JP2019153537A - 反射電子のエネルギースペクトルを測定する装置および方法 - Google Patents

反射電子のエネルギースペクトルを測定する装置および方法 Download PDF

Info

Publication number
JP2019153537A
JP2019153537A JP2018039636A JP2018039636A JP2019153537A JP 2019153537 A JP2019153537 A JP 2019153537A JP 2018039636 A JP2018039636 A JP 2018039636A JP 2018039636 A JP2018039636 A JP 2018039636A JP 2019153537 A JP2019153537 A JP 2019153537A
Authority
JP
Japan
Prior art keywords
reflected electrons
wien filter
energy
electron beam
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018039636A
Other languages
English (en)
Other versions
JP2019153537A5 (ja
JP7017437B2 (ja
Inventor
誠 嘉藤
Makoto Kato
誠 嘉藤
澄夫 佐々木
Sumio Sasaki
澄夫 佐々木
田中 幸浩
Yukihiro Tanaka
幸浩 田中
山崎 裕一郎
Yuichiro Yamazaki
裕一郎 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tasmit Inc
Original Assignee
NGR Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018039636A priority Critical patent/JP7017437B2/ja
Application filed by NGR Inc filed Critical NGR Inc
Priority to KR1020207027569A priority patent/KR20200127208A/ko
Priority to PCT/JP2019/008066 priority patent/WO2019172115A1/ja
Priority to CN201980016742.4A priority patent/CN111801764A/zh
Priority to US16/977,808 priority patent/US11322332B2/en
Priority to TW108107245A priority patent/TWI784138B/zh
Publication of JP2019153537A publication Critical patent/JP2019153537A/ja
Publication of JP2019153537A5 publication Critical patent/JP2019153537A5/ja
Application granted granted Critical
Publication of JP7017437B2 publication Critical patent/JP7017437B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/05Electron or ion-optical arrangements for separating electrons or ions according to their energy or mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/29Reflection microscopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/05Arrangements for energy or mass analysis
    • H01J2237/057Energy or mass filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1532Astigmatism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/2446Position sensitive detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24475Scattered electron detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/244Detection characterized by the detecting means
    • H01J2237/24485Energy spectrometers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electron Tubes For Measurement (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】広いエネルギー領域において高エネルギー分解能を実現できる装置を提供する。【解決手段】装置は、1次電子線を発生させるための電子線源101と、1次電子線を試料まで導いて集束かつ偏向させる電子光学系102,105,112と、試料から発生した反射電子のエネルギースペクトルを検出可能なエネルギー分析系を備える。エネルギー分析系は、反射電子を分散させるウィーンフィルタ108と、ウィーンフィルタ108によって分散された反射電子のエネルギースペクトルを測定するための検出器107と、ウィーンフィルタ108の4極場の強度を変化させながら、4極場の強度の変化と同期して検出器107の反射電子の検出位置を移動させる動作制御部150とを備える。【選択図】図1

