JP2019155294A - Water treatment device - Google Patents

Water treatment device Download PDF

Info

Publication number
JP2019155294A
JP2019155294A JP2018046939A JP2018046939A JP2019155294A JP 2019155294 A JP2019155294 A JP 2019155294A JP 2018046939 A JP2018046939 A JP 2018046939A JP 2018046939 A JP2018046939 A JP 2018046939A JP 2019155294 A JP2019155294 A JP 2019155294A
Authority
JP
Japan
Prior art keywords
plasma
water
electrode
treated
high voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018046939A
Other languages
Japanese (ja)
Other versions
JP7086653B2 (en
Inventor
安井 祐之
Sukeyuki Yasui
祐之 安井
武士 松代
Takeshi Matsushiro
武士 松代
清一 村山
Seiichi Murayama
清一 村山
志村 尚彦
Naohiko Shimura
尚彦 志村
竜太郎 牧瀬
Ryutaro Makise
竜太郎 牧瀬
可南子 森谷
Kanako Moriya
可南子 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Infrastructure Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Infrastructure Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018046939A priority Critical patent/JP7086653B2/en
Publication of JP2019155294A publication Critical patent/JP2019155294A/en
Application granted granted Critical
Publication of JP7086653B2 publication Critical patent/JP7086653B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

To provide a water treatment device that stably generates plasma.SOLUTION: A discharge unit 101, a plasma generation power source 103, and a plasma advancing unit 102 are provided, and the discharge unit 101 is provided with a high voltage electrode 101a, a ground electrode 101b that does not have water to be treated between itself and the high voltage electrode 101a, and a dielectric electrode 101c provided between the high voltage electrode and the ground electrode. A rare gas is present between the high voltage electrode 101a and the ground electrode 101b, and the region where the water to be treated W flows is provided apart. The plasma generation power source 103 applies a voltage between the high voltage electrode 101a and the ground electrode 101b to ignite plasma in the rare gas. The plasma advancing unit 102 releases the plasma ignited in the rare gas from a second opening 102b opposite to a first opening 102a to the water to be treated W, and generates radicals in the water to be treated, to decompose poorly decomposable materials.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、水処理装置に関する。   Embodiments described herein relate generally to a water treatment apparatus.

上下水の処理には、オゾン処理や塩素処理が一般的に用いられている。しかし、産業用廃水には、オゾン処理や塩素処理では分解されないダイオキシン類やジオキサン等の難分解物質が含まれる場合がある。オゾン、過酸化水素、および紫外線を併用した促進酸化処理法で、オゾン処理や塩素処理よりも反応性の高いヒドロキシルラジカル(OHラジカル)を産業用廃水等の被処理水中で発生させて、OHラジカルによる難分解物質の分解を行う方法がある。しかし、促進酸化処理法は、当該促進酸化処理法を実行する装置やその運転にかかるコストが非常に高い。   For the treatment of water and sewage, ozone treatment and chlorination are generally used. However, industrial wastewater may contain difficult-to-decompose substances such as dioxins and dioxane that are not decomposed by ozone treatment or chlorination. Oxygen radicals (OH radicals), which are more reactive than ozone treatment and chlorination treatment, are generated in water to be treated such as industrial wastewater by the accelerated oxidation treatment method using ozone, hydrogen peroxide, and ultraviolet rays. There is a method for decomposing difficult-to-decompose substances. However, the accelerated oxidation treatment method has a very high cost for an apparatus for executing the enhanced oxidation treatment method and its operation.

そのため、プラズマの作用によって被処理水中でOHラジカルを生成し、被処理水中の難分解物質を高効率に分解する水処理装置が提案されている。この水処理装置は、ワイヤ状の高電圧電極と平板状の接地電極間にパルス電圧を印加してプラズマを発生させるとともに、接地電極を傾斜させてその上面に沿って被処理水を流して薄い液体層を形成し、その液体層にプラズマを照射して被処理水中で生成されるOHラジカルによって、被処理水中の難分解物質を分解する。また、ワイヤ状の高電圧電極と平板状の接地電極間にパルス電圧を印加してプラズマを発生させるとともに、接地電極の上面を流れる被処理水の一部を水滴化することによって、被処理水中の難分解物質をより高効率に分解する技術を開発されている。   Therefore, a water treatment apparatus has been proposed that generates OH radicals in the water to be treated by the action of plasma and decomposes the hardly decomposed substances in the water to be treated with high efficiency. This water treatment apparatus generates plasma by applying a pulse voltage between a wire-like high-voltage electrode and a flat ground electrode, and at the same time tilts the ground electrode and allows water to be treated to flow along its upper surface. A liquid layer is formed, and the liquid layer is irradiated with plasma to decompose a hardly decomposed substance in the water to be treated by OH radicals generated in the water to be treated. In addition, a pulse voltage is applied between the wire-like high-voltage electrode and the flat ground electrode to generate plasma, and a part of the water to be treated that flows on the upper surface of the ground electrode is formed into water droplets, so that Technology has been developed for more efficient decomposition of difficult-to-decompose substances.

