However, if the entire building material is incinerated as waste, the carbon dioxide stored in the laminated wooden material will be discharged. It is desirable in modern society to reinforce the laminated wood part so that it can be reused, but such a form of reinforcement has not yet been put into practical use.

本発明の課題は、繊維強化樹脂部材によって木質の集成材の曲げ性能を改善しつつ、かつ建築材料として使用した後には、基材である集成材を再利用することができる複合材料を提供することである。 SUMMARY OF THE INVENTION An object of the present invention is to provide a composite material that improves the bending performance of wood laminated lumber with a fiber-reinforced resin member and that can reuse the base laminated lumber after it is used as a building material. That is.

本発明は、木質材である基材部と補強部とからなる複合材料であって、補強部は、基材部接合部材および補強部保護部材ならびにこれらの間に配置されて両者に接着された繊維強化樹脂部材からなり、基材部接合部材と補強部保護部材とは実質的に直接接着されていないことを特徴とする、複合材料である。 The present invention is a composite material consisting of a base material part made of wood and a reinforcing part, wherein the reinforcing part is a base material part connecting member, a reinforcing part protecting member, and a member disposed between them and adhered to both of them. The composite material is composed of a fiber-reinforced resin member, and is characterized in that the base member connecting member and the reinforcing member protecting member are not substantially directly bonded.

本発明によれば、繊維強化樹脂部材によって木質の集成材の曲げ性能を改善しつつ、かつ建築材料として使用した後には、基材である集成材を再利用することができる複合材料を提供することができる。 ADVANTAGE OF THE INVENTION According to the present invention, there is provided a composite material that improves the bending performance of laminated wooden lumber with a fiber-reinforced resin member, and that can reuse the laminated lumber as a base material after it is used as a building material. be able to.

本発明における補強部の模式図である。It is a schematic diagram of the reinforcement part in this invention. 本発明の複合材料の模式図である。1 is a schematic diagram of a composite material of the present invention; FIG.

<基材部>
本発明では基材部として集成材を用いる。この基材部は好ましくは幅100~300mmかつ高さ100~1000mm、さらに好ましくは幅105~180mmかつ高さ105~450mm、特に好ましくは幅120~150mmかつ高さ120~450mmの寸法の断面をもつ集成材である。この断面寸法の集成材は木造の低層大空間建築物や中層建築物において、梁が大きな荷重を受ける場合や柱間隔を広くした場合において起こる曲げ剛性の不足に対して、補強効果が特に期待される断面寸法である。
<Base material part>
In the present invention, laminated wood is used as the base material. The base material preferably has a cross section with dimensions of 100 to 300 mm wide and 100 to 1000 mm high, more preferably 105 to 180 mm wide and 105 to 450 mm high, particularly preferably 120 to 150 mm wide and 120 to 450 mm high. It is a laminated lumber. Laminated timber with this cross-sectional dimension is particularly expected to have a reinforcing effect against the lack of bending rigidity that occurs when the beams receive a large load or when the column spacing is widened in low-rise and medium-rise wooden buildings. cross-sectional dimension.

低層大空間建築物や中層建築物において梁を極端に太くしないために必要な梁の性能は、建物設計により異なるものの、既存の建物の梁が曲げ強さ25~50MPaかつ曲げ弾性係数9~15GPaのマツ系の木材が使用されていることから、これと同程度あるいはこれ以上の曲げ強さおよび曲げ弾性係数であることが望ましい。この観点から、本発明の複合材料は、好ましくは20~140MPaの曲げ強さおよび5~40GPaの曲げ弾性係数を備える。 The performance of the beams required to prevent the beams from being excessively thick in low-rise and medium-rise buildings varies depending on the building design. Since pine-based wood is used, it is desirable that the bending strength and bending elastic modulus are equal to or higher than this. From this point of view, the composite material of the present invention preferably has a flexural strength of 20-140 MPa and a flexural modulus of 5-40 GPa.

曲げ強さは、さらに好ましくは35~140MPa、特に好ましくは60~110MPaである。この範囲の曲げ強さであることで、低層大空間建築物や中層建築物において、梁が大きな荷重を受ける場合や柱間隔を広くした場合においても梁断面を大きくせずに用いることができて好ましい。 The bending strength is more preferably 35-140 MPa, particularly preferably 60-110 MPa. With this range of bending strength, it can be used without increasing the beam cross-section even when the beam receives a large load or when the column spacing is widened in low-rise and large-scale buildings. preferable.

曲げ弾性係数は、さらに好ましくは10~40GPa、特に好ましくは20~30GPaである。曲げ弾性係数が40GPaを超えると、曲げ剛性が高くなりすぎ、曲げ破壊でなくせん断破壊が起こりやすくなり、せん断の補強を実施しなければならず、コストが高くなり好ましくはない。曲げ弾性率が5GPa未満であると補強効果が小さく、低層大空間建築物や中層建築物において、梁が大きな荷重を受ける場合や柱間隔を広くした場合において梁断面が大きくなり好ましくない。 The bending elastic modulus is more preferably 10 to 40 GPa, particularly preferably 20 to 30 GPa. If the flexural modulus of elasticity exceeds 40 GPa, the flexural rigidity becomes too high, shear failure rather than bending failure is likely to occur, and shear reinforcement must be implemented, which is not preferable because the cost increases. If the flexural modulus is less than 5 GPa, the reinforcing effect is small, and in a low-rise building with a large space or a medium-rise building, when the beam receives a large load or when the column spacing is widened, the beam cross section becomes large, which is not preferable.