Description

本発明は、試料から発生した反射電子のエネルギーを分析するための装置および方法に関する。
半導体デバイス観察を目的とする走査電子顕微鏡において、観察対象となるデバイスパタンの微細化に伴いパタンの多層化が進んで来ているため、透過力の大きい高い加速電圧を用い、観察対象の試料の表面からの深さによって定まる適切なエネルギーを持つ反射電子を観察するのが有効である。この目的のために、反射電子のエネルギースペクトルを測定する機能が必要となる。
この反射電子のエネルギー分析のために、従来はウィーンフィルタによって反射電子を光軸からわずかに逸らした上で、エネルギーアナライザ、たとえば静電球面アナライザ、磁場セクタ型アナライザに反射電子を導き、これによってエネルギー分析を行っている。この目的のために用いられるウィーンフィルタは、試料に向かう1次電子線と試料から引き返す反射電子を振り分けるためのビームセパレータとして働く。あるいは、ウィーンフィルタ自身のエネルギー分散作用を用いて、一個のウィーンフィルタがビームセパレータとエネルギーアナライザとして同時に動作する場合もある。ウィーンフィルタのビームセパレータとしての利用に関しては、例えば特許文献1に記載されている。ウィーンフィルタとエネルギーアナライザを組み合わせる手法に関しては、例えば特許文献2に記載されている。またウィーンフィルタのみでエネルギー分析を行う手法に関しては、例えば特許文献3に記載されている。
米国特許第5422486号公報 米国特許第6455848号公報 米国特許公開2006/0076489号明細書
エネルギーを選択した反射電子像の形成において、選択すべきエネルギー値は対象となる試料の観察目的によって異なってくる。そのため、最初に反射電子のなるべく広い範囲のエネルギースペクトルを測定し、試料を特徴づけるのに有効なエネルギー領域をおおまかに特定する。次に、その特定のエネルギー値付近のスペクトルを詳しく調べた上で、最終的にあるエネルギー値だけを選択した反射電子像を形成する。この手順において、最初に広いエネルギー領域を分析する際は、エネルギー分解能よりも測定時間の短縮が優先される。したがって、通常のようなアナライザのパスエネルギーを掃引してスペクトルを取得するシリアル検出ではなく、広いエネルギー領域のスペクトルを短時間で取得できるパラレル検出が望ましい。一方、特定のエネルギー値付近でのスペクトルを詳しく測定する際にはエネルギー分解能が優先となり、検出はシリアルでも構わないが、理想的にはパラレル検出が望まれる。最終的に特定のエネルギーのみを選んで反射電子像を得る際は、やはり高エネルギー分解能が要求される。
反射電子のエネルギー分析のために通例用いられるエネルギーアナライザとして静電球面アナライザがある。このタイプのアナライザは、高いエネルギー分解能を有するが、狭い電極間をくぐり抜けた電子のみが出射側で検出される構造であることから、一度に検出できるエネルギー領域は非常に制限される。特に、分析したい反射電子のエネルギーが例えば数10keVと高い場合、電極に印加する電圧が大きくなることで引き起こされる放電を避けるために電極間隔は狭くせざるをえず、同時検出の可能なエネルギー領域はより制限される。この事情により、静電球面アナライザは通常、検出器を一か所に固定してパスエネルギーを掃引するシリアル検出の方式にならざるを得ない。すなわち静電球面アナライザは、広いエネルギー領域を短時間で測定する用途には適合しない。
ウィーンフィルタ単独でエネルギー分析を行う場合は、ウィーンフィルタの形状とそれに付随する電磁場シャントの形状を工夫すれば、広いエネルギー領域をパラレル検出することは可能である。しかし、そのエネルギー領域のすべてのエネルギー値に対して高エネルギー分解能を得ることはできない。この理由は、ウィーンフィルタによって分散したエネルギーごとのビームは、光軸に垂直な検出面上にはフォーカスせずに大きくボケてしまうからである。そのため、ウィーンフィルタは低エネルギー分解能でパラレル検出を行う目的には適合するが、高エネルギー分解能を実現できない。
本発明は、広いエネルギー領域において高エネルギー分解能を実現できる装置および方法を提供することを目的とする。
一態様では、1次電子線を発生させるための電子線源と、前記1次電子線を試料まで導いて集束かつ偏向させる電子光学系と、前記試料から発生した反射電子のエネルギースペクトルを検出可能なエネルギー分析系を備え、前記エネルギー分析系は、前記反射電子を分散させるウィーンフィルタと、前記ウィーンフィルタによって分散された反射電子のエネルギースペクトルを測定するための検出器と、前記ウィーンフィルタの4極場の強度を変化させながら、前記4極場の強度の変化と同期して前記検出器の前記反射電子の検出位置を移動させる動作制御部とを備える装置が提供される。
一態様では、前記動作制御部は、反射電子が前記検出位置でフォーカスするように、前記ウィーンフィルタの4極場の強度を変化させながら、前記4極場の強度の変化と同期して前記検出器の前記反射電子の検出位置を移動させる。
一態様では、前記エネルギー分析系は、前記電子線源と前記ウィーンフィルタとの間に配置された非点補正器をさらに備え、前記非点補正器は、前記4極場の強度の変化に同期して、1次電子線の非点収差を打ち消すように動作する。
