JP2012236386A - Laminated lumber and method of manufacturing the same - Google Patents

Laminated lumber and method of manufacturing the same Download PDF

Info

Publication number
JP2012236386A
JP2012236386A JP2011108359A JP2011108359A JP2012236386A JP 2012236386 A JP2012236386 A JP 2012236386A JP 2011108359 A JP2011108359 A JP 2011108359A JP 2011108359 A JP2011108359 A JP 2011108359A JP 2012236386 A JP2012236386 A JP 2012236386A
Authority
JP
Japan
Prior art keywords
carbon fiber
reinforced resin
fiber reinforced
laminated
cedar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011108359A
Other languages
Japanese (ja)
Inventor
Nobuaki Iketani
暢昭 池谷
Yasuo Suzuki
康夫 鈴木
Katsuhiko Sakai
克彦 酒井
Masashi Hirao
正志 平尾
Kunihiro Inagaki
訓宏 稲垣
Hiroyuki Kato
宏幸 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011108359A priority Critical patent/JP2012236386A/en
Publication of JP2012236386A publication Critical patent/JP2012236386A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminated lumber that can secure the rigidity while making the best use of the characteristic of the carbon fiber-reinforced resin and the method of manufacturing the same.SOLUTION: In the laminated lumber 1, the compressive stress is caused in the cedar material 2 when the external force is received, and the tensile stress is caused in carbon fiber-reinforced resin 4. Here the carbon fiber-reinforced resin 4 has an excellent characteristic in the tensile strength, and the cedar material 2 has the given compressive strength. Therefore, the rigidity to the external force is secured. Moreover, since the carbon fiber-reinforced resin 4 contributes to the tensile stress, the characteristic of the carbon fiber-reinforced resin 4 is fully utilized. In addition, the laminated lumber is excellent in the appearance, touch, and the smell, since the cedar material 2 makes the surface layer, and weight saving may be attained to the extent that the foaming material 3 is used.

Description

本発明は、木材および炭素繊維強化樹脂を用いた集成材およびその製造方法に関する。   The present invention relates to a laminated material using wood and carbon fiber reinforced resin and a method for producing the same.

従来、このような分野の技術として、下記特許文献1に記載されるように、木材からなる芯材の外周に炭素繊維強化樹脂を巻きつけ、その炭素繊維樹脂の表面に木材を貼付した四角柱状の集成材が知られている。この集成材では、複数の木材を積層して芯材を形成しており、複数の木材における繊維の方向は平行になっている。さらに、木材の繊維の方向に対し、ほぼ垂直方向または交差する方向に炭素繊維樹脂の繊維を配置している。   Conventionally, as described in Patent Document 1 below, as a technique in such a field, a rectangular column shape in which a carbon fiber reinforced resin is wound around the outer periphery of a core material made of wood and wood is attached to the surface of the carbon fiber resin. Laminated lumber is known. In this laminated material, a plurality of woods are laminated to form a core material, and the fiber directions in the plurality of woods are parallel. Further, carbon fiber resin fibers are arranged in a direction substantially perpendicular to or intersecting with the direction of the fibers of the wood.

このような構成により、下記特許文献1に記載の集成材は、高剛性かつ軽量とされ、大型建築物の構造材として適用可能になっている。また、炭素繊維樹脂の利用により、天然木材の使用量が低減されている。   With such a configuration, the laminated material described in Patent Document 1 below is highly rigid and lightweight, and can be applied as a structural material for large buildings. In addition, the amount of natural wood used is reduced by the use of carbon fiber resin.

特開平6−122105号公報JP-A-6-122105

上記した従来の集成材では、木材が積層されてなる芯材と、炭素繊維強化樹脂との両方によって剛性を確保している。すなわち、炭素繊維強化樹脂は、剛性を確保するため、あくまで補助的に用いられるに過ぎない。このように、従来の集成材では、炭素繊維強化樹脂の特性を充分に生かすことができなかった。   In the conventional laminated material described above, rigidity is ensured by both the core material in which wood is laminated and the carbon fiber reinforced resin. That is, the carbon fiber reinforced resin is used only as an auxiliary to ensure rigidity. Thus, with the conventional laminated material, the characteristics of the carbon fiber reinforced resin could not be fully utilized.

本発明は、炭素繊維強化樹脂の特性を充分に生かしつつ、剛性を確保することができる集成材およびその製造方法を提供することを目的とする。   An object of this invention is to provide the laminated material which can ensure rigidity, fully utilizing the characteristic of carbon fiber reinforced resin, and its manufacturing method.

本発明に係る集成材は、複数の部材が積層されてなる集成材であって、木材によって形成され、表面層をなす第1部材と、炭素繊維強化樹脂によって形成され、第1部材の裏面側に配置された第2部材と、発泡体によって形成され、第2部材が接合された第3部材と、を有し、外力を受けた場合に、第1の部材には圧縮応力が生じると共に、第2の部材には引張応力が生じることを特徴とする。   The laminated material according to the present invention is a laminated material in which a plurality of members are laminated, and is formed of wood and is formed of a first member forming a surface layer and a carbon fiber reinforced resin, and the back surface side of the first member. A second member disposed on the first member and a third member formed of a foam and joined to the second member, and when subjected to external force, the first member is subjected to compressive stress, A tensile stress is generated in the second member.