<補強部>
本発明において基材部は、その両側面に補強部を伴うことで優れた曲げ物性を備える。補強部は、基材部接合部材および補強部保護部材ならびにこれらの間に配置されて両者に接着された繊維強化樹脂部材からなる。補強部において、基材部接合部材と補強部保護部材とは実質的に直接接着されていない。すなわち、基材部接合部材と補強部保護部材とは、繊維強化樹脂部材によって接続され相互に固定され一体化されている(図2)。
繊維強化樹脂部材は、基材部接合部材を介して基材部の両側面に接着されて複合材料を構成する(図2)。以下に補強部を形成する部材ごとに説明する。
<Reinforcement part>
In the present invention, the base material part has excellent bending properties due to the presence of reinforcing parts on both sides thereof. The reinforcing part is composed of a base material part connecting member, a reinforcing part protecting member, and a fiber reinforced resin member disposed between them and adhered to them. In the reinforcing portion, the base material portion connecting member and the reinforcing portion protecting member are not substantially directly bonded. That is, the base material part joining member and the reinforcing part protecting member are connected by the fiber reinforced resin member, fixed to each other, and integrated (FIG. 2).
The fiber-reinforced resin member is adhered to both side surfaces of the base material through the base material connecting member to form a composite material (Fig. 2). Each member forming the reinforcing portion will be described below.

<基材部接合部材と補強部保護部材>
補強部において基材部接合部材および補強部保護部材はいずれも、好ましくは少なくとも2つの凹部、さらに好ましくは2つの凹部を備える。これらの凹部は、それぞれに切削されていることが好ましく、補強部保護部材の端部から内側に好ましくは5~45mmの位置に、好ましくは10~100mmの間隔で配置される。これらの凹部に、繊維強化樹脂部材が接着され固定されている。
<Base member joining member and reinforcing member protecting member>
Both the base material joining member and the reinforcement protection member in the reinforcement preferably comprise at least two recesses, more preferably two recesses. These recesses are preferably cut separately, and are arranged at positions of preferably 5 to 45 mm inside from the end of the reinforcement protection member, preferably at intervals of 10 to 100 mm. A fiber-reinforced resin member is adhered and fixed to these concave portions.

2列の凹部が上記の位置以外の補強部保護部材の端部に配置されていると、補強部の側面に繊維強化樹脂部材が露出することになり、補強部の寸法調整や最終的に複合材料としたときの仕上げ加工において木材用研磨機を用いることができなくなる。この場合、もし強引に木材用研磨機を使用すれば、繊維強化樹脂部材によって木材用研磨機の歯を損傷する恐れがある。 If the two rows of recessed portions are arranged at the end of the reinforcing portion protection member other than the above positions, the fiber reinforced resin member will be exposed on the side surface of the reinforcing portion, and the dimensional adjustment of the reinforcing portion and the final composite You will not be able to use a wood grinder for finishing when used as a material. In this case, if the wood grinder is used forcibly, the fiber-reinforced resin member may damage the teeth of the wood grinder.

補強部保護部材の端部から凹部までの間の、端部から5~45mmの部分と凹部同士の間隔10~100mmの部分には繊維強化樹脂部材が存在しないため、本発明の複合部材を建築で用いる際に合板などの材料を固定する際のビス打ちや釘打ちをする部分となる。凹部を補強部保護部材の端部から5~45mmの位置に10~100mmの間隔で配置されることで、加工中に折れや欠けなど破損の原因となることがなく、ビスや釘を打つための幅を広くとることができ、他の部材を容易に固定することができる。 Since the fiber reinforced resin member does not exist in the portion between the end of the reinforcing portion protection member and the recess, the portion 5 to 45 mm from the end and the portion between the recesses 10 to 100 mm, the composite member of the present invention is not constructed. It is the part where screws and nails are used to fix materials such as plywood when used in . By arranging the recesses at a distance of 5 to 45 mm from the end of the reinforcing part protection member at intervals of 10 to 100 mm, it is possible to drive screws and nails without causing damage such as breakage or chipping during processing. can be widened, and other members can be easily fixed.

凹部は、好ましくは幅が10~100mmの連続する凹部であり、好ましくは基材部の長さ方向と平行に切削されている。 The recess is preferably a continuous recess having a width of 10 to 100 mm and is preferably cut parallel to the longitudinal direction of the base material.

<繊維強化樹脂部材>
繊維強化樹脂部材として、基材部に用いる集成材の長さ方向と平行に配向した連続繊維を樹脂で固化された繊維強化樹脂部材を用いる。連続繊維として、木材の補強に適した強度を有する汎用的な強化繊維を用いることができる。強化繊維は無機繊維であるか、融点またはガラス転移温度が200℃以上、さらに250℃以上である有機繊維を用いることが好ましい。
<Fiber-reinforced resin member>
As the fiber-reinforced resin member, a fiber-reinforced resin member is used in which continuous fibers oriented parallel to the length direction of laminated wood used for the base material are solidified with a resin. A general-purpose reinforcing fiber having a strength suitable for reinforcing wood can be used as the continuous fiber. The reinforcing fibers are preferably inorganic fibers or organic fibers having a melting point or glass transition temperature of 200° C. or higher, more preferably 250° C. or higher.

繊維強化樹脂部材の連続繊維として、炭素繊維、芳香族ポリアミド繊維(アラミド繊維)、ポリアリレート繊維、ポリパラフェニレンベンゾビスオキサザール繊維、ポリフェニレンサルファイド繊維、ポリイミド繊維、四フッ化エチレン繊維を例示することができる。本発明の複合材料の主な用途が建物を成り立たせるための部材であるので、これを構成する繊維強化樹脂部材は、火災時においても強度の低下が起こりにくいことが好ましい。この観点から、炭素繊維、ガラス繊維または芳香族ポリアミド繊維が好ましく、炭素繊維または芳香族ポリアミド繊維が特に好ましい。これらの強化繊維はそれらの単独または2種類以上を複合して用いてもよい。 Examples of continuous fibers of the fiber-reinforced resin member include carbon fibers, aromatic polyamide fibers (aramid fibers), polyarylate fibers, polyparaphenylenebenzobisoxazar fibers, polyphenylene sulfide fibers, polyimide fibers, and tetrafluoroethylene fibers. can be done. Since the composite material of the present invention is mainly used as a member for building a building, it is preferable that the strength of the fiber-reinforced resin member constituting the composite material does not easily decrease even in the event of a fire. From this point of view, carbon fiber, glass fiber or aromatic polyamide fiber is preferable, and carbon fiber or aromatic polyamide fiber is particularly preferable. These reinforcing fibers may be used alone or in combination of two or more.