一態様では、前記エネルギー分析系は、前記ウィーンフィルタの出口側に配置されたシャントをさらに備え、前記シャントは、前記反射電子の分散する方向に延びるスリットを有する。
一態様では、1次電子線を発生させるための電子線源と、前記1次電子線を試料まで導いて集束かつ偏向させる電子光学系と、前記試料から発生した反射電子のエネルギースペクトルを検出可能なエネルギー分析系を備え、前記エネルギー分析系は、前記反射電子を分散させるウィーンフィルタと、前記ウィーンフィルタによって分散された反射電子のエネルギースペクトルを測定するための検出器を備え、前記検出器は、前記分散された反射電子のエネルギーごとのフォーカス位置に実質的に一致する検出面を有する装置が提供される。
一態様では、前記検出器の検出面は、曲面または平面である。
一態様では、前記エネルギー分析系は、前記電子線源と前記ウィーンフィルタとの間に配置された非点補正器をさらに備える。
一態様では、前記エネルギー分析系は、前記ウィーンフィルタの出口側に配置されたシャントをさらに備え、前記シャントは、前記反射電子の分散する方向に延びるスリットを有する。
一態様では、電子線源により発生させた1次電子線を試料まで導き、前記試料から発生した反射電子をウィーンフィルタによって分散させ、前記分散された反射電子のエネルギースペクトルを検出器で測定し、前記エネルギースペクトルの測定中、前記ウィーンフィルタの4極場の強度を変化させながら、前記4極場の強度の変化と同期して前記検出器の前記反射電子の検出位置を移動させる方法が提供される。
一態様では、前記ウィーンフィルタの4極場の強度を変化させながら、前記4極場の強度の変化と同期して前記検出器の前記反射電子の検出位置を移動させる工程は、前記エネルギースペクトルの測定中、反射電子が前記検出位置でフォーカスするように、前記ウィーンフィルタの4極場の強度を変化させながら、前記4極場の強度の変化と同期して前記検出器の前記反射電子の検出位置を移動させる工程である。
一態様では、前記方法は、前記4極場の強度の変化に同期して、1次電子線の非点収差を非点補正器で打ち消す工程をさらに含む。
一態様では、電子線源により発生させた1次電子線を試料まで導き、前記試料から発生した反射電子をウィーンフィルタによって分散させ、前記分散された反射電子のエネルギースペクトルを検出器で測定する工程を含み、前記検出器は、前記分散された反射電子のエネルギーごとのフォーカス位置に実質的に一致する検出面を有する方法が提供される。
一態様では、前記検出器の検出面は、曲面または平面である。
本発明によれば、広いエネルギー領域にわたって高エネルギー分解能を実現できる。
走査電子顕微鏡の一実施形態を示す模式図である。 ウィーンフィルタの8極構造の一実施形態を示す模式図である。 ウィーンフィルタの断面斜視図である。 ウィーンフィルタの出口側に配置されたシャントを示す斜視図である。 ウィーンフィルタの動作のシミュレーション結果の一例を示す図である。 ウィーンフィルタの動作のシミュレーション結果の他の例を示す図である。 分散した反射電子のフォーカス面に沿って配置された検出面を有する検出器の一実施形態を示す図である。
以下、図面を参照しつつ本発明の実施形態について詳しく説明する。
図1は、走査電子顕微鏡の一実施形態を示す模式図である。図1に示す走査電子顕微鏡は、試料106から放出された反射電子のエネルギーを分析するための装置に適用可能である。図1において、電子線源である電子銃101で発生させた1次電子線103は、一般に多段レンズから構成されたコンデンサーレンズ系102で集束される。1次電子線103は、ウィーンフィルタ108を通過し、さらに対物レンズ105で集束され、試料106に照射される。1次電子線103は偏向器112によって偏向され、試料106の表面を走査する。
一般に、試料106で発生する反射電子線が光軸となす角度は広い分布を持つ。試料106からの反射電子は反射電子絞り110によって制限され、反射電子絞り110の開口を通過できる反射電子104と、排除される反射電子104aに分離される。この反射電子絞り110の開口がエネルギー分析系から見た光源となる。反射電子絞り110を通過した反射電子線104は、ウィーンフィルタ108よってエネルギーごとに偏向され、検出器107に導かれる。反射電子線104は検出器107により検出され、反射電子のエネルギースペクトルが検出器107により測定される。検出器107に接続された画像化装置121は、このエネルギースペクトルから試料106を特徴づけるエネルギー領域を選択し、その選択されたエネルギー領域内における検出器107の出力信号のみを用いて画像を形成する。この画像が目的としていた反射電子像である。
ウィーンフィルタ108および検出器107は、動作制御部150に接続されており、ウィーンフィルタ108および検出器107の動作は動作制御部150よって制御される。動作制御部150は、CPU(中央演算処理装置)および記憶装置を備えた汎用のコンピュータまたは専用のコンピュータを備えている。
