JP2014010931A - Plasma processing method and plasma processing unit - Google Patents

Plasma processing method and plasma processing unit Download PDF

Info

Publication number
JP2014010931A
JP2014010931A JP2012144935A JP2012144935A JP2014010931A JP 2014010931 A JP2014010931 A JP 2014010931A JP 2012144935 A JP2012144935 A JP 2012144935A JP 2012144935 A JP2012144935 A JP 2012144935A JP 2014010931 A JP2014010931 A JP 2014010931A
Authority
JP
Japan
Prior art keywords
electrode
liquid
plasma
electrodes
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012144935A
Other languages
Japanese (ja)
Inventor
Koichi Yamaguchi
浩一 山口
Yoshiaki Murase
由明 村瀬
Masato Oka
真佐人 岡
Hiroshi Asano
浩志 浅野
Michiko Ito
美智子 伊藤
Etsuo Asami
悦男 浅見
Seigo Takashima
成剛 高島
Takeshi Aoki
猛 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGOYA IND PROMOTION CORP
Nippon Menard Cosmetic Co Ltd
Nagoya Industries Promotion Corp
Original Assignee
NAGOYA IND PROMOTION CORP
Nippon Menard Cosmetic Co Ltd
Nagoya Industries Promotion Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGOYA IND PROMOTION CORP, Nippon Menard Cosmetic Co Ltd, Nagoya Industries Promotion Corp filed Critical NAGOYA IND PROMOTION CORP
Priority to JP2012144935A priority Critical patent/JP2014010931A/en
Publication of JP2014010931A publication Critical patent/JP2014010931A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a processing method which allows for efficient plasma processing for a processed liquid without being affected by the properties thereof, and to provide an economical processing unit.SOLUTION: A plurality of electrodes are placed in the air above the liquid level, and plasma is generated between the electrode and the liquid level by applying a voltage between the electrodes. Since the electrode does not come into contact with the processed liquid, plasma processing can be carried out while preventing contamination of the electrode metal component due to dissolution, corrosion, decomposition, consumption, or the like, of the electrode. Furthermore, since all electrodes are in the air, the number of electrodes generating plasma can be increased when compared with a plasma generation method where one electrode is placed in the liquid, resulting in efficient plasma processing.

Description

本願発明は、水等の液体が関わるプラズマ処理方法及び処理装置に関するものであり、液体中に含まれる物質や液体を構成する物質のプラズマ処理に適用される。   The present invention relates to a plasma processing method and a processing apparatus related to a liquid such as water, and is applied to a plasma processing of a substance contained in the liquid or a substance constituting the liquid.

近年、液体が関わるプラズマ技術については水処理、有機物の酸化分解処理、金属微粒子の合成、ナノ粒子の分散処理等幅広い分野での応用が検討されている。これらの目的で使用される装置の開発にあたっては簡便な構成であり経済的でありながらも効率的な処理を可能とすることが望まれる。   In recent years, plasma technology involving liquids has been studied for application in a wide range of fields such as water treatment, oxidative decomposition treatment of organic substances, synthesis of metal fine particles, and dispersion treatment of nanoparticles. In developing an apparatus to be used for these purposes, it is desired to enable an efficient process while being simple and economical.

プラズマを発生させる方法として、非特許文献1に詳細に記載されているように、一対の電極に高電圧を印加する方法がよく知られている。一対の電極は、大別して(a)共に液体中に配置、(b)一方を気中、他方を液体中に配置、(c)共に気中に配置する方式の3つが挙げられる。   As a method of generating plasma, as described in detail in Non-Patent Document 1, a method of applying a high voltage to a pair of electrodes is well known. The pair of electrodes can be broadly classified into three types: (a) both arranged in the liquid, (b) one arranged in the air, the other arranged in the liquid, and (c) both arranged in the air.

(a)の例としては、被処理液体中に一対の針状電極の先端を数mmの間隔をあけて対向するように配置し、電圧を印加して電極間を絶縁破壊させ放電させる方法が知られており、この方式を用いて、特許文献1では金属のナノ粒子の合成、特許文献2ではセラミック粒子の表面改質を行っている。(b)の例としては、液面上の気中に針状電極を配置し、液体中に平板電極を浸漬し、電極間に電圧を印加して針状電極の先端と液面の間にプラズマを発生させる方法があり、特許文献3ではこの方式により疎水性である炭素材料の親水化を行っている。(c)の例としては、気中の電極間で放電を生じさせ、放電場所にガスを流して放電で生じた活性種を被処理物である液体の液面上に供給する方法や、放電場所に被処理液体を供給する方法が挙げられる。   As an example of (a), there is a method in which the tips of a pair of needle-shaped electrodes are arranged in the liquid to be treated so as to face each other with a gap of several mm, and a voltage is applied to cause breakdown between the electrodes and discharge. Using this method, Patent Document 1 synthesizes metal nanoparticles, and Patent Document 2 performs surface modification of ceramic particles. As an example of (b), a needle electrode is placed in the air above the liquid surface, a plate electrode is immersed in the liquid, a voltage is applied between the electrodes, and the tip between the needle electrode and the liquid surface is applied. There is a method of generating plasma, and in Patent Document 3, a hydrophobic carbon material is hydrophilized by this method. Examples of (c) include a method in which a discharge is generated between the electrodes in the air, a gas is flowed to the discharge site, and active species generated by the discharge are supplied onto the liquid surface of the liquid to be processed. A method of supplying a liquid to be processed to a place is mentioned.

