JP2019152337A - Assembling method of electric valve - Google Patents

Assembling method of electric valve Download PDF

Info

Publication number
JP2019152337A
JP2019152337A JP2019101365A JP2019101365A JP2019152337A JP 2019152337 A JP2019152337 A JP 2019152337A JP 2019101365 A JP2019101365 A JP 2019101365A JP 2019101365 A JP2019101365 A JP 2019101365A JP 2019152337 A JP2019152337 A JP 2019152337A
Authority
JP
Japan
Prior art keywords
valve
valve body
shaft
stopper
valve shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019101365A
Other languages
Japanese (ja)
Other versions
JP6762046B2 (en
Inventor
共存 大内
Tomoari Ouchi
共存 大内
菅沼 威
Takeshi Suganuma
威 菅沼
康平 菱谷
Kohei Hishitani
康平 菱谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2019101365A priority Critical patent/JP6762046B2/en
Publication of JP2019152337A publication Critical patent/JP2019152337A/en
Application granted granted Critical
Publication of JP6762046B2 publication Critical patent/JP6762046B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an assembling method of an electric valve which can exactly detect an assembling reference position when searching a control origin on the basis of a change rate of load torque, and can thereby improve the control accuracy of a flow rate or the like as much as possible.SOLUTION: In order to create a pressurized valve-closed state that a valve body 25 is pressed to a valve seat 11a by an energization force of a valve body energization spring 24, the valve body 25 is seated on the valve seat 11a by descending a valve shaft 21 while rotating it to one direction by a lift drive mechanism, after that, the valve shaft 21 is further descended to a control original position which is defined by a valve-closing direction stopper mechanism while withstanding the energization force of the valve body energization spring 24, and an assembling stopper mechanism composed of a fixed stopper 29 and a movable stopper 27 for detecting an assembling reference position in which the valve shaft 21 is further descended from the control original position by a prescribed amount is arranged between the valve body 25 and the valve shaft 21 at the assembling of the electric valve 1.SELECTED DRAWING: Figure 3

Description

本発明は、ヒートポンプ式冷暖房システム等に組み込まれて使用される電動弁の組立方法に係り、特に、ロータの回転を利用してねじ送りにより弁体を弁座から接離させるタイプの電動弁の組立方法に関する。   The present invention relates to a method for assembling a motor-operated valve to be used by being incorporated in a heat pump type air conditioning system or the like, and in particular, a motor-operated valve of a type in which a valve body is brought into contact with or separated from a valve seat by screw feed using rotation of a rotor. The present invention relates to an assembly method.

この種の電動弁として、弁体が弁座に着座した後も弁体付勢ばねが所定量圧縮されるまでは弁体を下降させ続け(押圧し続け)、弁体を弁座に所定の押圧力をもって押し付けた押圧閉弁状態を作り出すようにしたものが知られている(例えば特許文献1、2参照)。   As this type of electric valve, even after the valve element is seated on the valve seat, the valve element is kept lowered (pressed) until the valve element biasing spring is compressed by a predetermined amount, and the valve element is fixed to the valve seat. There is known one that creates a closed valve state that is pressed with a pressing force (see, for example, Patent Documents 1 and 2).

このような電動弁の従来例を図12に示し、以下、簡単に説明する(後述する本発明の実施形態のものと基本構成は略同じであるので、詳細はそちらを参照されたい)。   A conventional example of such a motor-operated valve is shown in FIG. 12, and will be briefly described below (the basic configuration is substantially the same as that of the embodiment of the present invention described later, and the details are referred to there).

図示例の電動弁1'は、弁体25と、弁体25を軸方向に相対移動及び相対回転可能に保持する、雄ねじ部21eを持つ弁軸21と、弁体25と弁軸21との間に縮装された弁体付勢ばね24と、弁軸21の雄ねじ部21eが螺合する雌ねじ部15iを持つガイドステム15及び弁体25が接離する弁座11aが設けられた弁本体10と、弁軸21をガイドステム15に対して回転させながら昇降させるためのロータ30及びステータ50を有する昇降駆動機構と、弁軸21の制御用原点位置を定める閉弁方向ストッパ機構(固定ストッパ55、可動ストッパ35)と、を備え、弁体付勢ばね24の付勢力により弁体25が弁座11aに押し付けられた押圧閉弁状態を作り出すべく、前記昇降駆動機構により弁軸21を一方向に回転させながら下降させて弁体25を弁座11aに着座させた後、さらに弁軸21を弁体付勢ばね24の付勢力に抗して、閉弁方向ストッパ機構により定められる制御用原点位置、言い換えれば、閉弁方向ストッパ機構を構成する固定ストッパ55に可動ストッパ35が接当係止される前記制御用原点位置まで下降させるようにされる。   The illustrated motor-operated valve 1 ′ includes a valve body 25, a valve shaft 21 having a male screw portion 21 e that holds the valve body 25 so as to be relatively movable and relatively rotatable in the axial direction, and a valve body 25 and a valve shaft 21. A valve body provided with a valve body energizing spring 24, a guide stem 15 having a female thread portion 15i into which a male thread portion 21e of the valve shaft 21 is screwed, and a valve seat 11a to which the valve body 25 is contacted and separated. 10, a lift drive mechanism having a rotor 30 and a stator 50 for moving the valve shaft 21 up and down relative to the guide stem 15, and a valve closing direction stopper mechanism (fixed stopper) for determining the control origin position of the valve shaft 21. 55, a movable stopper 35), and in order to create a pressed closed state in which the valve element 25 is pressed against the valve seat 11a by the urging force of the valve element urging spring 24, the valve shaft 21 is integrated with the elevating drive mechanism. While rotating in the direction After the valve body 25 is lowered and seated on the valve seat 11a, the valve shaft 21 is further resisted against the biasing force of the valve body biasing spring 24, in other words, the control origin position determined by the valve closing direction stopper mechanism, in other words. The control stopper is lowered to the control origin position where the movable stopper 35 is contacted and locked to the fixed stopper 55 constituting the valve closing direction stopper mechanism.

かかる電動弁1'の動作をより具体的に説明する。   The operation of the motor-operated valve 1 ′ will be described more specifically.

すなわち、ステータ50に閉弁方向用駆動パターンとなるパルス(正転パルスと称することがある)を供給することにより、ロータ30及び弁軸21が一方向(例えば、平面視時計回り)に回転せしめられ、雌ねじ部15iと雄ねじ部21eからなるねじ送り機構により、弁軸21及び閉弁方向用可動ストッパ35が回転しながら下降し、弁体25が弁座11aに着座して弁口が閉じられる。   That is, by supplying a pulse (sometimes referred to as a forward rotation pulse) that serves as a valve closing direction drive pattern to the stator 50, the rotor 30 and the valve shaft 21 are rotated in one direction (for example, clockwise in plan view). The valve shaft 21 and the valve closing direction movable stopper 35 are rotated and lowered by the screw feed mechanism including the female screw portion 15i and the male screw portion 21e, the valve body 25 is seated on the valve seat 11a, and the valve port is closed. .

この時点では、可動ストッパ35は未だ固定ストッパ55に接当しておらず、ロータ30及び弁軸21の回転下降は停止されず、弁体付勢ばね24が所定量圧縮されるまでパルス供給が継続され、それによって、弁体25が弁座部材11に着座したままロータ30、弁軸21、弁ホルダ23等はさらに回転しながら下降する。   At this time, the movable stopper 35 is not yet in contact with the fixed stopper 55, and the rotation and lowering of the rotor 30 and the valve shaft 21 are not stopped, and pulse supply is continued until the valve body biasing spring 24 is compressed by a predetermined amount. Thus, the rotor 30, the valve shaft 21, the valve holder 23 and the like are further lowered while rotating while the valve body 25 is seated on the valve seat member 11.

このときは、弁体25に対して弁軸21及び弁ホルダ23が下降するため、弁体付勢ばね24が圧縮せしめられ、これによって弁軸21及び弁ホルダ23の下降力が吸収され、その後、弁体付勢ばね24の圧縮量が所定量となったとき、可動ストッパ35が固定ストッパ55に接当して係止され、ロータ30及び弁軸21が最下降位置に達し、ステータ50に閉弁方向用駆動パターンとなるパルス供給が続行されてもロータ30及び弁軸21の下降は強制的に停止される。このときの弁軸21の位置を制御用原点位置と称し、前記着座位置から前記原点位置までの下降量Laは、パルス数で換算するとPo(例えば32パルスで、これを開弁セットパルス数Poと称することがある)である。なお、本例の電動弁1'では、ステッピングモータにおける1パルス供給による回転角度、弁軸21の雄ねじ部21eのピッチ等が予め分かっているので、弁軸21の下降量及び上昇量は、閉弁方向用駆動パターンとなる正転パルス数、開弁方向用駆動パターンとなる逆転パルス数をカウントすることにより設定できる。   At this time, since the valve shaft 21 and the valve holder 23 are lowered with respect to the valve body 25, the valve body urging spring 24 is compressed, whereby the downward force of the valve shaft 21 and the valve holder 23 is absorbed. When the compression amount of the valve body urging spring 24 reaches a predetermined amount, the movable stopper 35 comes into contact with and is locked with the fixed stopper 55, and the rotor 30 and the valve shaft 21 reach the lowest lowered position. Even if the pulse supply as the valve closing direction driving pattern is continued, the lowering of the rotor 30 and the valve shaft 21 is forcibly stopped. The position of the valve shaft 21 at this time is referred to as a control origin position, and the descending amount La from the seating position to the origin position is Po (for example, 32 pulses, which is the number of valve opening set pulses Po when converted in terms of the number of pulses. It may be called). In the motor-operated valve 1 ′ of this example, since the rotation angle by supplying one pulse in the stepping motor, the pitch of the male screw portion 21e of the valve shaft 21 and the like are known in advance, the lowering amount and the rising amount of the valve shaft 21 are closed. It can be set by counting the number of forward rotation pulses that become the valve direction drive pattern and the number of reverse rotation pulses that become the valve opening direction drive pattern.

このように、弁体25が弁座11aに着座して弁口が閉じられた後においても、可動ストッパ35が固定ストッパ55に接当して係止される制御用原点位置に達するまでは、ロータ30、弁軸21、及び弁ホルダ23の回転下降が継続されることにより、弁体付勢ばね24が圧縮されるため、弁体25が弁座11aに強く押し付けられ(この状態を押圧閉弁状態と称する)、弁漏れ等を確実に防止できる。   Thus, even after the valve body 25 is seated on the valve seat 11a and the valve port is closed, until the movable stopper 35 comes into contact with the fixed stopper 55 and is locked, By continuing the rotation and lowering of the rotor 30, the valve shaft 21, and the valve holder 23, the valve body biasing spring 24 is compressed, so that the valve body 25 is strongly pressed against the valve seat 11a (this state is pressed and closed). (Referred to as a valve state), valve leakage, etc. can be reliably prevented.