走査電子顕微鏡において、ウィーンフィルタ108の動作を以下に説明する。まず1次電子線の入射方向に対して、電場と磁場が電子線に及ぼす力の方向が逆になり、互いに打ち消し合うようにする。このための電場と磁場の強度の条件がウィーン条件と呼ばれ、E1=vB1と表される。ここでE1はウィーンフィルタ108がつくるx方向の電場の一様成分であり、方位角θに関してcosθ依存性をもつ。またB1はy方向の磁場の一様成分であり、方位角θに関してsinθ依存性をもつ。速度vをもつ電子がウィーンフィルタ108に入射した場合、電場と磁場がウィーン条件を満たす場合に電子はそのままウィーンフィルタ108を直進する。このウィーン条件が実現されている状況で、電子が光軸に沿って逆方向からウィーンフィルタ108に入射した場合は、磁場からの力の方向が逆転するので、電場と磁場は同一方向の力を電子に及ぼし、ウィーンフィルタ108は偏向器としての働きを示す。以上のことから、ウィーンフィルタ108は1次電子には影響を与えず、1次電子とは逆方向から入射した電子線を偏向させて光軸から逸らすことが可能となる。
ウィーンフィルタ108が一様な電場と磁場を形成する場合に、1次電子線はx方向には若干の集束レンズ作用を受けるが、y方向にはそのような集束レンズ作用がない。そこで、1次電子線は非点収差をもったレンズを通過する際と同様の作用を受ける。この作用を打ち消すために、一様な電場と磁場のどちらか、あるいは両方に4極場成分を重畳させる。一般に4極場はx方向とy方向に異なるレンズ作用を及ぼすので、4極場の強度を調整すれば、ウィーンフィルタ108全体としてx方向とy方向に対称な、すなわち軸対称なレンズ作用となり、1次電子線に非点収差を与えない。この条件はスティグマティック条件と呼ばれる。この条件を満たすための4極場は、電場でつくる場合はcos2θ依存性を持つE2成分、磁場でつくる場合はsin2θ依存性を持つB2成分となり、あるいはこれらE2成分およびB2成分を重畳するのでもよい。
次に、ウィーンフィルタ108の構造に関して説明する。一般にスティグマティック条件を満たすウィーンフィルタは、一様場と4極場の両方を持つ必要があるため、電磁場重畳型の多極子レンズタイプが多く用いられる。多極子レンズタイプの最小構成は4極構造となるが、4極構造では理想的な一様場が作れずに余分な多極子成分が多く発生してしまい、これによって1次電子線に対して収差が発生する。そこでより多くの極を持つ構造、例えば8極構造が採用される。
図2は、ウィーンフィルタ108の8極構造の一実施形態を示す模式図であり、ビーム軸に垂直な方向から見たウィーンフィルタ108の上面図を示している。8つの極109は、ウィーンフィルタ108の中心線の周りに等間隔で配置されている。これら極109はコイル109aをそれぞれ備えている。各極109に電圧Vn、励磁ATn(n=1,2,…,8)をかけることで、ウィーン条件を満たす一様場と、スティグマティック条件のための4極場を生成する。すべての極109は電極と磁極として働くため、各極109のコアは、例えばパーマロイのような磁性体からなる。
従来技術において、ビームセパレータとして用いるウィーンフィルタによる偏向角はわずかであり、典型的には偏向は10°程度である。本実施形態では、ウィーンフィルタ108の電磁極の形状を変更して、反射電子が出射するウィーンフィルタの出口側(上側)においてテーパー形状を持つことで、大きな角度の偏向が可能となる。これによって、広いエネルギー領域を同時に測定することが可能となる。
図3は、ウィーンフィルタ108の断面斜視図である。各極109の中心側端部の上面は、ウィーンフィルタ108の中心線に向かって下方に傾斜するテーパー面109bから構成されている。8つの極109のテーパー面109bは、ウィーンフィルタ108の中心線の周りに等間隔で並び、上を向いた円錐台形状の面を形成する。試料106から放出された反射電子104は、ウィーンフィルタ108に下方から進入し、テーパー面109bから構成されるウィーンフィルタ108の出口から出る。
上述のような多極構造でウィーンフィルタ108を構成した場合、フリンジ領域での電磁場の分布が大きく広がってしまい、ウィーンフィルタ108の周辺に置かれた構造物によって電場と磁場が別々に影響を受けてしまう。この効果は特に、テーパー構造をもつウィーンフィルタ108の出口側で大きい。この効果によって電場と磁場の分布が一致しなくなると、ウィーンフィルタ108の中央付近ではウィーン条件が満たされていてもフリンジ領域では満たされなくなり、1次電子線が偏向されてしまう。
従来は、この効果を防ぐためにウィーンフィルタの入口と出口に電磁場シャントを置き、強制的に電磁場を減衰させるようにする。これに対し、本実施形態では、反射電子を大きく偏向させるために、図4のようにウィーンフィルタ108の出口側に、スリット116を入れたシャント115を配置する。このスリット116は、本来は反射電子が分散する方向のみに設置されればよいが、電磁場の対称性を保つために8極のすべての方向にスリット116を並べるのが理想である。スリット116は、放射状に延びており、同じ形状または相似形を有する。スリット116は、シャント115の中央に形成された通孔117の周りに配列されており、各スリット116の内側開口端は通孔117に接続されている。複数のスリット116のうちの1つは、通孔117から反射電子104の分散(偏向)する方向に延びている。シャント115の通孔117の直径は、テーパー面109bから構成されるウィーンフィルタ108の出口の直径よりも小さい。このようなシャント115は、フリンジ場を減衰させ、かつ検出器107に広いエネルギー領域を同時に測定させることを可能とする。シャント115は電位0の磁性体、たとえばパーマロイで構成される。本実施形態では、シャント115は放射状に延びる複数のスリット116を有するが、一実施形態では、シャント115は、通孔117から反射電子104の分散(偏向)する方向に延びる1つのスリット116のみを有してもよい。