(a)や(b)の方法では、電極の少なくとも一つが被処理液体と接触している。このため、電極の溶解、腐食、変質を起こす成分を含む液体の処理には不向きである。特に(a)の方法では放電させるために塩等を添加して導電性を与える必要があるだけでなく、放電処理により電極の消耗が起こるために電極の金属成分が被処理液体に混入するという問題があることが知られている。また、(c)の放電場所にガスを流して放電で生じた活性種を被処理物である液体の液面上に供給する方法では、プラズマが直接、被処理液体に照射されないため処理効率が低下する問題がある。さらに、(c)の放電場所に被処理液体を供給する方法では、連続的又は断続的な液体、あるいは霧状の液滴で供給することになるため、被処理液体とプラズマとの接触時間が短くなる、あるいは処理容量が少なくなるという問題がある。   In the methods (a) and (b), at least one of the electrodes is in contact with the liquid to be treated. For this reason, it is unsuitable for the process of the liquid containing the component which causes melt | dissolution, corrosion, and alteration of an electrode. In particular, in the method (a), it is not only necessary to add salt to give electrical conductivity in order to discharge, but also the metal component of the electrode is mixed into the liquid to be treated because the electrode is consumed by the discharge treatment. There are known problems. Further, in the method of supplying the active species generated by the discharge by flowing a gas to the discharge location of (c) onto the liquid surface of the liquid to be processed, the processing efficiency is improved because the plasma is not directly irradiated to the liquid to be processed. There is a problem that decreases. Furthermore, in the method of supplying the liquid to be processed to the discharge location of (c), since the liquid is supplied as a continuous or intermittent liquid or a mist-like droplet, the contact time between the liquid to be processed and the plasma is long. There is a problem that the processing time is shortened or the processing capacity is reduced.

他の方法としては、薄い誘電体層で被覆した金属電極と板状の金属電極とを水溶液中に浸し、これらの電極間に交番電圧を印加することでプラズマを発生させ、水溶液中の色素を分解する方法がある(特許文献4)。しかしながら、この方法も前述したように、電極や誘電体層の溶解、腐食、変質を起こす成分を含む液体の処理には不向きであり、特に懸濁物質を含む液体の処理においては、誘電体層表面への懸濁物質の付着により放電が阻害され、懸濁物質が物理的に誘電体層を摩耗・破損させる恐れがある。   As another method, a metal electrode coated with a thin dielectric layer and a plate-like metal electrode are immersed in an aqueous solution, and an alternating voltage is applied between these electrodes to generate plasma, so that the dye in the aqueous solution is removed. There is a method of decomposing (Patent Document 4). However, as described above, this method is also unsuitable for the treatment of liquids containing components that cause dissolution, corrosion, or alteration of electrodes and dielectric layers, and particularly in the treatment of liquids containing suspended substances. Discharge is hindered by adhesion of the suspended material to the surface, and the suspended material may physically wear and damage the dielectric layer.

特開2008−013810JP 2008-013810 A 特開2010−222189JP 2010-222189 A 国際公開番号 WO2011/010620 A1International Publication Number WO2011 / 010620 A1 特開2010−137212JP 2010-137212 A

B.R.Lockeら、Ind.Eng.Chem.Res., Vol.45,p.882(2006)B. R. Locke et al., Ind. Eng. Chem. Res. , Vol. 45, p. 882 (2006)

本願発明が解決しようとする課題は、電極の溶解、腐食、変質、消耗等による電極金属成分の混入を防ぎながら、被処理液体に対して効率よくプラズマ処理を可能とする処理方法及びそのための経済的な処理装置を提供することにある。   The problem to be solved by the present invention is a processing method and an economy for the same, which enables plasma processing to be efficiently performed on a liquid to be processed while preventing electrode metal components from being mixed due to dissolution, corrosion, alteration, wear and the like of the electrode. Is to provide a typical processing apparatus.

本願発明では、少なくとも二本の電極を液面上部の気中に配置して、電極間に電圧を印加して、電極−液面間でプラズマを発生させる。図1に本願発明のプラズマ処理装置の基本構成を示す。被処理液体に電極が接触することがないため、電極の溶解、腐食、変質、消耗等による電極金属成分の混入を防ぎながらプラズマ処理をすることができる。さらに、すべての電極が気中にあるため、電極の一方を液体中に配置するプラズマ発生方法よりもプラズマが発生する電極の数を増やすことができ、効率的なプラズマ処理が可能となる。   In the present invention, at least two electrodes are arranged in the air above the liquid surface, and a voltage is applied between the electrodes to generate plasma between the electrode and the liquid surface. FIG. 1 shows the basic configuration of the plasma processing apparatus of the present invention. Since the electrode does not come into contact with the liquid to be treated, plasma treatment can be performed while preventing the electrode metal component from being mixed due to dissolution, corrosion, alteration, wear and the like of the electrode. Further, since all the electrodes are in the air, the number of electrodes that generate plasma can be increased as compared with the plasma generation method in which one of the electrodes is disposed in the liquid, and efficient plasma processing is possible.

