JP2019149396A - Diffusion layer determination method of silicon crystal type solar cell wafer and determination device - Google Patents

Diffusion layer determination method of silicon crystal type solar cell wafer and determination device Download PDF

Info

Publication number
JP2019149396A
JP2019149396A JP2018031716A JP2018031716A JP2019149396A JP 2019149396 A JP2019149396 A JP 2019149396A JP 2018031716 A JP2018031716 A JP 2018031716A JP 2018031716 A JP2018031716 A JP 2018031716A JP 2019149396 A JP2019149396 A JP 2019149396A
Authority
JP
Japan
Prior art keywords
probe
probes
diffusion layer
resistance
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018031716A
Other languages
Japanese (ja)
Other versions
JP6419369B1 (en
Inventor
忠信 結城
Tadanobu Yuki
忠信 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAPUSON KK
Original Assignee
NAPUSON KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAPUSON KK filed Critical NAPUSON KK
Priority to JP2018031716A priority Critical patent/JP6419369B1/en
Application granted granted Critical
Publication of JP6419369B1 publication Critical patent/JP6419369B1/en
Publication of JP2019149396A publication Critical patent/JP2019149396A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

To provide a method and a device which accurately determine the present of a diffusion layer formed in a silicon crystal type solar cell wafer manufacturing.SOLUTION: A determination method is for measuring a seat resistance of a diffusion layer by contacting four probes to the diffusion layer as a sample, measuring an inter-probe resistance of the two probes thereof with a two probe method by switching and contacting the two probes from the four proves to the diffusion layer as a sample, and determining whether the diffusion layer is formed on the basis of both measurement resistance values. The determination device comprises: a switching unit which can switch the four proves to the two proves; a prove driving mechanism; a resistance measurement unit; a measurement stage driving mechanism; and a control/data processing unit. The resistance measurement unit can measure the seat resistance by the four proves contacted to the sample, and can measure the inter-prove resistance by the two proves of the four proves contacted to the sample. The control/data processing unit can perform the control of the driving mechanism or the other mechanism, and determination of the presence of the diffusion layer on the basis of both resistance values measured.SELECTED DRAWING: Figure 1

Description

本発明はシリコン結晶型太陽電池のシリコンウェハーの抵抗を測定することにより、シリコンウェハーの製造時にその表面に形成する拡散層の有無を判別する拡散層判別方法と判別装置に関する。   The present invention relates to a diffusion layer discriminating method and a discriminating apparatus for discriminating the presence or absence of a diffusion layer formed on a surface of a silicon wafer by manufacturing the resistance of the silicon wafer of a silicon crystal solar cell.

シリコン結晶(単結晶、多結晶)型太陽電池のシリコンウェハーの製造工程では、光起電力を発生するPN接合の形成のためシリコンウェハーの表面に高濃度の不純物拡散により拡散層を形成する(図2)。拡散層の品質評価、管理のための測定評価技術として4探針法によるシート抵抗の測定方法が多く用いられているがシート抵抗の測定では拡散層の有無の判別ができない。   In the manufacturing process of a silicon wafer of a silicon crystal (single crystal, polycrystalline) solar cell, a diffusion layer is formed on the surface of the silicon wafer by high-concentration impurity diffusion in order to form a PN junction that generates photovoltaic power (see FIG. 2). As a measurement evaluation technique for quality evaluation and management of the diffusion layer, a sheet resistance measurement method using a four-probe method is often used, but the presence or absence of the diffusion layer cannot be determined by measuring the sheet resistance.

4探針法による測定は、等間隔に配列された4探針の外側2探針から試料に電流を印加し、内側2探針間の電位差を測定し、測定値を補正計算してシート抵抗、抵抗率を算出する測定方法である。このとき測定される試料のシート抵抗、抵抗率、厚さの関係を次式に示す。   In the four-probe method, the sheet resistance is calculated by applying a current to the sample from the outer two probes of four probes arranged at equal intervals, measuring the potential difference between the inner two probes, and correcting the measured value. This is a measurement method for calculating resistivity. The relationship between the sheet resistance, resistivity, and thickness of the sample measured at this time is shown in the following equation.

シリコン結晶型太陽電池の製造工程における単結晶または多結晶のベアウェハー(拡散層形成前のウェハー)と、拡散層のシート抵抗・抵抗率・厚さの例を表1に示す。   Table 1 shows examples of single crystal or polycrystalline bare wafers (wafers before diffusion layer formation) and sheet resistance, resistivity, and thickness of the diffusion layers in the manufacturing process of the silicon crystal solar cell.