一方、上記制御用原点位置(押圧閉弁状態)からステータ50に開弁方向用駆動パターンとなるパルス(逆転パルスと称することがある)を供給すると、ロータ30及び弁軸21が前記とは逆方向(例えば、平面視反時計回り)に回転せしめられ、雌ねじ部15iと雄ねじ部21eからなるねじ送り機構により、ロータ30、弁軸21、弁ホルダ23及び開弁方向用可動ストッパ36が回転しながら上昇し、これに伴い、弁体25に対する押圧力が弱められ、弁体付勢ばね24が所定量伸張して元のセット状態に戻り、弁体25が弁座11aから離れ、弁口が開く。この場合、図8に示される如くに、ステータ50への供給パルス数に応じて弁体25のリフト量(弁開度=流量)が定まり、さらに前記パルス供給を続けると、最終的には、全開状態となるとともに、可動ストッパ36が開弁方向用固定ストッパ56に接当係止され、これにより、ロータ30、弁軸21、及び弁ホルダ23の回転及び上昇が強制的に停止せしめられる。   On the other hand, when a pulse (sometimes referred to as a reverse rotation pulse) serving as a valve opening direction drive pattern is supplied to the stator 50 from the control origin position (pressed valve closed state), the rotor 30 and the valve shaft 21 are opposite to the above. The rotor 30, the valve shaft 21, the valve holder 23, and the valve-opening direction movable stopper 36 are rotated by a screw feeding mechanism that is rotated in a direction (for example, counterclockwise in plan view) and includes a female screw portion 15 i and a male screw portion 21 e. Along with this, the pressing force on the valve body 25 is weakened, the valve body biasing spring 24 expands by a predetermined amount and returns to the original set state, the valve body 25 is separated from the valve seat 11a, and the valve port is open. In this case, as shown in FIG. 8, the lift amount (valve opening = flow rate) of the valve body 25 is determined according to the number of pulses supplied to the stator 50, and when the pulse supply is continued, finally, In addition to the fully open state, the movable stopper 36 is abutted and locked to the valve-opening direction fixed stopper 56, whereby the rotation and raising of the rotor 30, the valve shaft 21, and the valve holder 23 are forcibly stopped.

上記のような電動弁1'においては、組立時において、正確に制御用原点位置を出して、この原点位置にて閉弁方向ストッパ機構の固定ストッパ55に可動ストッパ35が確実に接当係止されるようにしておくことが要求される。   In the motor-operated valve 1 'as described above, the control origin position is accurately obtained during assembly, and the movable stopper 35 is securely contacted and locked to the fixed stopper 55 of the valve closing direction stopper mechanism at this origin position. It is required to be done.

そのため、上記電動弁1'の組立にあたっては、例えば、次のような工程がとられる。   Therefore, in assembling the motor-operated valve 1 ′, for example, the following steps are taken.

なお、本例では、図13に示される如くに、弁軸21を回転させながら昇降させるための、前記電動弁1'におけるロータ30やステータ50を有するステッピングモータと同一仕様の組立用モータ210を含む組立用モータユニット200が予め用意されている。該ユニット200は、ハードウェア自体はよく知られた構成の、マイクロコンピュータを内蔵するコントローラ100、操作盤120等が備えられ、組立用モータ210の出力軸220は、回転伝動機構240を介して弁軸21に連結されており、また、出力軸220には、弁軸21に加えられる負荷トルクを検出するための、トルクセンサ150が付設されている。トルクセンサ150からコントローラ100には、弁軸21の負荷トルクに応じた信号が供給される。   In this example, as shown in FIG. 13, an assembly motor 210 having the same specifications as the stepping motor having the rotor 30 and the stator 50 in the motor-operated valve 1 ′ for raising and lowering the valve shaft 21 is rotated. An assembly motor unit 200 is prepared in advance. The unit 200 includes a controller 100 with a built-in microcomputer, an operation panel 120, and the like, the hardware of which is well known, and the output shaft 220 of the assembly motor 210 is valved via a rotation transmission mechanism 240. A torque sensor 150 is connected to the shaft 21, and a torque sensor 150 for detecting a load torque applied to the valve shaft 21 is attached to the output shaft 220. A signal corresponding to the load torque of the valve shaft 21 is supplied from the torque sensor 150 to the controller 100.

組立にあたっては、まず、図13に示される如くに、弁本体10にガイドステム15、弁座部材11を組み付け、弁軸21に弁ホルダ23を組み付けるとともに、弁体25を、間に弁体付勢ばね24を介装させた状態で組み付けて弁軸組立体20を得る。弁軸組立体20の弁軸21(の雄ねじ部21e)をガイドステム15(の雌ねじ部15i)に螺合させる。   In assembling, first, as shown in FIG. 13, the guide stem 15 and the valve seat member 11 are assembled to the valve main body 10, the valve holder 23 is assembled to the valve shaft 21, and the valve body 25 is interposed between the valve body. The valve shaft assembly 20 is obtained by assembling with the bias spring 24 interposed. The valve shaft 21 (the male screw portion 21e) of the valve shaft assembly 20 is screwed into the guide stem 15 (the female screw portion 15i).

次に、組立用ユニット200における操作盤120を操作してコントローラ100にスタート信号を送る。そうすると、コントローラ100は、図6(A)にフローチャートで示される如くの処理を実行する。すなわち、スタート後、ステップS71(以下、ステップは省略)で組立用モータ210に向けて正転パルスを供給するとともに、S72でトルクセンサ150からの信号に基づいて負荷トルクの変化率ΔTを算出し、続いて、S73で負荷トルクの変化率ΔTが予め定められたしきい値αより大きいか否かを判断し、このステップS73において、変化率ΔTがしきい値α以下であると判断された場合(Noの場合)には、変化率ΔTがしきい値αを超えるまでステップS71、72、73を繰り返し実行する。   Next, the operation panel 120 in the assembly unit 200 is operated to send a start signal to the controller 100. Then, the controller 100 executes a process as shown in the flowchart in FIG. That is, after starting, a forward rotation pulse is supplied to the assembling motor 210 in step S71 (hereinafter step is omitted), and the load torque change rate ΔT is calculated based on the signal from the torque sensor 150 in S72. Subsequently, in S73, it is determined whether or not the change rate ΔT of the load torque is greater than a predetermined threshold value α. In this step S73, it is determined that the change rate ΔT is equal to or less than the threshold value α. In the case (No), Steps S71, 72, and 73 are repeatedly executed until the rate of change ΔT exceeds the threshold value α.

ここでの処理は、図5(A)における、供給パルス数が0である点から着座点までを示し、弁軸組立体20における摩擦抵抗等により負荷トルクが緩やかに上昇するがその変化率ΔTは通常は前記しきい値α以下となる。前記しきい値αは、弁体25が弁座11aに着座した後もさらに弁軸21が下降して弁体付勢ばね24が圧縮せしめられるときに超えることのできる値に設定されている。   The processing here shows from the point where the number of supply pulses is 0 to the seating point in FIG. 5A, and the load torque gradually increases due to the frictional resistance or the like in the valve shaft assembly 20, but the rate of change ΔT Is usually below the threshold value α. The threshold value α is set to a value that can be exceeded when the valve shaft 21 is further lowered and the valve body biasing spring 24 is compressed even after the valve body 25 is seated on the valve seat 11a.

S73において、変化率ΔTがしきい値αを超えたと判断された場合(Yesの場合)には、弁体25が弁座11aに着座したと判断する。この着座した時点の状態が図14に示されており、この着座点位置が組立用基準位置とされる。S73でYesの場合は、S74に進み、予め定められたパルス数Po(例えば32パルス)の正転パルスの供給を開始し、送ったパルス数をカウントする(今回のパルス数P←前回のパルス数P+1)。   In S73, when it is determined that the change rate ΔT has exceeded the threshold value α (in the case of Yes), it is determined that the valve body 25 is seated on the valve seat 11a. FIG. 14 shows the state at the time of the seating, and this seating point position is set as the assembly reference position. In the case of Yes in S73, the process proceeds to S74, the supply of the forward rotation pulse having a predetermined pulse number Po (for example, 32 pulses) is started, and the number of transmitted pulses is counted (current pulse number P ← previous pulse). Number P + 1).

そして、S75において、正転パルス数Pが予め定められたパルス数Poに達するまで、S74を繰り返し実行し、正転パルス数Pがパルス数Po以上となった場合には、S76に進んで、正転パルスの供給を停止してこのプログラムを終了する。前記パルス数Po(例えば32パルス)を供給することにより、前記したように弁軸21は、図5(A)及び図15に示される如くに、着座点位置(組立用基準位置)から制御用原点位置まで下降する(下降量Lo)。この場合、図7(A)の(1)、(2)に示される如くに、図14に示される着座点位置にあるときには、弁体付勢ばね24の長さはW1であるが、図15に示される如くに、弁軸21がLo分下降せしめられると、弁体付勢ばね24は、前記Lo分圧縮せしめられてその長さはW2となる。   In S75, S74 is repeatedly executed until the forward rotation pulse number P reaches the predetermined pulse number Po. When the forward rotation pulse number P becomes equal to or greater than the pulse number Po, the process proceeds to S76. This program is terminated by stopping the supply of the forward rotation pulse. By supplying the number of pulses Po (for example, 32 pulses), as described above, the valve shaft 21 is used for control from the seating position (assembly reference position) as shown in FIGS. It descends to the origin position (decrease amount Lo). In this case, as shown in (1) and (2) of FIG. 7A, the length of the valve body biasing spring 24 is W1 when it is at the seating point position shown in FIG. As shown in FIG. 15, when the valve shaft 21 is lowered by Lo, the valve body urging spring 24 is compressed by Lo and its length becomes W2.

上記のように弁軸21が制御用原点位置にある状態において、図12に示される如くに、弁軸21に閉弁方向用可動ストッパ35をねじ込んで閉弁方向用固定ストッパ55に接当させた状態にするとともに、その上にロータ30を被せるようにして載せ置き、ロータ30の連結体32と弁軸21の小径部21bとを溶接等で固着する。これにより、ロータ30と可動ストッパ35は一体的に回転しながら昇降し、弁軸21が制御用原点位置に達したときには、固定ストッパ55に可動ストッパ35が接当係止される。   In the state where the valve shaft 21 is at the control origin position as described above, as shown in FIG. 12, the valve closing direction movable stopper 35 is screwed into the valve shaft 21 so as to contact the valve closing direction fixed stopper 55. In addition, the rotor 30 is placed on the rotor 30 and the connecting body 32 of the rotor 30 and the small diameter portion 21b of the valve shaft 21 are fixed by welding or the like. As a result, the rotor 30 and the movable stopper 35 move up and down while rotating integrally, and when the valve shaft 21 reaches the control origin position, the movable stopper 35 is contacted and locked to the fixed stopper 55.

次に、キャン45の下端部を弁本体10に溶接等により密封接合するとともに、キャン45の外周にステータ50を位置決め固定すると、電動弁1'の組立が完了する。   Next, when the lower end portion of the can 45 is hermetically joined to the valve body 10 by welding or the like, and the stator 50 is positioned and fixed on the outer periphery of the can 45, the assembly of the electric valve 1 ′ is completed.