図5は、本実施形態におけるウィーンフィルタ108の動作のシミュレーション結果を示す図である。一般に、試料面での1次電子線の走査領域は非常に狭いため、反射電子線104の発生領域は点電子源とみなしてよい。このシミュレーションでは、反射電子線104は、反射電子絞り110を抜けた後に平行ビームとなることを仮定している。反射電子絞り110の直径が小さいほどエネルギー分解能が向上するが、同時に感度を損なう。従って、反射電子絞り110の直径は、最終的に必要な分解能と感度から決定する必要がある。図5に示すシミュレーションでは、エネルギーごとのビームの集束状況を見やすくするために、反射電子絞り110の直径を実際よりかなり大きめに仮定している。ウィーンフィルタ108は、ウィーン条件とスティグマティック条件を同時に満たすように各極109の電圧と励磁が設定されている。
反射電子絞り110を通過した反射電子104は、ウィーンフィルタ108によって、反射電子のエネルギーに依存して異なる角度で偏向され、その結果、反射電子は分散する。分散した反射電子は検出器107に入射し、反射電子のエネルギースペクトルは検出器107によって測定される。1次電子線のエネルギーをE0とすれば、一般に反射電子のエネルギーはE0から0まで連続的に分布するが、図5のシミュレーションでは、反射電子のエネルギーとしてE0から0.4E0まで、0.2E0刻みでの軌道計算結果を示している。検出器107は、E0から0.4E0までのエネルギー幅0.6E0の領域を一度に測定可能である。一度に測定可能な領域はウィーンフィルタ108の一様場強度によって調整可能である。すなわち、電場と磁場の一様成分E1、B1をウィーン条件を満たしながら変えることによって、1次電子線に対するつり合い条件を保ったまま反射電子の分散作用を変えることができる。例えば、ウィーンフィルタ108の分散作用を弱めることでE0から0までのすべての領域を一度に測定することも可能である。しかし、測定可能な領域を広げるほどエネルギー分解能は低下する。したがって、あらかじめ観察すべき領域がある程度特定されている場合は、エネルギー範囲を狭くするほうが有利である。
図5においてエネルギー分解能に関して見てみると、0.6E0のエネルギーを持つ反射電子は、検出器107の検出面107aにおいてエネルギー分散方向と直交する方向にラインフォーカスしている。しかし他のエネルギーを持つ反射電子は、エネルギー分散方向に広がり、この分だけエネルギー分解能が損なわれる。このように、一般に、ウィーンフィルタ108の偏向作用によって分散された反射電子のうち、ある特定のエネルギーを持つ反射電子のみが検出器107の検出面107aにフォーカスする。この状況はエネルギー分解能の面で望ましいものではないが、広いエネルギー領域を短時間でパラレル検出する目的には適うものである。前述のように、図5においては反射電子絞り110の直径は大きめに仮定されており、この直径を減らすことで、感度を損なう代わりにエネルギー分解能を改善することが可能である。
ウィーンフィルタ108はスティグマティック条件を満たすために4極場成分を有する。ウィーンフィルタ108の4極場は、ビームのx方向、y方向のフォーカス位置を別々に移動させる働きをもつ。そこで、ウィーンフィルタ108の4極場の強度を、本来のスティグマティック条件とは別の値に設定することで、ある特定のエネルギーを持つ反射電子のフォーカス位置を検出器107の検出面107aに一致させることが可能となる。図6はその一例を示し、エネルギーE0で検出面107aでのフォーカス条件が満たされるように4極場の強度を調整した場合のシミュレーション結果を示している。
4極場の強度を調整することにより任意のエネルギーでフォーカス条件を満たすことができるが、幅広いエネルギー領域にわたって反射電子を同時に検出器107の検出面107aにフォーカスさせることはできない。そこで、本実施形態では、4極場の強度を時間的に変化させ、それに同期して検出器107の検出位置を動かしていけば、広いエネルギー領域において高いエネルギー分解能が達成され、最良のスペクトルが得られる。例えば、動作制御部150は、ウィーンフィルタ108に指令して4極場の強度を変化させて図5に示すフォーカス条件を成立させるとともに、検出器107の検出位置をエネルギー0.6E0の位置に移動させる。結果として、反射電子は、エネルギー0.6E0の検出位置において検出器107の検出面107a上にフォーカスする。同様に、動作制御部150は、ウィーンフィルタ108に指令して4極場の強度を変化させて図6に示すフォーカス条件を成立させるとともに、検出器107の検出位置をエネルギーE0の位置に移動させる。結果として、反射電子は、エネルギーE0の検出位置において検出器107の検出面107a上にフォーカスする。
このように、動作制御部150は、4極場の強度を変化(掃引)させながら、4極場の強度の変化に同期して、検出器107の検出位置を移動(掃引)させることにより、広いエネルギー領域(例えば、E0から0.4E0までの範囲)にわたって高いエネルギー分解能を達成できる。4極場の強度と、検出器107の対応する検出位置との関係は、ウィーンフィルタ108の動作のシミュレーションにより求めることができる。このような実施形態により、ウィーンフィルタ108によって高エネルギー分解能のもとでのシリアル検出が可能となる。