特許第5819031号公報Japanese Patent No. 5819031

しかしながら、上記の水処理装置では、高電圧電極と接地電極間に被処理水を導入するため、高電圧電極と接地電極間で発生するプラズマが、被処理水の形状、被処理水の導電率や誘電率等の被処理水の電気的な性質の影響を受けて、不安定になったり、異常放電(スパーク放電)し易くなったりすることがある。そのため、上述の水処理装置において、プラズマを安定して生成するためには、高電圧電極と接地電極間に印加する電圧を放電開始電圧よりも十分高い電圧とし、かつ高電圧電極と接地電極間に短いパルス幅のパルス電圧を印加する必要が生じる。これにより、特殊仕様の電源および水処理装置自体の絶縁対策が必要となる。さらに、高電圧電極と接地電極間に電圧を印加する電源の消費電力の効率も悪化する可能性も高い。   However, in the above water treatment apparatus, since the water to be treated is introduced between the high voltage electrode and the ground electrode, the plasma generated between the high voltage electrode and the ground electrode generates the shape of the water to be treated and the conductivity of the water to be treated. Under the influence of the electrical properties of the water to be treated such as the dielectric constant and the dielectric constant, it may become unstable or become susceptible to abnormal discharge (spark discharge). Therefore, in the above-described water treatment apparatus, in order to stably generate plasma, the voltage applied between the high voltage electrode and the ground electrode is set to a voltage sufficiently higher than the discharge start voltage, and between the high voltage electrode and the ground electrode. Therefore, it is necessary to apply a pulse voltage having a short pulse width. This requires special measures of power supply and insulation measures for the water treatment device itself. Furthermore, there is a high possibility that the power consumption efficiency of the power supply that applies a voltage between the high-voltage electrode and the ground electrode will deteriorate.

実施形態の水処理装置は、放電部と、プラズマ生成用電源と、プラズマ進展部と、を備える。放電部は、高電圧電極と、当該高電圧電極との間に被処理水を介さずに設けられる接地電極と、高電圧電極と接地電極との間に設けられる誘電体電極とを有し、高電圧電極と接地電極との間に希ガスが存在し、かつ被処理水が流れる領域とは離間して設けられる。プラズマ生成用電源は、高電圧電極と接地電極との間に電圧を印加して、高電圧電極と接地電極間の希ガス中でプラズマを点弧させる。プラズマ進展部は、筒状の絶縁体であり、高電圧電極と接地電極間の希ガス中で点弧されるプラズマの作用によって、第1開口から内部の希ガス中でプラズマを点弧させ、当該プラズマを第1開口とは反対側の第2開口から被処理水に対して放出して、被処理水中でラジカルを生成する。   The water treatment apparatus according to the embodiment includes a discharge unit, a plasma generation power source, and a plasma progress unit. The discharge unit includes a high voltage electrode, a ground electrode provided without water to be treated between the high voltage electrode, and a dielectric electrode provided between the high voltage electrode and the ground electrode, A rare gas is present between the high voltage electrode and the ground electrode, and is provided apart from the region through which the water to be treated flows. The plasma generating power source applies a voltage between the high voltage electrode and the ground electrode, and ignites the plasma in a rare gas between the high voltage electrode and the ground electrode. The plasma advancing portion is a cylindrical insulator, and the plasma is ignited in the rare gas inside from the first opening by the action of the plasma ignited in the rare gas between the high voltage electrode and the ground electrode, The plasma is discharged from the second opening opposite to the first opening to the water to be treated, and radicals are generated in the water to be treated.

図1は、第1の実施形態にかかる水処理装置の構成の一例を示す図である。Drawing 1 is a figure showing an example of the composition of the water treatment equipment concerning a 1st embodiment. 図2は、第2の実施形態にかかる水処理装置の構成の一例を示す図である。Drawing 2 is a figure showing an example of the composition of the water treatment equipment concerning a 2nd embodiment. 図3は、第3の実施形態にかかる水処理装置の構成の一例を示す図である。Drawing 3 is a figure showing an example of the composition of the water treatment equipment concerning a 3rd embodiment. 図4は、第4の実施形態にかかる水処理装置の斜視図の一例である。FIG. 4 is an example of a perspective view of a water treatment apparatus according to the fourth embodiment. 図5は、第4の実施形態にかかる水処理装置を上方から見た図の一例である。FIG. 5: is an example of the figure which looked at the water treatment apparatus concerning 4th Embodiment from upper direction. 図6は、第5の実施形態にかかる水処理装置の斜視図の一例である。FIG. 6 is an example of a perspective view of a water treatment apparatus according to the fifth embodiment.

以下、添付の図面を用いて、本実施形態にかかる水処理装置について説明する。   Hereinafter, the water treatment apparatus according to the present embodiment will be described with reference to the accompanying drawings.

(第1の実施形態)
図1は、第1の実施形態にかかる水処理装置の構成の一例を示す図である。図1に示すように、本実施形態にかかる水処理装置は、放電部101、プラズマ進展部102、およびプラズマ生成用電源103を有する。放電部101は、高電圧電極101a、接地電極101b、および誘電体電極101cを有し、被処理水W(例えば、ダイオキシン類やジオキサン等の難分解物質が含まれる産業用廃水、上下水)が流れる領域とは離間して設けられる。言い換えると、放電部101は、被処理水Wが流れる領域とは電気的に絶縁され、被処理水Wの形状や被処理水Wの電気的な性質の影響を受けて、放電部101において発生するプラズマが不安定になったり、異常放電が発生し易くなったりしないように設けられていれば良い。本実施形態では、放電部101は、被処理水Wの液面から、約20cm上方に設けられている。高電圧電極101aは、導電性の材料により構成される。また、高電圧電極101aは、後述するプラズマ生成用電源103によって電圧が印加される電極である。なお、被処理水Wは、図1の方向Dに流れているものとする。
(First embodiment)
Drawing 1 is a figure showing an example of the composition of the water treatment equipment concerning a 1st embodiment. As shown in FIG. 1, the water treatment apparatus according to this embodiment includes a discharge unit 101, a plasma progressing unit 102, and a plasma generation power source 103. The discharge unit 101 includes a high-voltage electrode 101a, a ground electrode 101b, and a dielectric electrode 101c, and water to be treated W (for example, industrial wastewater or water and sewage water containing a hardly decomposed substance such as dioxins or dioxane). It is provided apart from the flowing region. In other words, the discharge part 101 is electrically insulated from the region through which the water to be treated W flows, and is generated in the discharge part 101 under the influence of the shape of the water to be treated W and the electrical properties of the water to be treated W. It is only necessary to provide the plasma so that it does not become unstable or abnormal discharge is likely to occur. In the present embodiment, the discharge unit 101 is provided approximately 20 cm above the liquid level of the water to be treated W. The high voltage electrode 101a is made of a conductive material. The high voltage electrode 101a is an electrode to which a voltage is applied by a plasma generation power source 103 described later. In addition, the to-be-processed water W shall flow in the direction D of FIG.