特開2012−172839号公報JP 2012-172839 A 特開2007−198372号公報JP 2007-198372 A

上記のように、従来の電動弁1'の組立においては、負荷トルクの変化率ΔTをしきい値αと比較することにより、弁体25が弁座11aに着座したか否かを判定するようにされているが、弁体25が着座しても弁軸21は押し下げられるので負荷トルクは緩やかに変化し、変化率ΔT>しきい値αとなる着座点位置、つまり、制御用原点出しを行う際の組立用基準位置に大きな誤差が生じやすく、そのため、電動弁1'に所定数のパルスを与えても、所要の押圧閉弁状態とはならず、所望するリフト量(=流量)が得られない等の問題が生じるおそれがあった。   As described above, in the assembly of the conventional motor-operated valve 1 ′, it is determined whether or not the valve body 25 is seated on the valve seat 11a by comparing the rate of change ΔT of the load torque with the threshold value α. However, even if the valve element 25 is seated, the valve shaft 21 is pushed down, so that the load torque changes gently, and the seating point position where the rate of change ΔT> threshold value α is satisfied, that is, the control origin is obtained. A large error is likely to occur in the assembly reference position when performing the operation. Therefore, even if a predetermined number of pulses are applied to the motor-operated valve 1 ′, the required push valve is not closed, and a desired lift amount (= flow rate) is obtained. There was a risk that problems such as inability to obtain could occur.

本発明は、上記事情に鑑みてなされたもので、その目的とするところは、負荷トルクの変化率に基づいて、制御用原点出しを行う際の組立用基準位置を正確に検出することができ、もって、流量等の制御精度を可及的に向上できる電動弁の組立方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to accurately detect the assembly reference position when performing the control origin search based on the rate of change of the load torque. Accordingly, it is an object of the present invention to provide a method for assembling an electric valve that can improve the control accuracy of the flow rate or the like as much as possible.

前記の目的を達成すべく、本発明に係る電動弁の組立方法は、基本的には、弁体と、該弁体を軸方向に相対移動可能及び相対回転可能に保持する、雄ねじ部を持つ弁軸と、前記弁体と前記弁軸との間に縮装された弁体付勢ばねと、前記弁軸の雄ねじ部が螺合する雌ねじ部を持つガイドステム及び前記弁体が接離する弁座が設けられた弁本体と、前記弁軸を前記ガイドステムに対して回転させながら昇降させるためのロータ及びステータを有する昇降駆動機構と、前記弁軸の制御用原点位置を定める閉弁方向ストッパ機構と、を備え、前記弁体付勢ばねの付勢力により前記弁体が前記弁座に押し付けられた押圧閉弁状態を作り出すべく、前記昇降駆動機構により前記弁軸を一方向に回転させながら下降させて前記弁体を前記弁座に着座させた後、さらに前記弁軸を前記弁体付勢ばねの付勢力に抗して前記閉弁方向ストッパ機構により定められる前記制御用原点位置まで下降させるようにされ、前記電動弁の組立時において、前記弁軸を前記制御用原点位置よりさらに所定量だけ下降させた組立用基準位置を検出するための、固定ストッパと可動ストッパとからなる組立用ストッパ機構が前記弁体と前記弁軸との間に設けられている電動弁の組立方法であって、前記弁本体に前記ガイドステムを組み付けるとともに、前記弁軸に前記弁体をその間に前記弁体付勢ばねを介装させた状態で組み付けて弁軸組立体を得、該弁軸組立体の弁軸を前記ガイドステムに螺合させ、予め用意されている組立用モータにより、前記弁体が前記弁座から離れた状態から前記弁軸を一方向に回転させながら下降させるとともに、このときの負荷トルクの変化率を算出し、該負荷トルクの変化率が予め定められたしきい値より大きくなったとき、前記弁軸の下降を停止し、続いて、前記弁軸における前記弁体が前記弁座に着座した着座位置から前記組立用ストッパ機構の可動ストッパが固定ストッパに接当するまでの設計値としての下降量から、前記着座位置から前記制御用原点位置までの設計値としての下降量を差し引いた量だけ他方向に回転させながら上昇させて停止させ、この停止状態において、前記弁軸に前記ロータ及び前記閉弁方向ストッパ機構の可動ストッパを閉弁方向用固定ストッパに接当させた状態で組み付けて固定することを特徴としている。   In order to achieve the above object, an electric valve assembly method according to the present invention basically includes a valve body and a male screw portion that holds the valve body so as to be relatively movable and relatively rotatable in the axial direction. A valve stem, a valve body urging spring that is compressed between the valve body and the valve shaft, a guide stem having a female thread portion into which a male thread portion of the valve shaft is screwed, and the valve body are brought into contact with and separated from each other. A valve body provided with a valve seat, an elevating drive mechanism having a rotor and a stator for elevating while rotating the valve shaft relative to the guide stem, and a valve closing direction for determining a control origin position of the valve shaft A stopper mechanism, and the valve shaft is rotated in one direction by the lift drive mechanism so as to create a closed pressure state in which the valve body is pressed against the valve seat by the biasing force of the valve body biasing spring. After the valve body is lowered and seated on the valve seat Further, the valve shaft is lowered to the control origin position determined by the valve closing direction stopper mechanism against the urging force of the valve body urging spring. An assembly stopper mechanism comprising a fixed stopper and a movable stopper is provided between the valve body and the valve shaft for detecting a reference position for assembly that is further lowered from the control origin position by a predetermined amount. A method for assembling an electric valve, wherein the guide stem is assembled to the valve body, and the valve body is assembled to the valve shaft with the valve body biasing spring interposed therebetween. A solid body is obtained, the valve shaft of the valve shaft assembly is screwed into the guide stem, and the valve shaft is moved in one direction from a state where the valve body is separated from the valve seat by a pre-assembled motor. While rotating The rate of change of the load torque at this time is calculated, and when the rate of change of the load torque becomes larger than a predetermined threshold value, the lowering of the valve shaft is stopped, and then the valve From the seating position where the valve body on the shaft is seated on the valve seat to the design origin value until the movable stopper of the assembly stopper mechanism contacts the fixed stopper, from the seating position to the control origin position In this stop state, the rotor and the movable stopper of the valve closing direction stopper mechanism are used for the valve closing direction. It is characterized by being assembled and fixed in contact with the fixed stopper.

本発明に係る電動弁の組立方法では、弁体と弁軸との間に固定ストッパと可動ストッパからなる組立用ストッパ機構が設けられ、組立時において、弁軸を下降させて固定ストッパに可動ストッパを接当させて、負荷トルクを大きく変化させ、この負荷トルクが大きく変化する変曲点を検出してそこを組立用基準位置としているので、従来のように負荷トルクの変化がさほど大きくない着座点付近を組立用基準位置とする場合に比べて、制御用原点出しをより的確に行うことができ、その結果、流量等の制御精度を可及的に向上することができる。   In the motor-driven valve assembly method according to the present invention, an assembly stopper mechanism including a fixed stopper and a movable stopper is provided between the valve body and the valve shaft. During assembly, the valve shaft is lowered to move the movable stopper to the fixed stopper. The load torque is greatly changed, and the inflection point at which the load torque changes greatly is detected and used as the reference position for assembly. Compared to the case where the vicinity of the point is set as the assembly reference position, the control origin can be determined more accurately, and as a result, the control accuracy of the flow rate and the like can be improved as much as possible.

(A)は本発明に係る電動弁の第1実施形態を示す縦断面図、(B)は(A)のA矢視図。(A) is a longitudinal cross-sectional view which shows 1st Embodiment of the motor operated valve which concerns on this invention, (B) is A arrow directional view of (A). 図1に示される電動弁の組立方法の説明に供される、初期セット状態を示す縦断面図。The longitudinal cross-sectional view which shows an initial stage set state used for description of the assembly method of the electrically operated valve shown by FIG. 図1に示される電動弁の組立方法の説明に供される、組立用基準位置を示す縦断面図。The longitudinal cross-sectional view which shows the assembly reference position with which it uses for description of the assembly method of the electrically operated valve shown by FIG. 図1に示される電動弁の組立方法の説明に供される、制御用原点位置を示す縦断面図。The longitudinal cross-sectional view which shows the origin position for control used for description of the assembly method of the motor operated valve shown in FIG. (A)は従来の、(B)は本発明の、それぞれ電動弁の組立方法の説明に供される、負荷トルク−ねじ送り量関係図。(A) is conventional, (B) is a load torque-screw feed amount relationship diagram each used for explanation of the assembly method of the motor-operated valve of the present invention. (A)は従来の、(B)は本発明の、それぞれ電動弁の組立方法の説明に供される、組立時制御用原点出しプログラムの一例を示すフローチャート。5A is a flowchart showing an example of an origin control program for control at the time of assembly, which is provided for explaining a conventional method of assembling a motorized valve according to the present invention. (A)は従来の、(B)は本発明の、それぞれ弁体付勢ばねの圧縮量の説明に供される図。(A) is conventional, (B) is a figure which is provided for description of the compression amount of a valve body urging | biasing spring of this invention, respectively. 電動弁における流量と供給パルス数との関係を示すグラフ。The graph which shows the relationship between the flow volume in a motor operated valve, and the number of supply pulses. 本発明に係る電動弁の第2実施形態を示す縦断面図。The longitudinal cross-sectional view which shows 2nd Embodiment of the motor operated valve which concerns on this invention. 本発明に係る電動弁の第3実施形態を示す縦断面図。The longitudinal cross-sectional view which shows 3rd Embodiment of the motor operated valve which concerns on this invention. 本発明に係る電動弁の第4実施形態を示す縦断面図。The longitudinal cross-sectional view which shows 4th Embodiment of the motor operated valve which concerns on this invention. 従来の電動弁の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional motor operated valve. 図12に示される電動弁の組立方法の説明に供される、初期セット状態を示す縦断面図。FIG. 13 is a longitudinal sectional view showing an initial set state, which is used for explaining the assembly method of the electric valve shown in FIG. 12. 図12に示される電動弁の組立方法の説明に供される、着座位置(組立用基準位置)を示す縦断面図。The longitudinal cross-sectional view which shows the seating position (reference | standard position for an assembly) with which it uses for description of the assembly method of the electrically operated valve shown by FIG. 図12に示される電動弁の組立方法の説明に供される、制御用原点位置を示す縦断面図。The longitudinal cross-sectional view which shows the origin position for control used for description of the assembly method of the electrically operated valve shown by FIG.

以下、本発明の実施形態を図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[第1実施形態]
図1(A)は、本発明に係る電動弁の第1実施形態を示す縦断面図、図1(B)は、図1(A)のA矢視図(ロータの上面図)、図2〜図4は、図1に示される電動弁の組立方法(制御用原点出し)の説明に供される図である。
[First Embodiment]
FIG. 1A is a longitudinal sectional view showing a first embodiment of the motor-operated valve according to the present invention, FIG. 1B is a view taken along arrow A (top view of the rotor) in FIG. FIGS. 4A to 4C are diagrams for explaining the assembly method (control origination) of the motor-operated valve shown in FIG.

図示電動弁1は、上面が開口した有底円筒状の弁本体10、該弁本体10の上端面部外周側にその下端部が溶接等により密封接合されたキャン45、弁本体10の上端面部内周側に溶接等により固定された鍔状円板18付きのガイドステム15、該ガイドステム15の小径上部15bに形成された雌ねじ部15iに、その軸状部21a外周に形成された雄ねじ部21eが螺合せしめられた弁軸21、該弁軸21に一体回動可能に連結固定されたロータ30、及び該ロータ30を回転駆動すべく前記キャン45の外周に外嵌されたステータ50を備えている。   The illustrated motor-operated valve 1 includes a bottomed cylindrical valve main body 10 having an open top surface, a can 45 having a lower end sealed to the outer peripheral side of the upper end surface of the valve main body 10 by welding or the like, and in the upper end surface of the valve main body 10. A male stem portion 21e formed on the outer periphery of the shaft-like portion 21a is formed on the guide stem 15 with the bowl-shaped disc 18 fixed to the peripheral side by welding or the like, and the female screw portion 15i formed on the small-diameter upper portion 15b of the guide stem 15. Includes a valve shaft 21 that is screwed together, a rotor 30 that is connected and fixed to the valve shaft 21 so as to be integrally rotatable, and a stator 50 that is externally fitted to the outer periphery of the can 45 to rotationally drive the rotor 30. ing.