本願発明におけるプラズマ発生方式は、液面上の気中に少なくとも二本の電極を配置し、電極−電極間距離と電極―液面間距離とを制御して電極間に電圧を印加することで、気中に配置した電極と液面との間で放電させる点に特徴がある。   The plasma generation method in the present invention is such that at least two electrodes are arranged in the air on the liquid surface, and the voltage between the electrodes is controlled by controlling the electrode-electrode distance and the electrode-liquid surface distance. It is characterized in that discharge is caused between an electrode disposed in the air and the liquid surface.

本願発明で用いる電極の形状は、針状、中空針状、線状、平板状等が挙げられる。その中でも、不平等電界が発生することで絶縁破壊電圧が低くなりプラズマを低電圧でも発生させやすくする針状のものが好ましい。電極の材質については、安定した放電状態を維持できるものであれば良く、銅、銅タングステン、銀、グラファイト、タングステン、チタン、ステンレス、モリブデン、アルミ、鉄等を挙げることができるが、特に限定されない。電極の耐久性を向上させる目的でこれらの電極の表面を異種材料によって被覆しても良い。   Examples of the shape of the electrode used in the present invention include a needle shape, a hollow needle shape, a linear shape, and a flat plate shape. Among them, a needle-shaped one that generates a non-uniform electric field and lowers a dielectric breakdown voltage and easily generates plasma even at a low voltage is preferable. The material of the electrode is not particularly limited as long as it can maintain a stable discharge state, and includes copper, copper tungsten, silver, graphite, tungsten, titanium, stainless steel, molybdenum, aluminum, iron, and the like. . For the purpose of improving the durability of the electrodes, the surfaces of these electrodes may be coated with a different material.

本願発明のプラズマ発生方法において、プラズマの発生に使用する電源には、直流電源、パルス電源、低周波・高周波交流電源、マイクロ波電源等、様々な方式を用いることができる。その中でも安価で高電圧を簡便に得ることができ整合回路を必要としない50Hz又は60Hzの交流電源が良く、具体的にはインバーター式ネオン変圧器や巻線式ネオン変圧器を用いるのが良い。   In the plasma generation method of the present invention, various systems such as a DC power supply, a pulse power supply, a low-frequency / high-frequency AC power supply, and a microwave power supply can be used as a power supply used for generating plasma. Among them, a 50 Hz or 60 Hz AC power source that can easily obtain a high voltage at a low cost and does not require a matching circuit is preferable. Specifically, an inverter neon transformer or a wound neon transformer is preferably used.

本願発明のプラズマ発生方法において、安定したプラズマ放電ができるように図1に示した基本構成において、抵抗、コンデンサ、コイル等を導入しても良い。例えば、気中電極と電源の間に抵抗を導入することで被処理液体の導電性の高低にかかわらず電極−液面間にプラズマを安定に発生させることが可能である。また、単一の電源から回路を並列に接続して2つの貯留槽でプラズマを同時に発生させる場合には、気中電極と電源の間にコンデンサを導入すれば安定した放電を得ることができる。   In the plasma generation method of the present invention, a resistor, a capacitor, a coil, or the like may be introduced in the basic configuration shown in FIG. 1 so that stable plasma discharge can be performed. For example, by introducing a resistance between the air electrode and the power source, it is possible to stably generate plasma between the electrode and the liquid surface regardless of the conductivity level of the liquid to be processed. In addition, when a circuit is connected in parallel from a single power source and plasma is generated simultaneously in two reservoirs, a stable discharge can be obtained by introducing a capacitor between the air electrode and the power source.

本願発明のプラズマ発生方法において、液面上部の気中に配置した電極と液面との距離、気中に配置した電極の電極−電極間距離及び印加電圧については、電極−液面間で放電が起こる条件であれば良く、特に限定はされない。気中の電極−電極間で放電が起こらない条件が望ましい。電極―液面間で放電を発生させ得る電極−電極間距離Lと電極―液面間距離Dの関係については、好ましくはL>3D、より好ましくはL≧5D、さらに好ましくはL≧10Dである。電極の数が3つ以上である場合には、最短の異極性電極間の距離をLとし、最長の電極−液面間距離をDとする。Dは、該電極が液面から僅かでも離れた状態であれば良く、0mmよりも大きく50mm以下であることが好ましい。より好ましくは、安定した放電状態を維持するために、Dは、1〜10mmである。また、気中に配置した同一極性の各々の電極と液面の距離は、安定な放電を得るためにすべて等しい方が好ましい。印加電圧は、電極の配置や電極の材質等により影響されるが、電源の経済性と安全性、電極の消耗等を考慮して、好ましくは0kVよりも大きく30kV以下である。電圧の印加のし易さから、印加電圧は1〜10kVが最も好ましい。   In the plasma generation method of the present invention, the distance between the electrode disposed in the air above the liquid surface and the liquid surface, the electrode-to-electrode distance of the electrode disposed in the air, and the applied voltage are discharged between the electrode and the liquid surface. There are no particular limitations as long as the conditions occur. It is desirable that the discharge does not occur between the electrodes in the air. Regarding the relationship between the electrode-electrode distance L and the electrode-liquid surface distance D that can generate a discharge between the electrode and the liquid surface, preferably L> 3D, more preferably L ≧ 5D, and even more preferably L ≧ 10D. is there. When the number of electrodes is three or more, the distance between the shortest different polarity electrodes is L, and the longest electrode-liquid level distance is D. D may be in a state where the electrode is slightly separated from the liquid surface, and is preferably larger than 0 mm and not larger than 50 mm. More preferably, D is 1 to 10 mm in order to maintain a stable discharge state. Further, it is preferable that the distance between each electrode having the same polarity arranged in the air and the liquid surface is equal in order to obtain a stable discharge. The applied voltage is influenced by the electrode arrangement, the electrode material, and the like, but is preferably greater than 0 kV and less than or equal to 30 kV in consideration of the economics and safety of the power source, electrode consumption, and the like. The applied voltage is most preferably 1 to 10 kV because of the ease of voltage application.