一実施形態では、検出器107は、検出面107aを構成するシンチレータと、イメージセンサ(例えばCCD)から構成された光検出器と、シンチレータによって電子から変換された光を光検出器に導くFOP(ファイバオプティクプレート)などのライドガイドを備える。この構成では10μm程度の位置分解能が可能である。検出器107の検出位置の移動は、光検出器の信号出力位置を変化させることにより、達成される。
4極場の強度を変化させると、4極場は本来のスティグマティック条件から外れてしまう。そこで、4極場の強度の変化によって発生する1次電子線の非点収差を打ち消すために、非点補正器111が設けられる。非点補正器111は動作制御部150に接続されており、非点補正器111が1次電子線の非点収差を打ち消す補正動作は動作制御部150によって制御される。より具体的には、動作制御部150は、4極場の強度の変化によって発生する1次電子線の非点収差を非点補正器111が打ち消すように、非点補正器111の補正強度を4極場の強度の変化に同期させる。非点補正器111は、電子銃101とウィーンフィルタ108との間に配置される。そのような配置であれば、非点補正器111は1次電子線だけに作用し、反射電子には影響しないので、1次電子線に対しての非点収差の補正が可能になる。
一般に電子分光系においては、検出器を一か所にだけ配置し、分光器の偏向強度を掃引することでエネルギースペクトルを得る方式が多い。今の場合でも、ウィーンフィルタの一様場成分E1、B1をウィーン条件を満たしながら掃引させることで、どこか一か所に設置した検出器でスペクトルを取得することが可能である。かつ、その一様場成分E1、B1の掃引に同期させて4極場を変化させることで、すべてのエネルギーで高エネルギー分解能を実現することができる。しかしながら、エネルギースペクトルを測定している時間帯に一様場成分E1、B1を変化させることは望ましくない。なぜなら、一般にウィーンフィルタは磁気飽和、磁束の漏洩の現象があるために、あらかじめ計算した数値による電圧値、励磁値による制御のもとでは、1次電子線に対してのつり合い条件を厳密に保つのは困難だからである。この効果によって、一様場成分E1、B1を変化させると、エネルギー分析の対象となる試料上の視野が掃引中に移動してしまう現象が起きる。本実施形態では、4極場の強度の掃引中にウィーンフィルタ108の一様場成分E1、B1は固定である。エネルギースペクトルを測定している間に4極場の強度は変化するが、4極場は1次電子線を偏向させる効果はない。したがって、特別な制御をすることなく、4極場の強度を掃引している際の視野を厳密に固定できる。
次に、他の実施形態について説明する。図6において、ウィーンフィルタ108によって分散された反射電子のエネルギーごとのフォーカス位置は、厳密にはある曲面に沿って並び、近似的には、この曲面は平面として扱うことが可能である。この現象は、通常の軸対称レンズの像面湾曲収差に相当するものである。そこで、この曲面または平面に一致する検出器107の検出面107aを設置すれば、4極場の強度を掃引することなく、すべてのエネルギー値において反射電子は検出器107の検出面107a上に同時にフォーカスすることができる。結果として、最良のエネルギー分解能が得られる。そこで、図7に示すように、一実施形態では、検出器107は、予め定められたエネルギー領域(例えば、E0から0.4E0までの範囲)においてエネルギーごとのフォーカス位置に実質的に一致する検出面107aを有する。この検出面107aは曲面または平面から構成される。検出面107aは、反射電子のフォーカス面、すなわち、ウィーンフィルタ108によって分散された反射電子の複数のフォーカス位置を含む面に沿って配置される。反射電子のフォーカス面は、ウィーンフィルタ108の動作のシミュレーションから定めることができる。
図7に示す実施形態では、ウィーンフィルタ108の4極場はスティグマティック条件から外れるため、非点補正器111により1次電子線の非点収差を打ち消すことが必要である。本実施形態では、4極場の強度は固定されているので、エネルギースペクトルの測定中に非点補正器111の補正強度を変化させる必要はない。
検出器107の検出面107aは、光軸に対して傾いている。検出面107aを平面で構成する場合の光軸から測った角度は、ウィーンフィルタ108とシャント115の形状、ウィーンフィルタ108に進入する反射電子の開き角、分析するエネルギー領域によって変わってくる。典型的な値としては、検出面107aの光軸からの角度は、10°±5°程度となる。この角度は、ウィーンフィルタ108の形状などの上記パラメータが定まれば一意に決定される。
上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。
101 電子銃
102 コンデンサーレンズ系
103 1次電子線
104 反射電子線
105 対物レンズ
106 試料
107 検出器
108 ウィーンフィルタ
109 極
109a コイル
109b テーパー面
110 反射電子絞り
112 偏向器
115 シャント
116 スリット
117 通孔
121 画像化装置
150 動作制御部