ここでは、ロータ30とステータ50とでステッピングモータが構成され、また、ガイドステム15の雌ねじ部15iと弁軸21の雄ねじ部21eとでねじ送り機構が構成され、前記ステッピングモータとねじ送り機構とで弁軸21を回転させながら昇降させるための昇降駆動機構が構成されている。   Here, a stepping motor is constituted by the rotor 30 and the stator 50, and a screw feeding mechanism is constituted by the female screw portion 15i of the guide stem 15 and the male screw portion 21e of the valve shaft 21, and the stepping motor and the screw feeding mechanism are Thus, an elevating drive mechanism for elevating and lowering the valve shaft 21 is configured.

前記弁本体10は、金属板材を素材としてプレス加工により作製されたもので、その底部10bには、弁座(弁口)11aを有する弁座部材11がろう付け等で固定され、その上部にはガイドステム15の下部が挿入されている。   The valve body 10 is made by pressing a metal plate material, and a valve seat member 11 having a valve seat (valve port) 11a is fixed to the bottom 10b by brazing or the like, The lower part of the guide stem 15 is inserted.

前記弁本体10の弁室12の一側方には、管継手からなる第1入出口6が、また、弁座部材11には、管継手からなる第2入出口7がそれぞれろう付け等により接合されている。   A first inlet / outlet 6 made of a pipe joint is provided at one side of the valve chamber 12 of the valve main body 10, and a second inlet / outlet 7 made of a pipe joint is attached to the valve seat member 11 by brazing or the like. It is joined.

前記弁軸21は、前記ロータ30の連結体32が外嵌せしめられる小径部21b、ガイドステム15の雌ねじ部15iに螺合する雄ねじ部21e、及び、該雄ねじ部21eより下側の鍔状部21d及びかしめ部21f付きの下部連結部21cを有し、該弁軸21の下端部には、そのかしめ部21fにその天井穴部分が連結固定され、ガイドステム15の大径円筒状胴部15aに摺動自在に嵌挿された天井部23b付き円筒状の弁ホルダ23が保持され、該弁ホルダ23の円筒部23a下部には、弁体25の上部が摺動自在に挿入されている。   The valve shaft 21 includes a small-diameter portion 21b into which the connecting body 32 of the rotor 30 is fitted, a male screw portion 21e that is screwed into the female screw portion 15i of the guide stem 15, and a hook-like portion below the male screw portion 21e. 21d and a lower connecting portion 21c with a caulking portion 21f. A ceiling hole portion of the lower end portion of the valve shaft 21 is connected and fixed to the caulking portion 21f, and the large-diameter cylindrical body portion 15a of the guide stem 15 is connected. A cylindrical valve holder 23 with a ceiling portion 23 b that is slidably inserted into the valve holder 23 is held, and an upper portion of the valve body 25 is slidably inserted into a lower portion of the cylindrical portion 23 a of the valve holder 23.

弁体25は、逆円錐面部を有する弁座(弁口)11a内にその下部が挿入されて着座する逆円錐台状の弁体部25a、該弁体部25aの上部に連なる円柱状胴部25b、及び、この円柱状胴部25bの上部に圧入・溶接等により外嵌固定された厚肉の抜止スリーブ25cを有することに加えて、前記円柱状胴部25bの下部の所定部位には鍔状部29が設けられている。ここで、前記弁ホルダ23の下端部に固定された底板部27の通し穴に挿通される前記円柱状胴部25b(の上部)の外径は、前記弁座(弁口)11aの口径よりも大きくされている。   The valve body 25 has an inverted frustoconical valve body portion 25a that is seated with its lower portion inserted into a valve seat (valve port) 11a having an inverted conical surface portion, and a cylindrical body portion that continues to the upper portion of the valve body portion 25a. In addition to having a thick retaining sleeve 25c that is externally fitted and fixed to the upper portion of the cylindrical body portion 25b by press-fitting, welding, or the like, A shaped portion 29 is provided. Here, the outer diameter of the cylindrical body portion 25b (the upper portion) inserted through the through hole of the bottom plate portion 27 fixed to the lower end portion of the valve holder 23 is larger than the diameter of the valve seat (valve port) 11a. Has also been enlarged.

弁ホルダ23の下端部には、前記弁体25(の抜止スリーブ25c)を、間に薄肉の環状円板28を挟んで抜け止め係止するとともに、通し穴が設けられた厚肉板からなる底板部27がかしめ・溶接等により保持固定されている。   At the lower end of the valve holder 23, the valve body 25 (preventing sleeve 25 c) is made of a thick plate provided with a thin annular disk 28 sandwiched between the valve body 25 and retaining, and provided with a through hole. The bottom plate portion 27 is held and fixed by caulking, welding, or the like.

一方、弁体25の上面には、断面外形がハット形のばね受け部材26が乗せられ、このばね受け部材26の鍔状部と弁ホルダ23の天井部23bとの間には弁体押圧兼緩衝用の圧縮コイルばねからなる弁体付勢ばね24が縮装されており、弁体25は弁体付勢ばね24により常時下向きに付勢されている。   On the other hand, a spring receiving member 26 having a hat-shaped cross-section is placed on the upper surface of the valve body 25, and the valve body pressing and serving portion is interposed between the flange-shaped portion of the spring receiving member 26 and the ceiling portion 23 b of the valve holder 23. A valve body urging spring 24 made of a compression coil spring for buffering is compressed, and the valve body 25 is always urged downward by the valve body urging spring 24.

ここで、前記弁体25に設けられた鍔状部29及び弁ホルダ23に設けられた該弁ホルダ23の底部を構成する底板部27は、それぞれ後述する組立時(組立用基準位置を検出するため)の便宜を図るための組立用ストッパ機構の固定ストッパ及び可動ストッパとなる(詳細は後述)。   Here, a flange-like portion 29 provided on the valve body 25 and a bottom plate portion 27 constituting the bottom portion of the valve holder 23 provided on the valve holder 23 are respectively detected at the time of assembly described later (detects an assembly reference position). Therefore, it becomes a fixed stopper and a movable stopper of the assembling stopper mechanism (details will be described later).

上記した弁軸21、弁ホルダ23、弁体25、及び弁体付勢ばね24は、弁体25が弁座11aから離隔している状態(開弁状態)においては実質的に一体的に回転しながら昇降せしめられる。   The valve shaft 21, the valve holder 23, the valve body 25, and the valve body biasing spring 24 described above rotate substantially integrally when the valve body 25 is separated from the valve seat 11a (opened state). It can be lifted up and down.

この場合、図2に示される如くの開弁状態(組立初期状態)においては、弁体25の抜止スリーブ25cは、間に環状円板28を挟んで底板部27に対接係止されており、底板部27の下面と前記鍔状部29の上面、言い換えれば、組立用ストッパ機構の可動ストッパ(底板部)27と固定ストッパ(鍔状部)29とは、所定の距離Lpだけ離隔している(組立については後で詳述する)。   In this case, in the valve open state (assembling initial state) as shown in FIG. 2, the retaining sleeve 25 c of the valve body 25 is engaged and locked to the bottom plate portion 27 with the annular disk 28 interposed therebetween. The lower surface of the bottom plate portion 27 and the upper surface of the hook-shaped portion 29, in other words, the movable stopper (bottom plate portion) 27 and the fixed stopper (hook-shaped portion) 29 of the assembling stopper mechanism are separated from each other by a predetermined distance Lp. (Assembling will be described in detail later).

また、ロータ30及び弁軸21の制御用原点位置を設定すべく、ガイドステム15の小径上部15bの上面には、所定の幅、高さ、奥行きを持つ断面矩形の閉弁方向用固定ストッパ55が上向きに突設され、ガイドステム15の大径円筒状胴部15aの上部には所定の幅、高さ、奥行きを持つ断面矩形の開弁方向用固定ストッパ56が下向きに突設されている。   Further, in order to set the control origin position of the rotor 30 and the valve shaft 21, the upper surface of the small-diameter upper portion 15b of the guide stem 15 has a rectangular cross-section fixing stopper 55 having a predetermined width, height and depth. Is projecting upward, and a valve-opening direction fixed stopper 56 having a predetermined width, height, and depth is projecting downward on the upper portion of the large-diameter cylindrical body portion 15a of the guide stem 15. .

弁軸21における雄ねじ部21eの上端部には、閉弁方向用可動ストッパ35が螺合せしめられてロータ30の円板状天井部に抜け止め係止されている。この閉弁方向用可動ストッパ35は、雄ねじ部21eに螺合する平面視外形が六角形でその一辺が円弧状とされたナット部35aとこのナット部35aから下向きに突設された所定の幅、高さ、奥行きを持つ断面矩形のストッパ部35sとからなっている。   A valve-closing direction movable stopper 35 is screwed to the upper end portion of the male screw portion 21 e of the valve shaft 21 and is locked to the disc-shaped ceiling portion of the rotor 30. The valve-closing-direction movable stopper 35 has a nut portion 35a having a hexagonal shape in plan view that is screwed into the male screw portion 21e and an arc shape on one side thereof, and a predetermined width projecting downward from the nut portion 35a. The stopper portion 35s has a rectangular section in height and depth.

また、弁軸21の雄ねじ部21eの下端部には、前記開弁方向用固定ストッパ56に接当係止される開弁方向用可動ストッパ36が螺合せしめられて前記弁ホルダ23の天井部23bに抜け止め係止されている。この開弁方向用可動ストッパ36は、雄ねじ部21eに螺合するナット部36aとこのナット部36aから上向きに突設された所定の幅、高さ、奥行きを持つ断面矩形のストッパ部36sとからなっている。   Further, a valve-opening direction movable stopper 36 that is brought into contact with and locked to the valve-opening direction fixed stopper 56 is screwed to the lower end portion of the male screw portion 21e of the valve shaft 21 so that the ceiling portion of the valve holder 23 is engaged. It is locked to 23b to prevent it from coming off. The valve-opening direction movable stopper 36 includes a nut portion 36a that is screwed into the male screw portion 21e, and a stopper portion 36s having a rectangular cross section that protrudes upward from the nut portion 36a and has a predetermined width, height, and depth. It has become.

前記ロータ30は、天井付き円筒状のマグネット31とこれの天井部に一体結合された連結体32とからなり、連結体32は、弁軸21における小径部21bに外嵌されるとともに、前記閉弁方向用可動ストッパ35上に載せられて前記小径部21bに溶接固定されている。   The rotor 30 includes a cylindrical magnet 31 with a ceiling and a coupling body 32 integrally coupled to the ceiling portion. The coupling body 32 is externally fitted to a small-diameter portion 21b of the valve shaft 21 and is closed. It is placed on the valve direction movable stopper 35 and fixed to the small diameter portion 21b by welding.