炭素繊維を用いる場合、ポリアクリロニトリル系繊維を焼成して得られるアクリルニトリル系の炭素繊維が好ましい。炭素繊維を用いる場合、炭素繊維は引張り強度2500~7000MPaかつ弾性率150~700GPaのものが好ましい。この範囲の引張強度と弾性率であると十分な補強効果を得ることができる。 When carbon fibers are used, acrylonitrile-based carbon fibers obtained by baking polyacrylonitrile-based fibers are preferable. When carbon fibers are used, it is preferable that the carbon fibers have a tensile strength of 2500 to 7000 MPa and an elastic modulus of 150 to 700 GPa. A sufficient reinforcing effect can be obtained with the tensile strength and elastic modulus within this range.

連続繊維は樹脂とともに繊維強化樹脂部材を構成する。繊維強化樹脂部材における連続繊維の形態は、一方向に繊維を引き揃えたUD基材やその2方向以上の組合せ、織物、不織布など様々な形態を採用することができ、必要とする強度に応じて設計することができる。実際の性能とコストとのバランスを加味すると、連続繊維は一方向に引き揃えたUD基材として用いることが特に好ましい。UD基材としては、引張強度や引張弾性率が高く、かつ耐熱性が高い炭素繊維を一方向に引き揃えたUD基材を用いることが好ましい。 The continuous fibers constitute a fiber-reinforced resin member together with the resin. The form of the continuous fibers in the fiber-reinforced resin member can adopt various forms such as a UD base material in which the fibers are aligned in one direction, a combination of two or more directions, a woven fabric, and a non-woven fabric, depending on the required strength. can be designed Considering the balance between actual performance and cost, it is particularly preferable to use continuous fibers as a unidirectionally aligned UD substrate. As the UD base material, it is preferable to use a UD base material in which carbon fibers having high tensile strength and tensile modulus and high heat resistance are aligned in one direction.

繊維強化樹脂部材に用いられる樹脂はマトリックス樹脂となるものを用い、好ましくは熱硬化性樹脂を用いる。熱硬化性樹脂として、例えば、フェノール樹脂、エポキシ樹脂、ビニルエステル樹脂を挙げることができる。なかでも、耐熱性の観点からフェノール樹脂が好ましい。 The resin used for the fiber-reinforced resin member is a matrix resin, preferably a thermosetting resin. Examples of thermosetting resins include phenol resins, epoxy resins, and vinyl ester resins. Among them, phenol resin is preferable from the viewpoint of heat resistance.

連続繊維は、基材部の集成材の長さ方向に配向した態様になるように用いることが好ましい。この態様で用いることによって、繊維による補強効果を効果的に発揮することができる。本発明で用いる繊維強化樹脂部材における繊維と樹脂の体積分率は40/60~60/40の範囲であることが好ましい。 The continuous fibers are preferably used so as to be oriented in the longitudinal direction of the laminated wood of the base material. By using it in this mode, it is possible to effectively exhibit the reinforcing effect of the fiber. The fiber-to-resin volume fraction in the fiber-reinforced resin member used in the present invention is preferably in the range of 40/60 to 60/40.

繊維強化樹脂部材の物性は、曲げ強さが900~2000MPaかつ曲げ弾性係数が90~150GPaであることが好ましい。 The physical properties of the fiber-reinforced resin member are preferably 900 to 2000 MPa in bending strength and 90 to 150 GPa in bending elastic modulus.

本発明の複合材料の主な用途は建築材料の軸材料であり、柱や床といった他の部材と接合して、建築構造を成す。例えば、梁に用いる場合には、その上部に合板などの床材料をビスや釘で固定するため、極力、補強材料である繊維強化樹脂部材に損傷を与えることなく、ビス止めや釘打ちを実施する必要がある。そのため、繊維強化樹脂部材はより細く、しかしながら補強に必要な十分な繊維量を確保する必要があるため、繊維材料の形状は矩形断面を有する棒状形状が望ましい。その補強性能と使用上のビス止めや釘打ちのスペースの確保を両立するための繊維強化樹脂部材は、例えば幅10~100mmかつ高さ2~60mmの矩形断面を有する棒形状であり、好ましくは幅20~50mmかつ高さ10~30mmの矩形断面を有する棒形状であることが好ましい。 The main application of the composite material of the present invention is as a shaft material for building materials, and it is joined to other members such as columns and floors to form a building structure. For example, when used for beams, flooring materials such as plywood are fixed with screws and nails, so screwing and nailing should be done without damaging the fiber-reinforced resin members that are reinforcing materials as much as possible. There is a need to. Therefore, the fiber-reinforced resin member is thinner, but it is necessary to secure a sufficient amount of fibers necessary for reinforcement. The fiber-reinforced resin member for ensuring both the reinforcing performance and the space for screwing and nailing in use is, for example, a bar shape having a rectangular cross section with a width of 10 to 100 mm and a height of 2 to 60 mm, preferably It is preferably rod-shaped with a rectangular cross-section having a width of 20-50 mm and a height of 10-30 mm.