この集成材によれば、外力を受けた場合に、木材によって形成された第1部材には圧縮応力が生じると共に、炭素繊維強化樹脂によって形成された第2部材には引張応力が生じる。ここで、炭素繊維強化樹脂は引張強度に優れた特性を有している。また、木材も所定の圧縮強度を有する。よって、外力に対する剛性を確保することができる。しかも、引張応力に対しては炭素繊維強化樹脂からなる第2部材が寄与するため、炭素繊維強化樹脂の特性が充分に生かされる。さらに、発泡体によって形成された第3部材を用いる分、軽量化が図られる。また、木材によって形成された第1部材が表面層をなすため、見映え、肌触り、匂いにおいて優れている。露出した第1部材は、集成材が配置された雰囲気中の湿度を吸収する機能も兼ね備える。   According to this laminated material, when an external force is applied, compressive stress is generated in the first member formed of wood, and tensile stress is generated in the second member formed of carbon fiber reinforced resin. Here, the carbon fiber reinforced resin has excellent properties in tensile strength. Wood also has a predetermined compressive strength. Therefore, rigidity against external force can be ensured. Moreover, since the second member made of the carbon fiber reinforced resin contributes to the tensile stress, the characteristics of the carbon fiber reinforced resin are fully utilized. Further, the weight can be reduced by using the third member formed of the foam. Moreover, since the 1st member formed with wood makes a surface layer, it is excellent in appearance, touch, and smell. The exposed first member also has a function of absorbing humidity in the atmosphere in which the laminated material is disposed.

また、第1〜第3部材は板状をなしており、第1部材と第2部材との間に第3部材が配置され、第1部材および第2部材は、第3部材の表面側および裏面側にそれぞれ接合されていると好適である。この場合、発泡体から形成された第3部材が第1部材と第2部材とによってサンドイッチされ、板状の集成材が形成される。これにより、例えば建物の床材や家具材などに適した高剛性で軽量の板状部材が実現される。   The first to third members have a plate shape, the third member is disposed between the first member and the second member, and the first member and the second member are the surface side of the third member and It is preferable to be joined to the back side. In this case, the 3rd member formed from the foam is sandwiched by the 1st member and the 2nd member, and a plate-shaped laminated material is formed. Thereby, for example, a highly rigid and lightweight plate-like member suitable for a flooring material or a furniture material of a building is realized.

また、第3部材は柱状をなしており、第2部材は第3部材の外周側に接合されると共に、第1部材は第2部材の外周側に接合されていると好適である。この場合、発泡体から形成された柱状の第3部材を芯材とする柱状の集成材が形成される。これにより、例えば建物の柱材や手すりなどに適した高剛性で軽量の柱状部材が実現される。   In addition, it is preferable that the third member has a columnar shape, the second member is joined to the outer peripheral side of the third member, and the first member is joined to the outer peripheral side of the second member. In this case, a columnar laminated material having a columnar third member formed from a foam as a core material is formed. Thereby, for example, a highly rigid and lightweight columnar member suitable for a column member or a handrail of a building is realized.

また、本発明に係る集成材の製造方法は、上記の集成材の製造方法であって、第3部材に常温硬化型の樹脂を塗布する工程と、第3部材に第2部材を構成するカーボン繊維を貼る工程と、カーボン繊維を第3部材に向けて押圧すると共に常温硬化型樹脂を硬化させ、第2部材を形成する工程と、を含むことを特徴とする。   Moreover, the manufacturing method of the laminated material which concerns on this invention is a manufacturing method of said laminated material, Comprising: The process which apply | coats room temperature hardening type resin to a 3rd member, and the carbon which comprises a 2nd member to a 3rd member And a step of pasting the fiber and a step of pressing the carbon fiber toward the third member and curing the room temperature curable resin to form the second member.

この製造方法によれば、常温硬化型の樹脂が塗布された第3部材にカーボン繊維を貼り、常温硬化型の樹脂の硬化によって、第2部材が形成されると共に第2部材が第3部材に接合される。よって、加熱用の炉が不要であると共に、炭素繊維強化樹脂を成形するための型も不要である。また、常温で第2部材を接合するため、加熱した場合に生じ得る木材の熱膨張を防止することができる。また、常温硬化型の樹脂が第2部材のマトリックス樹脂と第2部材を第3部材に接合するための樹脂とを兼ねるため、製造コストの低減が図られる。   According to this manufacturing method, the second member is formed by attaching the carbon fiber to the third member to which the room temperature curable resin is applied, and the room temperature curable resin is cured, and the second member becomes the third member. Be joined. Therefore, a heating furnace is not necessary, and a mold for molding the carbon fiber reinforced resin is not necessary. Moreover, since the 2nd member is joined at normal temperature, the thermal expansion of the timber which can occur when it heats can be prevented. Further, since the room temperature curable resin serves as the matrix resin of the second member and the resin for joining the second member to the third member, the manufacturing cost can be reduced.

本発明によれば、炭素繊維強化樹脂の特性を充分に生かしつつ、剛性を確保することができる。   According to the present invention, rigidity can be ensured while fully utilizing the characteristics of the carbon fiber reinforced resin.