ここで、前記ロータ30の天井部の下面側には、図1(B)に破線で示される如くに、両端部が平面視でD字状に形成されたDカット部を備えた凹部33が設けられ、この凹部33に形成されたDカット部以外の円弧状とされた部分に前記閉弁方向用可動ストッパ35のナット部35aの円弧状とされた一辺が接当した状態で嵌め込まれ、Dカット部に前記ナット部35aの他の2辺が接当した状態で嵌め込まれており、これにより、ロータ30と閉弁方向用可動ストッパ35と弁軸21とは、一体的に回転しながら昇降せしめられる。   Here, on the lower surface side of the ceiling portion of the rotor 30, as shown by a broken line in FIG. 1 (B), a concave portion 33 having a D cut portion having both ends formed in a D shape in plan view. Provided and fitted in a state in which one side of the nut portion 35a of the valve-closing-direction movable stopper 35 is in contact with an arc-shaped portion other than the D-cut portion formed in the recess 33, The other two sides of the nut portion 35a are in contact with the D-cut portion, so that the rotor 30, the valve closing direction movable stopper 35, and the valve shaft 21 rotate integrally. Can be raised and lowered.

一方、前記キャン45の外周には、ヨーク51、ボビン52、コイル53、樹脂モールド54等からなるステータ50が外嵌されている。このステータ50は、その底部に設けられた位置決め固定具(図示省略)により、弁本体10に対して所定の位置に位置決め固定されている。   On the other hand, a stator 50 including a yoke 51, a bobbin 52, a coil 53, a resin mold 54, and the like is fitted on the outer periphery of the can 45. The stator 50 is positioned and fixed at a predetermined position with respect to the valve body 10 by a positioning fixture (not shown) provided at the bottom thereof.

また、本実施形態の電動弁1には、当該電動弁1の動作(流量)制御等を行うべく、マイクロコンピュータを内蔵したコントローラが備えられている。コントローラは、当該電動弁1が組み込まれているシステム内に配置された各センサ類や操作盤(リモコン)等からの信号に基づき所要の演算処理を行い、電動弁1のステータ50に駆動パルスを供給する。   In addition, the motor-operated valve 1 of the present embodiment is provided with a controller incorporating a microcomputer so as to control the operation (flow rate) of the motor-operated valve 1 and the like. The controller performs necessary arithmetic processing based on signals from each sensor, operation panel (remote control), etc. arranged in the system in which the motor-operated valve 1 is incorporated, and sends a drive pulse to the stator 50 of the motor-operated valve 1. Supply.

これにより、電動弁1のロータ30が供給パルス数に応じた分だけ回転する。ロータ30が回転せしめられると、それと一体に弁軸21が回転せしめられ、このとき、前記ねじ送り機構により弁軸21が弁体25を伴って昇降せしめられ、これによって、冷媒の通過流量が調整される。   As a result, the rotor 30 of the motor-operated valve 1 rotates by an amount corresponding to the number of supply pulses. When the rotor 30 is rotated, the valve shaft 21 is rotated integrally therewith. At this time, the valve shaft 21 is moved up and down with the valve body 25 by the screw feed mechanism, thereby adjusting the flow rate of the refrigerant. Is done.

かかる電動弁1の動作をより具体的に説明する。   The operation of the motor-operated valve 1 will be described more specifically.

すなわち、ステータ50に閉弁方向用駆動パターンとなるパルス(正転パルスと称することがある)を供給することにより、ロータ30及び弁軸21が一方向(例えば、平面視時計回り)に回転せしめられ、雌ねじ部15iと雄ねじ部21eからなるねじ送り機構により、弁軸21及び閉弁方向用可動ストッパ35が回転しながら下降し、弁体25が弁座11aに着座して弁口が閉じられる。   That is, by supplying a pulse (sometimes referred to as a forward rotation pulse) that serves as a valve closing direction drive pattern to the stator 50, the rotor 30 and the valve shaft 21 are rotated in one direction (for example, clockwise in plan view). The valve shaft 21 and the valve closing direction movable stopper 35 are rotated and lowered by the screw feed mechanism including the female screw portion 15i and the male screw portion 21e, the valve body 25 is seated on the valve seat 11a, and the valve port is closed. .

この時点では、可動ストッパ35は未だ固定ストッパ55に接当しておらず、ロータ30及び弁軸21の回転下降は停止されず、弁体付勢ばね24が所定量圧縮されるまでパルス供給が継続され、それによって、弁体25が弁座部材11に着座したままロータ30、弁軸21、弁ホルダ23等はさらに回転しながら下降する。   At this time, the movable stopper 35 is not yet in contact with the fixed stopper 55, and the rotation and lowering of the rotor 30 and the valve shaft 21 are not stopped, and pulse supply is continued until the valve body biasing spring 24 is compressed by a predetermined amount. Thus, the rotor 30, the valve shaft 21, the valve holder 23 and the like are further lowered while rotating while the valve body 25 is seated on the valve seat member 11.

このときは、弁体25に対して弁軸21及び弁ホルダ23が下降するため、弁体付勢ばね24が圧縮せしめられ、これによって弁軸21及び弁ホルダ23の下降力が吸収され、その後、弁体付勢ばね24の圧縮量が所定量となったとき、可動ストッパ35が固定ストッパ55に接当して係止され、ロータ30及び弁軸21が最下降位置に達し、ステータ50に閉弁方向用駆動パターンとなるパルス供給が続行されてもロータ30及び弁軸21の下降は強制的に停止される。このときの弁軸21の位置を制御用原点位置と称し、前記着座位置から前記原点位置までの下降量Loは、パルス数で換算するとPo(例えば32パルスで、これを開弁セットパルス数Poと称することがある)である。なお、本例の電動弁1では、ステッピングモータにおける1パルス供給による回転角度、弁軸21の雄ねじ部21eのピッチ等が予め分かっているので、弁軸21の下降量及び上昇量は、閉弁方向用駆動パターンとなる正転パルス数、開弁方向用駆動パターンとなる逆転パルス数をカウントすることにより設定できる。   At this time, since the valve shaft 21 and the valve holder 23 are lowered with respect to the valve body 25, the valve body urging spring 24 is compressed, whereby the downward force of the valve shaft 21 and the valve holder 23 is absorbed. When the compression amount of the valve body urging spring 24 reaches a predetermined amount, the movable stopper 35 comes into contact with and is locked with the fixed stopper 55, and the rotor 30 and the valve shaft 21 reach the lowest lowered position. Even if the pulse supply as the valve closing direction driving pattern is continued, the lowering of the rotor 30 and the valve shaft 21 is forcibly stopped. The position of the valve shaft 21 at this time is referred to as a control origin position, and the lowering amount Lo from the seating position to the origin position is Po (for example, 32 pulses, which is the number of valve-opening set pulses Po). It may be called). In the motor-operated valve 1 of this example, since the rotation angle by one pulse supply in the stepping motor, the pitch of the male screw portion 21e of the valve shaft 21 and the like are known in advance, the descending amount and the ascending amount of the valve shaft 21 are It can be set by counting the number of forward rotation pulses serving as the direction drive pattern and the number of reverse rotation pulses serving as the valve opening direction drive pattern.

このように、弁体25が弁座11aに着座して弁口が閉じられた後においても、可動ストッパ35が固定ストッパ55に接当して係止される制御用原点位置に達するまでは、ロータ30、弁軸21、及び弁ホルダ23の回転下降が継続されることにより、弁体付勢ばね24が圧縮されるため、弁体25が弁座11aに強く押し付けられ(この状態を押圧閉弁状態と称する)、弁漏れ等を確実に防止できる。   Thus, even after the valve body 25 is seated on the valve seat 11a and the valve port is closed, until the movable stopper 35 comes into contact with the fixed stopper 55 and is locked, By continuing the rotation and lowering of the rotor 30, the valve shaft 21, and the valve holder 23, the valve body biasing spring 24 is compressed, so that the valve body 25 is strongly pressed against the valve seat 11a (this state is pressed and closed). (Referred to as a valve state), valve leakage, etc. can be reliably prevented.

一方、上記制御用原点位置(押圧閉弁状態)からステータ50に開弁方向用駆動パターンとなるパルス(逆転パルスと称することがある)を供給すると、ロータ30及び弁軸21が前記とは逆方向(例えば、平面視反時計回り)に回転せしめられ、雌ねじ部15iと雄ねじ部21eからなるねじ送り機構により、ロータ30、弁軸21、弁ホルダ23及び開弁方向用可動ストッパ36が回転しながら上昇し、これに伴い、弁体25に対する押圧力が弱められ、弁体付勢ばね24が所定量伸張して元のセット状態に戻り、弁体25が弁座11aから離れ、弁口が開く。この場合、図8に示される如くに、ステータ50への供給パルス数に応じて弁体25のリフト量(弁開度=流量)が定まり、さらに前記パルス供給を続けると、最終的には、全開状態となるとともに、可動ストッパ36が開弁方向用固定ストッパ56に接当係止され、これにより、ロータ30、弁軸21、及び弁ホルダ23の回転及び上昇が強制的に停止せしめられる。   On the other hand, when a pulse (sometimes referred to as a reverse rotation pulse) serving as a valve opening direction drive pattern is supplied to the stator 50 from the control origin position (pressed valve closed state), the rotor 30 and the valve shaft 21 are opposite to the above. The rotor 30, the valve shaft 21, the valve holder 23, and the valve-opening direction movable stopper 36 are rotated by a screw feeding mechanism that is rotated in a direction (for example, counterclockwise in plan view) and includes a female screw portion 15 i and a male screw portion 21 e. Along with this, the pressing force on the valve body 25 is weakened, the valve body biasing spring 24 expands by a predetermined amount and returns to the original set state, the valve body 25 is separated from the valve seat 11a, and the valve port is open. In this case, as shown in FIG. 8, the lift amount (valve opening = flow rate) of the valve body 25 is determined according to the number of pulses supplied to the stator 50, and when the pulse supply is continued, finally, In addition to the fully open state, the movable stopper 36 is abutted and locked to the valve-opening direction fixed stopper 56, whereby the rotation and raising of the rotor 30, the valve shaft 21, and the valve holder 23 are forcibly stopped.

上記のような電動弁1においては、組立時において、正確に制御用原点位置を出して、この原点位置にて閉弁方向ストッパ機構の固定ストッパ55に可動ストッパ35が確実に接当係止されるようにしておくことが要求される。   In the motor-operated valve 1 as described above, the control origin position is accurately obtained during assembly, and the movable stopper 35 is securely contacted and locked to the fixed stopper 55 of the valve closing direction stopper mechanism at this origin position. It is required to keep it.

そのため、上記電動弁1の組立にあたっては、例えば、次のような工程がとられる。   Therefore, in assembling the motor-operated valve 1, for example, the following steps are taken.