接地電極101bは、高電圧電極101aとの間に被処理水Wを介さずに設けられる電極である。接地電極101bは、高電圧電極101aと同様に、導電性の材料により構成される。また、高電圧電極101aと接地電極101bとの間には、プラズマ生成用ガスGが存在する。本実施形態では、接地電極101bは、高電圧電極101aの外側に設けられる筒状(例えば、円筒状)の電極である。また、本実施形態では、筒状の接地電極101bの上部の開口から、プラズマ生成用ガスGが流入されて、高電圧電極101aと接地電極101bとの間がプラズマ生成用ガスGによって満たされる。または、高電圧電極101aと接地電極101bとの間にプラズマ生成用ガスGが予め充填されていても良い。ここで、プラズマ生成用ガスGは、高電圧電極101aと接地電極101bとの間に電圧が印加されてプラズマを高効率に点弧(発生)させることが可能な希ガス(例えば、ArガスやHeガス)である。誘電体電極101cは、誘電体により構成され、高電圧電極101aと接地電極101bとの間に設けられる電極である。本実施形態では、誘電体電極101cは、接地電極101bの内側に設けられ、接地電極101bと同軸状に配置される筒状(例えば、円筒状)の電極である。また、本実施形態では、誘電体電極101cは、その外周面が、接地電極101bの内周面に接している。   The ground electrode 101b is an electrode provided without the treated water W between the high voltage electrode 101a. The ground electrode 101b is made of a conductive material, like the high voltage electrode 101a. A plasma generating gas G exists between the high voltage electrode 101a and the ground electrode 101b. In the present embodiment, the ground electrode 101b is a cylindrical (for example, cylindrical) electrode provided outside the high voltage electrode 101a. In the present embodiment, the plasma generating gas G is introduced from the upper opening of the cylindrical ground electrode 101b, and the space between the high voltage electrode 101a and the ground electrode 101b is filled with the plasma generating gas G. Alternatively, the plasma generating gas G may be filled in advance between the high voltage electrode 101a and the ground electrode 101b. Here, the plasma generating gas G is a rare gas (for example, Ar gas or the like) that can apply a voltage between the high-voltage electrode 101a and the ground electrode 101b to ignite (generate) plasma with high efficiency. He gas). The dielectric electrode 101c is made of a dielectric and is an electrode provided between the high voltage electrode 101a and the ground electrode 101b. In the present embodiment, the dielectric electrode 101c is a cylindrical (for example, cylindrical) electrode provided inside the ground electrode 101b and disposed coaxially with the ground electrode 101b. In the present embodiment, the outer peripheral surface of the dielectric electrode 101c is in contact with the inner peripheral surface of the ground electrode 101b.

プラズマ生成用電源103は、高電圧電極101aと接地電極101bとの間に電圧を印加して、高電圧電極101aと接地電極101b間のプラズマ生成用ガスG中でプラズマを点弧させる。本実施形態では、プラズマ生成用電源103は、周波数が15kHzでかつ数kVの交流電圧を、高電圧電極101aと接地電極101b間に印加して放電を発生させることにより、放電部101内でプラズマを点弧させる。本実施形態では、プラズマ生成用電源103は、周波数が15kHzでかつ電圧が数kVの交流電圧を、高電圧電極101aと接地電極101b間に印加しているが、高電圧電極101aと接地電極101bとの間のプラズマ生成用ガスG中でプラズマを点弧させることが可能な周波数および電圧であれば、これに限定するものではない。   The plasma generation power source 103 applies a voltage between the high voltage electrode 101a and the ground electrode 101b to ignite plasma in the plasma generation gas G between the high voltage electrode 101a and the ground electrode 101b. In the present embodiment, the plasma generation power source 103 generates plasma in the discharge unit 101 by generating an electric discharge by applying an AC voltage having a frequency of 15 kHz and several kV between the high voltage electrode 101a and the ground electrode 101b. Is fired. In the present embodiment, the plasma generation power source 103 applies an alternating voltage having a frequency of 15 kHz and a voltage of several kV between the high voltage electrode 101a and the ground electrode 101b, but the high voltage electrode 101a and the ground electrode 101b are applied. If it is a frequency and voltage which can ignite a plasma in the gas G for plasma production between, it will not be limited to this.

プラズマ進展部102は、筒状の絶縁体(例えば、ポリ塩化ビニル、ガラス、セラミックス)である。また、プラズマ進展部102は、高電圧電極101aと接地電極101b間のプラズマ生成用ガスG中で点弧されるプラズマの作用によって、一方の開口102a(以下、第1開口と言う)から内部のプラズマ生成用ガスG中でプラズマを点弧させる。本実施形態では、プラズマ進展部102は、接地電極101bと同軸状に配置される円筒状の部材であり、第1開口102aが、誘電体電極101cの開口に接続されている。本実施形態では、プラズマ進展部102の第1開口102aは、誘電体電極101cの開口に接続されているが、高電圧電極101aと接地電極101b間のプラズマ生成用ガスG中で点弧されるプラズマの作用によって、プラズマ進展部102内のプラズマ生成用ガスG中でプラズマを点弧させることが可能であれば、放電部101から離間して設けられていても良い。   The plasma propagation part 102 is a cylindrical insulator (for example, polyvinyl chloride, glass, ceramics). Further, the plasma advancing portion 102 is moved from one opening 102a (hereinafter referred to as the first opening) to the inside by the action of plasma ignited in the plasma generating gas G between the high voltage electrode 101a and the ground electrode 101b. Plasma is ignited in the plasma generating gas G. In this embodiment, the plasma progressing part 102 is a cylindrical member arranged coaxially with the ground electrode 101b, and the first opening 102a is connected to the opening of the dielectric electrode 101c. In the present embodiment, the first opening 102a of the plasma progressing portion 102 is connected to the opening of the dielectric electrode 101c, but is ignited in the plasma generating gas G between the high voltage electrode 101a and the ground electrode 101b. If the plasma can be ignited in the plasma generating gas G in the plasma progressing part 102 by the action of the plasma, it may be provided apart from the discharge part 101.