Claims (13)

  1. 1次電子線を発生させるための電子線源と、
    前記1次電子線を試料まで導いて集束かつ偏向させる電子光学系と、
    前記試料から発生した反射電子のエネルギースペクトルを検出可能なエネルギー分析系を備え、
    前記エネルギー分析系は、
    前記反射電子を分散させるウィーンフィルタと、
    前記ウィーンフィルタによって分散された反射電子のエネルギースペクトルを測定するための検出器と、
    前記ウィーンフィルタの4極場の強度を変化させながら、前記4極場の強度の変化と同期して前記検出器の前記反射電子の検出位置を移動させる動作制御部とを備える装置。
  2. 請求項1に記載の装置であって、
    前記動作制御部は、反射電子が前記検出位置でフォーカスするように、前記ウィーンフィルタの4極場の強度を変化させながら、前記4極場の強度の変化と同期して前記検出器の前記反射電子の検出位置を移動させる装置。
  3. 請求項1に記載の装置であって、
    前記エネルギー分析系は、前記電子線源と前記ウィーンフィルタとの間に配置された非点補正器をさらに備え、前記非点補正器は、前記4極場の強度の変化に同期して、1次電子線の非点収差を打ち消すように動作する装置。
  4. 請求項1に記載の装置であって、
    前記エネルギー分析系は、前記ウィーンフィルタの出口側に配置されたシャントをさらに備え、
    前記シャントは、前記反射電子の分散する方向に延びるスリットを有するスリットを有する装置。
  5. 1次電子線を発生させるための電子線源と、
    前記1次電子線を試料まで導いて集束かつ偏向させる電子光学系と、
    前記試料から発生した反射電子のエネルギースペクトルを検出可能なエネルギー分析系を備え、
    前記エネルギー分析系は、
    前記反射電子を分散させるウィーンフィルタと、
    前記ウィーンフィルタによって分散された反射電子のエネルギースペクトルを測定するための検出器を備え、
    前記検出器は、前記分散された反射電子のエネルギーごとのフォーカス位置に実質的に一致する検出面を有する装置。
  6. 請求項5に記載の装置であって、
    前記検出器の検出面は、曲面または平面である装置。
  7. 請求項5に記載の装置であって、
    前記エネルギー分析系は、前記電子線源と前記ウィーンフィルタとの間に配置された非点補正器をさらに備えた装置。
  8. 請求項5に記載の装置であって、
    前記エネルギー分析系は、前記ウィーンフィルタの出口側に配置されたシャントをさらに備え、
    前記シャントは、前記反射電子の分散する方向に延びるスリットを有する装置。
  9. 電子線源により発生させた1次電子線を試料まで導き、
    前記試料から発生した反射電子をウィーンフィルタによって分散させ、
    前記分散された反射電子のエネルギースペクトルを検出器で測定し、
    前記エネルギースペクトルの測定中、前記ウィーンフィルタの4極場の強度を変化させながら、前記4極場の強度の変化と同期して前記検出器の前記反射電子の検出位置を移動させる方法。
  10. 請求項9に記載の方法であって、
    前記ウィーンフィルタの4極場の強度を変化させながら、前記4極場の強度の変化と同期して前記検出器の前記反射電子の検出位置を移動させる工程は、前記エネルギースペクトルの測定中、反射電子が前記検出位置でフォーカスするように、前記ウィーンフィルタの4極場の強度を変化させながら、前記4極場の強度の変化と同期して前記検出器の前記反射電子の検出位置を移動させる工程である方法。
  11. 請求項9に記載の方法であって、
    前記4極場の強度の変化に同期して、1次電子線の非点収差を非点補正器で打ち消す工程をさらに含む方法。
  12. 電子線源により発生させた1次電子線を試料まで導き、
    前記試料から発生した反射電子をウィーンフィルタによって分散させ、
    前記分散された反射電子のエネルギースペクトルを検出器で測定する工程を含み、
    前記検出器は、前記分散された反射電子のエネルギーごとのフォーカス位置に実質的に一致する検出面を有する方法。
  13. 請求項12に記載の方法であって、
    前記検出器の検出面は、曲面または平面である方法。
JP2018039636A 2018-03-06 2018-03-06 反射電子のエネルギースペクトルを測定する装置および方法 Active JP7017437B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018039636A JP7017437B2 (ja) 2018-03-06 2018-03-06 反射電子のエネルギースペクトルを測定する装置および方法
PCT/JP2019/008066 WO2019172115A1 (ja) 2018-03-06 2019-03-01 反射電子のエネルギースペクトルを測定する装置および方法
CN201980016742.4A CN111801764A (zh) 2018-03-06 2019-03-01 测定背散射电子能谱的装置及方法
US16/977,808 US11322332B2 (en) 2018-03-06 2019-03-01 Apparatus and method for measuring energy spectrum of backscattered electrons
KR1020207027569A KR20200127208A (ko) 2018-03-06 2019-03-01 반사 전자의 에너지 스펙트럼을 측정하는 장치 및 방법
TW108107245A TWI784138B (zh) 2018-03-06 2019-03-05 測量反射電子的能量頻譜的裝置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039636A JP7017437B2 (ja) 2018-03-06 2018-03-06 反射電子のエネルギースペクトルを測定する装置および方法