本発明に係る集成材の第1実施形態を示す斜視図である。It is a perspective view which shows 1st Embodiment of the laminated material which concerns on this invention. 図1の集成材に外力が作用した場合に生じる応力の説明図である。It is explanatory drawing of the stress which arises when external force acts on the laminated material of FIG. (a)および(b)は、図1の集成材の製造手順を示す斜視図である。(A) And (b) is a perspective view which shows the manufacture procedure of the laminated material of FIG. (a)および(b)は、図3に続く製造手順を示す斜視図である。(A) And (b) is a perspective view which shows the manufacturing procedure following FIG. (a)および(b)は、図4に続く製造手順を示す斜視図である。(A) And (b) is a perspective view which shows the manufacturing procedure following FIG. (a)および(b)は、図5に続く製造手順を示す斜視図である。(A) And (b) is a perspective view which shows the manufacturing procedure following FIG. 本発明に係る集成材の第2実施形態を示す斜視図である。It is a perspective view which shows 2nd Embodiment of the laminated material which concerns on this invention. (a)および(b)は、図7の集成材の製造手順を示す斜視図である。(A) And (b) is a perspective view which shows the manufacture procedure of the laminated material of FIG. (a)および(b)は、図8に続く製造手順を示す斜視図である。(A) And (b) is a perspective view which shows the manufacturing procedure following FIG. (a)および(b)は、図9に続く製造手順を示す斜視図である。(A) And (b) is a perspective view which shows the manufacturing procedure following FIG. (a)および(b)は、図10に続く製造手順を示す斜視図である。(A) And (b) is a perspective view which shows the manufacture procedure following FIG. 本発明に係る集成材の第3実施形態を示す斜視図である。It is a perspective view which shows 3rd Embodiment of the laminated material which concerns on this invention.

以下、本発明の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted.

図1に示すように、集成材1は、複数の部材2〜4が積層されてなる3層構造の板材である。集成材1は、軽量かつ高剛性であり、例えば建物の床材や家具材として用いられる。集成材1が建物や家具に用いられた状態では、杉材(第1部材)2が外部に露出している。集成材1は、このような木目の表面により、優れた外観を有している。   As shown in FIG. 1, the laminated material 1 is a plate material having a three-layer structure in which a plurality of members 2 to 4 are laminated. The laminated material 1 is lightweight and highly rigid, and is used, for example, as a flooring material or a furniture material of a building. In the state where the laminated wood 1 is used in a building or furniture, the cedar wood (first member) 2 is exposed to the outside. The laminated material 1 has an excellent appearance due to the surface of such a grain.

集成材1は、表面層をなす板状の杉材2と、杉材2の裏面側に接合された板状の発泡材(第3部材)3と、発泡材3の裏面側に接合された板状の炭素繊維強化樹脂(第2部材)4とを有している。言い換えれば、発泡材3は、杉材2と炭素繊維強化樹脂4との間に配置され、杉材2および炭素繊維強化樹脂4は、発泡材3の表面側および裏面側にそれぞれ接合されている。   The laminated material 1 was joined to the plate-like cedar material 2 forming the surface layer, the plate-like foam material (third member) 3 joined to the back surface side of the cedar material 2, and the back surface side of the foam material 3. Plate-like carbon fiber reinforced resin (second member) 4. In other words, the foam material 3 is disposed between the cedar material 2 and the carbon fiber reinforced resin 4, and the cedar material 2 and the carbon fiber reinforced resin 4 are respectively joined to the front surface side and the back surface side of the foam material 3. .

上記のように、集成材1は、杉材2と炭素繊維強化樹脂4とによって発泡材3をサンドイッチした構造になっている。杉材2、発泡材3、および炭素繊維強化樹脂4は、大きさの等しい直方体形状をなしている。杉材2と発泡材3、および、発泡材3と炭素繊維強化樹脂4は、常温硬化型の樹脂を介してそれぞれ互いに接着されている。この常温硬化型の樹脂は、炭素繊維強化樹脂4のマトリックス樹脂を兼ねている。常温硬化型の樹脂としては、例えばエポキシ樹脂、ポリエステル樹脂、ビニルエステル樹脂などを用いることができる。   As described above, the laminated material 1 has a structure in which the foam material 3 is sandwiched between the cedar material 2 and the carbon fiber reinforced resin 4. The cedar material 2, the foam material 3, and the carbon fiber reinforced resin 4 have a rectangular parallelepiped shape having the same size. The cedar material 2 and the foam material 3, and the foam material 3 and the carbon fiber reinforced resin 4 are bonded to each other via a room-temperature curable resin. This room temperature curable resin also serves as the matrix resin of the carbon fiber reinforced resin 4. As the room temperature curable resin, for example, an epoxy resin, a polyester resin, a vinyl ester resin, or the like can be used.

杉材2は、最表面の層を構成している。杉材2としては特に種類は限られないが、例えば天竜杉が適している。杉材2の厚みは、例えば5〜20mm程度である。なお、第1部材を形成する木材としては、杉材に限られず、例えば檜材や松材などを用いてもよい。   The cedar material 2 constitutes the outermost layer. The cedar material 2 is not particularly limited, but for example, Tenryu cedar is suitable. The thickness of the cedar material 2 is, for example, about 5 to 20 mm. In addition, as a timber which forms a 1st member, it is not restricted to cedar material, For example, you may use a timber material, a pine material, etc.