ここで、プラズマ生成用ガスGは、放電部101により生成されるプラズマの作用によって、プラズマ進展部102内でプラズマを高効率に点弧(発生)させることが可能な希ガス(例えば、ArガスやHeガス)である。本実施形態では、プラズマ生成用ガスGは、プラズマ進展部102内に予め充填されていても良いし、第1開口102aからプラズマ進展部102内に流入されても良い。   Here, the plasma generating gas G is a rare gas (for example, Ar gas) that can ignite (generate) plasma with high efficiency in the plasma advancing unit 102 by the action of the plasma generated by the discharge unit 101. Or He gas). In the present embodiment, the plasma generating gas G may be filled in the plasma progressing portion 102 in advance, or may flow into the plasma progressing portion 102 from the first opening 102a.

また、プラズマ進展部102は、当該プラズマ進展部102内のプラズマ生成用ガスG中で点弧されるプラズマを、第1開口102aとは反対側の開口102b(以下、第2開口と言う)から放出して、被処理水W中でラジカルを生成する。本実施形態では、第2開口102bは、被処理水Wが流れる流路の上方に設けられ、被処理水Wの液面との間に、所定距離L以下の距離を有する。ここで、所定距離Lは、プラズマ進展部102内で発生するプラズマが空気中を移動可能な距離の閾値以下の距離(例えば、数mm)である。   Further, the plasma advancing unit 102 causes the plasma to be ignited in the plasma generating gas G in the plasma advancing unit 102 from an opening 102b (hereinafter referred to as a second opening) opposite to the first opening 102a. Release to generate radicals in the water W to be treated. In this embodiment, the 2nd opening 102b is provided above the flow path through which the to-be-processed water W flows, and has the distance below the predetermined distance L between the liquid levels of the to-be-processed water W. Here, the predetermined distance L is a distance (for example, several mm) that is equal to or less than a threshold value of a distance that the plasma generated in the plasma progressing part 102 can move in the air.

以上の構成によれば、放電部101内のプラズマ生成用ガスG中で点弧されるプラズマ自体で形成される電界が起点となって、プラズマ進展部102内に存在するプラズマ生成用ガスG中でプラズマが点弧される。プラズマ進展部102内で点弧されるプラズマは、第1開口102aから第2開口102bに向かって移動(進展、形成)し、第2開口102bから被処理水Wの液面に向かって放出される。第2開口102bから放出されるプラズマは、被処理水Wの液面に照射される。そして、水処理装置は、第2開口102bから放出されるプラズマによって、被処理水W中に含まれる難分解な有害物質等を分解する処理(以下、水処理と言う)を実現する。   According to the above configuration, the electric field formed by the plasma itself that is ignited in the plasma generating gas G in the discharge unit 101 is the starting point, and the plasma generating gas G in the plasma progressing unit 102 is in the starting point. The plasma is ignited. The plasma ignited in the plasma progressing part 102 moves (advances and forms) from the first opening 102a toward the second opening 102b, and is released toward the liquid surface of the water W to be treated from the second opening 102b. The The plasma emitted from the second opening 102b is applied to the liquid surface of the water W to be treated. And a water treatment apparatus implement | achieves the process (henceforth water treatment) which decomposes | disassembles the hardly decomposable harmful substance etc. which are contained in the to-be-processed water W with the plasma discharge | released from the 2nd opening 102b.

これにより、高電圧電極101aと接地電極101b間に被処理水Wを流入させることなく、被処理水Wに対してプラズマを照射することができ、被処理水Wの形状、被処理水Wの電気的な性質(例えば、導電率や誘電率)の影響を受けることなく、プラズマを生成することができるので、高電圧電極101aと接地電極101b間のプラズマ生成用ガスG中で発生するプラズマが不安定になったり、当該プラズマによって異常放電が発生したりすることを防止して、プラズマを安定して生成できる。また、プラズマ進展部102内にプラズマ生成用ガスGが流入されているので、被処理水Wとの絶縁対策が容易な低電圧でプラズマ進展部102内にプラズマを生成することができる。さらに、プラズマ生成用電源103として汎用性のある電源を用いることが容易となり、かつ水処理装置の絶縁対策も容易となるので、水処理を低コストかつ高効率に実行可能な水処理装置を提供可能となる。また、プラズマ生成用電源103の消費電力を削減できるので、水処理装置全体の消費電力も低減できる。   Thereby, plasma can be irradiated with respect to the to-be-processed water W, without making the to-be-processed water W flow in between the high voltage electrode 101a and the ground electrode 101b, and the shape of the to-be-processed water W, the to-be-processed water W of Since plasma can be generated without being affected by electrical properties (for example, conductivity and dielectric constant), the plasma generated in the plasma generating gas G between the high voltage electrode 101a and the ground electrode 101b is reduced. The plasma can be stably generated by preventing instability and occurrence of abnormal discharge by the plasma. In addition, since the plasma generating gas G flows into the plasma progressing portion 102, it is possible to generate plasma in the plasma progressing portion 102 at a low voltage that is easy to insulate against the water to be treated W. Furthermore, since it becomes easy to use a general-purpose power source as the plasma generation power source 103 and the insulation measures of the water treatment device are easy, a water treatment device capable of performing water treatment at low cost and high efficiency is provided. It becomes possible. Further, since the power consumption of the plasma generation power supply 103 can be reduced, the power consumption of the entire water treatment apparatus can also be reduced.