繊維強化樹脂部材の幅と高さがこれらの範囲にないと、補強性能が得られ難くなるか、ビス止めや釘打ちのスペースを設け難くなるばかりではなく、繊維強化樹脂部材を固定するための基材部接合部材と補強部保護部材に設ける凹部の加工が困難になり、最終的には補強効果の発現が期待できない。 If the width and height of the fiber-reinforced resin member are not within these ranges, it will not only be difficult to obtain the reinforcing performance, or it will be difficult to provide a space for screwing or nailing. It becomes difficult to process the concave portions provided in the base material portion joining member and the reinforcing portion protecting member, and ultimately the reinforcement effect cannot be expected.

このような矩形断面を有する棒状の繊維強化樹脂部材は、一般的な繊維強化樹脂の成型方法で得られ、特には引抜成形法にて成形されることが棒形状の成形性の観点から好ましい。 A rod-shaped fiber-reinforced resin member having such a rectangular cross section can be obtained by a general fiber-reinforced resin molding method, and in particular, it is preferably molded by a pultrusion method from the viewpoint of rod-shaped moldability.

<基材部接合部材と補強部保護部材、繊維強化樹脂部材の接着>
基材部接合部材、補強部保護部材および繊維強化樹脂部材を用いて補強部が構成される。基材部接合部材と補強部保護部材とにそれぞれ設けられた、それぞれ少なくとも2列、好ましくは2列の凹部に接着剤を介して繊維強化樹脂部材を接着する。基材部接合部材と補強部保護部材との間に繊維強化樹脂部材が配置される。このとき、基材部接合部材と補強部保護部材とは実質的に直接接着されておらず、基材部接合部材と補強部保護部材のそれぞれが繊維強化樹脂部材との接着を介して一体化していることが重要である。基材部接合部材と補強部保護部材とは直接的に全く接着されておらず、両者の間に隙間があることが特に好ましい。
<Adhesion of base material part joining member, reinforcement part protection member, and fiber reinforced resin member>
The reinforcing portion is configured using the base material portion joining member, the reinforcing portion protecting member, and the fiber reinforced resin member. A fiber reinforced resin member is adhered via an adhesive to at least two rows, preferably two rows of recessed portions respectively provided in the base member joining member and the reinforcing member protecting member. A fiber reinforced resin member is arranged between the base material part joining member and the reinforcing part protecting member. At this time, the base material part connecting member and the reinforcing part protecting member are not substantially directly bonded, and the base material part connecting member and the reinforcing part protecting member are integrated through bonding with the fiber reinforced resin member. It is important that It is particularly preferable that the base member connecting member and the reinforcing member protecting member are not directly bonded at all, and that there is a gap between them.

なお、実質的に直接接着されていないことは、基材部接合部材と補強部保護部材とが、比較的弱い接着力で接着されていることを許容する意味であり、繊維強化樹脂部材との間の接着力の例えば10%以下、好ましくは5%以下の接着力で接着されていることを許容する意味である。 Note that not being substantially directly bonded means that the base material part bonding member and the reinforcement part protection member are allowed to be bonded with a relatively weak adhesive force, and the fiber reinforced resin member is not directly bonded. It means that the bonding is permitted with an adhesive strength of, for example, 10% or less, preferably 5% or less of the adhesive strength between the two.

本発明における繊維強化樹脂部材は、基材部の集成材の対向する両側面に基材部接合部材を接着し、その基材部接合部材と接着している繊維強化部材部材の補強効果を基材部の集成材に伝達することで補強効果を得る。 The fiber-reinforced resin member according to the present invention is obtained by adhering a base-part joining member to the opposite side surfaces of the laminated material of the base-part, and based on the reinforcing effect of the fiber-reinforced member bonded to the base-part-joining member. Reinforcement effect is obtained by transmitting to the laminated wood of the material part.

したがって、基材部接合部材と基材部との接着はもちろんのこと、基材部接合部材と繊強化樹脂部材との接着も強固でなければならない。本発明におけるすべての接着は、接着剤として木質用の接着剤である水溶性高分子-イソシアネート系接着剤またはレゾルシノール系接着剤を使用して行うことができる。接着はプレス接着で行うことが好ましく、木質材料のプレス接着であるため、このプレス圧は、木質材料が破壊しない程度である1.0MPa前後で実施することが好ましい。 Therefore, not only the adhesion between the base material part joining member and the base material part but also the adhesion between the base material part joining member and the fiber-reinforced resin member must be strong. All adhesions in the present invention can be performed using water-soluble polymer-isocyanate-based adhesives or resorcinol-based adhesives, which are adhesives for wood, as adhesives. Bonding is preferably performed by press bonding, and since wood materials are press bonded, the press pressure is preferably around 1.0 MPa, which is a level that does not break the wood material.

基材部接合部材と繊維強化樹脂部材との接着において、効率よく圧力を接着界面に与える必要がある。このため、基材部接合部材および補強部保護部材に設ける少なくとも2列、好ましくは2例の凹部は、その深さの合計を繊維強化樹脂部材の高さ未満に設定する必要がある。例えば繊維強化樹脂部材の高さを30mmとするならば、基材部接合部材および補強部保護部材に設ける凹部に深さを14.5mmとし、その深さの合計が29.0mmとするなど、基材部接合部材と補強部保護部材との間に例えば1mm以上の隙間を設けて両者が直接接触しない、すなわち、直接接着しないことで、効率よくプレス圧力を基材部接合部材と補強部保護部材の接着界面に与えることができる。 It is necessary to efficiently apply pressure to the bonding interface in bonding the base material portion bonding member and the fiber reinforced resin member. Therefore, it is necessary to set the total depth of at least two rows, preferably two recesses provided in the base material part joining member and the reinforcing part protection member to be less than the height of the fiber reinforced resin member. For example, if the height of the fiber-reinforced resin member is 30 mm, the depth of the recess provided in the base material part joining member and the reinforcement part protection member is 14.5 mm, and the total depth is 29.0 mm. By providing a gap of, for example, 1 mm or more between the base material part joining member and the reinforcing part protection member so that they do not come into direct contact with each other, i.e., do not directly adhere to each other, the press pressure is efficiently applied to the base material part joining member and the reinforcing part protection member. It can be applied to the bonding interface of the member.