発泡材3は、発泡体によって形成されている。発泡材3としては、例えばポリウレタンフォームやポリスチレンフォーム等を用いることができる。発泡材3の厚みは、例えば5mm程度である。発泡材3としては、軽量で且つ所定の成形性を有する材料であれば、いかなる材料を用いてもよい。発泡材3は、耐熱性を有することが好ましい。   The foam material 3 is formed of a foam. For example, polyurethane foam or polystyrene foam can be used as the foam material 3. The thickness of the foam material 3 is, for example, about 5 mm. As the foam material 3, any material may be used as long as it is lightweight and has a predetermined moldability. The foam material 3 preferably has heat resistance.

炭素繊維強化樹脂(CFRP;Carbon Fiber Reinforced Plastics)4は、シート状のカーボン繊維にマトリックス樹脂を含浸させて硬化させたものである。前述したように、炭素繊維強化樹脂4のマトリックス樹脂は常温硬化型の樹脂であり、発泡材3に対して炭素繊維強化樹脂4を接合する機能を兼ねている。炭素繊維強化樹脂4は、例えば1〜8枚のCFPRシートが積層されてなる。炭素繊維強化樹脂4の厚みは、例えば0.25〜2mm程度である。各CFPRシートを構成するカーボン繊維は、繊維の方向を交差させたいわゆる平織り材である。なお、集成材1が用いられる場所によっては、一方向に繊維を配置したUD(Uni-Directional)材を用いることもできる。UD材を用いる場合、高い引張強度が求められる方向に繊維を配置する。   Carbon fiber reinforced resin (CFRP) 4 is obtained by impregnating a matrix resin into a sheet-like carbon fiber and curing it. As described above, the matrix resin of the carbon fiber reinforced resin 4 is a room temperature curable resin, and also has a function of joining the carbon fiber reinforced resin 4 to the foamed material 3. The carbon fiber reinforced resin 4 is formed by laminating, for example, 1 to 8 CFPR sheets. The thickness of the carbon fiber reinforced resin 4 is, for example, about 0.25 to 2 mm. The carbon fibers constituting each CFPR sheet are so-called plain weave materials in which the directions of the fibers are crossed. In addition, depending on the place where the laminated material 1 is used, a UD (Uni-Directional) material in which fibers are arranged in one direction can be used. When using a UD material, a fiber is arrange | positioned in the direction where high tensile strength is calculated | required.

図2は、集成材1に外力が作用した場合に生じる応力の説明図である。図2に示すように、集成材1の表面側(杉材2側)から裏面側(炭素繊維強化樹脂4側)へ向けて外力が作用すると、杉材2には圧縮応力が生じると共に、炭素繊維強化樹脂4には引張応力が生じる。炭素繊維強化樹脂4は引張強度に優れているため、この外力に対して集成材1は非常に高い剛性を有する。集成材1によれば、従来の板材に比して、最大曲げ応力が大幅に向上する。   FIG. 2 is an explanatory diagram of the stress generated when an external force is applied to the laminated material 1. As shown in FIG. 2, when an external force is applied from the front surface side (cedar material 2 side) to the back surface side (carbon fiber reinforced resin 4 side) of the laminated wood 1, compressive stress is generated in the cedar material 2 and carbon Tensile stress is generated in the fiber reinforced resin 4. Since the carbon fiber reinforced resin 4 is excellent in tensile strength, the laminated material 1 has very high rigidity against this external force. According to the laminated material 1, the maximum bending stress is greatly improved as compared with the conventional plate material.

続いて、集成材1の製造方法を説明する。図3〜図6は、集成材1の製造手順を示す斜視図である。まず、図3(a)に示すように、杉材2を用意する。次に、図3(b)に示すように、杉材2の接着面、すなわち発泡材3に対して接合される裏面に常温硬化型のエポキシ樹脂を塗布する。   Then, the manufacturing method of the laminated material 1 is demonstrated. 3-6 is a perspective view which shows the manufacture procedure of the laminated material 1. FIG. First, as shown in FIG. 3A, a cedar material 2 is prepared. Next, as shown in FIG. 3B, a room temperature curing type epoxy resin is applied to the bonding surface of the cedar material 2, that is, the back surface bonded to the foam material 3.

次に、図4(a)に示すように、発泡材3の表面にも常温硬化型のエポキシ樹脂を塗布する。さらに、図4(b)に示すように、杉材2の裏面と発泡材3の表面とを合わせるようにして、杉材2に発泡材3を貼り合わせる。   Next, as shown in FIG. 4A, a room temperature curing type epoxy resin is also applied to the surface of the foam material 3. Further, as shown in FIG. 4B, the foam material 3 is bonded to the cedar material 2 so that the back surface of the cedar material 2 and the surface of the foam material 3 are matched.