次に、プラズマ進展部102の第2開口102bから放出されるプラズマによって、被処理水に含まれる難分解な有害物質を分解する水処理について具体的に説明する。第2開口102bから放出されるプラズマが被処理水Wに接触すると、化学的活性種である反応性に富むOHラジカルが被処理水W中に生成され、当該OHラジカルの生成によって、被処理水Wに含まれる難分解な有害物質が分解される。   Next, water treatment for decomposing difficult-to-decompose harmful substances contained in the water to be treated with plasma emitted from the second opening 102b of the plasma progressing portion 102 will be specifically described. When the plasma emitted from the second opening 102b comes into contact with the water to be treated W, reactive OH radicals which are chemically active species are generated in the water to be treated W, and the water to be treated is generated by the generation of the OH radicals. The hard-to-decompose harmful substances contained in W are decomposed.

より具体的には、第2開口102bから放出されるプラズマが被処理水Wの液面に接触することによって、プラズマ中の正イオンが、被処理水W中の水分子(HO)と電荷交換して水分子イオン(H)が生成される。さらに、水分子イオン(H)が被処理水Wの水分子(HO)と電荷交換して、下記の式(1)に示す反応によりヒドロニウムイオン(H)とOHラジカルが被処理水W中に生成される。
+HO→H+OH・・・・(1)
More specifically, the plasma emitted from the second opening 102b comes into contact with the liquid surface of the water to be treated W, so that the positive ions in the plasma become water molecules (H 2 O) in the water to be treated W. Water molecule ions (H 2 O + ) are generated through charge exchange. Furthermore, water molecule ions (H 2 O + ) are exchanged with water molecules (H 2 O) of the water W to be treated, and hydronium ions (H 3 O + ) and OH radicals are generated in the water to be treated W.
H 2 O + + H 2 O → H 3 O + + OH (1)

また、被処理水W中のOHラジカルは、式(1)に示す反応以外によっても、被処理水W中に生成される。具体的には、プラズマ進展部102内で生成されるプラズマによって発生するUV光(紫外光)やVUV光(真空紫外光)によって、被処理水W中の水分子(HO)の光電離を起点とする電荷交換によって、被処理水W中にOHラジカルを生成することも可能である。さらに、プラズマ進展部102内で生成されるプラズマによって、被処理水Wの液面付近の気相中でOHラジカルを生成し、当該OHラジカルが被処理水W中に溶け込むことによって、被処理水W中にOHラジカルを生成することも可能である。 Moreover, the OH radical in the to-be-processed water W is produced | generated in the to-be-processed water W by other than reaction shown by Formula (1). Specifically, the photoionization of water molecules (H 2 O) in the water W to be treated by UV light (ultraviolet light) or VUV light (vacuum ultraviolet light) generated by plasma generated in the plasma progressing part 102. It is also possible to generate OH radicals in the water to be treated W by charge exchange starting from. Furthermore, OH radicals are generated in the gas phase near the liquid surface of the water to be treated W by the plasma generated in the plasma progressing part 102, and the OH radicals are dissolved in the water to be treated W. It is also possible to generate OH radicals in W.

このように、第1の実施形態にかかる水処理装置によれば、高電圧電極101aと接地電極101b間に被処理水Wを流入させることなく、被処理水Wに対してプラズマを照射することができ、被処理水Wの形状や被処理水Wの電気的な性質(例えば、導電率や誘電率)の影響を受けることなく、プラズマを生成することができるので、高電圧電極101aと接地電極101b間で発生するプラズマが不安定になったり、当該プラズマによって異常放電が発生したりすることを防止して、プラズマを安定して生成できる。   Thus, according to the water treatment apparatus according to the first embodiment, the water to be treated W is irradiated with plasma without flowing the water to be treated W between the high voltage electrode 101a and the ground electrode 101b. Since plasma can be generated without being affected by the shape of the water to be treated W and the electrical properties (for example, conductivity and dielectric constant) of the water to be treated W, the high voltage electrode 101a and the ground The plasma generated between the electrodes 101b can be prevented from becoming unstable, or abnormal discharge can be prevented from being generated by the plasma, so that the plasma can be generated stably.

(第2の実施形態)
本実施形態は、可撓性を有する絶縁体によってプラズマ進展部を構成する例である。以下の説明では、第1の実施形態と同様の構成については説明を省略する。
(Second Embodiment)
The present embodiment is an example in which the plasma progressing portion is configured by a flexible insulator. In the following description, description of the same configuration as that of the first embodiment is omitted.

図2は、第2の実施形態にかかる水処理装置の構成の一例を示す図である。図2に示すように、本実施形態にかかる水処理装置は、放電部101、プラズマ進展部202、およびプラズマ生成用電源103を有する。本実施形態では、プラズマ進展部202は、可撓性を有する絶縁体によって構成される。これにより、プラズマ進展部202を変形させることで、被処理水Wの液面に対する放電部101の配置の自由度を向上させることができるので、水処理装置を設置するスペースを小さくすることができる。   Drawing 2 is a figure showing an example of the composition of the water treatment equipment concerning a 2nd embodiment. As shown in FIG. 2, the water treatment apparatus according to this embodiment includes a discharge unit 101, a plasma progressing unit 202, and a plasma generation power source 103. In the present embodiment, the plasma progressing part 202 is configured by a flexible insulator. Thereby, since the freedom degree of arrangement | positioning of the discharge part 101 with respect to the liquid level of the to-be-processed water W can be improved by deform | transforming the plasma progress part 202, the space which installs a water treatment apparatus can be made small. .