他方、両者の隙間が狭く、例えば1mm未満である場合、基材部接合部材と補強部保護部材とが接触することで、プレス圧力が十分に繊維強化樹脂部材に伝わらず、基材部接合部材と補強部保護部材との接着が不十分となり、その結果、複合材料の性能が十分に発揮されない可能性が高くなる。 On the other hand, when the gap between the two is narrow, for example, less than 1 mm, the base material part joining member and the reinforcing part protection member come into contact with each other, so that the press pressure is not sufficiently transmitted to the fiber reinforced resin member. The adhesion between the composite material and the reinforcing portion protection member becomes insufficient, and as a result, there is a high possibility that the performance of the composite material will not be fully exhibited.

<基材部接合部材と補強部保護部材の役割>
本発明における補強部は、これまでに説明したように、繊維強化樹脂部材を基材部接合部材と補強部保護部材で挟んだ形態をとる。ここで、基材部接合部材と補強部保護部材の役割について説明する。
<Roles of base material joining member and reinforcing member protecting member>
As described above, the reinforcing portion in the present invention has a form in which the fiber reinforced resin member is sandwiched between the base material portion joining member and the reinforcing portion protecting member. Here, the roles of the base material portion joining member and the reinforcing portion protecting member will be described.

基材部接合部材は、基材部の集成材と接着され、繊維強化樹脂部材の補強効果を基材部に伝達する役割をもつ部材である。基材部接合部材と基材部との接着は、通常の集成材と同様に、木質用の接着剤である水溶性高分子-イソシアネート系接着剤またはレゾルシノール系接着剤を使用したプレス接着により行うことができる。 The base material part joining member is a member that is adhered to the laminated material of the base material part and has a role of transmitting the reinforcing effect of the fiber reinforced resin member to the base material part. Adhesion between the base member and the base member is performed by press bonding using a water-soluble polymer-isocyanate adhesive or a resorcinol adhesive, which is an adhesive for wood, in the same way as ordinary laminated lumber. be able to.

他方、補強部保護部材は、本発明の複合材料の最外層に位置する材料である。補強部保護部材の役割は、その内側に配置される繊維強化樹脂部材を保護すると同時に、建築構造材として本発明の複合材料を使用するときに、床材や内装材を複合材料に固定するための釘打ちやビス止めなどのスペースとしての役割を担う。したがって、基材部接合部材と同様に、補強部保護部材と繊維強化樹脂部材との接着は強固でなくてはならず、上述した補強部の作製方法をとることが重要となる。 On the other hand, the reinforcement protection member is the outermost layer of the composite material of the present invention. The role of the reinforcing part protection member is to protect the fiber-reinforced resin member arranged inside and to fix the floor material and interior material to the composite material when the composite material of the present invention is used as a building structural material. It plays a role as a space for nailing and screwing. Therefore, similarly to the base material part joining member, the adhesion between the reinforcing part protecting member and the fiber reinforced resin member must be strong, and it is important to employ the above-described method of manufacturing the reinforcing part.

<基材部の再利用>
本発明の複合材料の特徴は、繊維強化樹脂部材によって基材部の木質集成材の曲げ性能を改善するのみならず、繊維強化樹脂部材と一体化された複合材料が建築材料として使用された後に、複合材料の体積の多くを占める基材部の集成材を再利用できることである。
<Reuse of base material>
The characteristics of the composite material of the present invention are that the fiber reinforced resin member not only improves the bending performance of the laminated wood material of the base material, but also allows the composite material integrated with the fiber reinforced resin member to be used as a building material. Second, the laminated material of the base material, which occupies most of the volume of the composite material, can be reused.

通常は、補強したい基材(集成材)の内部または外層に補強材料を接着し、その基材自体に合板などの床材料や天井材などの内装材をビス止めや釘打ちにより固定しているため、建築物の解体後は全ての材料を廃棄物として処分するより方法がない。しかし、本発明の複合材料は、基材部として用いる集成材に対して、基材部接合部材を介して繊維強化樹脂部材を接着し、かつ補強部保護部材を介して合板などの床材料や天井材などの内装材をビス止めや釘打ちにより固定しているため、建物の解体時に損傷を受けるのは補強部保護部材に留まり、基材部接合部材を通常の木材加工で切り取ることで基材部である集成材に戻して再利用することができる。 Normally, a reinforcing material is adhered to the inner or outer layer of the base material (laminated wood) to be reinforced, and floor materials such as plywood and interior materials such as ceiling materials are fixed to the base material itself by screwing or nailing. Therefore, there is no alternative but to dispose of all materials as waste after the building is demolished. However, in the composite material of the present invention, a fiber reinforced resin member is adhered to the laminated wood used as the base material via the base material part joining member, and a floor material such as plywood or the like is bonded via the reinforcement part protection member. Since interior materials such as ceiling materials are fixed by screwing or nailing, damage is limited to the reinforcement protection members when the building is dismantled. It can be reused by returning it to the laminated lumber that is the material part.

繊維強化樹脂部材により補強をされた状態で建材として使用されている間は、主に繊維強化樹脂部材が力学的に重きを担っているため、基材部の集成材自体の物理的な劣化は通常の集成材よりも少ない可能性も考えられる。 While it is used as a building material while being reinforced with fiber-reinforced resin members, the fiber-reinforced resin member mainly bears the mechanical weight, so physical deterioration of the laminated lumber itself of the base material does not occur. Possibility that it is less than normal laminated lumber is also conceivable.