4探針法によるシート抵抗測定の原理図と等価回路を図4、図5に示す。4探針法によるシート抵抗測定では、図5の等価回路に示すように探針と試料間の接触抵抗(rC1、c2、rC3、c4)の影響を除外して測定が行われる。しかし、シリコンウェハーの表面に形成される拡散層のシート抵抗値は、拡散層形成前のウェハー自身のシート抵抗値の範囲とは表1のように重なることが多いため、4探針法によるシート抵抗測定でのシート抵抗値だけではシリコンウェハーの表面に拡散層が形成されているかどうかの判別ができない。このため、4探針法によるシート抵抗測定のみでは、拡散層が形成されていないウェハーが次工程に混入する(誤混入)の可能性を防ぐことはできない。 FIG. 4 and FIG. 5 show the principle diagram and equivalent circuit of sheet resistance measurement by the four-probe method. In the sheet resistance measurement by the 4-probe method, as shown in the equivalent circuit of FIG. 5, measurement is performed without the influence of the contact resistance between the probe and the sample (r C1, r c2 , r C3, r c4 ). . However, since the sheet resistance value of the diffusion layer formed on the surface of the silicon wafer often overlaps the range of the sheet resistance value of the wafer itself before the diffusion layer formation as shown in Table 1, the sheet by the 4-probe method is used. Whether or not the diffusion layer is formed on the surface of the silicon wafer cannot be determined only by the sheet resistance value in the resistance measurement. For this reason, it is not possible to prevent the possibility that a wafer in which a diffusion layer is not formed will be mixed into the next process (mismixed) only by measuring the sheet resistance by the four-probe method.

シリコンウェハーのシート抵抗や抵抗率を測定する方法として2探針法がある(特許文献1、2)。しかし、特許文献1は広がり抵抗測定により抵抗率(不純物濃度)を測定できるようにした方法であり、特許文献2はPN接合の光起電力を利用したシート抵抗測定方法であり、いずれも、シリコン結晶型太陽電池ウェハーの拡散層の抵抗を測定して拡散層の有無を判別する方法ではない。   As a method for measuring the sheet resistance and resistivity of a silicon wafer, there are two probe methods (Patent Documents 1 and 2). However, Patent Document 1 is a method in which the resistivity (impurity concentration) can be measured by spreading resistance measurement, and Patent Document 2 is a sheet resistance measurement method using a photovoltaic power of a PN junction. This is not a method for determining the presence or absence of a diffusion layer by measuring the resistance of the diffusion layer of the crystalline solar cell wafer.

米国特許第3,628,137号公報U.S. Pat. No. 3,628,137 特公平7−32185号公報Japanese Patent Publication No. 7-32185

本発明の課題は、シリコン結晶型太陽電池ウェハーに拡散層が形成されているか否かを判別する拡散層判別方法と判別装置を提供することにある。   An object of the present invention is to provide a diffusion layer discrimination method and a discrimination device for discriminating whether or not a diffusion layer is formed on a silicon crystal solar cell wafer.

本発明のシリコン結晶型太陽電池ウェハーの拡散層判別方法は、4探針プローブの4探針を試料に接触させて拡散層のシート抵抗を測定し、4探針プローブの4探針のうちの2探針を試料の拡散層に切替え接触させて、2探針法により2探針間の抵抗(探針間抵抗)を測定し、前記両測定抵抗値に基づいて拡散層が形成されているか否かを判別する方法である。本発明のシリコン結晶型太陽電池のシリコンウェハーの拡散層判別方法は、4探針プローブの2探針又は2探針プローブの2探針を試料に接触させて2探針法により2探針間の探針間抵抗を測定し、その測定抵抗値に基づいて拡散層が形成されているか否かを判別する方法であってもよい。   According to the method of determining the diffusion layer of the silicon crystal solar cell wafer of the present invention, the sheet resistance of the diffusion layer is measured by bringing the four probes of the four-probe probe into contact with the sample, and among the four probes of the four-probe probe. Whether the two probes are switched and brought into contact with the diffusion layer of the sample, the resistance between the two probes (resistance between the probes) is measured by the two-probe method, and the diffusion layer is formed based on the measured resistance values. This is a method for determining whether or not. In the silicon crystal solar cell according to the present invention, the silicon wafer diffusion layer is discriminated between two probes by contacting the sample with two probes of four probe probes or two probes of two probe probes. Alternatively, the inter-probe resistance may be measured to determine whether or not a diffusion layer is formed based on the measured resistance value.

本発明のシリコン結晶型太陽電池ウェハーの拡散層の判別装置は、4探針プローブと、抵抗測定判別ユニットと、試料に接触させる探針を4探針と2探針に切替え可能な切替ユニットと、制御/データ処理ユニットと、測定ステージ駆動機構を備えたものである。抵抗測定判別ユニットは前記4探針を試料に接触させて測定したシート抵抗と、2探針を試料に接触させて測定した探針間抵抗値に基づいて拡散層の有無の判別を行うことができるようにしたものである。制御/データ処理ユニットは前記プローブの切替えとか測定ステージ駆動等を制御でき、測定データの処理が可能なものである。測定ステージ駆動機構は制御/データ処理ユニットにより制御されて測定ステージを駆動させるものである。本発明の判別装置は手動操作も可能であり、その場合は、前記した制御/データ処理ユニット、測定ステージ駆動機構は省略することもできる。前記判別装置は4探針プローブを4探針と2探針に切替えて4探針測定と2探針測定の双方を行うことができるようにしたものであるが、本発明の判別装置では4探針プローブを2探針プローブに代えることもできる。この場合は、前記切替ユニットは不要である。   An apparatus for discriminating a diffusion layer of a silicon crystal solar cell wafer according to the present invention includes a four-probe probe, a resistance measurement discriminating unit, and a switching unit capable of switching a probe to be in contact with a sample between four and two probes. And a control / data processing unit and a measurement stage drive mechanism. The resistance measurement discriminating unit discriminates the presence or absence of the diffusion layer based on the sheet resistance measured by bringing the four probes into contact with the sample and the inter-probe resistance value measured by bringing the two probes in contact with the sample. It is something that can be done. The control / data processing unit can control the probe switching, measurement stage drive, and the like, and can process measurement data. The measurement stage drive mechanism is controlled by the control / data processing unit to drive the measurement stage. The discriminating apparatus of the present invention can also be manually operated. In this case, the control / data processing unit and the measurement stage driving mechanism described above can be omitted. The discriminating apparatus switches the four-probe probe between the four-probe and the two-probe so that both 4-probe measurement and 2-probe measurement can be performed. The probe probe can be replaced with a two-probe probe. In this case, the switching unit is not necessary.