また、プラズマ進展部202を可動させて、第2開口102bの位置を被処理水Wの液面上において移動させることができるので、第2開口102bから放出されるプラズマを被処理水Wの広い領域に対して短時間に照射可能となり、被処理水Wに含まれる難分解な物質を分解する水処理の効率を向上させることができる。ここで、可撓性を有する絶縁体としては、シリコンゴムやフッ素樹脂であることが好ましいが、絶縁性を有しかつその内部をプラズマ生成用ガスGで満たすことが可能な材料であれば良い。   Moreover, since the position of the 2nd opening 102b can be moved on the liquid level of the to-be-processed water W by moving the plasma expansion part 202, the plasma discharge | released from the 2nd opening 102b can be wide in the to-be-processed water W. Irradiation to the region can be performed in a short time, and the efficiency of water treatment for decomposing hardly decomposed substances contained in the water to be treated W can be improved. Here, the flexible insulator is preferably silicon rubber or fluororesin, but may be any material that has an insulating property and can fill the inside with the plasma generating gas G. .

このように、第2の実施形態にかかる水処理装置によれば、プラズマ進展部202を変形させることで、被処理水Wの液面に対する放電部101の配置の自由度を向上させることができるので、水処理装置を設置するスペースを小さくすることができる。   Thus, according to the water treatment apparatus concerning 2nd Embodiment, the freedom degree of arrangement | positioning of the discharge part 101 with respect to the liquid level of the to-be-processed water W can be improved by deform | transforming the plasma expansion part 202. FIG. Therefore, the space for installing the water treatment device can be reduced.

(第3の実施形態)
本実施形態は、プラズマ進展部の第2開口の面積を、当該プラズマ進展部の第1開口の面積より大きくする例である。以下の説明では、第1の実施形態と同様の構成については説明を省略する。
(Third embodiment)
The present embodiment is an example in which the area of the second opening of the plasma progressing portion is made larger than the area of the first opening of the plasma progressing portion. In the following description, description of the same configuration as that of the first embodiment is omitted.

図3は、第3の実施形態にかかる水処理装置の構成の一例を示す図である。図3に示すように、本実施形態にかかる水処理装置は、放電部101、プラズマ進展部302、およびプラズマ生成用電源103を有する。本実施形態では、プラズマ進展部302は、第2開口102bの形状(内断面形状)および面積が、第1開口102aの形状(内断面形状)および面積とは異なる。具体的には、プラズマ進展部302は、第2開口102bの面積を第1開口102aの面積より大きくする。これにより、プラズマ進展部302を可動させることなく、第2開口102bから放出されるプラズマを、被処理水Wの広い範囲に対して短時間で照射することができるので、より多くの被処理水Wに対して効率よく水処理を実行可能となる。また、プラズマ進展部302は、第2開口102bの幅が、被処理水Wが流れる流路の幅以上であることが好ましい。   Drawing 3 is a figure showing an example of the composition of the water treatment equipment concerning a 3rd embodiment. As shown in FIG. 3, the water treatment apparatus according to this embodiment includes a discharge unit 101, a plasma progressing unit 302, and a plasma generation power source 103. In the present embodiment, the shape (inner cross-sectional shape) and area of the second opening 102b of the plasma progressing portion 302 is different from the shape (inner cross-sectional shape) and area of the first opening 102a. Specifically, the plasma progressing part 302 makes the area of the second opening 102b larger than the area of the first opening 102a. Accordingly, since the plasma emitted from the second opening 102b can be irradiated to the wide range of the water to be treated W in a short time without moving the plasma progressing portion 302, more water to be treated. Water treatment can be efficiently performed on W. Moreover, it is preferable that the width | variety of the 2nd opening 102b is more than the width | variety of the flow path through which the to-be-processed water W flows.

このように、第3の実施形態にかかる水処理装置によれば、プラズマ進展部302を可動させることなく、第2開口102bから放出されるプラズマを、被処理水Wの広い範囲に対して短時間で照射することができるので、より多くの被処理水Wに対して効率良く水処理を実行可能となる。   As described above, according to the water treatment apparatus according to the third embodiment, the plasma emitted from the second opening 102b is made shorter than the wide range of the water to be treated W without moving the plasma progressing portion 302. Since it can irradiate with time, water treatment can be efficiently performed with respect to more to-be-treated water W.

(第4の実施形態)
本実施形態は、放電部が、複数の高電圧電極を有する例である。以下の説明では、第1の実施形態と同様の構成については説明を省略する。
(Fourth embodiment)
The present embodiment is an example in which the discharge unit includes a plurality of high voltage electrodes. In the following description, description of the same configuration as that of the first embodiment is omitted.

図4は、第4の実施形態にかかる水処理装置の斜視図の一例である。図5は、第4の実施形態にかかる水処理装置を上方から見た図の一例である。本実施形態では、水処理装置は、放電部401、プラズマ進展部102、およびプラズマ生成用電源103を有する。放電部401は、複数の高電圧電極101aを有する。これにより、放電部401においてより広い領域でプラズマを点弧させることが可能となり、プラズマ進展部102内のプラズマ生成用ガスG中で点弧されるプラズマも増加させることができるので、被処理水Wに対してより広い面積にプラズマを照射して、被処理水Wに対する水処理を効率良く実行できる。本実施形態では、複数の高電圧電極101aは、筒状の接地電極101bの内部に設けられる。すなわち、放電部401は、1つの接地電極101bとの間において放電を発生させる複数の高電圧電極101aを有する。また、本実施形態では、複数の高電圧電極101aは、1つのプラズマ生成用電源103に対して並列接続されている。   FIG. 4 is an example of a perspective view of a water treatment apparatus according to the fourth embodiment. FIG. 5: is an example of the figure which looked at the water treatment apparatus concerning 4th Embodiment from upper direction. In this embodiment, the water treatment apparatus includes a discharge unit 401, a plasma progressing unit 102, and a plasma generation power source 103. The discharge unit 401 includes a plurality of high voltage electrodes 101a. Accordingly, it is possible to ignite plasma in a wider area in the discharge unit 401, and it is possible to increase the plasma to be ignited in the plasma generating gas G in the plasma advancing unit 102. By irradiating plasma over a wider area with respect to W, water treatment for the water to be treated W can be performed efficiently. In the present embodiment, the plurality of high voltage electrodes 101a are provided inside a cylindrical ground electrode 101b. In other words, the discharge unit 401 includes a plurality of high voltage electrodes 101a that generate a discharge with respect to one ground electrode 101b. Further, in the present embodiment, the plurality of high voltage electrodes 101 a are connected in parallel to one plasma generation power source 103.