本願発明のプラズマ発生方法で処理可能な液体には水溶液、有機溶媒、水溶液と有機物の混合液、固形分を分散したこれらの溶液等が挙げられるが、特に限定されない。   Examples of the liquid that can be treated by the plasma generation method of the present invention include an aqueous solution, an organic solvent, a mixed solution of an aqueous solution and an organic material, and a solution in which a solid content is dispersed, but is not particularly limited.

本願発明のプラズマ処理装置において、図1のように液面上部を開放した状態であっても、あるいは、液面上部の電極を覆う形で密閉した状態でもよい。密閉系では、任意のガスを導入しながら放電することが可能である。導入するガスとしては水素、窒素、酸素、アルゴン、二酸化炭素等の気体やこれらの混合物、ガス化された化合物等が挙げられる。ガスの導入は液面上、液体中のいずれでも良い。   The plasma processing apparatus of the present invention may be in a state in which the upper part of the liquid level is opened as shown in FIG. 1 or in a state of being sealed so as to cover the electrode in the upper part of the liquid level. In a closed system, it is possible to discharge while introducing an arbitrary gas. Examples of the gas to be introduced include gases such as hydrogen, nitrogen, oxygen, argon, and carbon dioxide, mixtures thereof, and gasified compounds. The gas may be introduced either on the liquid surface or in the liquid.

本願発明のプラズマ発生方法は、被処理液体中の難分解性物質の分解処理、被処理液体中に含まれる無機物、有機物、無機物と有機物の複合材等の表面改質処理、及びそれらを原料とした材料作製等に利用することができる。また、プラズマ発生電極を全て気中に配置し、被処理液体に電極を接触させることなくプラズマ処理を行う。このため、電極の劣化や消耗を早めることなく、腐食、摩耗等をさせる物質が被処理液体中に存在していてもプラズマ処理することが可能である。   The plasma generation method of the present invention includes a decomposition treatment of a hardly decomposable substance in a liquid to be treated, a surface modification treatment such as an inorganic substance, an organic substance, a composite material of an inorganic substance and an organic substance contained in the liquid to be treated, and a raw material thereof. It can be used for producing the prepared material. Further, all the plasma generating electrodes are disposed in the air, and plasma processing is performed without bringing the electrodes into contact with the liquid to be processed. For this reason, it is possible to perform plasma treatment even if a substance that causes corrosion, wear, or the like is present in the liquid to be treated without accelerating the deterioration and consumption of the electrode.

図1は、プラズマ処理装置の基本構成の概略図である。FIG. 1 is a schematic diagram of a basic configuration of a plasma processing apparatus. 図2は、実施例1と比較例1におけるメチレンブルーの分解処理の結果である。FIG. 2 shows the result of the decomposition treatment of methylene blue in Example 1 and Comparative Example 1. 図3は、2組の処理槽に入れた被処理液体を単一の出力を有する電源にて処理するためのプラズマ処理装置の概略図である。FIG. 3 is a schematic view of a plasma processing apparatus for processing a liquid to be processed in two sets of processing tanks with a power source having a single output. 図4は、図3に記載の装置において2つの処理槽を接続して被処理液体を連通し、それに入れた被処理液体を単一の電源にて処理するためのプラズマ処理装置の概略図である。FIG. 4 is a schematic view of a plasma processing apparatus for connecting two processing tanks in the apparatus shown in FIG. 3 to communicate the liquid to be processed and processing the liquid to be processed in a single power source. is there.

次に、本願発明のプラズマ発生方法及びプラズマ処理装置について実施例を挙げて詳細に説明するが、本願発明はこれらに限定されるものではない。   Next, the plasma generation method and the plasma processing apparatus of the present invention will be described in detail with reference to examples, but the present invention is not limited thereto.