次に、図5(a)に示すように、発泡材3の裏面に常温硬化型のエポキシ樹脂を塗布する。次に、図5(b)に示すように、発泡材3の裏面にカーボン繊維6を貼り合わせる。   Next, as shown in FIG. 5A, a room temperature curing type epoxy resin is applied to the back surface of the foam material 3. Next, as shown in FIG. 5B, the carbon fiber 6 is bonded to the back surface of the foam material 3.

次に、図6(a)に示すように、ドライヤーなどを用いてカーボン繊維6に温風を吹きつけ、カーボン繊維6を60〜80℃に加熱しつつ、ローラー7を用いて脱泡する。このとき、エポキシ樹脂の粘土が低下してカーボン繊維6の空隙にエポキシ樹脂が浸み込むことにより、エポキシ樹脂がマトリックス樹脂としてカーボン繊維6に含浸される。次に、図6(b)に示すように、カーボン繊維6を発泡材3に向けて押圧する。そして、樹脂の硬化後、炭素繊維強化樹脂4が形成され、図1に示した集成材1が成形される。樹脂の硬化温度および硬化時間は、例えば25℃で24時間である。なお、30℃で15時間としてもよい。   Next, as shown to Fig.6 (a), warm air is sprayed on the carbon fiber 6 using a dryer etc., and defoaming is performed using the roller 7, heating the carbon fiber 6 at 60-80 degreeC. At this time, the clay of the epoxy resin is lowered and the epoxy resin soaks into the voids of the carbon fibers 6 so that the epoxy fibers are impregnated into the carbon fibers 6 as a matrix resin. Next, as shown in FIG. 6B, the carbon fiber 6 is pressed toward the foam material 3. And carbon resin reinforced resin 4 is formed after hardening of resin, and the laminated material 1 shown in FIG. 1 is shape | molded. The curing temperature and curing time of the resin are 24 hours at 25 ° C., for example. In addition, it is good also as 15 hours at 30 degreeC.

以上説明した集成材1によれば、外力を受けた場合に、杉材2には圧縮応力が生じると共に、炭素繊維強化樹脂4には引張応力が生じる(図2参照)。ここで、炭素繊維強化樹脂4は引張強度に優れた特性を有しており、杉材2も所定の圧縮強度を有する。よって、外力に対する剛性が確保される。しかも、引張応力に対しては炭素繊維強化樹脂4が寄与するため、炭素繊維強化樹脂4の特性が充分に生かされている。さらに、発泡材3を用いる分、軽量化が図られている。また、杉材2が表面層をなすため、見映え、肌触り、匂いにおいて優れている。炭素繊維強化樹脂4は杉材2に隠れて見えないため、炭素繊維強化樹脂4が外観に影響を及ぼすこともない。露出した杉材2は、集成材1が配置された雰囲気中の湿度を吸収する機能も兼ね備えている。   According to the laminated material 1 described above, when an external force is applied, compressive stress is generated in the cedar material 2 and tensile stress is generated in the carbon fiber reinforced resin 4 (see FIG. 2). Here, the carbon fiber reinforced resin 4 has a characteristic excellent in tensile strength, and the cedar material 2 also has a predetermined compressive strength. Therefore, rigidity against external force is ensured. Moreover, since the carbon fiber reinforced resin 4 contributes to the tensile stress, the characteristics of the carbon fiber reinforced resin 4 are fully utilized. Furthermore, weight reduction is achieved by using the foam material 3. Moreover, since the cedar material 2 forms a surface layer, it is excellent in appearance, touch and smell. Since the carbon fiber reinforced resin 4 is hidden behind the cedar material 2 and cannot be seen, the carbon fiber reinforced resin 4 does not affect the appearance. The exposed cedar material 2 also has a function of absorbing humidity in the atmosphere in which the laminated material 1 is disposed.

また、発泡材3が杉材2と炭素繊維強化樹脂4とによってサンドイッチされ、板状の集成材1が形成されるので、例えば建物の床材や家具材などに適した高剛性で軽量の板状部材が実現される。   In addition, since the foam material 3 is sandwiched between the cedar material 2 and the carbon fiber reinforced resin 4 to form a plate-shaped laminated material 1, for example, a highly rigid and lightweight board suitable for a flooring material or a furniture material of a building. A shaped member is realized.

また、上述した集成材1の製造方法によれば、常温硬化型の樹脂が塗布された発泡材3にカーボン繊維6を貼り、常温硬化型の樹脂の硬化によって、炭素繊維強化樹脂4が形成されると共に炭素繊維強化樹脂4が発泡材3に接合される。よって、加熱用の炉が不要であると共に、炭素繊維強化樹脂4を成形するための型も不要である。また、常温で炭素繊維強化樹脂4を接合するため、加熱した場合に生じ得る杉材2の熱膨張を防止することができる。また、常温硬化型の樹脂が炭素繊維強化樹脂4のマトリックス樹脂と炭素繊維強化樹脂4を発泡材3に接合するための樹脂とを兼ねるため、製造コストの低減が図られている。   Moreover, according to the manufacturing method of the laminated material 1 mentioned above, the carbon fiber 6 is stuck on the foam material 3 to which the room temperature curable resin is applied, and the carbon fiber reinforced resin 4 is formed by curing the room temperature curable resin. In addition, the carbon fiber reinforced resin 4 is joined to the foam material 3. Therefore, a heating furnace is not necessary, and a mold for molding the carbon fiber reinforced resin 4 is not necessary. Moreover, since the carbon fiber reinforced resin 4 is joined at normal temperature, the thermal expansion of the cedar material 2 that may occur when heated can be prevented. Further, since the room temperature curable resin serves as both the matrix resin of the carbon fiber reinforced resin 4 and the resin for joining the carbon fiber reinforced resin 4 to the foamed material 3, the manufacturing cost is reduced.