このように、第4の実施形態にかかる水処理装置によれば、放電部401においてより広い領域でプラズマを点弧させることが可能となり、プラズマ進展部102内のプラズマ生成用ガスG中で点弧されるプラズマも増加させることができるので、被処理水Wに対してより広い面積にプラズマを照射して、被処理水Wに対する水処理を効率良く実行できる。   As described above, according to the water treatment apparatus of the fourth embodiment, it is possible to ignite plasma in a wider region in the discharge unit 401, and the plasma generation gas G in the plasma progressing unit 102 can be ignited. Since the plasma to be arced can be increased, it is possible to efficiently perform water treatment on the water to be treated W by irradiating the water to be treated W with a larger area.

(第5の実施形態)
本実施形態は、放電部およびプラズマ進展部の組を複数備える例である。以下の説明では、第1の実施形態と同様の構成については説明を省略する。
(Fifth embodiment)
The present embodiment is an example including a plurality of sets of discharge parts and plasma progressing parts. In the following description, description of the same configuration as that of the first embodiment is omitted.

図6は、第5の実施形態にかかる水処理装置の斜視図の一例である。図6に示すように、本実施形態にかかる水処理装置は、プラズマ生成用電源103に加えて、放電部101およびプラズマ進展部102を含む組601(以下、プラズマ放出部と言う)を複数有する。本実施形態では、各プラズマ放出部601の放電部101が有する高電圧電極101aは、プラズマ生成用電源103に対して並列接続されている。   FIG. 6 is an example of a perspective view of a water treatment apparatus according to the fifth embodiment. As shown in FIG. 6, the water treatment apparatus according to the present embodiment includes a plurality of sets 601 (hereinafter referred to as plasma emission units) including the discharge unit 101 and the plasma progressing unit 102 in addition to the plasma generation power source 103. . In the present embodiment, the high voltage electrode 101 a included in the discharge unit 101 of each plasma emission unit 601 is connected in parallel to the plasma generation power source 103.

これにより、第2開口102bから放出されるプラズマを、被処理水Wの広い範囲に対して短時間に照射することができるので、より多くの被処理水Wに対して効率よく水処理を実行できる。本実施形態では、各プラズマ放出部601の放電部101が有する高電圧電極101aは、1つのプラズマ生成用電源103に対して並列接続されているが、これに限定するものではなく、各プラズマ放出部601の放電部101が有する高電圧電極101aは、互いに異なるプラズマ生成用電源103に対して接続されていても良い。   As a result, the plasma emitted from the second opening 102b can be irradiated in a short time to a wide range of the water to be treated W, so that water treatment can be efficiently performed on more water to be treated W. it can. In the present embodiment, the high-voltage electrode 101a included in the discharge unit 101 of each plasma emission unit 601 is connected in parallel to one plasma generation power source 103. However, the present invention is not limited to this. The high voltage electrode 101 a included in the discharge unit 101 of the unit 601 may be connected to different plasma generation power sources 103.

このように、第5の実施形態にかかる水処理装置によれば、第2開口102bから放出されるプラズマを、被処理水Wの広い範囲に対して短時間に照射することができるので、より多くの被処理水Wに対して効率よく水処理を実行できる。   Thus, according to the water treatment apparatus concerning 5th Embodiment, since the plasma discharge | released from the 2nd opening 102b can be irradiated with respect to the wide range of the to-be-processed water W in a short time, more A water treatment can be efficiently performed with respect to many to-be-processed water Ws.

以上説明したとおり、第1から第5の実施形態によれば、高電圧電極101aと接地電極101b間で発生するプラズマが不安定になったり、当該プラズマによって異常放電が発生したりすることを防止して、プラズマを安定して生成できる。   As described above, according to the first to fifth embodiments, it is possible to prevent the plasma generated between the high voltage electrode 101a and the ground electrode 101b from becoming unstable or causing abnormal discharge due to the plasma. Thus, plasma can be generated stably.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

101,401 放電部
101a 高電圧電極
101b 接地電極
101c 誘電体電極
102,202,302 プラズマ進展部
102a 第1開口
102b 第2開口
103 プラズマ生成用電源
601 プラズマ放出部
W 被処理水
DESCRIPTION OF SYMBOLS 101,401 Discharge part 101a High voltage electrode 101b Ground electrode 101c Dielectric electrode 102,202,302 Plasma progress part 102a 1st opening 102b 2nd opening 103 Power supply for plasma generation 601 Plasma discharge part W Water to be treated

Claims (5)