本発明のシリコン結晶型太陽電池ウェハーの拡散層判別方法は次のような効果がある。
(1)4探針プローブのうちの4探針法によるシート抵抗測定値と、2探針による探針間抵抗測定値との双方により拡散層の有無の判別を行うので、拡散層の有無を正確に判別でき、拡散層の形成されていないベアウェハーが次工程に混入されるのを防ぐことができる。
(2)4探針プローブを使用した場合は、試料の多点位置における拡散層の判別を容易にかつ迅速に行うことができる。
(3)2探針法による探針間抵抗測定値のみに基づいて拡散層の有無の判別を行う場合も、ベアウェハーの抵抗値と重ならない探針間抵抗値のみを測定することができるので、拡散層の有無を正確に判別でき、拡散層の形成されていないベアウェハーが次工程に混入されるのを防ぐことができる。
The silicon crystal solar cell wafer diffusion layer discrimination method of the present invention has the following effects.
(1) Since the presence / absence of the diffusion layer is determined by both the sheet resistance measurement value by the four-probe method of the four-probe probes and the inter-probe resistance measurement value by the two-probe method. It is possible to accurately discriminate and prevent a bare wafer having no diffusion layer from being mixed in the next process.
(2) When a four-probe probe is used, it is possible to easily and quickly determine the diffusion layer at multiple points on the sample.
(3) Even when the presence or absence of the diffusion layer is determined based only on the inter-probe resistance measurement value by the two-probe method, only the inter-probe resistance value that does not overlap with the resistance value of the bare wafer can be measured. The presence or absence of the diffusion layer can be accurately determined, and a bare wafer in which no diffusion layer is formed can be prevented from being mixed in the next process.

本発明のシリコン結晶型太陽電池ウェハーの拡散層判別装置は次のような効果がある。
(1)4探針プローブと、4探針プローブを4探針と2探針とに切替え可能な切替ユニットを備えているので、一つの4探針プローブで4探針法によるシート抵抗測定と、2探針法による探針間抵抗測定の双方を行って、拡散層の有無を正確に判別することができる。
(2)2探針で探針間抵抗を測定できるので、ベアウェハーの抵抗値と重ならない探針間抵抗値のみを測定して、拡散層の有無を正確に判別することができる。
(3)切替ユニットと、制御/データ処理ユニットと、測定ステージ駆動機構をも設けた場合は、試料を測定ステージにセットして、測定装置をスタートさせれば、拡散層の判定を全自動で行うことができる。
The silicon crystal type solar cell wafer diffusion layer discrimination device of the present invention has the following effects.
(1) Since the four-probe probe and the switching unit capable of switching the four-probe probe to the four-probe and the two-probe are provided, sheet resistance measurement by the four-probe method can be performed with one four-probe probe. The presence or absence of the diffusion layer can be accurately determined by performing both interprobe resistance measurements by the two-probe method.
(2) Since the inter-probe resistance can be measured with two probes, only the inter-probe resistance value that does not overlap with the resistance value of the bare wafer can be measured to accurately determine the presence or absence of the diffusion layer.
(3) If a switching unit, control / data processing unit, and measurement stage drive mechanism are also provided, the diffusion layer can be automatically determined by setting the sample on the measurement stage and starting the measurement device. It can be carried out.

太陽電池ウェハーの拡散層測定判別とシート抵抗測定装置の構成例の説明図。Explanatory drawing of the structural example of the diffused layer measurement discrimination | determination of a solar cell wafer, and a sheet resistance measuring apparatus. シリコン結晶型太陽電池のベアウェハー(不純物拡散前)と拡散ウェハー(不純物拡散後)の説明図。Explanatory drawing of the bare wafer (before impurity diffusion) and diffusion wafer (after impurity diffusion) of a silicon crystal type solar cell. シリコン結晶型太陽電池の拡散層とベアウェハーのシート抵抗分布説明図。The sheet resistance distribution explanatory drawing of the diffusion layer of a silicon crystal type solar cell and a bare wafer. 4探針法によるシート抵抗測定原理図。The sheet resistance measurement principle diagram by the four-probe method. 図4の等価回路。The equivalent circuit of FIG. 2探針法による抵抗測定原理図。Fig. 2 is a principle diagram of resistance measurement by a two-probe method. 図6の等価回路。The equivalent circuit of FIG. ショットキー障壁ダイオード等価回路。Schottky barrier diode equivalent circuit. 試料と探針の接触抵抗の説明図。Explanatory drawing of the contact resistance of a sample and a probe. 2探針法による探針間抵抗とシート抵抗の説明図。Explanatory drawing of resistance between probes and sheet resistance by 2 probe methods. 2探針法による探針間抵抗の分布説明図。Explanatory drawing of distribution of resistance between probes by a two-probe method. 4探針法により測定されたシート抵抗分布図。The sheet resistance distribution map measured by the 4-probe method. 2探針法により測定された探針間抵抗分布図。The resistance distribution diagram between probes measured by the two-probe method.