図1で表されるプラズマ処理装置を用いて有機物の分解処理を行った。気中電極にはタングステン線(φ1mm)、被処理液体には10mg/Lのメチレンブルー水溶液、貯留槽にはガラス容器を用いた。被処理液体の量は100mL、電極−電極間距離は30mm、電極−液面間距離は2極共に2mmにした。電源にはインバーター式ネオン変圧器(60Hz)を用い、3kVの電圧を印加して放電させた。プラズマ処理は空気雰囲気下で行い、処理中はマグネティックスターラーにより被処理液体を撹拌した。   The organic substance was decomposed using the plasma processing apparatus shown in FIG. A tungsten wire (φ1 mm) was used for the air electrode, a 10 mg / L methylene blue aqueous solution was used for the liquid to be treated, and a glass container was used for the storage tank. The amount of liquid to be treated was 100 mL, the electrode-electrode distance was 30 mm, and the electrode-liquid surface distance was 2 mm for both electrodes. An inverter type neon transformer (60 Hz) was used as a power source, and a voltage of 3 kV was applied for discharging. The plasma treatment was performed in an air atmosphere, and the liquid to be treated was stirred with a magnetic stirrer during the treatment.

(比較例1)
気中電極のうちの一つを被処理液体に浸漬した状態とすること以外は実施例1と同様にプラズマ処理を行った。
(Comparative Example 1)
Plasma treatment was performed in the same manner as in Example 1 except that one of the air electrodes was immersed in the liquid to be treated.

メチレンブルーの濃度はメチレンブルー溶液にリン酸緩衝液を添加してpHを一定とした溶液を調製し、その吸収スペクトル測定により求めた。図2にメチレンブルーの分解処理の結果を示す。一方の電極を液中に浸漬した比較例1では、半分のメチレンブルーが分解されるまでに約19分を要したのに対し、電極を共に気中に配置した実施例1では約6分と短時間で効率よく分解していることが明らかとなった。   The concentration of methylene blue was determined by measuring the absorption spectrum of a solution prepared by adding a phosphate buffer to a methylene blue solution to make the pH constant. FIG. 2 shows the result of the decomposition treatment of methylene blue. In Comparative Example 1 in which one electrode was immersed in the liquid, it took about 19 minutes until half of the methylene blue was decomposed, whereas in Example 1 in which both electrodes were placed in the air, the time was as short as about 6 minutes. It became clear that it decomposed efficiently in time.

図1で表されるプラズマ処理装置を用いてプラズマ放電を行い、被処理液体への電極金属成分の混入について調べた。被処理液体は1mol/Lの水酸化ナトリウム水溶液とし、その他は実施例1と同様の条件でプラズマを1時間発生させた。電極金属成分の混入の有無は、ICP発光分光測定により確認した。   Plasma discharge was performed using the plasma processing apparatus shown in FIG. 1, and the mixing of electrode metal components into the liquid to be processed was examined. The liquid to be treated was a 1 mol / L aqueous sodium hydroxide solution, and plasma was generated for 1 hour under the same conditions as in Example 1. The presence or absence of the electrode metal component was confirmed by ICP emission spectrometry.

(比較例2)
気中電極のうちの一つを被処理液体に浸漬した状態とすること以外は実施例2と同様にプラズマ処理を行った。
(Comparative Example 2)
Plasma treatment was performed in the same manner as in Example 2 except that one of the air electrodes was immersed in the liquid to be treated.

実施例2では被処理液体中のタングステン濃度は検出限界以下であった。一方、比較例2では約60ppmのタングステンが検出された。   In Example 2, the tungsten concentration in the liquid to be treated was below the detection limit. On the other hand, in Comparative Example 2, about 60 ppm of tungsten was detected.

図1で表されるプラズマ処理装置を用いて炭素の表面改質による水への分散を行った。被処理液体は水100mLにカーボン粉末10mgを加えた混合物とし、その他は実施例1と同様の条件で、15分間プラズマ処理を行った。   Dispersion in water by surface modification of carbon was performed using the plasma processing apparatus shown in FIG. The liquid to be treated was a mixture obtained by adding 10 mg of carbon powder to 100 mL of water, and plasma treatment was performed for 15 minutes under the same conditions as in Example 1.

プラズマ処理前は、大部分のカーボン粉末が液面上に浮遊あるいは容器の底に沈殿していて、水中に分散していない状態にあったが、実施例3では、カーボン粉末は良好に水中に分散した。   Before the plasma treatment, most of the carbon powder was floated on the liquid surface or precipitated at the bottom of the container and was not dispersed in water. In Example 3, the carbon powder was satisfactorily immersed in water. Distributed.

図1で表されるプラズマ処理装置を用いて微粒子酸化チタンの表面改質による水への分散を行った。被処理液体は水100mLに微粒子酸化チタン10mg(テイカ株式会社製MT−500B、平均一次粒子径35nm(カタログ値))を加えた混合物とし、その他は実施例1と同様の条件で、2時間プラズマ処理を行った。   Using the plasma processing apparatus shown in FIG. 1, fine titanium oxide was dispersed in water by surface modification. The liquid to be treated is a mixture of 100 mL of water and 10 mg of fine particle titanium oxide (MT-500B manufactured by Teika Co., Ltd., average primary particle size 35 nm (catalog value)), and the other conditions are the same as in Example 1 and plasma for 2 hours. Processed.

