JPH0245369Y2 - - Google Patents

Info

Publication number
JPH0245369Y2
JPH0245369Y2 JP9255982U JP9255982U JPH0245369Y2 JP H0245369 Y2 JPH0245369 Y2 JP H0245369Y2 JP 9255982 U JP9255982 U JP 9255982U JP 9255982 U JP9255982 U JP 9255982U JP H0245369 Y2 JPH0245369 Y2 JP H0245369Y2
Authority
JP
Japan
Prior art keywords
foam
compression
thickness
floor
loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9255982U
Other languages
Japanese (ja)
Other versions
JPS5932U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9255982U priority Critical patent/JPS5932U/en
Publication of JPS5932U publication Critical patent/JPS5932U/en
Application granted granted Critical
Publication of JPH0245369Y2 publication Critical patent/JPH0245369Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Floor Finish (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は住宅の床構造として最適な複合床構造
に関する。 戸建住宅、集合住宅等の床構造は、水質系二重
床構造であり、第1図に示される如く木質あるい
は鉄骨の根太10上へパーテイクルボード12を
敷込んだ根太細工法が大部分であるが、置床工法
も採用されている。 このような住宅の床構造では、上階での子供の
跳びはね等による床衝撃音が下階に伝達する苦情
が最も多く、このため従来、種々の対策が施され
ている。 従来の対策として用いられているゴムシート埋
め込みはゴムシート自体が比較的硬く、この硬さ
を形状係数でコントロールしているが加工が極め
て難しい。またゴムを加硫する必要があるためロ
ス(振動エネルギの損失)が低い構造となつてい
る。他の対策としてコルクシートを埋め込む手段
も採用されるが、コルクシートは硬く、且つ加工
が難しい。また仕上げ材の裏打ちとしてフオーム
類を適用する手段も採用されるが、衝撃入力が大
きい場合には効果が低いものとなつている。 本考案は上記事実を考慮し、ロスレベルが高
く、ばね定数が低く、広い周波数帯域において効
果的な衝撃音遮断を可能とする複合床構造を得る
ことが目的である。 本考案に係る複合床構造は25%圧縮モジユラス
が100g/cm2以下で厚み方向へ1/2〜1/10に
圧縮したフオームを、肉厚2mm以上の層状として
板材間へ挟持させることにより広い周波数帯域に
おいて衝撃音を吸収するようになつている。 以下本考案の実施例を図面に従い説明する。 第2図に示される本実施例では建物本体へ掛け
渡される複数本の根太10上へパーテイクルボー
ド12(肉厚15mm)、圧縮フオーム14(肉厚5
mm)及びベニヤ合板16(肉厚9mm)が順次敷込
まれている。従つて圧縮フオーム14はパーテイ
クルボード12とベニヤ合板16との間に挟持さ
れたサンドイツチ構造となつている。 圧縮フオーム14の上にベニヤ合板16が敷込
まれているのでベニヤ合板16の剛性によつて荷
重が分散して圧縮フオーム14へ伝達されること
になる。この応力分散に必要なベニヤ合板16の
肉厚は3mm以上である。 更にこのベニヤ合板16の上側には内装材が敷
込まれるようになつている。一方根太10からは
肉厚9mmの石膏天井18が吊り下げられている。 圧縮フオーム14はポリ塩化ビニル、ポリエチ
レンフオーム、軟質ウレタンフオーム等の発泡フ
オームを加熱、圧縮することにより容易に製作可
能であるが圧縮によつても内部には発泡空〓があ
るので衝撃吸収性は良好である。この圧縮は物理
的圧縮であつてもよいが、熱圧縮とすれば内部の
発泡空〓セル構造が水平方向に長い偏平な形状と
なつてへたりに強い構造となる。このように圧縮
することによつてフオーム内部のロスを向上する
ことができる。 この圧縮フオーム14は従来の板材に接着剤を
介して接着させ、更に別の板材を工場内で接着し
てサンドイツチ構造とした後に作業現場で組立て
る手段を採用することもでき、また作業現場でサ
ンドイツチ構造としてもよい。圧縮フオーム14
の上側に接着するベニヤ合板16等の板材は特に
限定されないが、剛性、強度面から3mm程度以上
の肉厚を有することが好ましい。 フオーム層をサンドイツチしたパネルは、第2
図のベニヤ板16に衝撃荷重を加えた時にパーテ
イクルボード12への振動伝達を抑制することが
重要となる。この形は基本的に1自由度の振動系
をモデルとみなせるものであり、ベニヤ合板16
の振動がパーテイクルボード12に伝達する形は |X¨/X02=K1 2+η2・m1・R1・4π2f2/(K1−m1
2f22+η2・m1・R1・4π2f2 ここで、 X¨0……ベニヤ合板16の振動加速度レベル X¨……パーテイクルボード12の振動加速度
レベル K1……フオーム層1ケのバネ定数 f……周波数 η……ロス(損失係数) m1……パーテイクルボード12の質量 で表される。 この時の応答特性の計算結果を述べれば第4
図、第5図に示すようになり、ロスがある程度大
きくバネ定数が小さければパーテイクルボード1
2への振動伝達が抑制され、優れた効果をもたら
す。 この作用は一般に高周波数域で効果が大きく実
験結果を示す第3図もこの特性を裏付けている。 一般にフオームの圧縮のバネ定数は第6図に示
すフオームの圧縮特性の初期変形領域(即ち、a
例で示すA領域の傾き)に対応するが、非圧縮フ
オームa例は初期変形時の傾きが大きく、したが
つて堅い挙動を示す。 このことは、上述した原理で示す通り振動伝達
率を抑制する効果が小さいことを示す。 一方、このフオームを熱プレス(200℃×3分)
して圧縮した場合、その圧縮特性は第6図に示す
通り初期に軟かく、かつ途中でAからBへの変曲
点をもたない特性となる。このように圧縮して用
いれば、初期に軟かくバネ定数が低いため、騒音
低減効果が大きく、かつ変曲点をもたないため、
耐久性に優れた床構造が得られる。また1/20で
硬くなりa例非圧縮体と特性が大差なくなること
は明確である。また、静的な荷重を受けた場合は
a例では50g/cm2を超えた領域でフオームのセル
がつぶれはじめ(変位は増大するが荷重は増えな
い)、この領域で使用するとフオームは永久歪を
もつ床寸法自体が変化し重大な欠陥を生ずること
となる。 次に本実施例を用いた実験結果について説明す
る。木質系プレハブ材料を用いて8畳間の上下階
を有するモデルルームを製作し、上階中央にタツ
ピングマシーンを設置し、第1表に示される実施