本発明をさらに実施例により具体的に説明する。評価は下記の方法により行った。
(1)接着力
基材部節後部材や補強部保護部材の木質部材と繊維強化樹脂部材の接着界面を25mm×25mmとし、接着界面が中心となるように60mm(木質部材30mm+繊維部材30mm)を試験片として切り出し、繊維強化樹脂部材を治具に固定し、接着界面にせん断応力がかかるように木質部材に圧力をかけた。破壊した荷重を測定し、接着面積で除すことでせん断接着強さ(MPa)を算出した。5.4MPa以上のせん断接着強さで接着しているとの判定とした。
(2)曲げ物性
断面が幅120mmかつ高さ390mm、全長8000mmの試験体に対して、支点間距離を7020mm(断面高さの18倍)とし、全長8000mmの試験体を4等分する2点に加力を行う4点曲げ試験を実施した。得られた最大荷重および荷重-たわみ曲線から、以下の式を用いて曲げ強さと曲げ弾性係数を算出した。
(曲げ強さの計算式)

Figure 0007171299000001
(曲げ弾性係数の計算式)
Figure 0007171299000002
The present invention will be further described in detail with reference to examples. Evaluation was performed by the following method.
(1) Adhesive strength The adhesive interface between the post-ganglionic member of the base material part and the wooden member of the reinforcing part protection member and the fiber reinforced resin member is 25 mm × 25 mm, and the adhesive interface is 60 mm so that the adhesive interface is the center (30 mm of wooden member + 30 mm of fiber member) was cut out as a test piece, the fiber-reinforced resin member was fixed to a jig, and pressure was applied to the wooden member so that shear stress was applied to the adhesion interface. The breaking load was measured and divided by the adhesion area to calculate the shear adhesion strength (MPa). It was judged to be bonded with a shear bond strength of 5.4 MPa or more.
(2) Bending physical properties For a specimen with a cross section of width 120 mm, height 390 mm, and total length of 8,000 mm, the distance between fulcrums is set to 7,020 mm (18 times the height of the section), and the specimen with a total length of 8,000 mm is divided into 2 points. A four-point bending test was performed in which a force was applied to the From the obtained maximum load and load-deflection curve, the bending strength and bending elastic modulus were calculated using the following formulas.
(Calculation formula for bending strength)
Figure 0007171299000001
(Calculation formula for bending elastic modulus)
Figure 0007171299000002

実施例1
(基材と補強効果)
基材部として、幅120mm、高さ300mmの断面を持つスギの集成材(E65-F225)を用いた。この集成材の曲げ特性は、曲げ強さ22.5MPa、曲げ弾性係数6.5GPaである。
Example 1
(Base material and reinforcing effect)
As the base material, laminated cedar wood (E65-F225) having a cross section of 120 mm in width and 300 mm in height was used. The flexural properties of this laminated material are a flexural strength of 22.5 MPa and a flexural elastic modulus of 6.5 GPa.

(基材部接合部材と補強部保護部材)
基材部と同様に、基材部接合部材と補強部保護部材にもスギ材料を用いた。幅125mm、高さ22mm、長さ8000mmの製材ラミナを作製し、両端部より17.5mmの位置に幅30mm、深さ14.5mmの凹部を2列、ラミナ長さ方向と並行に切削した。2列の凹部間の間隔は30mmとした。このラミナを4枚作製した。
(Base member joining member and reinforcing member protecting member)
As with the base material, the cedar material was also used for the base material joining member and the reinforcement protection member. A lumber lamina having a width of 125 mm, a height of 22 mm, and a length of 8,000 mm was prepared, and two rows of recesses having a width of 30 mm and a depth of 14.5 mm were cut at positions 17.5 mm from both ends in parallel with the lamina length direction. The interval between the two rows of recesses was 30 mm. Four sheets of this lamina were produced.

(繊維強化樹脂部材)
繊維強化樹脂部材は、補強繊維として炭素繊維の連続繊維(東邦テナックス社製)を使用し、マトリックス樹脂にビニルエステル樹脂を用いた繊維強化樹脂を使用した。この繊維強化樹脂部材は引抜成形により成形され、断面が30mm×30mmの正方形であり、長さが8000mmとした。得られた繊維強化樹脂部材の曲げ特性は、曲げ強さが1300MPa、曲げ弾性係数が110GPaであった。
(fiber reinforced resin member)
For the fiber-reinforced resin member, continuous fiber of carbon fiber (manufactured by Toho Tenax Co., Ltd.) was used as the reinforcing fiber, and fiber-reinforced resin using vinyl ester resin as the matrix resin was used. This fiber-reinforced resin member was molded by pultrusion, and had a square cross section of 30 mm×30 mm and a length of 8000 mm. The obtained fiber-reinforced resin member had a bending strength of 1300 MPa and a bending elastic modulus of 110 GPa.