プラズマ処理前の被処理液体は静置すると微粒子酸化チタンが凝集・沈降したが、実施例4では、微粒子酸化チタンが良好に水中に分散した。   When the liquid to be treated before the plasma treatment was allowed to stand, the fine particle titanium oxide aggregated and settled, but in Example 4, the fine particle titanium oxide was well dispersed in water.

図1で表される基本的なプラズマ処理装置を用い、2極共に等しいDに設定して、気中電極にはタングステン線(φ1mm)、被処理液体には10mg/Lのメチレンブルー水溶液1L、貯留槽にはガラス容器を用いた。電源にはインバーター式ネオン変圧器(60Hz)を用い、3kVの電圧を印加して放電させた。プラズマ処理は空気雰囲気下で行い、処理中はマグネティックスターラーにより被処理液体を撹拌した。   Using the basic plasma processing apparatus shown in FIG. 1, the two poles are set to the same D, the tungsten electrode (φ1 mm) for the air electrode, 1 L of methylene blue aqueous solution of 10 mg / L for the liquid to be processed, storage A glass container was used for the tank. An inverter type neon transformer (60 Hz) was used as a power source, and a voltage of 3 kV was applied for discharging. The plasma treatment was performed in an air atmosphere, and the liquid to be treated was stirred with a magnetic stirrer during the treatment.

<結果>
表1に、電極−液面間距離、印加電圧、電極−電極間距離及び電源を変化させてプラズマ処理した時のプラズマ発生状況を示す。
<Result>
Table 1 shows the plasma generation state when the plasma treatment is performed by changing the electrode-liquid level distance, the applied voltage, the electrode-electrode distance, and the power source.

表1より、電極−液面間距離Dが大きくなると、プラズマを発生させるために必要な印加電圧Vが大きくなることがわかる。作業の安全性や電極の消耗を考慮するとDは25mm以下が適当であることがわかる。Dを25mmより大きくした場合においても、より高電圧を印加することで放電させることが可能である。しかし、この場合には連続処理によって電極が赤熱し、プラズマ発生状態が不安定化する等の不都合が生じることから、Vは30kV以下が好ましい。安価で常用のネオン変圧器が使用可能であり、安定したプラズマ放電ができるように、Dは1〜10mm、Vは10kV以下とするのがより好ましい。   From Table 1, it can be seen that as the electrode-liquid level distance D increases, the applied voltage V required to generate plasma increases. It is understood that D is 25 mm or less in consideration of work safety and electrode consumption. Even when D is larger than 25 mm, it is possible to discharge by applying a higher voltage. However, in this case, it is preferable that V is 30 kV or less because inconveniences such as the electrode becoming red hot by the continuous treatment and the plasma generation state becoming unstable. It is more preferable that D is 1 to 10 mm and V is 10 kV or less so that an inexpensive and common neon transformer can be used and stable plasma discharge can be performed.

図1で表わされる基本的なプラズマ処理装置を用いて、電極−電極間距離L、印加電圧V、電極−液面間距離D及び電源を変化させてプラズマ処理を行った。電源の種類ごとにDとVを一定にして、その他は実施例5と同様にした。   Using the basic plasma processing apparatus shown in FIG. 1, plasma processing was performed while changing the electrode-electrode distance L, the applied voltage V, the electrode-liquid level distance D, and the power source. D and V were made constant for each type of power supply, and the others were the same as in Example 5.

<結果>
表2に、電極−液面間距離、印加電圧、電極−電極間距離及び電源を変化させてプラズマ処理した時のプラズマ発生状況を示す。
<Result>
Table 2 shows the plasma generation state when the plasma treatment was performed by changing the electrode-liquid level distance, the applied voltage, the electrode-electrode distance, and the power source.

電極−電極間距離Lが電極−液面間距離Dの2〜3倍の場合に電極−電極間で放電が発生した。L>3DかつL<5Dの場合には、電極−電極間で放電が発生したのちに電極−液面間の放電に移行する現象が認められた。従って、電極−液面間で放電させるためにはL>3D、より好ましくはL≧5Dである。被処理液体の性状や処理雰囲気(気中のガスの種類)等によってはこの関係に多少の変動が生じ得ることを考慮すると、さらに好ましくはL≧10Dである。   When the electrode-electrode distance L was 2 to 3 times the electrode-liquid level distance D, discharge occurred between the electrodes. In the case of L> 3D and L <5D, a phenomenon was observed in which a discharge was generated between the electrode and the electrode, followed by a discharge between the electrode and the liquid surface. Therefore, L> 3D, more preferably L ≧ 5D, for discharging between the electrode and the liquid surface. Considering that some variation may occur in this relationship depending on the properties of the liquid to be processed, the processing atmosphere (the type of gas in the air), and the like, L ≧ 10D is more preferable.