例及び第2表に示される比較例の各種の床構造を
用いた場合の下階の床衝撃音レベルを測定した結
果が第3図に示されている。
The present invention relates to a composite floor structure that is optimal as a floor structure for a house. The floor structure of detached houses, apartment complexes, etc. is a water-based double floor structure, and most of them are constructed using the joist construction method, in which particle board 12 is laid on wooden or steel joists 10, as shown in Figure 1. However, the floor construction method is also used. With the floor structure of such houses, the most common complaint is that the floor impact noise caused by children jumping on the upper floor is transmitted to the lower floor, and for this reason, various countermeasures have been taken in the past. In the conventional countermeasure, rubber sheet embedding, the rubber sheet itself is relatively hard, and although this hardness is controlled by the shape factor, it is extremely difficult to process. Additionally, since the rubber needs to be vulcanized, the structure has low loss (loss of vibration energy). Another countermeasure is to embed cork sheets, but cork sheets are hard and difficult to process. Also, methods of applying foam as a backing for the finishing material are also adopted, but these are less effective when the impact input is large. In consideration of the above facts, the present invention aims to obtain a composite floor structure that has a high loss level, a low spring constant, and is capable of effectively blocking impact sound over a wide frequency band. The composite floor structure of the present invention has a 25% compression modulus of 100 g/cm 2 or less and a foam compressed to 1/2 to 1/10 in the thickness direction, which is sandwiched between plates in layers with a thickness of 2 mm or more. It is designed to absorb impact sound in the frequency range. Embodiments of the present invention will be described below with reference to the drawings. In this embodiment shown in FIG. 2, a particle board 12 (thickness 15 mm) and a compressed form 14 (thickness 5
mm) and plywood 16 (thickness: 9 mm) are laid one after another. The compressed form 14 thus has a sandwich structure sandwiched between the particle board 12 and the plywood 16. Since the veneer plywood 16 is laid on the compression foam 14, the load is dispersed and transmitted to the compression foam 14 due to the rigidity of the veneer plywood 16. The wall thickness of the veneer plywood 16 necessary for dispersing this stress is 3 mm or more. Furthermore, an interior material is laid on the upper side of this plywood 16. On the other hand, a plaster ceiling 18 with a wall thickness of 9 mm is suspended from the joists 10. The compressed foam 14 can be easily manufactured by heating and compressing foamed foam such as polyvinyl chloride, polyethylene foam, soft urethane foam, etc. However, even when compressed, there are foamed voids inside, so the shock absorption properties are poor. In good condition. This compression may be physical compression, but if thermal compression is used, the internal foamed empty cell structure will have a flat shape that is long in the horizontal direction, resulting in a structure that is resistant to fatigue. By compressing in this way, loss inside the foam can be improved. This compressed form 14 can be attached to a conventional plate using an adhesive, and then another plate can be bonded in a factory to form a sandwich structure, and then assembled at the work site. It may also be a structure. Compression form 14