高電圧電極と、当該高電圧電極との間に被処理水を介さずに設けられる接地電極と、前記高電圧電極と前記接地電極との間に設けられる誘電体電極とを有し、前記高電圧電極と前記接地電極との間に希ガスが存在し、かつ前記被処理水が流れる領域とは離間して設けられる放電部と、
前記高電圧電極と前記接地電極との間に電圧を印加して、前記高電圧電極と前記接地電極間の希ガス中でプラズマを点弧させるプラズマ生成用電源と、
筒状の絶縁体であり、前記高電圧電極と前記接地電極間の希ガス中で点弧されるプラズマの作用によって、第1開口から内部の希ガス中でプラズマを点弧させ、当該プラズマを前記第1開口とは反対側の第2開口から前記被処理水に対して放出して、前記被処理水中でラジカルを生成するプラズマ進展部と、
を備える水処理装置。
A high-voltage electrode, a ground electrode provided between the high-voltage electrode without any water to be treated, and a dielectric electrode provided between the high-voltage electrode and the ground electrode. A rare gas is present between the voltage electrode and the ground electrode, and a discharge part provided apart from a region through which the water to be treated flows;
A plasma generating power source for applying a voltage between the high voltage electrode and the ground electrode to ignite plasma in a rare gas between the high voltage electrode and the ground electrode;
It is a cylindrical insulator, and the plasma is ignited in the rare gas inside from the first opening by the action of the plasma ignited in the rare gas between the high voltage electrode and the ground electrode. A plasma advancing portion that discharges from the second opening opposite to the first opening to the water to be treated and generates radicals in the water to be treated;
A water treatment apparatus comprising:
前記プラズマ進展部は、可撓性を有する絶縁体である請求項1記載の水処理装置。   The water treatment apparatus according to claim 1, wherein the plasma advancing portion is a flexible insulator. 前記第2開口の面積が、前記第1開口の面積より大きい請求項1または2に記載の水処理装置。   The water treatment apparatus according to claim 1 or 2, wherein an area of the second opening is larger than an area of the first opening. 前記放電部は、複数の前記高電圧電極を有する請求項1から3のいずれか一に記載の水処理装置。   The said discharge part is a water treatment apparatus as described in any one of Claim 1 to 3 which has several said high voltage electrode. 前記放電部および前記プラズマ進展部の組を複数備える請求項1から4のいずれか一に記載の水処理装置。   The water treatment apparatus according to any one of claims 1 to 4, comprising a plurality of sets of the discharge part and the plasma progressing part.
JP2018046939A 2018-03-14 2018-03-14 Water treatment equipment Active JP7086653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018046939A JP7086653B2 (en) 2018-03-14 2018-03-14 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018046939A JP7086653B2 (en) 2018-03-14 2018-03-14 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2019155294A true JP2019155294A (en) 2019-09-19
JP7086653B2 JP7086653B2 (en) 2022-06-20

Family

ID=67993771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018046939A Active JP7086653B2 (en) 2018-03-14 2018-03-14 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP7086653B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026975A (en) * 1998-07-09 2000-01-25 Komatsu Ltd Surface treating device
JP2003080058A (en) * 2001-09-10 2003-03-18 Yaskawa Electric Corp Method for producing reactive gas and producing apparatus therefor
JP2003080059A (en) * 2001-09-10 2003-03-18 Yaskawa Electric Corp Method and apparatus for treating material using reactive gas
JP2007149590A (en) * 2005-11-30 2007-06-14 Toshiba Corp Radical processor
JP2009183867A (en) * 2008-02-06 2009-08-20 Tohoku Univ Method and device for producing functional water
CN102923830A (en) * 2012-11-15 2013-02-13 王国秋 Water treatment device
JP2014010931A (en) * 2012-06-28 2014-01-20 Nippon Menaade Keshohin Kk Plasma processing method and plasma processing unit
JP2015097975A (en) * 2013-11-18 2015-05-28 株式会社セイデン Water treatment apparatus using liquid surface plasma discharge
JP2016215189A (en) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 Plasma treatment water harmless device and plasma treatment water harmless method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026975A (en) * 1998-07-09 2000-01-25 Komatsu Ltd Surface treating device
JP2003080058A (en) * 2001-09-10 2003-03-18 Yaskawa Electric Corp Method for producing reactive gas and producing apparatus therefor
JP2003080059A (en) * 2001-09-10 2003-03-18 Yaskawa Electric Corp Method and apparatus for treating material using reactive gas
JP2007149590A (en) * 2005-11-30 2007-06-14 Toshiba Corp Radical processor
JP2009183867A (en) * 2008-02-06 2009-08-20 Tohoku Univ Method and device for producing functional water
JP2014010931A (en) * 2012-06-28 2014-01-20 Nippon Menaade Keshohin Kk Plasma processing method and plasma processing unit
CN102923830A (en) * 2012-11-15 2013-02-13 王国秋 Water treatment device
JP2015097975A (en) * 2013-11-18 2015-05-28 株式会社セイデン Water treatment apparatus using liquid surface plasma discharge
JP2016215189A (en) * 2015-05-15 2016-12-22 パナソニックIpマネジメント株式会社 Plasma treatment water harmless device and plasma treatment water harmless method

Also Published As

Publication number Publication date
JP7086653B2 (en) 2022-06-20

Similar Documents

Publication Publication Date Title
US5194740A (en) Irradiation device
US20080056934A1 (en) Diffusive plasma air treatment and material processing
KR100932377B1 (en) Method of water purification using high density underwater plasma torch
KR101891438B1 (en) Plasma reactor comprising for water treatment and method for operation thereof
KR100924649B1 (en) Generator and method of high desity underwater plasma torch
US6451252B1 (en) Odor removal system and method having ozone and non-thermal plasma treatment
JP4378592B2 (en) Control method of discharge generator
JP2010137212A (en) Apparatus for generating plasma
KR101661135B1 (en) Water treatment device using plasma
US20190287763A1 (en) Diffusive plasma air treatment and material processing
JP2014159008A (en) Water treatment apparatus
US9868655B1 (en) Water treatment apparatus and water treatment method
JP7145597B2 (en) Ozone generator and excimer lamp lighting method
JP2019087395A (en) Plasma generation device and plasma generation method
US10577261B2 (en) Water treatment apparatus and water treatment method
KR101337047B1 (en) Atomspheric pressure plasma apparatus
JP7086653B2 (en) Water treatment equipment
JP4904650B2 (en) Material processing equipment
JP4839475B2 (en) X-ray irradiation ionizer
KR101692218B1 (en) Dielectric barrier plasma generation device for removing volatile organic compounds and method for removing them using same
KR20200011319A (en) Parallel dielectric barrier discharge plasma reactor for high efficiency of removal of gas type pollutant which can be adsorbed
JP2008047372A (en) Plasma generating apparatus
JP2010050004A (en) Plasma generating electrode
KR101661124B1 (en) Liquid processing device using plasma
Sato et al. Decomposition of phenol in water using water surface plasma in wetted-wall reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220608

R150 Certificate of patent or registration of utility model

Ref document number: 7086653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150