図3で表されるように2つの貯留槽に入れた被処理液体を単一の出力を有する電源にてプラズマによる有機物の分解処理を行った。被処理液体の容量は200mLとし、電極−液面間距離は4本共に2mmに設定し、その他は実施例1と同様の条件でプラズマ処理を行った。   As shown in FIG. 3, the liquid to be processed placed in the two storage tanks was subjected to a decomposition process of organic substances by plasma with a power source having a single output. The volume of the liquid to be treated was 200 mL, the distance between the electrode and the liquid surface was set to 2 mm for all four, and the plasma treatment was performed under the same conditions as in Example 1.

4本の電極全てにおいて、電極−液面間でプラズマが同時に発生した。また、メチレンブルー濃度は、いずれの貯留槽も図1のプラズマ処理装置を用いた実施例1と同様に、時間と共に低下した。   In all four electrodes, plasma was simultaneously generated between the electrode and the liquid surface. Moreover, the methylene blue density | concentration fell with time similarly to Example 1 using the plasma processing apparatus of FIG.

図4で表されるように2つの貯留槽を接続して被処理液体を連通したプラズマ処理装置にて、メチレンブルーの分解処理を行った。接続部には内径6mmの絶縁性の管を用いた。その他は実施例7と同様の条件でプラズマ処理を行った。   As shown in FIG. 4, methylene blue was decomposed in a plasma processing apparatus in which two storage tanks were connected and the liquid to be processed was communicated. An insulating tube having an inner diameter of 6 mm was used for the connection part. The plasma treatment was performed under the same conditions as in Example 7 except for the above.

4本の電極全てにおいて、電極−液面間でプラズマが発生した。又、貯留槽のメチレンブルー濃度は、いずれの貯留槽も図1のプラズマ処理装置を用いた実施例1と同様に、時間と共に低下した。   In all four electrodes, plasma was generated between the electrode and the liquid surface. Further, the methylene blue concentration in the storage tanks decreased with time in the same manner as in Example 1 using the plasma processing apparatus of FIG.

本願発明による処理装置を用いることにより、従来技術である、液面上の気中に針状電極を配置、液体中に平板電極を浸漬し、電極間に高電圧を印加して針状電極の先端と液面の間にプラズマを発生させる方法に対して、より効率良くプラズマ処理が可能である。さらに、被処理液体に電極が接触しないため、電極の溶解、腐食、変質、消耗等による電極金属成分の混入無しに、被処理液体のプラズマ処理が可能である。本願発明のプラズマ処理方法は被処理液体の有害物質除去等の水処理や排水処理、被処理液体中に含まれる物質の化学反応や固体の表面改質処理を利用した材料調製に利用可能である。   By using the processing apparatus according to the present invention, a needle electrode is disposed in the air on the liquid surface, which is a conventional technique, a plate electrode is immersed in the liquid, a high voltage is applied between the electrodes, and the needle electrode is Compared with the method of generating plasma between the tip and the liquid surface, plasma treatment can be performed more efficiently. Furthermore, since the electrode does not come into contact with the liquid to be processed, plasma processing of the liquid to be processed is possible without mixing of electrode metal components due to dissolution, corrosion, alteration, wear, or the like of the electrode. The plasma treatment method of the present invention can be used for water treatment such as removal of harmful substances from a liquid to be treated, wastewater treatment, material preparation using a chemical reaction of a substance contained in the liquid to be treated and a surface modification treatment of a solid. .

1 被処理液体を入れる貯留槽
2 被処理液体
3 電源
4 液面上部の気中に設置した電極
5 セラミックス管
6 プラズマ
DESCRIPTION OF SYMBOLS 1 Storage tank which puts a to-be-processed liquid 2 To-be-processed liquid 3 Power supply 4 The electrode installed in the air above the liquid level 5 Ceramics tube 6 Plasma

Claims (3)

液面上部の気中に複数の電極を配置し、電極間に電圧を印加することにより電極と液面との間でプラズマを発生させることを特徴とするプラズマ発生方法。   A plasma generation method comprising: arranging a plurality of electrodes in the air above a liquid surface, and generating a plasma between the electrodes and the liquid surface by applying a voltage between the electrodes. 一つの電源で電極間に電圧を印加し、複数の電極と液面との間で同時にプラズマを発生させることを特徴とする請求項1記載のプラズマ発生方法。   2. The plasma generation method according to claim 1, wherein a voltage is applied between the electrodes with a single power source to simultaneously generate plasma between the plurality of electrodes and the liquid surface. 被処理液体の上部の気中に複数の電極を配置し、電極間に電圧を印加することにより気中に配置した電極と被処理液体の液面との間でプラズマを発生させ該液体の処理を行うことを特徴とする、プラズマ処理装置。
A plurality of electrodes are disposed in the air above the liquid to be treated, and a voltage is applied between the electrodes to generate plasma between the electrodes disposed in the air and the liquid surface of the liquid to be treated. A plasma processing apparatus.
JP2012144935A 2012-06-28 2012-06-28 Plasma processing method and plasma processing unit Pending JP2014010931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144935A JP2014010931A (en) 2012-06-28 2012-06-28 Plasma processing method and plasma processing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144935A JP2014010931A (en) 2012-06-28 2012-06-28 Plasma processing method and plasma processing unit

Publications (1)

Publication Number Publication Date
JP2014010931A true JP2014010931A (en) 2014-01-20