The board material such as the plywood 16 to be bonded to the upper side of the board is not particularly limited, but preferably has a wall thickness of approximately 3 mm or more in terms of rigidity and strength. Panels with a sandwiched foam layer are
It is important to suppress vibration transmission to the particle board 12 when an impact load is applied to the plywood board 16 shown in the figure. This shape can basically be regarded as a model of a vibration system with one degree of freedom, and is made of plywood 16
The form in which the vibration of is transmitted to the particle board 12 is |
2 f 2 ) 22・m 1・R 1・4π 2 f 2where , Spring constant of one foam layer f...Frequency η...Loss (loss coefficient) m1 ...Represented by the mass of the particle board 12. If we describe the calculation results of the response characteristics in this case, the fourth
If the loss is large to some extent and the spring constant is small, particle board 1 will become as shown in Fig. 5.
2 is suppressed, resulting in excellent effects. This effect is generally large in the high frequency range, and the experimental results shown in FIG. 3 also support this characteristic. In general, the spring constant of the compression of the foam is determined by the initial deformation region of the compression characteristics of the foam shown in FIG. 6 (i.e., a
However, the non-compressed form A has a large slope at the time of initial deformation, and therefore exhibits stiff behavior. This indicates that the effect of suppressing the vibration transmissibility is small, as shown by the principle described above. Meanwhile, heat press this foam (200℃ x 3 minutes)
When compressed, the compression characteristics are soft at the beginning and have no inflection point from A to B in the middle, as shown in FIG. When compressed and used in this way, it is initially soft and has a low spring constant, so the noise reduction effect is large, and there is no inflection point, so
A highly durable floor structure can be obtained. It is also clear that it becomes 1/20 harder and its properties are not much different from the uncompressed material of Example A. In addition, when subjected to a static load, in example a, the cells of the foam begin to collapse in an area exceeding 50 g/cm 2 (displacement increases, but the load does not), and if used in this area, the foam will undergo permanent deformation. The floor dimensions themselves will change, resulting in serious defects. Next, experimental results using this example will be explained. A model room with an upper and lower floor of 8 tatami mats was manufactured using prefabricated wood materials, and a tapping machine was installed in the center of the upper floor. Figure 3 shows the results of measuring the floor impact sound levels on the lower floor when using various floor structures.