なお、杉材2が熱膨張した場合であっても、集成材1およびその製造方法によれば、杉材2と炭素繊維強化樹脂4との間に発泡材3を介在させる構成のため、杉材2のズレやはがれを防止することができる。杉材2と炭素繊維強化樹脂4とを直接貼り合わせる場合には、杉材2の変形により炭素繊維強化樹脂4が杉材2から剥がれてしまうおそれがあるが、集成材1およびその製造方法では、そのような事態が防止される。   Even if the cedar material 2 is thermally expanded, according to the laminated material 1 and the manufacturing method thereof, the cedar material 2 is interposed between the cedar material 2 and the carbon fiber reinforced resin 4, so that the cedar material 2 Deviation and peeling of the material 2 can be prevented. When the cedar material 2 and the carbon fiber reinforced resin 4 are directly bonded, the carbon fiber reinforced resin 4 may be peeled off from the cedar material 2 due to the deformation of the cedar material 2, but in the laminated material 1 and the manufacturing method thereof, Such a situation is prevented.

図7は、集成材の第2実施形態を示す斜視図である。この集成材10は、芯材としての角柱状の発泡材(第3部材)13と、この発泡材13の外周側に接合された角筒状の炭素繊維強化樹脂(第2部材)14と、炭素繊維強化樹脂14の外周側に接合された角筒状の杉材(第1部材)12とを有している。すなわち、集成材10は、3層構造の柱材である。炭素繊維強化樹脂14は、発泡材13の外周面に1枚〜数枚のカーボン繊維が巻き付けられて形成される。また、杉材12は、カーボン繊維の4面に4枚の杉材が貼り付けられて形成される。発泡材13と炭素繊維強化樹脂14、および、炭素繊維強化樹脂14と杉材12は、集成材1と同様、常温硬化型のエポキシ樹脂を介してそれぞれ互いに接着されている。   FIG. 7 is a perspective view showing a second embodiment of the laminated material. This laminated material 10 includes a prismatic foam material (third member) 13 as a core material, a rectangular tube-shaped carbon fiber reinforced resin (second member) 14 joined to the outer peripheral side of the foam material 13, and It has a square cylindrical cedar material (first member) 12 joined to the outer peripheral side of the carbon fiber reinforced resin 14. That is, the laminated material 10 is a pillar material having a three-layer structure. The carbon fiber reinforced resin 14 is formed by winding one to several carbon fibers around the outer peripheral surface of the foam material 13. Moreover, the cedar material 12 is formed by attaching four cedar materials to four surfaces of carbon fibers. The foamed material 13 and the carbon fiber reinforced resin 14, and the carbon fiber reinforced resin 14 and the cedar material 12 are bonded to each other through a room temperature curing type epoxy resin, as in the laminated material 1.

図8〜図11は、集成材10の製造手順を示す斜視図である。まず、図8(a)に示すように、発泡材13を用意する。ここでは、発泡材13の角をC5〜C10で面取りする。次に、図8(b)に示すように、発泡材13の外周面に常温硬化型のエポキシ樹脂を塗布する。   8 to 11 are perspective views showing the manufacturing procedure of the laminated material 10. First, as shown in FIG. 8A, a foam material 13 is prepared. Here, the corners of the foam material 13 are chamfered at C5 to C10. Next, as shown in FIG. 8 (b), a room temperature curing type epoxy resin is applied to the outer peripheral surface of the foam material 13.

次に、図9(a)に示すように、発泡材13の外周面に1枚〜数枚のカーボン繊維16を巻き付けて貼る。さらに、図9(b)に示すように、カーボン繊維16の表面に常温硬化型のエポキシ樹脂を塗布する。   Next, as shown in FIG. 9A, one to several carbon fibers 16 are wound around and pasted on the outer peripheral surface of the foam material 13. Further, as shown in FIG. 9B, a room temperature curing type epoxy resin is applied to the surface of the carbon fiber 16.

次に、図10(a)に示すように、ドライヤーなどを用いてカーボン繊維16に温風を吹きつけ、カーボン繊維16を60〜80℃に加熱しつつ、ローラー7を用いて脱泡する。このとき、エポキシ樹脂の粘土が低下してカーボン繊維16の空隙にエポキシ樹脂が浸み込むことにより、エポキシ樹脂がマトリックス樹脂としてカーボン繊維16に含浸される。次に、図10(b)に示すように、板状の杉材12を用意し、杉材12の接着面、すなわちカーボン繊維16に対して接合される裏面に常温硬化型のエポキシ樹脂を塗布する。   Next, as shown in FIG. 10A, warm air is blown onto the carbon fibers 16 using a dryer or the like, and the carbon fibers 16 are heated to 60 to 80 ° C. and defoamed using the rollers 7. At this time, the clay of the epoxy resin is lowered and the epoxy resin soaks into the gaps of the carbon fibers 16, so that the epoxy resin is impregnated into the carbon fibers 16 as a matrix resin. Next, as shown in FIG. 10 (b), a plate-like cedar material 12 is prepared, and a room temperature curing type epoxy resin is applied to the bonding surface of the cedar material 12, that is, the back surface bonded to the carbon fiber 16. To do.