(拡散層判別方法の実施形態1)
シリコン結晶型太陽電池のベアウェハーと拡散ウェハーの構成は図2のとおりである。通常、シリコン結晶型太陽電池の拡散層とベアウェハーのシート抵抗分布は図3のようになっている。
(Embodiment 1 of diffusion layer discrimination method)
The structure of the bare wafer and the diffusion wafer of the silicon crystal solar cell is as shown in FIG. Usually, the sheet resistance distribution of the diffusion layer and the bare wafer of the silicon crystal solar cell is as shown in FIG.

本発明のシリコン結晶型太陽電池ウェハーの拡散層判別方法の一例を以下に説明する。この判別方法は、シリコン結晶型太陽電池ウェハー(拡散層形成済みのウェハー)の試料の表面に4探針プローブの4探針を接触させて、4探針法により試料の拡散層のシート抵抗を測定する。4探針法のシート抵抗測定の原理は図4のようになり、その等価回路は図5のようになる。前記4探針プローブのうちの2探針に切替え、その2探針を試料に接触させて探針間抵抗(接触抵抗を含む)を測定する。2探針法による探針間抵抗測定の原理は図6のようになり、その等価回路は図7のようになる。前記のように測定したシート抵抗値と探針間抵抗値に基づいて、拡散層の有無を判別する。   An example of the method for determining the diffusion layer of the silicon crystal solar cell wafer of the present invention will be described below. In this discrimination method, four probes of four probe probes are brought into contact with the surface of a sample of a silicon crystal solar cell wafer (wafer having a diffusion layer formed), and the sheet resistance of the diffusion layer of the sample is determined by the four probe method. taking measurement. The principle of sheet resistance measurement by the 4-probe method is as shown in FIG. 4, and its equivalent circuit is as shown in FIG. The probe is switched to two of the four probe probes, and the two probes are brought into contact with the sample to measure inter-probe resistance (including contact resistance). The principle of inter-probe resistance measurement by the two-probe method is as shown in FIG. 6, and its equivalent circuit is as shown in FIG. Based on the sheet resistance value and the inter-probe resistance value measured as described above, the presence or absence of the diffusion layer is determined.

2探針法による探針間抵抗測定では、探針と試料がオーミック接触の状態では図7の等価回路に示すように接触抵抗(RC1、C2)と2探針間の試料の抵抗(R12)が加算された抵抗値になる。金属と半導体材料の接触では通常、図8の等価回路に示すようにショットキー障壁によるダイオード特性が生じ高抵抗となる。シリコン結晶型太陽電池ウェハーの拡散層は高不純物濃度で形成されており、この条件ではオーミック接触が得られる。探針と試料間のオーミック接触が得られた条件での2探針法による探針間抵抗の測定値(R)は、2探針の接触抵抗がほぼ等しいと仮定すれば次式で表すことができる。 In inter-probe resistance measurement by the two-probe method, when the probe and the sample are in ohmic contact, as shown in the equivalent circuit of FIG. 7, the contact resistance (R C1, R C2 ) and the resistance of the sample between the two probes ( R 12 ) becomes the added resistance value. In contact between a metal and a semiconductor material, a diode characteristic due to a Schottky barrier usually occurs as shown in the equivalent circuit of FIG. The diffusion layer of the silicon crystal solar cell wafer is formed with a high impurity concentration, and ohmic contact is obtained under these conditions. The measured value (R 2 ) of the resistance between the two probes by the two-probe method under the condition that the ohmic contact between the probe and the sample is obtained is expressed by the following equation, assuming that the contact resistance of the two probes is almost equal. be able to.


オーミック接触状態の探針と試料間の接触抵抗(R)は、図9に示すように探針と試料の接触直径(D)、試料の抵抗率(ρ)により次式で計算される。

The contact resistance (R c ) between the probe in the ohmic contact state and the sample is calculated from the contact diameter (D) between the probe and the sample and the resistivity (ρ) of the sample as shown in FIG.


探針と試料の接触が直径10μm(0.001cm)とすると

When the contact between the probe and the sample is 10 μm (0.001 cm) in diameter


オーミック接触状態の2探針間の試料の抵抗(試料間抵抗:R12)は、図10に示すように探針と試料の接触直径(D)、探針間隔(S)試料のシート抵抗(ρ)、シート抵抗補正係数(F)により次式で計算される。

As shown in FIG. 10, the resistance of the sample between the two probes in the ohmic contact state (resistance between samples: R 12 ) is the contact diameter (D) between the probe and the sample, the probe interval (S), and the sheet resistance of the sample (S). ρ s ) and sheet resistance correction coefficient (F) are calculated by the following equation.