【表】【table】

【表】 上記表中、フオーム25%圧縮モジユラスは25%
歪における圧縮荷重(g/cm2)を示す。 なお、比較例6は床衝撃音特性は十分であつた
が、このフオーム厚でサンドイツチしたパネル端
部に書棚に相当する荷重50Kgを負荷したところ、
1週間後の端部変位量が30%(3mm)に達し、ま
た、歩行時に軟かすぎる感覚があり床構造には不
適と判断した。 以上の結果から、本考案に用いる圧縮フオーム
は内部ロスが高く、ばね定数が軟らかい必要があ
り、圧縮率は1/2以下とするとばね定数が小さ
くなりすぎて強度が不足したりフオームクリープ
等の原因となるため2/1以上が好ましいことが
判る。また1/10以上の圧縮率では内部ロスが低
くなりすぎてばねが硬くなり床衝撃音に対する効
果が小さくなるため1/10以下が好ましい。 更に25%圧縮モジユラスが100g/cm2以上のフ
オームではフオーム材質が硬すぎてロスが低くな
るため100g/cm2以下が好ましいことがわかる。 また、本考案に用いる圧縮フオームは第3図か
ら明らかなように25%圧縮モジユラスが50g/cm2
で、且つ圧縮率が1/2の場合にも、フオーム厚
さが1mm(比較例7)では、フオーム厚さが2mm
(実施例3)に比較して床衝撃音レベルが高くな
つている。 更に第7図は、フオーム厚と圧縮荷重量との関
係を示し、初期の微小変位領域においては、フオ
ーム厚さ1mmのものと、フオーム厚さ2mmのばね
特性は同一となる。しかし大きい変位を受けた場
合、フオーム厚さによりバネ特性が変わり、フオ
ーム厚さ1mmのものは、フオーム厚み2mmに比較
して大きいバネ定数をもつ。このため、実変位領
域を考慮すると、フオーム厚みが1mmでは騒音低
減の効果が極めて小さい。したがつて騒音低減の
点からフオーム厚みは2mm以上とすることが必要
である。 以上、説明した如く、本考案に係る複合床構造
は25%圧縮モジユラスが100g/cm2以下で1/2
〜1/10に圧縮した肉厚2mm以上のフオームを板
材間へ挾持させるので床衝撃音の下階への伝達を
確実に低減させ、広い周波数帯域において騒音レ
ベルを吸収する優れた効果を有する。
[Table] In the above table, the foam 25% compression modulus is 25%
The compressive load (g/cm 2 ) in strain is shown. Comparative Example 6 had sufficient floor impact sound characteristics, but when a load of 50 kg, equivalent to a bookshelf, was applied to the edge of the panel that had been sandwiched with this foam thickness,
After one week, the amount of displacement at the end reached 30% (3 mm), and it felt too soft when walking, so it was judged that it was unsuitable for a floor structure. From the above results, the compression foam used in the present invention must have a high internal loss and a soft spring constant.If the compression ratio is set to 1/2 or less, the spring constant will be too small, resulting in insufficient strength or foam creep. It can be seen that 2/1 or more is preferable because it becomes a cause. Further, if the compression ratio is 1/10 or more, the internal loss becomes too low, the spring becomes hard, and the effect on floor impact noise becomes small, so a compression ratio of 1/10 or less is preferable. Furthermore, if the foam has a 25% compression modulus of 100 g/cm 2 or more, the foam material will be too hard and the loss will be low, so it is found that 100 g/cm 2 or less is preferable. Furthermore, as is clear from Figure 3, the compression foam used in this invention has a 25% compression modulus of 50g/cm 2
And even when the compression ratio is 1/2, when the foam thickness is 1 mm (Comparative Example 7), the foam thickness is 2 mm.
The floor impact sound level is higher than in (Example 3). Furthermore, FIG. 7 shows the relationship between the foam thickness and the compressive load amount, and in the initial minute displacement region, the spring characteristics of the foam thickness of 1 mm and the foam thickness of 2 mm are the same. However, when subjected to a large displacement, the spring characteristics change depending on the foam thickness, and a foam with a thickness of 1 mm has a larger spring constant than a foam with a thickness of 2 mm. Therefore, when considering the actual displacement range, the noise reduction effect is extremely small when the foam thickness is 1 mm. Therefore, from the point of view of noise reduction, it is necessary that the foam thickness be 2 mm or more. As explained above, the composite floor structure according to the present invention has a 25% compression modulus of 100 g/cm 2 or less and 1/2
Since the foam with a wall thickness of 2 mm or more compressed to ~1/10 is sandwiched between the plates, it reliably reduces the transmission of floor impact sound to the lower floor, and has an excellent effect of absorbing noise levels in a wide frequency band.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図はそれぞれ従来例及び本考案
に係る複合床構造の実施例を示す断面図、第3図
は本実施例の複合床構造における床衝撃音の低減
効果を示す周波数と床衝撃音のレベルの関係を示
す線図、第4図はバネ定数の振動伝達率に及ぼす
影響を示すグラフ、第5図はロスの振動伝達率に
及ぼす1自由度振動系を示すグラフ、第6図はフ
オームの圧縮特性を示すグラフ、第7図はフオー
ム厚と圧縮荷重量との関係を示すグラフである。 10……根太、12……パーテイクルボード、
14……圧縮フオーム、16……ベニヤ合板、1
8……石膏天井。
1 and 2 are cross-sectional views showing a conventional example and an embodiment of the composite floor structure according to the present invention, respectively, and FIG. 3 shows the frequency and floor impact noise reduction effect of the composite floor structure of the present embodiment. A diagram showing the relationship between impact sound levels, Figure 4 is a graph showing the influence of the spring constant on the vibration transmissibility, Figure 5 is a graph showing the effect of a 1-degree-of-freedom vibration system on the vibration transmission rate of loss, and Figure 6 The figure is a graph showing the compression characteristics of the foam, and FIG. 7 is a graph showing the relationship between the foam thickness and the amount of compression load. 10...joist, 12...particle board,
14... Compression foam, 16... Veneer plywood, 1
8...Gypsum ceiling.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 25%圧縮モジユラスが100g/cm2以下で、厚み
方向へ1/2〜1/10に圧縮したフオームを、肉
厚2mm以上の層状として板材間へ挟持させたこと
を特徴とする複合床構造。
A composite floor structure characterized in that a foam having a 25% compression modulus of 100 g/cm 2 or less and compressed to 1/2 to 1/10 in the thickness direction is sandwiched between boards in a layered form with a wall thickness of 2 mm or more.
JP9255982U 1982-06-21 1982-06-21 composite floor structure Granted JPS5932U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9255982U JPS5932U (en) 1982-06-21 1982-06-21 composite floor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9255982U JPS5932U (en) 1982-06-21 1982-06-21 composite floor structure