Publications (3)

Publication Number Publication Date
JP2019153537A true JP2019153537A (ja) 2019-09-12
JP2019153537A5 JP2019153537A5 (ja) 2021-04-01
JP7017437B2 JP7017437B2 (ja) 2022-02-08

Family

ID=67846272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039636A Active JP7017437B2 (ja) 2018-03-06 2018-03-06 反射電子のエネルギースペクトルを測定する装置および方法

Country Status (6)

Country Link
US (1) US11322332B2 (ja)
JP (1) JP7017437B2 (ja)
KR (1) KR20200127208A (ja)
CN (1) CN111801764A (ja)
TW (1) TWI784138B (ja)
WO (1) WO2019172115A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112071731B (zh) * 2020-07-23 2021-11-19 西安交通大学 一种基于维恩分析器校正二阶像差的设计方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006339A (ja) * 2016-06-29 2018-01-11 株式会社 Ngr 走査電子顕微鏡

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4216730C2 (de) 1992-05-20 2003-07-24 Advantest Corp Rasterelektronenstrahlgerät
EP1057203B1 (en) * 1998-12-17 2004-09-15 Fei Company Particle-optical apparatus involving detection of auger electrons
TWI323783B (en) * 2003-01-27 2010-04-21 Ebara Corp Mapping projection type electron beam apparatus for sample inspection by electron emitted from the sample,sample evaluation method and semiconductor device manufacturing using same
JP4256300B2 (ja) * 2004-05-28 2009-04-22 株式会社東芝 基板検査方法および基板検査装置
JP2006114225A (ja) 2004-10-12 2006-04-27 Hitachi High-Technologies Corp 荷電粒子線装置
KR101127813B1 (ko) 2004-12-29 2012-03-26 엘지디스플레이 주식회사 쉬프트 레지스터와 이를 이용한 액정 표시장치
US7205542B1 (en) * 2005-11-14 2007-04-17 Kla-Tencor Technologies Corporation Scanning electron microscope with curved axes
US7818073B2 (en) * 2006-04-20 2010-10-19 Asml Netherlands B.V. Method for obtaining improved feedforward data, a lithographic apparatus for carrying out the method and a device manufacturing method
US7755043B1 (en) * 2007-03-21 2010-07-13 Kla-Tencor Technologies Corporation Bright-field/dark-field detector with integrated electron energy spectrometer
DE102008041815A1 (de) * 2008-09-04 2010-04-15 Carl Zeiss Nts Gmbh Verfahren zur Analyse einer Probe
WO2012081428A1 (ja) * 2010-12-16 2012-06-21 株式会社日立ハイテクノロジーズ 走査電子顕微鏡及びそれを用いた測長方法
CN103890895B (zh) * 2011-09-27 2016-05-18 Snu精度株式会社 具备反射电子检测功能的扫描电子显微镜
US9053900B2 (en) * 2012-04-03 2015-06-09 Kla-Tencor Corporation Apparatus and methods for high-resolution electron beam imaging
EP2824445B1 (en) * 2013-07-08 2016-03-02 Fei Company Charged-particle microscopy combined with raman spectroscopy
US10103002B1 (en) * 2016-05-20 2018-10-16 Carl Zeiss Microscopy Gmbh Method for generating an image of an object and particle beam device for carrying out the method
JP6932565B2 (ja) * 2017-06-23 2021-09-08 Tasmit株式会社 パターン欠陥検出方法
JP7107653B2 (ja) * 2017-08-31 2022-07-27 東レエンジニアリング先端半導体Miテクノロジー株式会社 画像生成方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006339A (ja) * 2016-06-29 2018-01-11 株式会社 Ngr 走査電子顕微鏡

Also Published As

Publication number Publication date
US20210012999A1 (en) 2021-01-14
KR20200127208A (ko) 2020-11-10
TWI784138B (zh) 2022-11-21
TW201941247A (zh) 2019-10-16
US11322332B2 (en) 2022-05-03
CN111801764A (zh) 2020-10-20
WO2019172115A1 (ja) 2019-09-12
JP7017437B2 (ja) 2022-02-08

Similar Documents

Publication Publication Date Title
TWI704590B (zh) 用於操作多射束粒子顯微鏡之方法
US11562880B2 (en) Particle beam system for adjusting the current of individual particle beams
JP6934980B2 (ja) 走査型電子顕微鏡装置
US9093246B2 (en) SACP method and particle optical system for performing the method
US7947964B2 (en) Charged particle beam orbit corrector and charged particle beam apparatus
TW201937526A (zh) 帶電粒子束系統及方法
KR102207766B1 (ko) 이차 전자 광학계 & 검출 디바이스
JP2018006339A (ja) 走査電子顕微鏡
US8067733B2 (en) Scanning electron microscope having a monochromator
TWI641019B (zh) 電子束成像設備、使用一電子束之成像方法及雙威恩過濾器單色器
CN116250057A (zh) 具有对比校正透镜系统的多粒子束系统
US8723114B2 (en) Sequential radial mirror analyser
JP5230197B2 (ja) 電子ビーム装置
US6878936B2 (en) Applications operating with beams of charged particles
WO2019172115A1 (ja) 反射電子のエネルギースペクトルを測定する装置および方法
JP7188910B2 (ja) 粒子ビームを生成するための粒子源及び粒子光学装置
US8957372B2 (en) Scanning electron microscope
CN114303229A (zh) 用于控制电子束的静电透镜

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220127

R150 Certificate of patent or registration of utility model

Ref document number: 7017437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350