Family

ID=50107473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144935A Pending JP2014010931A (en) 2012-06-28 2012-06-28 Plasma processing method and plasma processing unit

Country Status (1)

Country Link
JP (1) JP2014010931A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160151A (en) * 2014-02-26 2015-09-07 セイコーエプソン株式会社 Fluid dispersion, method and apparatus for producing the same
KR20170016322A (en) 2014-05-30 2017-02-13 후지 기카이 세이조 가부시키가이샤 Plasma irradiation method and plasma irradiation device
JP2019155294A (en) * 2018-03-14 2019-09-19 株式会社東芝 Water treatment device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149590A (en) * 2005-11-30 2007-06-14 Toshiba Corp Radical processor
JP2007207540A (en) * 2006-02-01 2007-08-16 Kurita Seisakusho:Kk In-liquid plasma generation method, in-liquid plasma generation apparatus, apparatus for purifying liquid to be treated, and ionic liquid supplying apparatus
JP2008126107A (en) * 2006-11-17 2008-06-05 Bco:Kk Purifier
WO2009009143A1 (en) * 2007-07-11 2009-01-15 Gr Intellectual Reserve, Llc Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom
JP2009054557A (en) * 2007-08-24 2009-03-12 Osamu Sakai In-liquid plasma generating device
JP2010009993A (en) * 2008-06-27 2010-01-14 National Institute Of Advanced Industrial & Technology Solution plasma discharge device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149590A (en) * 2005-11-30 2007-06-14 Toshiba Corp Radical processor
JP2007207540A (en) * 2006-02-01 2007-08-16 Kurita Seisakusho:Kk In-liquid plasma generation method, in-liquid plasma generation apparatus, apparatus for purifying liquid to be treated, and ionic liquid supplying apparatus
JP2008126107A (en) * 2006-11-17 2008-06-05 Bco:Kk Purifier
WO2009009143A1 (en) * 2007-07-11 2009-01-15 Gr Intellectual Reserve, Llc Continuous methods for treating liquids and manufacturing certain constituents (e.g., nanoparticles) in liquids, apparatuses and nanoparticles and nanoparticle/liquid solution(s) resulting therefrom
JP2009054557A (en) * 2007-08-24 2009-03-12 Osamu Sakai In-liquid plasma generating device
JP2010009993A (en) * 2008-06-27 2010-01-14 National Institute Of Advanced Industrial & Technology Solution plasma discharge device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160151A (en) * 2014-02-26 2015-09-07 セイコーエプソン株式会社 Fluid dispersion, method and apparatus for producing the same
KR20170016322A (en) 2014-05-30 2017-02-13 후지 기카이 세이조 가부시키가이샤 Plasma irradiation method and plasma irradiation device
US10343132B2 (en) 2014-05-30 2019-07-09 Fuji Corporation Plasma emitting method and plasma emitting device
JP2019155294A (en) * 2018-03-14 2019-09-19 株式会社東芝 Water treatment device
JP7086653B2 (en) 2018-03-14 2022-06-20 株式会社東芝 Water treatment equipment

Similar Documents

Publication Publication Date Title
Horikoshi et al. In-liquid plasma: A novel tool in the fabrication of nanomaterials and in the treatment of wastewaters
US6547951B1 (en) Method and apparatus for treatment of organic matter-containing wastewater
KR101579349B1 (en) Water treatment apparatus using plasma-membrane and method using the same
US7862782B2 (en) Apparatus and methods for producing nanoparticles in a dense fluid medium
EP2762453A1 (en) Liquid treatment device and liquid treatment method
JP5099612B2 (en) Liquid processing equipment
WO2002038827A1 (en) Plasma electroplating
JP2005058887A (en) Waste water treatment apparatus using high-voltage pulse
JP2015085297A (en) Liquid treatment apparatus and produced water treatment method
JP2009160494A (en) Apparatus and method for producing reduced water
Sato et al. Water treatment with pulsed discharges generated inside bubbles
JP2014010931A (en) Plasma processing method and plasma processing unit
Vyhnánková et al. Influence of electrode material on hydrogen peroxide generation by DC pinhole discharge
Shirafuji et al. Generation of three-dimensionally integrated micro-solution plasma and its application to decomposition of methylene blue molecules in water
US9868655B1 (en) Water treatment apparatus and water treatment method
JP4429451B2 (en) Water purification equipment containing dissolved organic matter and trace amounts of harmful substances
JP2014032787A (en) In-liquid discharge device
Sein et al. Studies on a non-thermal pulsed corona plasma between two parallel-plate electrodes in water
CN108115148B (en) Method for preparing liquid nano-gold particles by adopting atmospheric pressure low-temperature plasma plume
JP5390315B2 (en) Metal carrier manufacturing apparatus and metal carrier manufacturing method
JP6956970B2 (en) Method for producing silver nanoparticle-supported powder
JP2016175820A (en) Method for producing ammonia and compound production device
JP2003071460A (en) Liquid treatment method and apparatus therefor
KR20190138480A (en) Plasma generating device
KR20220087591A (en) electric water purification apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150529

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161011