なお、本例では、図2に示される如くに、弁軸21を回転させながら昇降させるための、前記電動弁1におけるロータ30やステータ50を有するステッピングモータと同一仕様の組立用モータ210を含む組立用モータユニット200が予め用意されている。該ユニット200は、ハードウェア自体はよく知られた構成の、マイクロコンピュータを内蔵するコントローラ100、操作盤120等が備えられ、組立用モータ210の出力軸220は、回転伝動機構240を介して弁軸21に連結されており、また、出力軸220には、弁軸21に加えられる負荷トルクを検出するための、トルクセンサ150が付設されている。トルクセンサ150からコントローラ100には、弁軸21の負荷トルクに応じた信号が供給される。   In this example, as shown in FIG. 2, an assembly motor 210 having the same specifications as the stepping motor having the rotor 30 and the stator 50 in the motor-operated valve 1 for moving the valve shaft 21 up and down is included. An assembly motor unit 200 is prepared in advance. The unit 200 includes a controller 100 with a built-in microcomputer, an operation panel 120, and the like, the hardware of which is well known, and the output shaft 220 of the assembly motor 210 is valved via a rotation transmission mechanism 240. A torque sensor 150 is connected to the shaft 21, and a torque sensor 150 for detecting a load torque applied to the valve shaft 21 is attached to the output shaft 220. A signal corresponding to the load torque of the valve shaft 21 is supplied from the torque sensor 150 to the controller 100.

組立にあたっては、まず、図2に示される如くに、弁本体10にガイドステム15、弁座部材11を組み付け、弁軸21に弁ホルダ23を組み付けるとともに、弁体25を、間に弁体付勢ばね24を介装させた状態で組み付けて弁軸組立体20を得る。弁軸組立体20の弁軸21(の雄ねじ部21e)をガイドステム15(の雌ねじ部15i)に螺合させる。   When assembling, first, as shown in FIG. 2, the guide stem 15 and the valve seat member 11 are assembled to the valve body 10, the valve holder 23 is assembled to the valve shaft 21, and the valve body 25 is interposed between the valve bodies. The valve shaft assembly 20 is obtained by assembling with the bias spring 24 interposed. The valve shaft 21 (the male screw portion 21e) of the valve shaft assembly 20 is screwed into the guide stem 15 (the female screw portion 15i).

次に、組立用ユニット200における操作盤120を操作してコントローラ100にスタート信号を送る。そうすると、コントローラ100は、図6(B)にフローチャートで示される如くの処理を実行する。すなわち、スタート後、ステップS81(以下、ステップは省略)で組立用モータ210に向けて正転パルスを供給するとともに、S82でトルクセンサ150からの信号に基づいて負荷トルクの変化率ΔTを算出し、続いて、S83で負荷トルクの変化率ΔTが予め定められたしきい値βより大きいか否かを判断し、このステップS83において、変化率ΔTがしきい値β以下であると判断された場合(Noの場合)には、変化率ΔTがしきい値βを超えるまでステップS81、82、83を繰り返し実行する。   Next, the operation panel 120 in the assembly unit 200 is operated to send a start signal to the controller 100. Then, the controller 100 executes processing as shown in the flowchart in FIG. That is, after starting, a forward rotation pulse is supplied to the assembling motor 210 in step S81 (hereinafter, step is omitted), and a change rate ΔT of the load torque is calculated based on a signal from the torque sensor 150 in S82. Subsequently, in S83, it is determined whether or not the change rate ΔT of the load torque is greater than a predetermined threshold value β. In this step S83, it is determined that the change rate ΔT is equal to or less than the threshold value β. In the case (No), Steps S81, 82, and 83 are repeatedly executed until the rate of change ΔT exceeds the threshold value β.

この処理は、図5(B)における、供給パルス数が0である点から組立用可動ストッパ27が固定ストッパ29に接当する、組立用基準位置までを示す。ここで、組立用可動ストッパ27が固定ストッパ29に接当係止されると、負荷トルクが垂直に近い角度で増大し、負荷トルクの変化率ΔTが急激に大きくなるため、前記しきい値βを、弁体付勢ばね24が圧縮(弾性変形)されている状態ではとり得ない程度の大きな値に設定することができ、そのため、組立用可動ストッパ27が固定ストッパ29に接当する組立用基準位置を正確にかつ確実に検出することができる。   This process shows from the point where the number of supply pulses is 0 in FIG. 5B to the assembly reference position where the assembly movable stopper 27 contacts the fixed stopper 29. Here, when the assembly movable stopper 27 is contacted and locked to the fixed stopper 29, the load torque increases at an angle close to vertical, and the rate of change ΔT of the load torque increases rapidly. Can be set to such a large value that cannot be taken when the valve body biasing spring 24 is compressed (elastically deformed). Therefore, the assembly movable stopper 27 contacts the fixed stopper 29. The reference position can be detected accurately and reliably.

S83において、変化率ΔTがしきい値βを超えたと判断された場合(Yesの場合)には、組立用可動ストッパ27が固定ストッパ29に接当係止された組立用基準位置まで来ていると判断する。この組立用基準位置にある状態が図3に示されている。S83でYesの場合は、S84に進み、予め定められたパルス数Prの逆転パルスの供給を開始し、送ったパルス数をカウントする(今回のパルス数P'←前回のパルス数P'+1)。ここで、逆転パルス数Prは、組立用可動ストッパ27が固定ストッパ29に接当するまでの、設計値としての下降量Lpから、前述した着座点位置から制御用原点位置までの下降量Loを差し引いた戻し量Lr(Lr=Lp−Lo)に相当するパルス数とされる。本例では、下降量Lp、下降量Lo、戻し量(上昇量)Lrは、設計値として予め設定されており、下降量Loは、パルス数Po(例えば32パルス)に換算され、下降量Lpは、下降量Loの2倍、つまり、パルス数Po(例えば32パルス)の2倍のパルス数Pp(例えば64パルス)に換算され、上昇量Lrは、パルス数Pp(例えば64パルス)からパルス数Po(例えば32パルス)を差し引いたパルス数Pr(例えば32パルス)に換算される。   If it is determined in S83 that the rate of change ΔT has exceeded the threshold value β (in the case of Yes), the assembly movable stopper 27 has come to the assembly reference position where it is contacted and locked to the fixed stopper 29. Judge. FIG. 3 shows the state at the assembly reference position. In the case of Yes in S83, the process proceeds to S84, the supply of the reverse pulse having the predetermined number of pulses Pr is started, and the number of transmitted pulses is counted (current pulse number P ′ ← previous pulse number P ′ + 1). . Here, the reverse rotation pulse number Pr is a lowering amount Lo from the seating point position to the control origin position from the lowering amount Lp as a design value until the assembly movable stopper 27 contacts the fixed stopper 29. The number of pulses is equivalent to the subtracted return amount Lr (Lr = Lp−Lo). In this example, the descent amount Lp, the descent amount Lo, and the return amount (increase amount) Lr are preset as design values, and the descent amount Lo is converted into the number of pulses Po (for example, 32 pulses), and the descent amount Lp Is converted to a pulse number Pp (for example, 64 pulses) that is twice the descending amount Lo, that is, twice the number of pulses Po (for example, 32 pulses), and the increasing amount Lr is a pulse from the number of pulses Pp (for example, 64 pulses). It is converted into a pulse number Pr (for example, 32 pulses) obtained by subtracting the number Po (for example, 32 pulses).

そして、S85において、逆転パルス数P'が戻しパルス数Prに達するまで、S84を繰り返し実行し、逆転パルス数P'がパルス数Pr以上となった場合には、S86に進んで、逆転パルスの供給を停止してこのプログラムを終了する。前記逆転パルス数Pr(例えば32パルス)を供給することにより、前記したように弁軸21は、図5(B)及び図4に示される如くに、組立用可動ストッパ27が固定ストッパ29に接当する組立用基準位置から制御用原点位置まで上昇する(上昇量Lr)。この場合、図5(B)、図7(B)の(1)、(2)、(3)に示される如くに、図2に示される初期セット位置にあるときには、弁体付勢ばね24の長さはW1であるが、図3、図4に示される如くに、弁軸21がb=Lp分下降せしめられると、弁体付勢ばね24は、前記Lp分圧縮せしめられてその長さはW3となる。その後、弁軸21がLr分上昇せしめられると、弁体付勢ばね24は、前記Lr分伸長してその長さはW2となり、このときの圧縮量はa=Loである。なお、圧縮量b=Lpを圧縮量a=Loの整数倍とすることにより、治具等を大きく変更する必要がなく、従前の治具をそのまま使うことができる。なお、ここでは、圧縮量b=Lpを圧縮量a=Loの整数倍としたが、圧縮量b=Lpは圧縮量a=Loよりも大きく、且つ弁体付勢ばね24が弾性を維持できる圧縮量の上限までで自由に設定可能であり、例えば圧縮量b=Lpを圧縮量a=Loの1.5〜3.0倍の間で設定すると好適である。   Then, in S85, S84 is repeatedly executed until the reverse pulse number P ′ reaches the return pulse number Pr. When the reverse pulse number P ′ becomes equal to or greater than the pulse number Pr, the process proceeds to S86 and the reverse pulse number is changed. Stop the supply and end this program. By supplying the reverse pulse number Pr (for example, 32 pulses), as described above, the valve shaft 21 is brought into contact with the fixed stopper 29 by the assembly movable stopper 27 as shown in FIGS. It rises from the corresponding assembly reference position to the control origin position (amount of increase Lr). In this case, as shown in (1), (2), and (3) of FIG. 5B and FIG. 7B, when in the initial set position shown in FIG. 3 and 4, when the valve shaft 21 is lowered by b = Lp as shown in FIGS. 3 and 4, the valve body biasing spring 24 is compressed by the Lp and the length thereof is increased. Is W3. Thereafter, when the valve shaft 21 is raised by Lr, the valve body urging spring 24 expands by the Lr and its length becomes W2, and the compression amount at this time is a = Lo. Note that by making the compression amount b = Lp an integral multiple of the compression amount a = Lo, it is not necessary to greatly change the jig or the like, and the conventional jig can be used as it is. Here, the compression amount b = Lp is an integral multiple of the compression amount a = Lo, but the compression amount b = Lp is larger than the compression amount a = Lo, and the valve body biasing spring 24 can maintain elasticity. It can be set freely up to the upper limit of the compression amount. For example, it is preferable to set the compression amount b = Lp between 1.5 and 3.0 times the compression amount a = Lo.

上記のように弁軸21が制御用原点位置にある状態において、図1に示される如くに、弁軸21に閉弁方向用可動ストッパ35をねじ込んで閉弁方向用固定ストッパ55に接当させた状態にするとともに、その上にロータ30を被せるようにして載せ置き、ロータ30の連結体32と弁軸21の小径部21bとを溶接等で固着する。これにより、ロータ30と可動ストッパ35は一体的に回転しながら昇降し、弁軸21が制御用原点位置に達したときには、固定ストッパ55に可動ストッパ35が接当係止される。   In the state where the valve shaft 21 is at the control origin position as described above, the valve-closing direction movable stopper 35 is screwed into the valve shaft 21 and brought into contact with the valve-closing direction fixed stopper 55 as shown in FIG. In addition, the rotor 30 is placed on the rotor 30 and the connecting body 32 of the rotor 30 and the small diameter portion 21b of the valve shaft 21 are fixed by welding or the like. As a result, the rotor 30 and the movable stopper 35 move up and down while rotating integrally, and when the valve shaft 21 reaches the control origin position, the movable stopper 35 is contacted and locked to the fixed stopper 55.

次に、キャン45の下端部を弁本体10に溶接等により密封接合するとともに、キャン45の外周にステータ50を位置決め固定すると、電動弁1の組立が完了する。   Next, when the lower end portion of the can 45 is hermetically joined to the valve body 10 by welding or the like, and the stator 50 is positioned and fixed on the outer periphery of the can 45, the assembly of the motor-operated valve 1 is completed.