2探針間の試料の抵抗とシート抵抗補正係数(F)は、次式により計算される。

The resistance of the sample between the two probes and the sheet resistance correction coefficient (F) are calculated by the following equations.


探針と試料の接触が直径10μm(0.001cm)、探針間隔が3mm(0.3cm)とすると

When the contact between the probe and the sample is 10 μm (0.001 cm) in diameter and the distance between the probes is 3 mm (0.3 cm)

シリコン結晶型太陽電池の製造工程における拡散層とベアウェハーのシート抵抗、抵抗率・厚さの例(表1)により計算した2探針法による抵抗Rの値を表2に示す。 Table 2 shows the value of the resistance R 2 by the two-probe method calculated from the examples of the sheet resistance and resistivity / thickness of the diffusion layer and bare wafer in the manufacturing process of the silicon crystal solar cell (Table 1).

2探針法による測定抵抗Rの計算結果と表2をもとに作成した分布図を図11に示す。この分布図は、シリコン結晶型太陽電池ウェハーの拡散層とベアウェハーとの判別が可能であることを示している。 FIG. 11 shows a distribution diagram created based on the calculation result of the measurement resistance R 2 by the two-probe method and Table 2. This distribution diagram shows that it is possible to distinguish between a diffusion layer of a silicon crystal solar cell wafer and a bare wafer.

シリコン結晶型太陽電池のウェハー(試料)を4探針法で測定したシート抵抗と、2探針法で測定した探針間抵抗の例を表3に示す。   Table 3 shows an example of the sheet resistance of a silicon crystal solar cell wafer (sample) measured by the 4-probe method and the inter-probe resistance measured by the 2-probe method.

シリコン結晶型太陽電池ウェハーの拡散層とベアウェハーの測定例の表3を、分布図として作成すると図12、図13の分布になる。図12は4探針法測定シート抵抗分布図(測定例)、図13は2探針法測定抵抗分布図(測定例)である。図12、図13から明らかなように、4探針法のシート抵抗測定では拡散層とベアウェハーの判別ができないが、2探針法では確実に判別することができる。   When Table 3 of the measurement example of the diffusion layer and bare wafer of the silicon crystal solar cell wafer is prepared as a distribution chart, the distributions shown in FIGS. 12 and 13 are obtained. FIG. 12 is a four-probe method measurement sheet resistance distribution diagram (measurement example), and FIG. 13 is a two-probe method measurement resistance distribution diagram (measurement example). As apparent from FIGS. 12 and 13, the diffusion resistance and the bare wafer cannot be discriminated by the sheet resistance measurement by the 4-probe method, but can be surely discriminated by the 2-probe method.

前記実施形態では、4探針法による測定と2探針法による測定のいずれが先であってもよい。   In the embodiment, either the measurement by the 4-probe method or the measurement by the 2-probe method may be performed first.

(拡散層判別方法の実施形態2)
本発明のシリコン結晶型太陽電池ウェハーの拡散層判別方法の他例を以下に説明する。この判別方法は、2探針を試料に接触させて2探針法により2探針間の探針間抵抗を測定し、その測定抵抗値に基づいて拡散層が形成されているか否かを判別する方法である。この場合、2探針プローブを使用することができるが、4探針プローブのうちの2探針を使用して、探針間抵抗を測定することもできる。2探針法による測定抵抗は表2のようになるため、ベアウェハーとの判別が可能である。
(Embodiment 2 of diffusion layer discrimination method)
Another example of the method for determining the diffusion layer of the silicon crystal solar cell wafer of the present invention will be described below. In this determination method, two probes are brought into contact with a sample, the inter-probe resistance between the two probes is measured by the two-probe method, and it is determined whether or not a diffusion layer is formed based on the measured resistance value. It is a method to do. In this case, a two-probe probe can be used, but the inter-probe resistance can also be measured using two of the four probe probes. Since the measurement resistance by the two-probe method is as shown in Table 2, it can be distinguished from a bare wafer.

(拡散層判別装置の実施形態1)
本発明のシリコン結晶型太陽電池ウェハーの拡散層判別装置の一例を図1に基づいて説明する。図1の抵抗測定装置は、試料1を載せる測定ステージ3、測定ステージ駆動機構5、4探針プローブ2、プローブ駆動機構4、4探針/2探針切替ユニット6、抵抗測定ユニット7、制御/データ処理ユニット8を備えている。4探針プローブには汎用の4探針プローブを、プローブ駆動機構には汎用のプローブ駆動機構を使用することができる。
(Embodiment 1 of diffusion layer discrimination device)
An example of the diffusion layer discriminating apparatus for a silicon crystal solar cell wafer according to the present invention will be described with reference to FIG. 1 includes a measurement stage 3 on which a sample 1 is placed, a measurement stage drive mechanism 5, a 4 probe probe 2, a probe drive mechanism 4, a 4 probe / 2 probe switching unit 6, a resistance measurement unit 7, and a control. A data processing unit 8 is provided. A general-purpose four-probe probe can be used for the four-probe probe, and a general-purpose probe driving mechanism can be used for the probe driving mechanism.