(基材部接合部材と補強部保護部材、繊維強化樹脂部材の接着)
得られた基材部接合部材と補強部保護部材のラミナに設けた2列の凹部に、300g/mとなるように水溶性高分子-イソシアネート系接着剤を塗付し、繊維強化樹脂部材をそれぞれの凹部に挿入し、繊維強化樹脂部材を基材部保護部材と補強部保護部材とで挟み、0.8MPaのプレス圧で45分間プレス接着して補強部を成形した。得られた補強部は、基材部接合部材と補強部保護部材との間に1mmの隙間が生じており、繊維強化樹脂部材と基材部接合部材との接着および繊維強化樹脂部材と補強部保護部材との接着のみで一体化されていた。繊維強化樹脂部材と基材部接合部材とのせん断接着強さと、繊維強化樹脂部材と補強部保護部材とのせん断接着強さを測定したところ、いずれも7.8MPaであり十分に接着していることが確認できた。補強部の寸法は、幅125mm×高さ45mm×長さ8000mmであった。
(Adhesion of base material part joining member, reinforcement part protection member, and fiber reinforced resin member)
A water-soluble polymer-isocyanate adhesive was applied to the two rows of recesses provided in the lamina of the obtained base material part joining member and reinforcing part protection member so as to be 300 g / m 2 to form a fiber reinforced resin member. was inserted into each recess, the fiber-reinforced resin member was sandwiched between the base-material-protecting member and the reinforcing-portion-protecting member, and press-bonded at a press pressure of 0.8 MPa for 45 minutes to form a reinforcing portion. In the obtained reinforcing part, a gap of 1 mm is generated between the base material part joining member and the reinforcing part protecting member. It was integrated only by bonding with the protective member. When the shear bond strength between the fiber reinforced resin member and the base material part bonding member and the shear bond strength between the fiber reinforced resin member and the reinforcing part protection member were measured, both were 7.8 MPa, indicating that they were sufficiently bonded. I was able to confirm that. The dimensions of the reinforcement were 125 mm wide×45 mm high×8000 mm long.

(複合材料)
得られた補強部2部それぞれの基材接合部材に、250g/mとなるように水溶性高分子-イソシアネート系接着剤を塗付し、基材部とする集成材(E65-F225)の対向する両側面に接置し、プレス接着を行った。プレス圧は0.8MPaとし、プレス時間は45分間とした。プレス後、得られた複合材料の周囲6面を削り、寸法調整を行い、幅120mm×高さ390mm×長さ8000mmとした。
(composite material)
A water-soluble polymer-isocyanate-based adhesive was applied to each of the obtained two reinforcement parts to join the base material so that the amount was 250 g/m 2 , and laminated lumber (E65-F225) was used as the base material part. They were placed in contact with opposite side surfaces and press-bonded. The press pressure was 0.8 MPa, and the press time was 45 minutes. After pressing, 6 peripheral surfaces of the obtained composite material were cut to adjust the dimensions to 120 mm in width×390 mm in height×8000 mm in length.

得られた複合材料の4点曲げ試験を実施したところ、曲げ強さが102.1MPa、曲げ弾性係数が25.8GPaであった。 A four-point bending test was performed on the obtained composite material, and the bending strength was 102.1 MPa and the bending elastic modulus was 25.8 GPa.

比較例1
実施例1において、基材部接合部材と補強部保護部材に設けた凹部の深さを15.5mmとした以外は実施例1と同様にして、補強部を作成し、同様に複合材料を作製した。その結果、補強部において繊維強化樹脂部材と基材部接合部材とのせん断接着強さと、繊維強化樹脂部材と補強部保護部材とのせん断接着強さを測定したところ、それぞれ0.6MPaであり、接着が不足していることを確認した。また、得られた複合材料の4点曲げ試験を実施したところ、曲げ強さが29.3MPa、曲げ弾性係数が8.4GPaであった。
Comparative example 1
In Example 1, a reinforcing portion was produced in the same manner as in Example 1, except that the depth of the concave portion provided in the base material portion joining member and the reinforcing portion protecting member was 15.5 mm, and a composite material was produced in the same manner. did. As a result, when the shear bond strength between the fiber reinforced resin member and the substrate part joining member and the shear bond strength between the fiber reinforced resin member and the reinforcement part protection member in the reinforcement part were measured, they were each 0.6 MPa. Confirmed lack of adhesion. Further, when the obtained composite material was subjected to a four-point bending test, the bending strength was 29.3 MPa and the bending elastic modulus was 8.4 GPa.

本発明の複合材料は、例えば柱や梁などの建築材料として用いることができる。使用された後に建物が解体されたときには、基材部を集成材に戻すことができるため、再度、通常の集成材とし用いることができる。また、新たに補強部を接着して、複合材料として用いることができる。 The composite material of the present invention can be used, for example, as building materials such as columns and beams. When the building is demolished after being used, the base material can be returned to laminated lumber, so that it can be used again as ordinary laminated lumber. Moreover, it can be used as a composite material by bonding a new reinforcing portion.

11 繊維強化樹脂部材
12 基材部接合部材
13 補強部保護部材
21 補強部
22 基材部である集成材
REFERENCE SIGNS LIST 11 Fiber reinforced resin member 12 Base material part joining member 13 Reinforcement part protection member 21 Reinforcement part 22 Laminated wood that is the base material part

Claims (10)