Publications (2)

Publication Number Publication Date
JPS5932U JPS5932U (en) 1984-01-05
JPH0245369Y2 true JPH0245369Y2 (en) 1990-11-30

Family

ID=30222838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9255982U Granted JPS5932U (en) 1982-06-21 1982-06-21 composite floor structure

Country Status (1)

Country Link
JP (1) JPS5932U (en)

Also Published As

Publication number Publication date
JPS5932U (en) 1984-01-05

Similar Documents

Publication Publication Date Title
CN1981100B (en) Construction elements for decreasing acoustic propagation
US20030102184A1 (en) Acoustical support panel
JPH0314505Y2 (en)
JP2002138597A (en) Structure for partitioning wall
JP4413344B2 (en) Soundproof floor structure
JPH0245369Y2 (en)
KR200374808Y1 (en) Floating floor structure for reducing floor a crashing sound in apartment house
JP3433203B2 (en) Impact sound attenuating floor
JPH0387461A (en) Soundproof floor material
JPH0355705Y2 (en)
JPH0546420B2 (en)
KR200378944Y1 (en) A product having damping seat for reducing noise in architecture
KR200378945Y1 (en) A product for reducing noise in architecture
JPH0428363Y2 (en)
JP3353048B2 (en) Impact sound attenuating floor
JPH0318179Y2 (en)
JP2001159208A (en) Double floor structure in multiple dwelling house or the like
JPH11131779A (en) Floor construction
JPH0135859Y2 (en)
JPH0428360Y2 (en)
JP2000110340A (en) Floor sound-insulating sheet floor structure and floor execution method
JPH02136466A (en) Composite, soundproofing flooring material
JPH0443542Y2 (en)
JP2533754Y2 (en) Wooden soundproof floorboard
JPH0545708Y2 (en)