上記のように、本実施形態の電動弁1では、弁体25と弁軸21との間に固定ストッパ29と可動ストッパ27からなる組立用ストッパ機構が設けられ、組立時において、弁軸21を下降させて固定ストッパ29に可動ストッパ27を接当させて、負荷トルクを大きく変化させるようにしているので、負荷トルクの変化率に基づいて、弁軸21を制御用原点位置よりさらに所定量だけ下降させた組立用基準位置を正確にかつ確実に検出することができる。この場合、下降量Lp、下降量Lo、戻し量(上昇量)Lrは、設計値として予め設定されているので、前記組立用基準位置を正確に検出することができることと相俟って、その誤差は、従来のように弁体25が弁座11aに着座した際の負荷トルクの変化の変曲点を検出する場合に比べて相当小さくなり、そのため、制御用原点出しを的確に行うことができ、その結果、流量等の制御精度を可及的に向上することができる。   As described above, in the motor-operated valve 1 according to the present embodiment, the assembly stopper mechanism including the fixed stopper 29 and the movable stopper 27 is provided between the valve body 25 and the valve shaft 21, and the valve shaft 21 is moved during assembly. Since the movable stopper 27 is brought into contact with the fixed stopper 29 so as to greatly change the load torque, the valve shaft 21 is further moved by a predetermined amount from the control origin position based on the rate of change of the load torque. The lowered assembly reference position can be accurately and reliably detected. In this case, the lowering amount Lp, the lowering amount Lo, and the return amount (raising amount) Lr are set in advance as design values, and in combination with the fact that the assembly reference position can be accurately detected, The error is considerably smaller than in the case of detecting the inflection point of the change in load torque when the valve body 25 is seated on the valve seat 11a as in the prior art, so that the control origin can be accurately determined. As a result, the control accuracy such as the flow rate can be improved as much as possible.

[実施形態2]
図9は、本発明に係る電動弁の第2実施形態を示す縦断面図である。図示例の電動弁2において、第1実施形態の電動弁1の各部と同一構成ないし同一機能部分には共通の符号を付して重複説明を省略し、以下においては相違点のみを説明する。
[Embodiment 2]
FIG. 9 is a longitudinal sectional view showing a second embodiment of the motor-operated valve according to the present invention. In the illustrated motor-operated valve 2, the same components or the same functional parts as those of the motor-operated valve 1 of the first embodiment are denoted by the same reference numerals, and redundant description will be omitted. Only the differences will be described below.

本実施形態の電動弁2では、弁体65が、逆円錐台状の弁体部65a、短円柱状胴部65b、及び上部突設部65cを有し、ガイドステム15の円筒部15aに摺動自在に嵌挿される弁ホルダ60が弁体65の短円柱状胴部65bの上部に固着されるとともに、該弁ホルダ60に、弁軸21が軸方向の相対移動可能及び相対回転可能に内挿されて当該弁ホルダ60の天井部60bに間に環状円板66を挟んで抜け止め係止される。また、弁ホルダ60の円筒部60a内で、弁体65の上部突設部65cに外嵌された下側ばね受け部材62と弁軸21の下部連結部21cに外嵌固定された上側ばね受け部材61との間に弁体付勢ばね24が縮装されるとともに、弁軸21における弁ホルダ60の天井部60bより上側に位置している部分に鍔状部21gが設けられ、弁ホルダ60の天井部60bを固定ストッパ、弁軸21の鍔状部21gを可動ストッパとして前記組立用ストッパ機構が構成されている。   In the motor-operated valve 2 of the present embodiment, the valve body 65 has an inverted truncated cone-shaped valve body portion 65 a, a short columnar body portion 65 b, and an upper projecting portion 65 c, and slides on the cylindrical portion 15 a of the guide stem 15. A valve holder 60, which is movably inserted, is fixed to the upper portion of the short cylindrical body 65b of the valve body 65, and the valve shaft 21 is disposed in the valve holder 60 so that the valve shaft 21 can be relatively moved and rotated in the axial direction. It is inserted and locked to the ceiling 60b of the valve holder 60 with an annular disc 66 interposed therebetween. Further, in the cylindrical portion 60 a of the valve holder 60, the lower spring receiving member 62 that is externally fitted to the upper projecting portion 65 c of the valve body 65 and the upper spring receiver that is externally fitted and fixed to the lower connecting portion 21 c of the valve shaft 21. The valve body urging spring 24 is retracted between the member 61 and the flange 21g is provided in a portion of the valve shaft 21 located above the ceiling 60b of the valve holder 60. The assembling stopper mechanism is configured with the ceiling portion 60b as a fixed stopper and the flange portion 21g of the valve shaft 21 as a movable stopper.

このような構成とされた電動弁2では、固定ストッパとされる弁ホルダ60の天井部60bと可動ストッパとされる弁軸21の鍔状部21gとの間の離隔距離が、第1実施形態の下降量Lpとされ、また、第1実施形態の下降量Lo、戻し量(上昇量)Lrも同様に設定され、組立時において、弁軸21を下降させて固定ストッパ60bに可動ストッパ21gを接当させて、負荷トルクを大きく変化させるようにしているので、負荷トルクの変化率に基づいて、弁軸21を制御用原点位置よりさらに所定量だけ下降させた組立用基準位置を正確にかつ確実に検出することができる。この場合、下降量Lp、下降量Lo、戻し量(上昇量)Lrは、設計値として予め設定されているので、前記組立用基準位置を正確に検出することができることと相俟って、その誤差は、従来のように弁体65が弁座11aに着座した際の負荷トルクの変化の変曲点を検出する場合に比べて相当小さくなり、そのため、第1実施形態と同様に、制御用原点出しを的確に行うことができ、流量等の制御精度を可及的に向上することができる。   In the motor-operated valve 2 configured as described above, the separation distance between the ceiling portion 60b of the valve holder 60 serving as a fixed stopper and the flange-shaped portion 21g of the valve shaft 21 serving as a movable stopper is the first embodiment. The lowering amount Lp of the first embodiment is also set in the same manner, and the lowering amount Lo and the returning amount (raising amount) Lr of the first embodiment are similarly set. During assembly, the valve shaft 21 is lowered to attach the movable stopper 21g to the fixed stopper 60b. Since the load torque is greatly changed by contact, the assembly reference position in which the valve shaft 21 is further lowered by a predetermined amount from the control origin position is accurately and based on the rate of change of the load torque. It can be detected reliably. In this case, the lowering amount Lp, the lowering amount Lo, and the return amount (raising amount) Lr are set in advance as design values, and in combination with the fact that the assembly reference position can be accurately detected, The error is considerably smaller than in the case of detecting the inflection point of the change of the load torque when the valve body 65 is seated on the valve seat 11a as in the prior art. Therefore, as in the first embodiment, the error is The origin can be accurately determined, and the control accuracy such as the flow rate can be improved as much as possible.

[実施形態3]
図10は、本発明に係る電動弁の第3実施形態を示す縦断面図であり、図1に示された第1実施形態から弁体25に設けられた鍔状部29を削除して、ばね受け部材26に固定ストッパを形成し、弁ホルダ23に可動ストッパを設けた例を示したものである。図示例の電動弁3において、第1実施形態の電動弁1の各部と同一構成ないし同一機能部分には共通の符号を付して重複説明を省略し、以下においては相違点のみ説明する。
[Embodiment 3]
FIG. 10 is a longitudinal sectional view showing a third embodiment of the motor-operated valve according to the present invention, in which the hook-like portion 29 provided on the valve body 25 is deleted from the first embodiment shown in FIG. An example in which a fixed stopper is formed on the spring receiving member 26 and a movable stopper is provided on the valve holder 23 is shown. In the illustrated motor-operated valve 3, the same components or the same functional parts as those of the motor-operated valve 1 according to the first embodiment are denoted by the same reference numerals and redundant description will be omitted, and only differences will be described below.

本実施形態の電動弁3では、弁ホルダ23の天井部23bに設けられた天井穴の周囲の部分がかしめ部21fよりも下側に延長されてその下部が可動ストッパとして形成され、弁体25の上部に設けられたばね受け部材26が第1実施形態と比較して上側に延長されてその上部が固定ストッパとして形成され、これにより前記組立用ストッパが構成されている。   In the motor-operated valve 3 of the present embodiment, the portion around the ceiling hole provided in the ceiling portion 23b of the valve holder 23 is extended below the caulking portion 21f, and the lower portion thereof is formed as a movable stopper. The spring receiving member 26 provided on the upper part of the spring is extended upward as compared with the first embodiment, and the upper part is formed as a fixed stopper, thereby constituting the assembly stopper.

このような構成とされた電動弁3では、可動ストッパとされる弁ホルダ23の天井部23bと固定ストッパとされるばね受け部材26との間の離間距離が、第1実施形態の下降量Lpとされ、また、第1実施形態の下降量Lo、戻し量(上昇量)Lrも同様に設定され、組立時において、弁軸21を下降させて固定ストッパ26に可動ストッパ23bを当接させて、負荷トルクを大きく変化させるようにしているので、第1実施形態と同様に、負荷トルクの変化率に基づいて、弁軸21を制御用原点位置よりさらに所定量だけ下降させた組立用基準位置を正確にかつ確実に検出することができる。   In the motor-operated valve 3 configured as described above, the distance between the ceiling portion 23b of the valve holder 23, which is a movable stopper, and the spring receiving member 26, which is a fixed stopper, is the lowering amount Lp of the first embodiment. The lowering amount Lo and the returning amount (raising amount) Lr of the first embodiment are also set in the same manner. At the time of assembly, the valve shaft 21 is lowered to bring the movable stopper 23b into contact with the fixed stopper 26. Since the load torque is largely changed, the assembly reference position in which the valve shaft 21 is further lowered from the control origin position by a predetermined amount based on the rate of change of the load torque, as in the first embodiment. Can be detected accurately and reliably.

[実施形態4]
図11は、本発明に係る電動弁の第4実施形態を示す縦断面図であり、図9に示された第2実施形態から弁軸21に設けられた鍔状部21gを削除して、弁軸21の下端に一体に設けられた上側ばね受け部材61に可動ストッパを形成し、下側ばね受け部材62に固定ストッパを設けた例を示したものである。図示例の電動弁において、第2実施形態の電動弁2の各部と同一構成ないし同一機能部分には共通の符号を付して重複説明を省略し、以下においては相違点のみ説明する。
[Embodiment 4]
FIG. 11 is a longitudinal sectional view showing a fourth embodiment of the motor-operated valve according to the present invention, in which the hook-shaped portion 21g provided on the valve shaft 21 is deleted from the second embodiment shown in FIG. An example is shown in which a movable stopper is formed on the upper spring receiving member 61 provided integrally with the lower end of the valve shaft 21 and a fixed stopper is provided on the lower spring receiving member 62. In the motor-driven valve of the illustrated example, the same components or the same function parts as those of the motor-operated valve 2 of the second embodiment are denoted by the same reference numerals, and redundant description is omitted. Only the differences will be described below.