図1の判別装置は、次のように使用して抵抗測定することができる。
1.測定ステージ3の上に試料1を載せる。
2.4探針プローブ2をプローブ駆動機構4により、測定ステージ3を測定ステージ駆動機構5により駆動して、4探針プローブ2の探針を試料1の拡散層の測定位置に押し付けて接触させる。この場合、試料1の拡散層のシート抵抗を測定する場合は、4探針/2探針切替ユニット6により4探針プローブ2の4探針を選択して試料1に接触させ、試料1の探針間抵抗を測定する場合は、4探針/2探針切替ユニット6により4探針プローブ2のうちの2探針を選択して試料1に接触させる。接触させた探針は4探針/2探針切替ユニット6を経由して抵抗測定ユニット7に接続される。
3.4探針を試料1に接触させたときは拡散層のシート抵抗が抵抗測定ユニット7により測定され、2探針を試料1に接触させたときは拡散層の探針間抵抗が抵抗測定ユニット7により測定される。
4.測定ステージ3、プローブ駆動機構4、測定ステージ駆動機構5、4探針/2探針切替ユニット6、抵抗測定ユニット7の動作の制御及び測定結果による拡散層の判別、シート抵抗補正計算などのデータ処理等は制御/データ処理ユニット8により実行される。このデータ処理は前記した抵抗測定方法に記載した方法に則して実行される。
The discrimination device of FIG. 1 can be used for resistance measurement as follows.
1. The sample 1 is placed on the measurement stage 3.
2.4 Probe probe 2 is driven by probe drive mechanism 4, measurement stage 3 is driven by measurement stage drive mechanism 5, and the probe of 4-probe probe 2 is pressed and brought into contact with the measurement position of the diffusion layer of sample 1. . In this case, when the sheet resistance of the diffusion layer of the sample 1 is measured, four probes of the four probe probe 2 are selected by the four probe / 2 probe switching unit 6 and brought into contact with the sample 1, and the sample 1 When measuring the inter-probe resistance, two probes among the four probe probes 2 are selected by the four probe / 2 probe switching unit 6 and brought into contact with the sample 1. The contacted probe is connected to the resistance measuring unit 7 via the 4 probe / 2 probe switching unit 6.
3.4 When the probe is brought into contact with the sample 1, the sheet resistance of the diffusion layer is measured by the resistance measuring unit 7, and when the two probes are brought into contact with the sample 1, the resistance between the probes in the diffusion layer is measured by resistance. Measured by unit 7.
4). Data such as measurement stage 3, probe drive mechanism 4, measurement stage drive mechanism 5, 4 probe / 2 probe switching unit 6, control of resistance measurement unit 7, discrimination of diffusion layer based on measurement results, sheet resistance correction calculation, etc. Processing and the like are executed by the control / data processing unit 8. This data processing is executed in accordance with the method described in the resistance measurement method described above.

(拡散層判別装置の実施形態2)
本発明のシリコン結晶型太陽電池ウェハーの拡散層判別装置の実施形態2は、基本的には図1の判別装置と同じであるが、4探針プローブを2探針プローブとした場合である。この場合、図1の4探針/2探針切替ユニット6は不要である。この判別装置では2探針プローブの2探針を試料に接触させて、抵抗測定ユニット7により両探針間の探針間抵抗を測定し、その測定値を制御/データ処理ユニット8により処理して、拡散層の有無を判別することになる。この場合使用するのは2探針であるが、プローブとしては4探針プローブを用意してもよく、その4探針のうちの2探針のみを使用して抵抗測定するようにしてもよい。
(Embodiment 2 of diffusion layer discrimination device)
Embodiment 2 of the silicon crystal type solar cell wafer diffusion layer discriminating apparatus of the present invention is basically the same as the discriminating apparatus of FIG. 1, but is a case where the four-probe probe is a two-probe probe. In this case, the 4-probe / 2-probe switching unit 6 in FIG. 1 is not necessary. In this discriminator, two probes of two probe probes are brought into contact with the sample, the resistance between the two probes is measured by the resistance measuring unit 7, and the measured value is processed by the control / data processing unit 8. Thus, the presence or absence of the diffusion layer is determined. In this case, although two probes are used, a four-probe probe may be prepared as a probe, and resistance measurement may be performed using only two of the four probes. .

図1の測定装置によれば、測定ステージ3に試料1をセットして測定装置をスタートさせると、測定ステージ駆動機構5による測定ステージ3の駆動、4探針/2探針切替ユニット6による4探針/2探針切替え、抵抗測定ユニット7での4探針法による抵抗測定と2探針法による抵抗測定、制御/データ処理ユニット8による測定データの処理等を全自動で行うことができるが、本発明では手動操作とすることもできる。その場合は、全自動測定に必要な測定ステージ駆動機構5や他の機構等を制御する制御システムはなくてもよい。   According to the measurement apparatus of FIG. 1, when the sample 1 is set on the measurement stage 3 and the measurement apparatus is started, the measurement stage 3 is driven by the measurement stage drive mechanism 5, and the 4 probe / 2 probe switching unit 6 performs 4. The probe / two-probe switching, resistance measurement by the 4-probe method in the resistance measurement unit 7, resistance measurement by the 2-probe method, measurement data processing by the control / data processing unit 8, etc. can be performed automatically. However, in this invention, it can also be set as a manual operation. In that case, there is no need for a control system for controlling the measurement stage drive mechanism 5 and other mechanisms necessary for fully automatic measurement.