木質材である基材部と補強部とからなる複合材料であって、補強部は、基材部接合部材および補強部保護部材ならびにこれらの間に配置されて両者に接着された繊維強化樹脂部材からなり、基材部接合部材と補強部保護部材とは直接的に全く接着されておらず、両者の間に隙間があることを特徴とする、複合材料。 A composite material consisting of a base material part made of wood and a reinforcement part, wherein the reinforcement part comprises a base material part joining member, a reinforcement part protection member, and a fiber-reinforced resin member disposed between and adhered to both. A composite material characterized in that the base member connecting member and the reinforcing member protecting member are not directly bonded at all, and a gap exists between them . 曲げ強さが20~140MPaかつ曲げ弾性係数が5~40GPaである、請求項1記載の複合材料。 The composite material according to claim 1, having a flexural strength of 20-140 MPa and a flexural modulus of 5-40 GPa. 基材部が、幅100~300mmかつ高さ100~1000mmの断面寸法をもつ、請求項1記載の複合材料。 2. The composite material of claim 1, wherein the substrate portion has cross-sectional dimensions of 100-300 mm in width and 100-1000 mm in height. 補強部において、基材部接合部材および補強部保護部材は、それぞれに切削されたそれぞれ少なくとも2つの凹部を備え、該凹部は補強部保護部材の幅方向の端部から5~45mmの位置に10~100mmの間隔で配置され、該凹部に繊維強化樹脂部材が接着され固定されている、請求項1記載の複合材料。 In the reinforcing part, the base material part joining member and the reinforcing part protecting member each have at least two recesses cut therein, and the recesses are located 5 to 45 mm from the end of the reinforcing part protecting member in the width direction. 2. The composite material according to claim 1, wherein the recesses are arranged at intervals of up to 100 mm, and the fiber-reinforced resin members are adhered and fixed in the recesses. 凹部が、幅10~100mmの連続する凹部であり、基材部の長さ方向と平行に切削されている、請求項4記載の複合材料。 5. The composite material according to claim 4, wherein the recess is a continuous recess with a width of 10-100 mm and is cut parallel to the longitudinal direction of the base material. 繊維強化樹脂部材が、幅10~100mmかつ高さ2~60mmの矩形断面を有する棒形状であり、該繊維強化樹脂部材は連続繊維で補強され、該連続繊維は基材部の長さ方向に配向している、請求項4記載の複合材料。 The fiber-reinforced resin member is rod-shaped and has a rectangular cross section with a width of 10 to 100 mm and a height of 2 to 60 mm. 5. The composite material of claim 4, which is oriented. 繊維強化樹脂部材の連続繊維が、炭素繊維、ガラス繊維または芳香族ポリアミド繊維である、請求項1記載の複合材料。 2. The composite material according to claim 1, wherein the continuous fibers of the fiber-reinforced resin member are carbon fibers, glass fibers or aromatic polyamide fibers. 建築材料である請求項1記載の複合材料。 A composite material according to claim 1, which is a building material. 請求項1記載の複合材料から基材部を回収する方法であって、基材部から補強部を切り離すことにより基材部を回収する方法。 A method of recovering a substrate portion from the composite material of claim 1, wherein the substrate portion is recovered by cutting the reinforcement portion from the substrate portion. 基材部が、請求項9記載の方法で回収された基材部である請求項1記載の複合材料。 The composite material according to claim 1, wherein the substrate portion is a substrate portion recovered by the method according to claim 9.
JP2018149036A 2018-08-08 2018-08-08 COMPOSITE MATERIAL AND METHOD FOR RECOVERING BASE MATERIAL FROM COMPOSITE Active JP7171299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018149036A JP7171299B2 (en) 2018-08-08 2018-08-08 COMPOSITE MATERIAL AND METHOD FOR RECOVERING BASE MATERIAL FROM COMPOSITE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018149036A JP7171299B2 (en) 2018-08-08 2018-08-08 COMPOSITE MATERIAL AND METHOD FOR RECOVERING BASE MATERIAL FROM COMPOSITE

Publications (2)

Publication Number Publication Date
JP2020023123A JP2020023123A (en) 2020-02-13
JP7171299B2 true JP7171299B2 (en) 2022-11-15

Family

ID=69618165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149036A Active JP7171299B2 (en) 2018-08-08 2018-08-08 COMPOSITE MATERIAL AND METHOD FOR RECOVERING BASE MATERIAL FROM COMPOSITE

Country Status (1)

Country Link
JP (1) JP7171299B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226813A (en) 2008-03-24 2009-10-08 Daiken Corp Plywood and manufacturing method therefor
CN106863495A (en) 2017-02-14 2017-06-20 上海市建筑科学研究院 A kind of cemented bamboo wooden frame and its manufacture method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009226813A (en) 2008-03-24 2009-10-08 Daiken Corp Plywood and manufacturing method therefor
CN106863495A (en) 2017-02-14 2017-06-20 上海市建筑科学研究院 A kind of cemented bamboo wooden frame and its manufacture method

Also Published As

Publication number Publication date
JP2020023123A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
Wei et al. Experimental and theoretical investigation of steel-reinforced bamboo scrimber beams
US5565257A (en) Method of manufacturing wood structural member with synthetic fiber reinforcement
JP4918567B2 (en) Shock absorbing structure and manufacturing method thereof
Ahmad Ductility of timber beams strengthened using fiber reinforced polymer
KR101683367B1 (en) Fiber Reinforced Concrete Structure With End Slip Prevention
JP6857519B2 (en) Joint structure
JP6698397B2 (en) How to join wood members
JP7171299B2 (en) COMPOSITE MATERIAL AND METHOD FOR RECOVERING BASE MATERIAL FROM COMPOSITE
JP7239339B2 (en) wooden building material
JP7043358B2 (en) Prestressed wooden beams
JP2005105697A (en) Reinforced fiber resin plate and reinforcing method of structure using the same
JP2001138305A (en) Laminated wood reinforced with bamboo material
KR101879836B1 (en) Reinforced wood structure using steel bar embedded and steel plate attached lamination wood
JP7204519B2 (en) wooden building material
JP3661059B2 (en) Unbonded composite axial force member made of wood and metal parts
KR101892224B1 (en) Reinforced wood structure using steel bar embedded lamination wood
JP4893328B2 (en) FRP reinforcing method for structure and reinforcing structure for structure
KR101848060B1 (en) Reinforcing method of wood structure using steel bar embedded lamination wood
JP4130781B2 (en) Fiber reinforced plastic boards and concrete structures
JP6821225B1 (en) Reinforced wood building materials
KR101879817B1 (en) Reinforcing method of wood structure using steel bar embedded and steel plate attached lamination wood
JP2005105684A (en) Leaf spring-shaped fiber-reinforced resin plate, and structure reinforcing method using it
JP7097560B2 (en) Reinforcement structure of joints of wooden structures
JP2005105685A (en) L-shaped fiber reinforced resin plate and structure reinforcing method using the same
JP2007245457A (en) Aramid fibre-reinforced laminate lumber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7171299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150