本実施形態の電動弁4では、上側ばね受け部材61と弁軸21とを一体に形成し、上側ばね受け部材61の下面が下側まで延長されてその下部が可動ストッパとして形成され、弁体65の上部に設けられた下側ばね受け部材62が第2実施形態と比較して上側に延長されてその上部が固定ストッパとして形成され、これにより前記組立用ストッパが構成されている。   In the motor-operated valve 4 of the present embodiment, the upper spring receiving member 61 and the valve shaft 21 are integrally formed, the lower surface of the upper spring receiving member 61 is extended to the lower side, and the lower part thereof is formed as a movable stopper. A lower spring receiving member 62 provided at the upper portion of 65 is extended upward as compared with the second embodiment, and the upper portion is formed as a fixed stopper, thereby constituting the assembly stopper.

このような構成とされた電動弁4では、可動ストッパとされる上側ばね受け部材61と固定ストッパとされる下側ばね受け部材62との間の離間距離が、第1実施形態の下降量Lpとされ、また、第1実施形態の下降量Lo、戻し量(上昇量)Lrも同様に設定され、組立時において、弁軸21を下降させて固定ストッパ62に可動ストッパ61を当接させて、負荷トルクを大きく変化させるようにしているので、第2実施形態と同様に、負荷トルクの変化率に基づいて、弁軸21を制御用原点位置よりさらに所定量だけ下降させた組立用基準位置を正確にかつ確実に検出することができる。   In the motor-operated valve 4 configured as described above, the separation distance between the upper spring receiving member 61 that is a movable stopper and the lower spring receiving member 62 that is a fixed stopper is the lowering amount Lp of the first embodiment. Further, the lowering amount Lo and the returning amount (raising amount) Lr of the first embodiment are set in the same manner, and at the time of assembly, the valve shaft 21 is lowered to bring the movable stopper 61 into contact with the fixed stopper 62. Since the load torque is greatly changed, the assembly reference position in which the valve shaft 21 is further lowered from the control origin position by a predetermined amount based on the rate of change of the load torque, as in the second embodiment. Can be detected accurately and reliably.

1 電動弁
10 弁本体
11a 弁座(弁口)
15 ガイドステム
15i 雌ねじ部
20 弁軸組立体
21 弁軸
21e 雄ねじ部
23 弁ホルダ
24 弁体付勢ばね
25 弁体
26 ばね受け部材
27 底板部(組立用可動ストッパ)
29 鍔状部(組立用固定ストッパ)
30 ロータ
35 閉弁方向用可動ストッパ
36 開弁方向用可動ストッパ
50 ステータ
55 閉弁方向用固定ストッパ
56 開弁方向用固定ストッパ
1 Motorized valve 10 Valve body 11a Valve seat (valve port)
15 Guide stem 15i Female thread portion 20 Valve shaft assembly 21 Valve shaft 21e Male thread portion 23 Valve holder 24 Valve body biasing spring 25 Valve body 26 Spring receiving member 27 Bottom plate portion (movable stopper for assembly)
29 Hook (fixing stopper for assembly)
30 Rotor 35 Movable stopper for valve closing direction 36 Movable stopper for valve opening direction 50 Stator 55 Fixed stopper for valve closing direction 56 Fixed stopper for valve opening direction

Claims (1)

弁体と、該弁体を軸方向に相対移動可能及び相対回転可能に保持する、雄ねじ部を持つ弁軸と、前記弁体と前記弁軸との間に縮装された弁体付勢ばねと、前記弁軸の雄ねじ部が螺合する雌ねじ部を持つガイドステム及び前記弁体が接離する弁座が設けられた弁本体と、前記弁軸を前記ガイドステムに対して回転させながら昇降させるためのロータ及びステータを有する昇降駆動機構と、前記弁軸の制御用原点位置を定める閉弁方向ストッパ機構と、を備え、前記弁体付勢ばねの付勢力により前記弁体が前記弁座に押し付けられた押圧閉弁状態を作り出すべく、前記昇降駆動機構により前記弁軸を一方向に回転させながら下降させて前記弁体を前記弁座に着座させた後、さらに前記弁軸を前記弁体付勢ばねの付勢力に抗して前記閉弁方向ストッパ機構により定められる前記制御用原点位置まで下降させるようにされ、
前記電動弁の組立時において、前記弁軸を前記制御用原点位置よりさらに所定量だけ下降させた組立用基準位置を検出するための、固定ストッパと可動ストッパとからなる組立用ストッパ機構が前記弁体と前記弁軸との間に設けられている電動弁の組立方法であって、
前記弁本体に前記ガイドステムを組み付けるとともに、前記弁軸に前記弁体をその間に前記弁体付勢ばねを介装させた状態で組み付けて弁軸組立体を得、該弁軸組立体の弁軸を前記ガイドステムに螺合させ、予め用意されている組立用モータにより、前記弁体が前記弁座から離れた状態から前記弁軸を一方向に回転させながら下降させるとともに、このときの負荷トルクの変化率を算出し、該負荷トルクの変化率が予め定められたしきい値より大きくなったとき、前記弁軸の下降を停止し、続いて、前記弁軸における前記弁体が前記弁座に着座した着座位置から前記組立用ストッパ機構の可動ストッパが固定ストッパに接当するまでの設計値としての下降量から、前記着座位置から前記制御用原点位置までの設計値としての下降量を差し引いた量だけ他方向に回転させながら上昇させて停止させ、この停止状態において、前記弁軸に前記ロータ及び前記閉弁方向ストッパ機構の可動ストッパを閉弁方向用固定ストッパに接当させた状態で組み付けて固定することを特徴とする電動弁の組立方法。
A valve body, a valve shaft having a male screw portion that holds the valve body so as to be relatively movable and relatively rotatable in the axial direction, and a valve body biasing spring that is contracted between the valve body and the valve shaft And a valve stem provided with a guide stem having a female thread part into which the male thread part of the valve shaft is screwed and a valve seat to which the valve body is contacted and separated, and ascending and descending while rotating the valve shaft with respect to the guide stem And an elevating drive mechanism having a rotor and a stator, and a valve closing direction stopper mechanism that determines a control origin position of the valve shaft, and the valve body is moved by the urging force of the valve body urging spring. In order to create a pressed valve closed state pressed against the valve body, the valve shaft is lowered while being rotated in one direction by the lift drive mechanism to seat the valve body on the valve seat, and the valve shaft is further moved to the valve The valve closing direction stop against the biasing force of the body biasing spring. It is to be lowered to the control origin position determined by the mechanism,
When assembling the motor-operated valve, an assembly stopper mechanism comprising a fixed stopper and a movable stopper for detecting an assembly reference position in which the valve shaft is further lowered by a predetermined amount from the control origin position. A method of assembling an electric valve provided between a body and the valve shaft,
The guide stem is assembled to the valve body, and the valve body is assembled to the valve shaft with the valve body biasing spring interposed therebetween, thereby obtaining a valve shaft assembly, and the valve of the valve shaft assembly The shaft is screwed into the guide stem, and the valve body is lowered while rotating the valve shaft in one direction from a state where the valve body is separated from the valve seat by a pre-assembled motor, and the load at this time When the rate of change in torque is calculated and the rate of change in load torque exceeds a predetermined threshold value, the valve shaft stops descending, and then the valve body in the valve shaft The lowering amount as a design value from the seating position to the control origin position from the lowering amount as the design value until the movable stopper of the assembly stopper mechanism comes into contact with the fixed stopper from the seating position seated on the seat. Deduct Rotate the valve in the other direction and lift it to stop it. In this stopped state, assemble the rotor and the movable stopper of the valve closing direction stopper mechanism against the valve shaft in contact with the fixed stopper for valve closing direction. A method for assembling a motor-operated valve, characterized by:
JP2019101365A 2019-05-30 2019-05-30 How to assemble a solenoid valve Active JP6762046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019101365A JP6762046B2 (en) 2019-05-30 2019-05-30 How to assemble a solenoid valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019101365A JP6762046B2 (en) 2019-05-30 2019-05-30 How to assemble a solenoid valve

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015034537A Division JP6563213B2 (en) 2015-02-24 2015-02-24 Motorized valve and its assembly method

Publications (2)

Publication Number Publication Date
JP2019152337A true JP2019152337A (en) 2019-09-12
JP6762046B2 JP6762046B2 (en) 2020-09-30

Family

ID=67948698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019101365A Active JP6762046B2 (en) 2019-05-30 2019-05-30 How to assemble a solenoid valve

Country Status (1)

Country Link
JP (1) JP6762046B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022136895A (en) * 2021-03-08 2022-09-21 株式会社不二工機 Valve main body assembly, stator unit, electric valve, air conditioner, manufacturing method of valve main body assembly and manufacturing method of stator unit
EP4177544A1 (en) * 2021-08-23 2023-05-10 Fujikoki Corporation Electric-operated valve, method of controlling the same, and method of manufacturing the same
JP7345922B2 (en) 2021-08-23 2023-09-19 株式会社不二工機 Electric valve, its control method, and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329157A (en) * 2002-05-15 2003-11-19 Saginomiya Seisakusho Inc Motor-driven valve
JP2006170354A (en) * 2004-12-17 2006-06-29 Saginomiya Seisakusho Inc Valve device and refrigerating cycle device
JP2008175289A (en) * 2007-01-18 2008-07-31 Fuji Koki Corp Motor operated valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329157A (en) * 2002-05-15 2003-11-19 Saginomiya Seisakusho Inc Motor-driven valve
JP2006170354A (en) * 2004-12-17 2006-06-29 Saginomiya Seisakusho Inc Valve device and refrigerating cycle device
JP2008175289A (en) * 2007-01-18 2008-07-31 Fuji Koki Corp Motor operated valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022136895A (en) * 2021-03-08 2022-09-21 株式会社不二工機 Valve main body assembly, stator unit, electric valve, air conditioner, manufacturing method of valve main body assembly and manufacturing method of stator unit
JP7357939B2 (en) 2021-03-08 2023-10-10 株式会社不二工機 Valve body assembly, stator unit, electric valve and air conditioner, and method for manufacturing valve body assembly and stator unit
EP4177544A1 (en) * 2021-08-23 2023-05-10 Fujikoki Corporation Electric-operated valve, method of controlling the same, and method of manufacturing the same
JP7345922B2 (en) 2021-08-23 2023-09-19 株式会社不二工機 Electric valve, its control method, and its manufacturing method

Also Published As

Publication number Publication date
JP6762046B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP6563213B2 (en) Motorized valve and its assembly method
CN111396618B (en) Electric valve
JP6476158B2 (en) Motorized valve assembly method
CN110094514B (en) Electric valve and refrigeration cycle system
JP2019152337A (en) Assembling method of electric valve
JP5943549B2 (en) Motorized valve
JP2016217451A (en) Motor valve and assembly method thereof
KR20060043634A (en) Electrically operated valve
CN109578660B (en) Electric valve
CN107542966B (en) Electric valve
JP6657363B2 (en) Flow control valve
JP2016156437A (en) Electric valve
JP6412443B2 (en) Motorized valve
CN109723883B (en) Electric valve
JP6515164B2 (en) Flow control valve
JP2020091038A (en) Motor-operated valve
JP2018200113A (en) Motor-operated valve
JP6691250B2 (en) Motorized valve
JP2017044286A (en) Motor valve and its assembling method
JP7332191B2 (en) electric valve
JP2024046974A (en) Motor-operated valve
JP2019163863A (en) Electric valve
JP2020109324A (en) Motor valve
CN117469402A (en) Electric valve
CN114838178A (en) Electric valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200901

R150 Certificate of patent or registration of utility model

Ref document number: 6762046

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250