前記実施形態は本発明の一例に過ぎない。本発明の課題を達成可能であれば、判別方法も判別装置も前記以外の方法、構成とすることができる。   The above embodiment is merely an example of the present invention. As long as the object of the present invention can be achieved, both the determination method and the determination device can have other methods and configurations.

1 試料
2 4探針プローブ
3 測定ステージ
4 プローブ駆動機構
5 測定ステージ駆動機構
6 4探針/2探針切替ユニット
7 抵抗測定ユニット
8 制御/データ処理ユニット
1 Sample 2 4 Probe Probe 3 Measurement Stage 4 Probe Drive Mechanism 5 Measurement Stage Drive Mechanism 6 4 Probe / 2 Probe Switch Unit 7 Resistance Measurement Unit 8 Control / Data Processing Unit

Claims (4)

シリコン結晶型太陽電池ウェハーの拡散層判別方法において、
4探針プローブの4探針を試料の拡散層に接触させて拡散層のシート抵抗を測定し、
前記4探針プローブの4探針のうちの2探針を試料の拡散層に切替えて接触させ、その2探針間の探針間抵抗を2探針法により測定し、前記両測定抵抗値に基づいて拡散層が形成されているか否かを判別する、
ことを特徴とするシリコン結晶型太陽電池ウェハーの拡散層判別方法。
In the method for determining the diffusion layer of a silicon crystal solar cell wafer,
Measure the sheet resistance of the diffusion layer by bringing the four probes of the four-probe probe into contact with the diffusion layer of the sample.
Two of the four probes of the four-probe probe are switched to and brought into contact with the diffusion layer of the sample, and the inter-probe resistance between the two probes is measured by the two-probe method. To determine whether a diffusion layer is formed based on
A method for distinguishing a diffusion layer of a silicon crystal solar cell wafer.
シリコン結晶型太陽電池ウェハーの拡散層判別方法において、
4探針プローブの2探針又は2探針プローブの2探針を試料に接触させて、2探針間の探針間抵抗を2探針法により測定し、その測定抵抗値に基づいて拡散層が形成されているか否かを判別する、
ことを特徴とするシリコン結晶型太陽電池ウェハーの拡散層判別方法。
In the method for determining the diffusion layer of a silicon crystal solar cell wafer,
Two probes of a four-probe probe or two probes of a two-probe probe are brought into contact with a sample, the inter-probe resistance between the two probes is measured by the two-probe method, and diffusion is performed based on the measured resistance value. Determine whether a layer is formed,
A method for distinguishing a diffusion layer of a silicon crystal solar cell wafer.
シリコン結晶型太陽電池ウェハーの拡散層の有無の判別に使用できる判別装置であり、
4探針プローブと、4探針プローブの4探針のうち試料に接触させる探針を4探針と2探針に切替え可能な切替ユニットと、プローブ駆動機構と、抵抗測定ユニットと、測定ステージ駆動機構と、制御/データ処理ユニットを備え、
抵抗測定ユニットは試料に接触させた4探針プローブの4探針によりシート抵抗を測定可能であり、試料に接触させた4探針プローブの2探針により探針間抵抗を測定可能であり、
制御/データ処理ユニットは駆動機構や他の機構の制御、測定した両抵抗値に基づく拡散層の有無の判別を行うことができる、
ことを特徴とするシリコン結晶型太陽電池ウェハーの拡散層判別装置。
It is a discriminator that can be used to discriminate the presence or absence of a diffusion layer of a silicon crystal solar cell wafer,
4 probe probes, a switching unit capable of switching a probe to be contacted with a sample among 4 probes of 4 probe probes to 4 probes and 2 probes, a probe driving mechanism, a resistance measurement unit, and a measurement stage A drive mechanism and a control / data processing unit;
The resistance measurement unit can measure sheet resistance with 4 probes of 4 probe probes in contact with a sample, and can measure resistance between probes with 2 probes of 4 probe probes in contact with a sample.
The control / data processing unit can control the drive mechanism and other mechanisms, and determine the presence or absence of a diffusion layer based on both measured resistance values.
A silicon crystal type solar cell wafer diffusion layer discriminating apparatus.
シリコン結晶型太陽電池ウェハーの拡散層の有無の判別に使用できる判別装置であり、
4探針プローブ又は2探針プローブと、プローブ駆動機構と、抵抗測定ユニットと、制御/データ処理ユニットを備え、
抵抗測定ユニットは試料に接触させた、4探針プローブの2探針又は2探針プローブの2探針により探針間抵抗を測定可能であり、
制御/データ処理ユニットは駆動機構や他の機構の制御、測定した探針間抵抗値に基づく拡散層の有無の判別を行うことができる、
ことを特徴とするシリコン結晶型太陽電池ウェハーの拡散層判別装置。
It is a discriminator that can be used to discriminate the presence or absence of a diffusion layer of a silicon crystal solar cell wafer,
4 probe probe or 2 probe probe, probe drive mechanism, resistance measurement unit, control / data processing unit,
The resistance measurement unit can measure the inter-probe resistance with 2 probes of 4 probe probes or 2 probes of 2 probe probes brought into contact with the sample.
The control / data processing unit can control the driving mechanism and other mechanisms, and determine the presence or absence of a diffusion layer based on the measured resistance value between the probes.
A silicon crystal type solar cell wafer diffusion layer discriminating apparatus.
JP2018031716A 2018-02-26 2018-02-26 Diffusion layer discrimination method and discrimination device for silicon crystal solar cell wafer Active JP6419369B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018031716A JP6419369B1 (en) 2018-02-26 2018-02-26 Diffusion layer discrimination method and discrimination device for silicon crystal solar cell wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018031716A JP6419369B1 (en) 2018-02-26 2018-02-26 Diffusion layer discrimination method and discrimination device for silicon crystal solar cell wafer