次に、図11(a)に示すように、カーボン繊維16の表面に4枚の杉材12を順次貼り付ける。次に、図11(b)に示すように、クランプ8などを用いて杉材12の表面側から圧力をかけ、杉材12およびカーボン繊維16を発泡材13に向けて押圧する。そして、樹脂の硬化後、炭素繊維強化樹脂14が形成され、図7に示した集成材10が成形される。樹脂の硬化温度および硬化時間は、例えば25℃で24時間である。なお、30℃で15時間としてもよい。   Next, as shown in FIG. 11 (a), four cedar members 12 are sequentially attached to the surface of the carbon fiber 16. Next, as shown in FIG. 11 (b), pressure is applied from the surface side of the cedar material 12 using the clamp 8 or the like, and the cedar material 12 and the carbon fibers 16 are pressed toward the foam material 13. And after hardening of resin, the carbon fiber reinforced resin 14 is formed and the laminated material 10 shown in FIG. 7 is shape | molded. The curing temperature and curing time of the resin are 24 hours at 25 ° C., for example. In addition, it is good also as 15 hours at 30 degreeC.

この集成材10によれば、外力を受けた場合に、杉材12には圧縮応力が生じると共に、炭素繊維強化樹脂14には引張応力が生じ、第1実施形態の集成材1と同様の作用効果を得ることができる。また、発泡材13を芯材とする柱状の集成材が形成されることで、例えば建物の柱材などに適した高剛性で軽量の角柱状部材が実現される。   According to this laminated material 10, when external force is received, while compressive stress arises in cedar material 12, tensile stress arises in carbon fiber reinforced resin 14, and the effect | action similar to the laminated material 1 of 1st Embodiment is produced. An effect can be obtained. Further, by forming a columnar laminated material having the foam material 13 as a core material, a highly rigid and lightweight prismatic member suitable for a columnar material of a building, for example, is realized.

図12は、集成材の第3実施形態を示す斜視図である。この集成材20は、芯材としての円柱状の発泡材(第3部材)23と、この発泡材23の外周側に接合された円筒状の炭素繊維強化樹脂(第2部材)24と、炭素繊維強化樹脂24の外周側に接合された円筒状の杉材(第1部材)22とを有している。すなわち、集成材20は、3層構造の棒材である。発泡材23と炭素繊維強化樹脂24、および、炭素繊維強化樹脂24と杉材22は、集成材1と同様、常温硬化型のエポキシ樹脂を介してそれぞれ互いに接着されている。   FIG. 12 is a perspective view showing a third embodiment of the laminated material. The laminated material 20 includes a cylindrical foam material (third member) 23 as a core material, a cylindrical carbon fiber reinforced resin (second member) 24 bonded to the outer peripheral side of the foam material 23, carbon It has a cylindrical cedar material (first member) 22 joined to the outer peripheral side of the fiber reinforced resin 24. That is, the laminated material 20 is a bar material having a three-layer structure. The foam material 23 and the carbon fiber reinforced resin 24, and the carbon fiber reinforced resin 24 and the cedar material 22 are bonded to each other through a room temperature curing type epoxy resin, like the laminated material 1.

このような集成材20によっても、集成材1,10と同様の作用効果を得ることができる。また、例えば建物の手すりなどに適した高剛性で軽量の円柱状部材が実現される。   Also with such a laminated material 20, the same effect as the laminated materials 1 and 10 can be obtained. In addition, for example, a highly rigid and lightweight columnar member suitable for a handrail of a building is realized.

以上、本発明の実施形態について説明したが、本発明は上記実施形態に限られるものではない。例えば、集成材1の表面側のみならず、裏面側を杉材で覆ってもよい。この場合、裏面側の炭素繊維強化樹脂が露出することなく杉材によって覆われるため、裏面における見映えなども向上する。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. For example, you may cover not only the surface side of the laminated material 1 but the back surface side with cedar. In this case, since the carbon fiber reinforced resin on the back side is covered with the cedar without being exposed, the appearance on the back side is also improved.

1…集成材、2…杉材(第1部材)、3…発泡材(第3部材)、4…炭素繊維強化樹脂(第2部材)、6…カーボン繊維、10,20…集成材、12,22…杉材(第1部材)、13,23…発泡材(第3部材)、14,24…炭素繊維強化樹脂(第2部材)、16…カーボン繊維。   DESCRIPTION OF SYMBOLS 1 ... Glued material, 2 ... Cedar material (1st member), 3 ... Foam material (3rd member), 4 ... Carbon fiber reinforced resin (2nd member), 6 ... Carbon fiber, 10,20 ... Glued material, 12 , 22 ... Cedar (first member), 13, 23 ... Foam (third member), 14, 24 ... Carbon fiber reinforced resin (second member), 16 ... Carbon fiber.