Publications (2)

Publication Number Publication Date
JP6419369B1 JP6419369B1 (en) 2018-11-07
JP2019149396A true JP2019149396A (en) 2019-09-05

Family

ID=64098699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018031716A Active JP6419369B1 (en) 2018-02-26 2018-02-26 Diffusion layer discrimination method and discrimination device for silicon crystal solar cell wafer

Country Status (1)

Country Link
JP (1) JP6419369B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568022B (en) * 2019-10-21 2024-06-04 四川大学 High-speed measuring system and measuring method for resistance of double-sided multi-point metal coating
CN113777405B (en) * 2021-09-17 2024-03-29 长鑫存储技术有限公司 Test method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5737846A (en) * 1980-08-20 1982-03-02 Nec Corp Measuring device for thickness of semiconductor layer
JPS61198048A (en) * 1985-02-28 1986-09-02 Nippon Gakki Seizo Kk Contamination inspecting method for diffusion furnace
JPH01213579A (en) * 1988-02-22 1989-08-28 Oki Electric Ind Co Ltd Method and device for measuring surface resistance
JPH0247847A (en) * 1988-08-10 1990-02-16 Kawasaki Steel Corp Method of measuring diffusion distance in semiconductor material
JPH10115642A (en) * 1996-10-09 1998-05-06 Kokusai Electric Co Ltd Resistivity measuring device
JP2010161233A (en) * 2009-01-08 2010-07-22 Hitachi Kokusai Denki Engineering:Kk Device for measuring resistivity of semiconductor sample
JP5885195B2 (en) * 2012-02-27 2016-03-15 国立大学法人東北大学 Crystal quality evaluation method and crystal quality evaluation apparatus for Si crystal

Also Published As

Publication number Publication date
JP6419369B1 (en) 2018-11-07

Similar Documents

Publication Publication Date Title
US7888265B2 (en) Method for assaying copper in silicon wafers
JP6419369B1 (en) Diffusion layer discrimination method and discrimination device for silicon crystal solar cell wafer
Augarten et al. Calculation of quantitative shunt values using photoluminescence imaging
CN101606239B (en) Silicon wafer evaluation method
US6255128B1 (en) Non-contact method for determining the presence of a contaminant in a semiconductor device
JP2010177241A (en) Evaluation method of lifetime
JP5561245B2 (en) Semiconductor substrate evaluation method
JP2011021898A (en) Standard sample for scanning probe microscope and carrier concentration measurement method
JP5472173B2 (en) Method for evaluating Cu concentration in silicon wafer
KR101302587B1 (en) Evaluation method for minority carrier lifetime in silicon wafer
JP3439332B2 (en) How to measure crystal defects
JP2014207369A (en) Method of evaluating impurity in wafer, and inspection method of n-type silicon wafer
JP2002100663A (en) Voltage measuring apparatus, voltage measuring method and measuring apparatus for semiconductor element
JP5018053B2 (en) Semiconductor wafer evaluation method
Diez et al. Analysing defects in silicon by temperature-and injection-dependent lifetime spectroscopy (T-IDLS)
Fabry Trace analysis of microcontaminations in compliance with ISO 9001: monitoring and diagnostics in large-scale silicon manufacturing
JP2014112596A (en) Evaluation method and inspection method of p type silicon wafer
JP6520782B2 (en) Evaluation method and manufacturing method of epitaxial wafer
JP4735337B2 (en) Semiconductor element evaluation method, semiconductor wafer quality evaluation method and manufacturing method
KR101820680B1 (en) Method for manufacturing semiconductor substrate
JP6292166B2 (en) Semiconductor substrate evaluation method
Wu et al. ECV Profiling of Ultra-Shallow Junction Formed by Plasma Doping
JP2009266835A (en) Metal contamination evaluating method of silicon single crystal
Tallian et al. Monitoring Ion Implantation Energy Using Non‐contact Characterization Methods
CN107887287B (en) Test method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180301

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180611

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181009

R150 Certificate of patent or registration of utility model

Ref document number: 6419369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250