Claims (4)

複数の部材が積層されてなる集成材であって、
木材によって形成され、表面層をなす第1部材と、
炭素繊維強化樹脂によって形成され、前記第1部材の裏面側に配置された第2部材と、
発泡体によって形成され、前記第2部材が接合された第3部材と、を有し、
外力を受けた場合に、前記第1の部材には圧縮応力が生じると共に、前記第2の部材には引張応力が生じることを特徴とする集成材。
A laminated material in which a plurality of members are laminated,
A first member made of wood and forming a surface layer;
A second member formed of carbon fiber reinforced resin and disposed on the back side of the first member;
A third member formed of foam and joined to the second member;
A laminated lumber characterized in that when an external force is applied, compressive stress is generated in the first member and tensile stress is generated in the second member.
前記第1〜第3部材は板状をなしており、
前記第1部材と前記第2部材との間に前記第3部材が配置され、
前記第1部材および前記第2部材は、前記第3部材の表面側および裏面側にそれぞれ接合されている請求項1記載の集成材。
The first to third members have a plate shape,
The third member is disposed between the first member and the second member;
The laminated material according to claim 1, wherein the first member and the second member are respectively joined to a front surface side and a back surface side of the third member.
前記第3部材は柱状をなしており、
前記第2部材は前記第3部材の外周側に接合されると共に、前記第1部材は前記第2部材の外周側に接合されている請求項1記載の集成材。
The third member has a columnar shape,
The laminated material according to claim 1, wherein the second member is bonded to the outer peripheral side of the third member, and the first member is bonded to the outer peripheral side of the second member.
請求項1〜3のいずれか一項記載の集成材の製造方法であって、
前記第3部材に常温硬化型の樹脂を塗布する工程と、
前記第3部材に前記第2部材を構成するカーボン繊維を貼る工程と、
前記カーボン繊維を前記第3部材に向けて押圧すると共に前記常温硬化型樹脂を硬化させ、前記第2部材を形成する工程と、を含むことを特徴とする集成材の製造方法。
It is a manufacturing method of the laminated material as described in any one of Claims 1-3,
Applying a room temperature curable resin to the third member;
A step of attaching a carbon fiber constituting the second member to the third member;
And pressing the carbon fiber toward the third member and curing the room temperature curable resin to form the second member.
JP2011108359A 2011-05-13 2011-05-13 Laminated lumber and method of manufacturing the same Withdrawn JP2012236386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011108359A JP2012236386A (en) 2011-05-13 2011-05-13 Laminated lumber and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011108359A JP2012236386A (en) 2011-05-13 2011-05-13 Laminated lumber and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012236386A true JP2012236386A (en) 2012-12-06

Family

ID=47459737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011108359A Withdrawn JP2012236386A (en) 2011-05-13 2011-05-13 Laminated lumber and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012236386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089897A (en) * 2016-12-06 2018-06-14 帝人株式会社 Woody laminated lumber
JP2018089896A (en) * 2016-12-06 2018-06-14 帝人株式会社 Method for manufacturing laminated lumber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018089897A (en) * 2016-12-06 2018-06-14 帝人株式会社 Woody laminated lumber
JP2018089896A (en) * 2016-12-06 2018-06-14 帝人株式会社 Method for manufacturing laminated lumber
JP7015632B2 (en) 2016-12-06 2022-02-03 帝人株式会社 Glulam manufacturing method

Similar Documents

Publication Publication Date Title
US10533323B2 (en) Laminated foam composite backer board for wet space construction
JP2017519663A (en) Honeycomb core structure
JPH1044281A (en) Composite board and manufacture thereof
JPH0525118B2 (en)
US20100297414A1 (en) Composite sheet based on high pressure laminate sheets (hpl sheets)
JP2017100326A (en) Decorative panel
JP4361863B2 (en) Matt-like inorganic fiber heat insulating material and its packaging
US20190017270A1 (en) Structural panel
JP2012236386A (en) Laminated lumber and method of manufacturing the same
RU2494874C1 (en) Method of producing composite laminar material (versions)
US11585089B2 (en) Lightweight, wood-free structural insulation sheathing
JP2008230032A (en) Structural material and its manufacturing method
JP7046711B2 (en) Wood grain pattern molded building material, wood grain pattern carbon fiber composite thin body and its manufacturing method
US20100183838A1 (en) Light Weight Panel and Method of Manufacture
US20190381777A1 (en) Method for making a composite panel and composite panel obtained by said method
JPH02245301A (en) Reinforced veneer, plywood and laminated lumber
JP2017105096A (en) Method for manufacturing decorative panel
JP2008068421A (en) Manufacturing method of composite base material
JP7218043B2 (en) honeycomb laminate
KR101261623B1 (en) Panel assembly having paper tube wound with corrugated paper strip and method thereof
JP7439478B2 (en) Interior material
JP3044803B2 (en) Carbon fiber reinforced glulam
KR102266935B1 (en) Manufacturing method for construction panel
JP6943583B2 (en) Composite member
JP4811356B2 (en) Reinforcement tape and method of reinforcing a wooden member using the reinforcement tape

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140805